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Abstract

The design of an autonomous navigation system for mo-

bile robots can be a tough task. Noisy sensors, unstructured

environments and unpredictability are among the problems

which must be overcome. Reservoir Computing (RC) uses a

randomly created recurrent neural network (the reservoir)

which functions as a temporal kernel of rich dynamics that

projects the input to a high dimensional space. This projec-

tion is mapped into the desired output (only this mapping

must be learned with standard linear regression methods).

In this work, RC is used for imitation learning of navigation

behaviors generated by an intelligent navigation system in

the literature. Obstacle avoidance, exploration and target

seeking behaviors are reproduced with an increase in sta-

bility and robustness over the original controller. Experi-

ments also show that the system generalizes the behaviors

for new environments.

1. Introduction

Autonomous robots form an area of research which is

rapidly increasing and becoming very important for our so-

ciety. Several applications of intelligent robotics are becom-

ing more evident, such as: service and domestic robotics,

surveillance, and autonomous operation in hazardous envi-

ronments.

Traditional approaches in robotics are usually based on

the sense-model-plan-act framework. They require the

modeling of the environment of the robot and also usually

present a planning program which generates the complete

trajectory a priori. It is easy to see that such an approach

presents high computational costs related to path planning
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routines. Moreover, world modeling may be extremely dif-

ficult to accomplish.

New approaches to robotics have been proposed early

in the literature [6, 7]. Instead of having several modules

for perception, world modeling, planning and execution,

the new approach is based on individual intelligent control

modules, where each one contributes to behavior generation

for a robot. Computational intelligence techniques (e.g.,

neural networks and evolutionary algorithms) have been the

most used techniques for designing such autonomous intel-

ligent systems [1, 5, 8] due to inherent characteristics such

as robustness, adaptivity, and learning.

In this work, we are interested in using Recurrent Neural

Networks (RNNs) for efficient identification of a particular

intelligent navigation system in the literature [1]. This intel-

ligent system learns to navigate in its environment by inter-

acting with it. After some learning period, it is able to gen-

erate target seeking and obstacle avoidance behaviors while

efficiently exploring its environment. This work will use

such a system to generate examples of navigation strategies

(or behaviors) that will be used for training a RNN-based

controller by an imitation learning process.

Most training algorithms for RNNs have high compu-

tational costs and have problems with convergence of the

training process. A recently proposed powerful alterna-

tive to such traditional RNNs is Reservoir Computing [16].

Reservoir Computing uses a fixed (usually random) RNN

that is used as a reservoir of rich dynamics and a linear static

readout output layer (see Fig. 1). Only the readout output

layer is trained in a supervised way, while the recurrent part

of the network (the so called reservoir) has fixed weights.

The reservoir weights are usually scaled so that its dynamic

regime is situated at the edge of stability.

The term Reservoir Computing is a unifying concept

for other specific computing techniques: Echo State Net-

works (ESNs) [9] and Liquid State Machines (LSMs) [13].

Theoretical analysis of reservoir computing methods [10]



and a broad range of applications [16] (which sometimes

even drastically outperform the current state-of-the-art [11])

show that RC is very powerful and overcomes many of the

problems of traditional RNN training such as slow conver-

gence, bifurcations and high computational requirements.

Reservoir Computing has been successfully applied to a

wide range of robotic tasks. In [4], RC is used for com-

plex event detection and robot localization in the context of

small mobile robots with few noisy sensors. In that work,

two different robot models are used, including the e-puck

robot with 8 infra-red sensors. In [3], RC is used in various

robotic tasks including prediction of robot coordinates, map

learning and path generation. The work in [14] uses an ESN

for motor speed control of a differential drive robot, and a

LSM is used for imitation learning of simple obstacle avoid-

ance behaviors in [8]. RC has also been used for modeling

the road sign problem in [5], where a mobile robot must re-

member a previously given stimulus (light sign) in order to

accomplish a delayed-response task successfully. All these

robotic tasks are performed very well by a RC network. The

short-term memory in the reservoir makes more complex

computation possible, while the training algorithm simply

adjusts readout weights by using linear regression methods.

This work shows that this new computing paradigm can

be used to efficiently learn navigation strategies from exam-

ples given by an (non-linear) intelligent navigation system

for mobile robots [1]. After the imitation learning process,

the RC network performs very similarly to the original sys-

tem, being able to generate obstacle avoidance, exploration

and target seeking behaviors with an increase in robustness

and stability of the robot controller when compared to the

original system. The RC network is also able to generalize

the navigation skills to new environments.

2. Reservoir computing

This work uses an Echo State Network composed of a

discrete hyperbolic-tangent RNN (i.e., the reservoir) and a

linear readout output layer which maps the reservoir states

to the desired output. The general state update equation for

the nodes in the reservoir and the readout output equation

are as follows:
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where: u(t) denotes the input at time t; x(t) represents the
reservoir state; y(t) is the output; and f() = tanh() is the
hyperbolic tangent activation function. The weight matri-

cesW represent the connections between the nodes of the

network (where r, i, o, b denotes reservoir, input, output,

and bias, respectively). All weight matrices to the reservoir

(denoted as Wr
·
) are initialized randomly (represented by

solid arrows in Fig. 1), while all connections to the output

(denoted asWo
·
) are trained (represented by dashed arrows

in Fig. 1). The initial state is set to x(0) = 0.

However, for the experiments in this work, we discard

the output feedback to the reservoir and we add a leak rate

α as in [15] to the state update equation:

x(t + 1) = f((1 − α)x(t) +

+ α(Wr
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The output calculation gets simpler once we do not use the

direct connections from input to output neither the connec-

tions from output to output:

y(t + 1) = Wo

r
x(t + 1) + Wo

b
. (4)

The leak rate can effectively tune the timescale of the

dynamics of the reservoir. If the leak rate is chosen cor-

rectly, the reservoir dynamics can be adjusted to match the

timescale of the input, making it possible to achieve im-

proved performance (this can also be achieved by resam-

pling the input [15, 4]). In this work, some experiments use

2 pools of neurons in the reservoir with distinct leak rates

to achieve better performance. Further investigation about

timescales in reservoirs and leaky integrator neurons can be

found in [15, 12]. Each element of the connection matrix

Wr
r
is drawn from a normal distribution with mean 0 and

variance 1. For most applications, the best performance is

attained with a reservoir that operates at the edge of stabil-

ity. The randomly createdWr
r
matrix is rescaled such that

the system is stable. This can be accomplished by rescaling

the matrix so that the spectral radius (the largest absolute

eigenvalue) of the linearized system is slightly smaller than

one [10]. In this work we scale all reservoirs to a spec-

tral radius of |λmax| = 0.9 which is near optimal for most
experiments, but the value of the spectral radius could be

further optimized for each experiment separately.

Training is performed using linear regression (least

squares method). The computational efforts for training

are related to computing a matrix product and inversion. It

takes just a few seconds to train a RC network for the exper-

iments in this work on an Intel Core2 Duo processor-based

Figure 1. Reservoir Computing network (left)

and Robot model (right).



system. Once trained, the resulting RC-based system can

be used for real-time operation on moderate hardware since

the computations are very fast (only matrix multiplications

of small matrices).

The Normalized Mean Square Error (NMSE) is used as

a performance measure in this work and is defined as:

NMSE =
〈(yd − y)2〉

σ2
yd

(5)

where the numerator is the mean square error of the output

y and the denominator is the variance of desired output yd.

3. Robot Model

We use a robot model that is part of the 2D SINAR sim-

ulator [1] in the following experiments. This simulation en-

vironment generates the data necessary for training the RC

networks. The environment of the robot is composed of

several objects, each one of a particular color. Obstacles

(repulsive objects) have the blue color whereas targets (at-

tractive objects) have the yellow color. The robot model

is shown in Fig. 1. The robot interacts with the environ-

ment by distance and color sensors; and by one actuator

which controls the movement direction (turning). Seven-

teen (17) sensor positions are distributed uniformly over the

front of the robot (from -90◦ to +90◦). Each position holds

two virtual sensors (for distance and color perception) [1].

The distance sensors are limited in range (i.e., they saturate

for distances greater than 300 distance units (d.u.)) and are

noisy (they exhibit Gaussian noise on their readings, gener-

ated from N(0, 60) in d.u.). A value of 0 means near some
object and a value of 1 means far or nothing detected. At

each iteration the robot is able to execute a direction adjust-

ment to the left or to the right in the range [0, 15] degrees

and the speed is constant (0.28 distance units (d.u.)/s) (sum-

mary in Table 1).

The controller for the SINAR model (based on [1]) is an

intelligent navigation system composed of hierarchical neu-

ral networks which learn by classical reinforcement learn-

ing algorithms. The system learns to seek targets and avoid

obstacles as the robot interacts with the environment (by

colliding against obstacles and by capturing targets in the

environment). It also learns to distinguish targets and ob-

stacles (which present distinct colors) by associating their

Table 1. Robot model

No. Dist. Sensors 17

No. Color Sensors 17

Range of Dist. Sens. 300 d.u.

Noise on sensors N(0,60 d.u.)

Speed 0.28 d.u.

respective colors to attraction or repulsion behaviors (see

[2, 1]). From now on, this controller will be called INASY

(Intelligent autonomous NAvigation SYStem).

The INASY controller will provide examples of naviga-

tion trajectories to a RC-based robot controller which will

be called RECNA (REservoir Computing NAvigation sys-

tem) from now on. The samples collected from the INASY

controller (distance and color sensors, and actuators) are

used to train the RECNA controller in a Matlab environ-

ment using the RCT Toolbox1 [16].

4. Identification of Navigation System

4.1. Introduction

This section elaborates on the identification of a non-

linear system for autonomous navigation of mobile robots.

As stated in the previous section, the RECNA controller is

composed of a RC network which learns by imitation learn-

ing of navigation examples given by the INASY controller

[1]. The experiments are divided in two groups. The first

group of experiments investigates the collision avoidance

and exploration behaviors of the RECNA controller (Sec-

tion 4.2). The second group analyses the target seeking be-

havior learned by RECNA controller (Section 4.3). Com-

parisons with the original INASY controller are also made.

In the following, the parameter configuration for the RC

network (of the RECNA controller) is presented. The in-

puts to the network are the instantaneous values of the 17

distance sensors and 17 color sensors. The reservoir size is

either 400 or 600 neurons. Table 2 shows 3 different mod-

els for the RECNA controller. The models RECNA2 and

RECNA3 have 2 pools of neurons with distinct leak rates

(that is, half of the neurons in the reservoir uses α = 0.1
and the other half uses α = 1). These multiple timescales in
the reservoir generated by different leak rates can improve

performance of the controller, depending on the robotic

task which is addressed. The readout layer has 1 output

unit which corresponds to the turning (direction adjustment)

robot actuator (the robot has constant velocity). The con-

nection matrix from input to the reservoir (Wr

i
) is initial-

ized to -0.2, 0.2 and 0 with probabilities 0.1, 0.1 and 0.8, re-

1This is an open-source Matlab toolbox for Reservoir Computing

which is freely available at http://www.elis.ugent.be/rct

Table 2. Parameter configuration

Controller Reservoir Size Leak rates (α)

RECNA1 400 1

RECNA2 400 0.1, 1

RECNA3 600 0.1, 1
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Figure 2. Environment E1 and respective trajectory of controllers.

spectively. This parameter setting for weight matrices is not

critical for the experiments. Gaussian noise (N(0, 10−6))
is added to the state update equation (3) during learning for

making the reservoir robust to noise.

4.2. Collision Avoidance and Exploration

The first experiment is accomplished using environment

E1 (see Fig. 2(a)). The environment is composed of a long

corridor with three obstacles. The experiment is executed in

three stages. First, the INASY controller learns to navigate

in this environment (that is, to avoid obstacles and to ex-

plore the environment) (see Fig. 2(b)). In the second stage,

data (samples of the sensors and actuators) are collected

from the trained INASY controller during a robot run which

lasts 30.000 timesteps. The third stage corresponds to train-

ing the RECNA controller with the data collected in the sec-

ond stage by supervised imitation learning (using RECNA1

configuration in Table 2).

The resulting RECNA controller learned to navigate and

explore the environment very well. Fig. 2 shows the tra-

jectories given by INASY and RECNA controllers during

10.000 timesteps. We can note that both trajectories are

very similar whereas the RECNA controller is more stable

and robust to noisy sensors than INASY controller for this
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(b) RECNA controller

Figure 3. Output of controllers in E1.

particular case (note that the trajectory given by RECNA is

thinner and more regular than the other trajectory). Their

respective robot actuators (turning) are shown in Fig. 3. It

is also interesting to observe that the output of the RECNA

controller (Fig. 3(b)) is much less noisy than the output of

the INASY controller (Fig. 3(a)). We tested both controllers

for 100.000 timesteps in environment E1 and recorded the

number of collisions for each run. While the INASY con-

troller had shown 8 collisions, the RECNA controller did

not collide at all. Furthermore, we also tested 10 differ-

ent, randomly created RC networks (trained with the same

dataset) in environment E1. Each one of the 10 resulting

controllers presented no collisions against obstacles during

a test run of 10.000 timesteps.

In order to test the generalization capabilities of the

RECNA controller, we trained it on the dataset generated

from environment E1 (using RECNA1 configuration) and

tested it on a new environment E2 (see Fig. 4). The new en-

vironment has corridors of different dimensions and several

obstacles which reduce the robot’s passageway in the envi-

ronment. We can observe in Fig. 4 that the trajectory given

by RECNA controller in the new environment E2 shows that

the controller generalized its navigation capabilities for un-

known environments very well. It is able to explore environ-

ment E2 avoiding collisions against most of the obstacles.

Statistics for this environment are shown in Table 3, consid-

Figure 4. Environment E2 and trajectory of

RECNA controller.



Table 3. Results - Environments E1 and E2

Controller Mean (SD) Collisions Mean (SD) NMSE

Test performance E2 Training perf. E1

RECNA1 6.3 (7.66) 0.7855 (0.0017)

RECNA2 4.7 (3.8) 0.7735 (0.0021)

RECNA3 3.5 (3.9) 0.7582 (0.0015)

ering 3 different configurations for the RECNA controller

which is trained using environment E1 (see Table 2). It

presents the mean and standard deviation (SD) of the num-

ber of collisions during 10.000 timesteps for 10 different

RC networks (test performance in E2). It also shows the

mean and SD of the respective training NMSE (Normal-

ized Mean Square Error) (training performance in E1). The

usual RECNA1 controller with 400 neurons and no differ-

ent leak rates shows an average of 6.3 collisions in envi-

ronment E2 during 10.000 timesteps. When distinct leaks

are considered in the same reservoir (RECNA2), the mean

of collisions drops to 4.7 (see Table 3). The performance is

further improved to 3.5 collisions in average when the reser-

voir is made bigger (600 neurons) while also considering

distinct leak rates (RECNA3). We can conclude that the ex-

istence of multiple timescales in a single reservoir enhances

the performance and stability of the controller for unknown

environments (bigger reservoirs also yield improvement in

performance).

4.3. Target Seeking

Next we investigate the target seeking behavior of

RECNA controllers. For this, we also divide the experi-

ments in three stages as in previous section: data generation

by pre-trained INASY controllers; training RC-based robot

controllers (RECNA) with collected data (using RECNA1

configuration from Table 2); and testing of the resulting

RECNA controllers in real-time in the simulator.

The first experiment uses environment E3 (Fig 5). It is a

large environment similar to E1, but with 8 targets located in

the corners (targets are striped in the figure for clarification).

Initially, all targets are located in the environment. Every

time the robot captures a target (by just approaching it close

enough), it is removed from the environment. When the last

target has been captured, all the others are put back in their

respective locations.

The INASY controller learns to navigate in the environ-

ment and capture all targets repeatedly. The samples gen-

erated by this controller are recorded and used for training

the RECNA controller by imitation learning. An example

of trajectory generated by the resulting RECNA controller

is shown in Fig. 5. It is possible to observe that the trajec-

tory tends towards targets, that is, the robot always captures

Figure 5. Environment E3 and trajectory of
RECNA controller.

Table 4. Results - Environment E3

Controller No. Collisions No. Captures

INASY 4 186

RECNA 2 182

the targets if they are present in the environment. The colli-

sion avoidance and exploration behaviors are also learned:

the robot visits the whole environment with only 2 colli-

sions. Table 4 shows the results for INASY and RECNA

controllers in environment E3 for 100.000 timesteps. We

can observe that both controllers are very proficient in the

considered task. The next experiment investigates the tar-

get seeking behavior acquired by the RECNA system. For

this, we use environment E4 (see Fig. 6(a)) which contains

a target at its upper-left corner. This target is removed from

the environment when the robot captures it. After some

delay period (3000 or 4000 timesteps) it is put back in its

original location. So, the target is constantly reappearing in

the environment. The trajectory of the RECNA controller

(trained with the previous dataset from environment E3) is

(a) Environment E4 and trajectory of

RECNA controller
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(b) Reservoir states (upper plot)

and turning actuator (lower plot)

Figure 6. Environment E4 and respective re-

sults for target seeking.



shown in Fig 6(a). The part of the trajectory which forms

a stretched 8 corresponds to a collision avoidance behavior

(when the target is not visible). As soon as the target reap-

pears in the environment and the robot localizes it, we can

see that the trajectory is modified towards the target area.

The first plot of Fig. 6(b) shows seven randomly selected

reservoir states (i.e., activation signals of 7 neurons in the

reservoir). The arrows in the figure indicate the moments in

which the target appears in the environment. During these

time intervals, there are clear changes in the activation sig-

nals of the neurons, indicating that a target is present in

the environment. The corresponding robot actuator (out-

put of RECNA controller) is shown in the lower plot from

Fig. 6(b). The arrows show the instants during which a tar-

get seeking behavior is enabled.

5. Conclusion

In this work, we use an intelligent autonomous naviga-

tion system for mobile robots [1] for generation of examples

of navigation behaviors (such as obstacle avoidance, explo-

ration and target seeking behaviors) which are used to train

a Reservoir Computing (RC) network by a imitation learn-

ing process. This RC network is composed of a fixed re-

current neural network (the reservoir) and a trainable read-

out output layer. The learning is done by linear regression

which guarantees convergence of the training process in a

short time period.

After the imitation learning process, the RC network is

able to generate suitable behaviors in several environments

in the same way as the original controller. In other words,

the non-linear intelligent system [1] is efficiently identified

by a RC network which is able to generalize the naviga-

tion capabilities to new environments, while having better

stability and robustness than the original robot controller.

The reservoir, with its short-term memory capabilities, and

a simple learning algorithm make non-linear system identi-

fication a very effective process.

The importance of different timescales in reservoirs is

also demonstrated in this work. The RC-based robot con-

troller performs better (i.e., it shows less collisions) when

more than one timescale is present in the reservoir (in the

form of leak rates). Future work includes the study of how

many behaviors a single RC network can learn. In addition,

we could investigate the generation of primitive behaviors

by reservoirs which can be combined to generate more com-

plex behavior. Such approach yields applications in control

of robots with many degrees of freedom.
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