
Using Echo State Networks for

Robot Navigation Behavior Acquisition

Cedric Hartland and Nicolas Bredeche
TAO/LRI – Univ. Paris-Sud ; CNRS ; INRIA futurs

Orsay, France
{cedric.hartland, nicolas.bredeche}@lri.fr

Abstract— Robot Behavior Learning by Demonstration deals
with the ability for a robot to learn a behavior from one or
several demonstrations provided by a human teacher, possibly
through tele-operation or imitation. This implies controllers
that can address both (1) the feature selection problem related
to a great amount of mostly irrelevant sensory data and
(2) dealing with temporal sequences of demonstrations. Echo
State Networks[10] have been proposed recently for time series
prediction and have been shown to perform remarkably well
on this kind of data. In this paper, we introduce ESN to robot
behavior acquisition in the scope of a mobile robot performing
navigation tasks. ESN actually show comparable and even better
performance with that of other algorithms from the literature
in similar experimental conditions. Moreover, some properties
regarding dynamics of ESN in the context of learning by
demonstration are investigated.

Index Terms— Robot Programming by Demonstration, Behav-
ior Acquisition, Mobile Robotics, Echo State Networks.

I. INTRODUCTION

Robot programming by demonstration, or robot behavior

acquisition through demonstration, provides a trade-off be-

tween fully autonomous learning robot and ad hoc controllers.

In this setup, it is possible to both demonstrate a task which

would be difficult to formalize and to incrementaly shape

behaviors in a trial and error fashion. This field has long

been studied in the scopes of mobile robot navigation task and

robotic arm manipulation or coordinated mouvement (mostly

through imitation).

In both setup, the main issue to be adressed is that of

dealing with many, possibly noisy and vastly irrelevant data

and with temporal sequence. To address these problems, pre-

vious works showed that probabilistic models, coupled with

efficient dimension reduction algorithms, or either continuous

or discrete recurrent neural networks, achieved great results.

Recently, Jaeger proposed a new approach to recurrent

neural network : the Echo State Network (ESN [10]). This

approach has been shown to be very efficient considering time

series prediction by reformulating the task of learning tem-

poral sequence into selection of combined available internal

dynamics. As a result, ESN provides rich dynamics along

with a simple learning algorithm.

In the scope of this paper, we propose to address the

problem of robot learning by demonstration using an ESN

as controller. We consider the task where a real world mobile

robot is teached by a human supervisor to perform simple nav-

igation tasks in an environment and compare the efficiency of

our ESN controller to a learning by demonstration algorithm

from the literature.

While learning by demonstration is not limited to time

series prediction, it turns out that ESN properties makes it a

relevant choice in this setup. Indeed, further experiments show

that ESN are able to both perform implicit feature selection

over the sensory inputs and to be robust towards disruptions

in the environment.

The paper is organized as follow : section II gives an

overview of robot learning by demonstration and section III

presents the general setup of ESN as well as a preliminary

experiment. Then, the ESN architecture is described and

evaluated in sections IV and V. Section VI provides further

insights as to why and how the ESN approach actually

works in the context of robot programming by demonstration.

Finally, conclusions and perspectives are described in the last

section.

II. ROBOT PROGRAMMING BY DEMONSTRATION

Robot programming by demonstration is a key research

interest in robotics. In robot programming by demonstration,

a human teacher helps a robot learning new skills [5] and

eventually refining by correcting the acquired behavior thanks

to the teacher feedback[7]. Works in this field tackle the

development of algorithms for motor control and learning,

gesture recognition and visuo motor integration. Two main

areas of research can be distinguished :

1) ”programming by demonstration” : a human supervisor

takes control over the robot (e.g. with a joystick), which

is usually considered in the context of mobile robot

[13], [9], [12];

2) ”programming by imitation” : a human teacher shows

the correct behavior (e.g. using a camera video, laser

sensors, etc.), which concerns mainly object manipula-

tion or sequences of mouvement using a robotic arm

[2], [6], [17].

In the following we are interested in navigation behaviour

acquisition for mobile robot. On the one hand, autonomous

learning robot (e.g. evolutionary robotics[14], reinforcement

learning[19], etc.) often ends up with very simple behavior

when it comes to real robots because controllers are too

difficult to optimize with regards to the size of the search

space. On the other hand, handwritten controller might cap-

ture domain knowledge but often fail to provide efficient

behaviours in environment difficult to model with accuracy

(i.e. where no optimal analytical solution can be drawn).

Robot programming by demonstration offer a compromise

between these two approaches, where the sensori-motor space

in which the controller is to be optimized is constrained by

demonstration from the (human) supervisor.

There are several main setups (amount of data, number of

demonstrations, ...) and issues (dimension reduction, dealing

with time series, learning from few examples) regarding robot

programming by demonstration. One of the main issue is

the design of controller that is able to deal with time series

prediction. Indeed, robot navigation can be considered as

a highly sequential task where the markov property may

not hold (i.e. f(st, at, st−1, at−1, . . . , s0, a0) → st+1 rather

than f(st, at) → st+1). Current and past approaches include

recurrent neural networks [3], various flavours of markov

models [4] and other approaches based on standard regression

setup [9].

In this scope, Echo State Network provides a good alterna-

tive but, so far, has never been used in the context of Robot

Programming by Demonstration.

III. ECHO STATE NETWORK

Echo state networks (ESN) have been proposed by Jaeger

in 2001[10] with the objective to endow a neural network

with rich dynamics behavioral patterns while keeping learning

complexity at a low level. An ESN is a discrete time,

continuous state, recurrent neural network using a sigmoidal

activation function for all neurons.Figure 1 shows the typical

ESN that will be used in this paper: the input layer is totally

connected to the hidden layer, both the hidden and input

layers are totally connected to the output layer. Moreover,

the output layer is connected backward to the hidden layer.

All weights are randomly set once for all except weights on

arcs connected towards the outputs - those will be learnt.

The hidden layer, or reservoir, is also randomly generated:

N neurons are randomly connected up to a user-defined

density of connections ρ. The weights of those connections

are randomly uniformly set in [−1, 1], and are scaled so that

the spectral radius of the connection matrix is less than a given

value α < 1, ensuring that the newtork exhibits the ”echo state

property”, i.e. stays out of the chaotic behavior zone whatever

the input sequence (see e.g. [11]). An ESN is thus determined

by the 3 parameters N , ρ and α. In some sense, an ESN can

be seen as a universal dynamical system approximator, which

linearly combines the elementary dynamics contained in the

reservoir [15]. ESN have been shown to perform surprisingly

well in the context of supervised learning, in particular for

problems of prediction of times series, though it has also

been successfully used in the context of (supervised) robot

control learning [16] (also see [1] for an overview of ESN

applications).

Figure 2 illustrates the classic learning protocol for ESN

using simple linear regression as learning algorithm. The task

Fig. 1. Schematic view of an Echo State Network. Plain arrows stand for
weights that are randomly chosen and remain fixed, while dashed arrows
represent the weights to be optimized.

is to learn sinus(n/5) → 1/2∗sinus7(2PI/10PI) (i.e. one

input node, one output node). Parameters are described in

[10]: (1) the first 100 steps are not recorded but are still

useful to stabilize the reservoir internal dynamics; (2) the

next 200 steps are recorded, at each new step, the correct

output value is written to the output nodes (this is called

”teacher forcing”); (3) At step 300, a simple linear regression

is performed to compute weights from arcs going to output

nodes; (4) the network is then evaluated during the 200 next

steps - as shown here, matching is nearly perfect (error is

below 10−7, averaged on 11 runs).

This figure, as well as all other results shown in the

following of this paper, have been obtained using our home-

made ESN implementation into the freely available open-

source PicoNode Neural Network library1[8].

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400 450 500

o
ra

c
le

 a
n

d
 a

c
tu

a
l
o

u
tp

u
ts

 ;
 i
n

s
ta

n
t

e
rr

o
rs

iteration (n)

Echo State Network results

oracle output
actual output
instant error

Fig. 2. Classic learning and testing protocol for ESN using PicoNode.
Learning is performed at step 300. Parameters are similar to [10].

IV. ROBOT LEARNING BY DEMONSTRATION USING ESN

The Learning by Demonstration task is defined as the fol-

lowing. Firstly, the teacher takes control of the robotic agent

(e.g. through a joystick) and perform a set of demonstrations

with a given objective in mind. This results in a log of

sensors and actuators states for each time steps. In practical,

this log may eventually contain noisy and incomplete data

1simbad.sourceforge.net

for a difficult task. Relying on learning may still be an

option as long as there is redundant information in the data

log (e.g. noisy sensors in a dynamic environment may be

compensated by showing the task several times). Of course,

finding an optimized controller depends on the quality of

the demonstrations, the difficulty of the task, the ability of

the controller representation formalism, the amount of the

available data and the ability for the learning algorithm to

capture relevant information.

As seen in the previous section, some works have focused

on using discrete or continuous time recurrent neural network

in the context of Robot learning by demonstration. In this

paper, a simple Echo State Network acts as the robot con-

troller (formally, fesn(sensoryinputs) → actuatorvalues.

The parameters used in these experiments are the following :

144 inputs (eg. 8x6 image, h,s,b values), 100 neurons in the

reservoir and 2 output neurons. The connection density is 5%,

the damping value is 0.8 and the noise value for regression

algorithm is 0.1. The weights are drawn in [0.5 : 0.5]
range, and the output neurons uses Hyperbolic tangent. As

shown, ESN Parameters are classic parameters except for

the lack of backward connections from the output nodes to

the reservoir. Indeed, a demonstration should capture only a

biased, incomplete experience of the environment, implying

that output actuator values should depend on the present and

past sensory input values, but not the other way round (e.g.

robot may encounter a wall anytime in a new environment).

Considering learning, the classic simple regression algo-

rithm described in [11] is performed. In this setup, one single

demonstration sequence is presented several times to the ESN

and then regression is performed considering reservoir states

and output values at each step. The demonstration sequence

may (and should) include several sub-parts where the task

is shown several times so as to cope with environment vari-

ability. During exploitation, this sequence will be considered

as the temporal database from which the controller fetches

correspondance with the actual context. The important point

is that the sequence in itself is relevant from the temporal

viewpoint since this is an important information regarding

the environment. Of course, the richer the demonstration

sequence, the more robust the controller should be.

V. EXPERIMENTAL RESULTS

A. Methodology

All experiments are performed on a Khepera II with a 2D

color camera using a pad controller. Both the 8 IR sensor

values, video rgb values and left/right motor actuator values

are recorded during demonstration. Video image is downsized

to a 8x6 resolution grid2, which is more robust and less

sensitive to noise than the full original image, and pixel hue,

saturation and brightness is used instead of RGB.

The task considered in the following consists in (1) finding

and then (2) getting closer to a possibly moving red ball (i.e.

2results not shown here were performed with other resolutions (16x12,
4x3), but no significant differences appeared compared to using 8x6 resolu-
tion.

Fig. 3. Experimental setup

also implies target following). The supervisor demonstrates

the task by going forward slowly and turning on the left until

the red ball can be seen by the robot and then going straight

forward in the direction of the target, always trying to keep

the ball in the middle of the video image. Figure 3 shows the

experimental setup.

Validation is performed in two steps: (1) Off-line valida-

tion: two demonstrations are obtained with a real Khepera

robot. The first is used for learning and the second for valida-

tion (compute the squared error), as it is usually the case in the

standard Machine Learning scheme. This validation method

makes it possible to estimate the accuracy of the controller

as if it was a classifier, not an agent performing a task ;

(2) On-line validation: the robot is evaluated (empirically, by

the human supervisor) in the real world with regard to the

objective task according to a validation protocol (described

later). The main point of this validation step is to evaluate

the agent sensory-motor coupling w.r.t. task.

In order to evaluate the ESN controller approach, all exper-

iments are also performed with two reference algorithms: a

naive non-recurrent perceptron with hidden layer and MPL[9],

a learning by demonstration algorithm from the literature that

is known to be efficient in the context of a mobile robotics

with video camera and poor sensor quality. MPL couples a

simple yet very efficient image stochastic feature selection

algorithm through random sampling of just a few features

in the images with a simple correlation-based learning al-

gorithm. This algorithm was evaluated and validated on real

world Pioneer 2 DX mobile robot platform with video camera

for a set of navigation tasks (including target following and

slaloming), which is close to the experimental setup described

in this paper.

B. Off-line experiments

Perceptron is trained using the classic back-propagation

algorithm. MPL sampling considers using 4 random pixels

on each frame - other values have been tried, but using

only 4 appeared as roughly equivalent to using the whole

image in term of performance, in much less computation

time. MPL provides an ensemble of weighted rules which

can be tested on the validation set. As for the ESN approach,

each log is submitted 4 times, that is 1900 to 3520 steps,

from which is performed a simple linear regression. As stated

before, ESN does not feature backward connections from

output nodes to reservoir3. A simpler version of ESN without

recurrence is also evaluated, i.e. a multi-layer neural network

with random weights between inputs and reservoir and no

recurrent connection. Only the weights linking reservoir to

outputs are learned.

Two setup are considered: firstly, sensory input is limited

to a single value that is the horizontal localization of the

target (a red ball). secondly, a 2D video 8x6 color image with

hue, saturation and value is considered (i.e. 144 input nodes).

Two outputs (left and right motors) are always considered.

Regression errors are shown in table 4. Two experimental

scenario are considered using two demonstration logs : log

no.1 is used for learning and log no.2 for testing, then the

other way round is considered. All experiments are performed

as described previously and each experiments is repeated 11
times.

The ESN approach gives the best results and tends to

behave very well in higher dimensions. MPL performs quite

well, which is not surprising since it was designed to be

particularly efficient in dimension reduction where there is

a great amount of data with high redundancy4. This is not

the case with Perceptron however: it encounters difficulties

as number of dimensions grow, lacking dedicated feature

selection as does MPL. As for ESN, a possible explanation

for the ability to deal with growing input nodes may rely

in the fact that learning weights is only concerned with

connections between reservoir and outputs. The randomly

set input-to-reservoir weights can be compared to feature

selection by reweighting5. The close results obtained with

and without recurrent connections do seem to vote in favor

of the feature selection hypothesis rather than the dynamic

property of standard ESN for this problem.

C. On-line experiments

The regression error is not sufficient to evaluate controllers

as it does not capture the features relevant for sensory-motor

coordinated actions, especially under-represented yet very im-

portant situations. In order to evaluate precisely the acquired

behaviors, we need to proceed in real-world evaluation. The

evaluation protocol is thus defined as two complementary

experiments : (exp.1) Evaluates wrt. finding and reaching

the target: The robot is placed in the environment with a

red ball target approximately 90 degrees on the left of the

robot at approximately 15 to 20cm. The task is considered

accomplished if the robot comes near the target by 0 to 2cm.

Once reached or not (i.e. robot stops moving), the ball is

moved to another position with the same settings according

to the current position of the robot. The overall success rate is

then computed over 11 controllers times 11 tries each (i.e. all

results are averaged on a total of 121 runs) ; (exp.2) Evaluates

3Indeed, if these connections are actually activated, learning may fail with
a probability of approx 0.1.

4This is also why MPL was not tested with the simple X target coordinate
setup since its main feature is that of dimension reduction

5This is more feature selection than dimensionality reduction since all arcs
are randomly weighted but none are pruned.

wrt. time taken to reach the target from three different initial

positions with different orientations: the robot is placed at

23cm from the target, with different orientations (ie. having

the target on its left, right or rear). Each experiments were

repeated 3 times for each of the 11 controllers.

The first consideration is that the basic neural network

approach could not be considered because controller learnt

off-line failed to produce any relevant behavior in the real

world. Further experiments (not shown here) revealed that

perceptron-based controller are hardly able to locate the target

and react (slowly) only if placed very close to the target.

Regarding the first experiment, the Echo State Network

success probability is 73% with recurent connections and

70% without, while MPL success rate is 67% (success is

finding and reaching the target). While the MPL architectures

show very regular behavior, ESN controllers showed different

behaviors. In particular, a few number of controllers rotate the

other way round to look for the target, and even one (failed)

controller never tried to turn at all. However, all controllers

go forward to reach the target once it is found.

Results for the second experiment are shown in table 5.

MPL gives regular results while in some cases it failed

to ever reach the target. On the contrary, ESN controllers

could perform the task in all the conditions but showed high

variance regarding time elapsed before target was reached.

An interesting remark can be noted about the difference

between positions 2 (left) and 3 (right): both display the

same starting position but with either a 90 or −90 degrees

initial rotation away from the target, which is objectively the

same wrt. distance to the target. However, position 3 results

in a much higher time to reach the target for all experiments.

This is due to the fact the human supervisor performed all

demonstrations by always rotating on the left when looking

for the target, thus encoding a (not-surprising) bias in the

exploration behavior.

Algorithm position 1 position 2 position 3

MPL 57s to 80s 9s to 10s never reach

ESN 11s to 32s 7s to 8s 12s to 19s

Fig. 5. positions 1 to 3 are target on : rear, left, right

D. Discussion about the experiments

While perceptron is the worst, but not that bad, in the off-

line experiment, it failed to provide any results in the on-line

experiments. In fact, the not-so-bad result with perceptron for

the regression task can be explained by the very distribution of

examples. As shown in figure 6, the distribution of the inputs

are highly biased depending on the demonstration, which

implies over-sampling for particular values. This could be

enough to provide good regression results as long as the over-

sampled examples are easy to classify, which is actually the

case. For example, by carefully looking at the data log, it can

be observed that for the vast majority of the example where

the target is in the center of the image, the given action is to

Algorithms demo 1, learning demo 2 testing demo 2 learning demo 1 testing

Using x coordinate as input

Perceptron 1.9.10−2 ± 4.0.10−4 1.8.10−2 ± 9.0.10−4 1.9.10−2 ± 8.7.10−4 1.6.10−2 ± 4.8.10−4

ESN 0.9.10−2 ± 9.7.10−4 1.1.10−2 ± 6.2.10−4 0.7.10−2 ± 4.2.10−4 2.1.10−2 ± 3.5.10−3

Using 8x6 image as input

Perceptron 2.0.10−2 ± 1.6.10−3 2.2.10−2 ± 2.4.10−3 2.2.10−2 ± 2.6.10−3 1.8.10−2 ± 1.6.10−3

MPL 4.0.10−3 ± 4.2.10−5 0.9.10−2 ± 9.5.10−5 6.0.10−3 ± 3.7.10−5 0.6.10−2 ± 9.7.10−5

ESN 4.0.10−4 ± 3.5.10−5 0.6.10−2 ± 1.7.10−3 6.1.10−4 ± 4.7.10−5 0.4.10−2 ± 1.2.10−3

ESN without recurences 3.9.10−4 ± 1.6.10−5 0.5.10−2 ± 1.5.10−3 5.2.10−4 ± 3.0.10−5 0.4.10−2 ± 1.3.10−3

Fig. 4. Learning and testing errors averaged over N = 11 runs

go straight-forward, which actually is the classifier’s choice.

As a consequence, crucial yet not as represented examples are

not taken into account such as examples related to finding the

target.

Fig. 6. Sensory space and example distribution for the one input setup (X
target coordinate). this figure plots the number of occurences of the target
depending on the horizontal sensory space of the robot for all examples (e.g.
target in the center a step i adds one occurence to the bar in the middle).

MPL, which also lacks memory, is a still better choice than

the perceptron in the off-line setup and much better in the on-

line setup. The main difference is that MPL does consider

each log example separately and is less subject to over-

generalization than perceptron. This is due to the learning

algorithm, specificaly designed for learning by demonstra-

tion purpose, which somewhat automaticaly re-weight under-

represented examples (while perceptron naturally doesn’t -

except if combined with a resampling method such as, e.g.

boosting[18]).

The ESN approach provides the best results, for both off-

line and on-line experiments. The difference is even more

relevant in the real-world validation experiment. As MPL,

ESN is able to capture small one-time change in the log

but thanks to another feature. Comparing standard ESN and

similar network without recurrent connections, it shows that

for the problem at hand, the feature selection feature due to

randomly set weights between the inputs and reservoir is more

important than the ability to be able to deal with temporal

sequence. Indeed, such a feature can be related to random

projection in dimensionality reduction except that connection

are randomly weighted rather than pruned. Nevertheless, ESN

is particularly well fitted for time sequence prediction, i.e.

internal dynamics are trained to predict forthcoming one-time

change in the environment. This means that even a one-time

sensor-motor specific coupling is considered as an important

information since it may be formulated as all previous steps

were considered only to predict this one time change.

VI. DISCUSSION: ESN AND ROBOT PROGRAMMING BY

DEMONSTRATION

In previous section we have shown that ESN provides

interesting results for demonstration. In the following, several

insights and analysis are given to advocate the fact that ESN

may be well-fitted for such a task.

While it is known that ESN are reliable time sequence

predictor, the setup of Robot programming by Demonstration

differs slightly from time sequence prediction. Indeed, the

provided time sequence does not represent a canonical be-

havior but rather a set of useful sub-behaviors (e.g. looking

for target, following target, avoiding obstacle - all packed in

one single data log), possibly shown several times with some

variations and, possibily, involontary glitches added by the

user. As a consequence, an ESN-based robot controller can

be seen as behaving as a quick time-series sequence offset
matching where the target sequence offset is itself perturbated

from time to time (i.e. actual perception wrt. offset value in

recorded sequence). So a desired property is good/quick re-

convergence property to the new offset in the sequence (as

long as the demonstration sequence in itself is representative

of what will be encountered in the environment).

To illustrate this property, we show a typical example in

figure 7 of what happens when we add strong white noise

perturbation to the input after learning. Experimental setup is

the same (classic) setup shown for the experiment in section

III (sinus prediction problem). At iteration 500, learning has

been performed and correctly evaluated as shown previously

in figure 2. Then, white noise is added to the inputs for

100 iterations. Between iterations 600 and 800, we evaluate

recovery from noise, which is quick and perfect. Then, a new

(punctual, this time) perturbation is added at iteration 800

that is an offset jump of half the phase length of the signal

in the input sequence. Then again, starting iteration 801,

recovery is evaluated. Same as before, recovery is performed

(in even shorter time). In both case recovery is perfect (96/100

experiments6), i.e. error is the same as error during validation

6Regarding the 4% of failed experiments, a greater amount of noise during
learning may solve this issue.

in figure 2 (steps 300-500).

-1

-0.5

 0

 0.5

 1

 1.5

 2

 500 550 600 650 700 750 800 850 900 950 1000

o
ra

c
le

 a
n

d
 a

c
tu

a
l
o

u
tp

u
ts

 ;
 i
n

s
ta

n
t

e
rr

o
rs

iteration (n)

Echo State Network results

oracle output
actual output
instant error

Fig. 7. Perturbating an ESN: (1) recovery from 100 steps white noise
perturbation ; (2) recovery from 1/2 phase offset shift perturbation.

Thus, recoveries from white noise perturbation and offset

perturbation both result in illustrating the existence of a strong

basin of attraction (as long as the input is relevant, i.e. in-

cluded in the original demonstration). This basin of attraction

depends on the actual input sequence rather than the initial

condition, which is a useful feature when it comes to rapid

offset shifting as it is usually needed in robot programming

by demonstration. As a consequence, initial weight range

for connections between input nodes and reservoir should

be large enough to provide strong influence from the input

sequence to the reservoir dynamics. Moreover, in all exper-

iments with ESN shown in the previous section, backward

connections from the output nodes to the reservoir where

discarded, which also indirectly impacts on the influence of

the input sequence.

VII. CONCLUSIONS AND PERSPECTIVES

Echo State Networks can be trained as efficient time series

predictors, with only a simple linear regression algorithm.

Moreover, it is rather straight-forward to apply ESN in the

scope of mobile robot behavior acquisition by demonstration.

Indeed, we showed in this paper that results with an ESN-

based controller are competitive with that of a state-of-the-art

algorithm.

Even more important, we showed that ESN display very

good behavior with regards to both feature selection and

relevant temporal information acquisition, which are two key

features regarding the task at hand. Firstly, ESN learning

algorithm is able to indirectly perform feature selection by

ignoring reservoir nodes that are too strongly influenced by

non relevant sensor inputs - we showed that this feature

alone may even be enough for simple tasks (i.e. no recurrent

connection is needed). Secondly, ESN damping property

makes it possible to quickly match the actual output sequence

with desired output sequence when the input sequence break

temporal coherence. This property is even more grounded

if backward connection from output nodes to reservoir are

suppressed. Yet, this remains to be studied deeper in the

context of tasks defined as a sequence of sub-tasks.

We are currently concerned with addressing more complex

tasks requiring the ability to deal with temporal sequence such

as slaloming in a real world environment with many objects.

Another promising extension of this work is to deal with

interactive learning when the robot produces new behaviors

that are evaluated by the human teacher, making it possible

to refine parts of the initial demonstration.

REFERENCES

[1] NIPS 2006 Workshop on Echo State Networks and Liquid State Ma-
chines, 2006. http://www.esn-lsm.tugraz.at/.

[2] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In
Proc. 14th International Conference on Machine Learning, pages 12–
20. Morgan Kaufmann, 1997.

[3] A. Billard, K. Dautenhahn, and G. Hayes. Experiments on human-robot
communication with robota, 1998.

[4] A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal. Discovering
Optimal Imitation Strategies, in robotics. 47, 2004.

[5] A. Billard and R. Siegwart. Special issue on robot learning from
demonstration. Robotics And Autonomous Systems, 47(2-3):65–67,
2004.

[6] S. Calinon and A. Billard. Learning of gestures by imitation in a
humanoid robot. In Imitation and Social Learning in Robots, Humans
and Animals: Behavioural, Social and Communicative Dimensions,
pages 153–177. Cambridge University Press, K. Dautenhahn and C.L.
Nehaniv edition, 2007.

[7] K. Dautenhahn. The art of designing socially intelligent agents: science,
fiction and the human in the loop. Applied Artificial Intelligence
Journal, 1(7), 1998.

[8] L. Hugues and N. Bredeche. Simbad : an autonomous robot simulation
package for education and research. In Proceedings of The Ninth
International Conference on the Simulation of Adaptive Behavior
(SAB’06), pages 831–842., Rome, Italy, 2006.

[9] L. Hugues and A. Drogoul. Synthesis of robot’s behavior from few
examples. In IEEE/RSJ International Conference on Intelligent Robots
and Sytems, IROS’02, 2002.

[10] H. Jaeger. The echo state approach to analysing and training recurrent
neural networks. Technical report GMD report 148. German National
Research Center for Information Technology, 2001.

[11] H. Jaeger. A tutorial on training recurrent neural networks. covering
bptt, rtrl, ekf, and the echo state network approach. GMD report 159.
German National Research Center for Information Technology, 2002.

[12] D. Katagami and S. Yamada. Real robot learning with human
teaching. In The4-th Japan-Australia Joint Workshop on Intelligent
and Evolutionary Systems, pages 263–270, 2001.

[13] M. N. Nicolescu and M. J. M. c. Natural methods for robot task
learning: Instructive demonstrations, generalization and practice. In
In Proceedings of the Second International Joint Conference on Au-
tonomous Agents and MultiAgent Systems, 2003.

[14] S. Nolfi and D. Floreano. Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. Cambridge, MA:
MIT Press/Bradford Books, 2000.

[15] M. C. Ozturk, D. Xu, and J. C. Principe. Analysis and design of echo
state networks,. In Neural Computation, 19:1, pages 111–138. MIT
Press, 2007.

[16] M. Salmen and P. G. Ploger. Echo state networks used for motor
control. In In Proceedings of the 2005 IEEE international conference
on robotics and automation, pages 1953–1958, 2005.

[17] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots
by moulding behavior and scaffolding the environment. In HRI ’06:
Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-
robot interaction, 2006.

[18] R. Schapire. A brief introduction to boosting. In In Proceedings
of International Joint ConferenceonArtificial Intelligence, pages 1401–
1405, 1999.

[19] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT
Press, 1998.

