Using Echo State Networks for
Robot Navigation Behavior Acquisition

Cedric Hartland and Nicolas Bredeche
TAO/LRI — Univ. Paris-Sud ; CNRS ; INRIA futurs
Orsay, France
{cedric.hartland, nicolas.bredeche} @Iri.fr

Abstract— Robot Behavior Learning by Demonstration deals
with the ability for a robot to learn a behavior from one or
several demonstrations provided by a human teacher, possibly
through tele-operation or imitation. This implies controllers
that can address both (1) the feature selection problem related
to a great amount of mostly irrelevant sensory data and
(2) dealing with temporal sequences of demonstrations. Echo
State Networks[10] have been proposed recently for time series
prediction and have been shown to perform remarkably well
on this kind of data. In this paper, we introduce ESN to robot
behavior acquisition in the scope of a mobile robot performing
navigation tasks. ESN actually show comparable and even better
performance with that of other algorithms from the literature
in similar experimental conditions. Moreover, some properties
regarding dynamics of ESN in the context of learning by
demonstration are investigated.

Index Terms— Robot Programming by Demonstration, Behav-
ior Acquisition, Mobile Robotics, Echo State Networks.

I. INTRODUCTION

Robot programming by demonstration, or robot behavior
acquisition through demonstration, provides a trade-off be-
tween fully autonomous learning robot and ad hoc controllers.
In this setup, it is possible to both demonstrate a task which
would be difficult to formalize and to incrementaly shape
behaviors in a trial and error fashion. This field has long
been studied in the scopes of mobile robot navigation task and
robotic arm manipulation or coordinated mouvement (mostly
through imitation).

In both setup, the main issue to be adressed is that of
dealing with many, possibly noisy and vastly irrelevant data
and with temporal sequence. To address these problems, pre-
vious works showed that probabilistic models, coupled with
efficient dimension reduction algorithms, or either continuous
or discrete recurrent neural networks, achieved great results.

Recently, Jaeger proposed a new approach to recurrent
neural network : the Echo State Network (ESN [10]). This
approach has been shown to be very efficient considering time
series prediction by reformulating the task of learning tem-
poral sequence into selection of combined available internal
dynamics. As a result, ESN provides rich dynamics along
with a simple learning algorithm.

In the scope of this paper, we propose to address the
problem of robot learning by demonstration using an ESN
as controller. We consider the task where a real world mobile

robot is teached by a human supervisor to perform simple nav-
igation tasks in an environment and compare the efficiency of
our ESN controller to a learning by demonstration algorithm
from the literature.

While learning by demonstration is not limited to time
series prediction, it turns out that ESN properties makes it a
relevant choice in this setup. Indeed, further experiments show
that ESN are able to both perform implicit feature selection
over the sensory inputs and to be robust towards disruptions
in the environment.

The paper is organized as follow : section II gives an
overview of robot learning by demonstration and section III
presents the general setup of ESN as well as a preliminary
experiment. Then, the ESN architecture is described and
evaluated in sections IV and V. Section VI provides further
insights as to why and how the ESN approach actually
works in the context of robot programming by demonstration.
Finally, conclusions and perspectives are described in the last
section.

II. ROBOT PROGRAMMING BY DEMONSTRATION

Robot programming by demonstration is a key research
interest in robotics. In robot programming by demonstration,
a human teacher helps a robot learning new skills [5] and
eventually refining by correcting the acquired behavior thanks
to the teacher feedback[7]. Works in this field tackle the
development of algorithms for motor control and learning,
gesture recognition and visuo motor integration. Two main
areas of research can be distinguished :

1) ”programming by demonstration” : a human supervisor
takes control over the robot (e.g. with a joystick), which
is usually considered in the context of mobile robot
(131, [91, [12];

2) “programming by imitation” : a human teacher shows
the correct behavior (e.g. using a camera video, laser
sensors, etc.), which concerns mainly object manipula-
tion or sequences of mouvement using a robotic arm
(2], [6], [17].

In the following we are interested in navigation behaviour
acquisition for mobile robot. On the one hand, autonomous
learning robot (e.g. evolutionary robotics[14], reinforcement
learning[19], etc.) often ends up with very simple behavior
when it comes to real robots because controllers are too
difficult to optimize with regards to the size of the search

space. On the other hand, handwritten controller might cap-
ture domain knowledge but often fail to provide efficient
behaviours in environment difficult to model with accuracy
(i.e. where no optimal analytical solution can be drawn).
Robot programming by demonstration offer a compromise
between these two approaches, where the sensori-motor space
in which the controller is to be optimized is constrained by
demonstration from the (human) supervisor.

There are several main setups (amount of data, number of
demonstrations, ...) and issues (dimension reduction, dealing
with time series, learning from few examples) regarding robot
programming by demonstration. One of the main issue is
the design of controller that is able to deal with time series
prediction. Indeed, robot navigation can be considered as
a highly sequential task where the markov property may
not hold (i.e. f(s¢ at, St—1,a¢-1,-..,80,a0) — Sty1 rather
than f(s¢,a;) — sg+1). Current and past approaches include
recurrent neural networks [3], various flavours of markov
models [4] and other approaches based on standard regression
setup [9].

In this scope, Echo State Network provides a good alterna-
tive but, so far, has never been used in the context of Robot
Programming by Demonstration.

III. ECHO STATE NETWORK

Echo state networks (ESN) have been proposed by Jaeger
in 2001[10] with the objective to endow a neural network
with rich dynamics behavioral patterns while keeping learning
complexity at a low level. An ESN is a discrete time,
continuous state, recurrent neural network using a sigmoidal
activation function for all neurons.Figure 1 shows the typical
ESN that will be used in this paper: the input layer is totally
connected to the hidden layer, both the hidden and input
layers are totally connected to the output layer. Moreover,
the output layer is connected backward to the hidden layer.
All weights are randomly set once for all except weights on
arcs connected towards the outputs - those will be learnt.
The hidden layer, or reservoir, is also randomly generated:
N neurons are randomly connected up to a user-defined
density of connections p. The weights of those connections
are randomly uniformly set in [—1, 1], and are scaled so that
the spectral radius of the connection matrix is less than a given
value o < 1, ensuring that the newtork exhibits the “echo state
property”, i.e. stays out of the chaotic behavior zone whatever
the input sequence (see e.g. [11]). An ESN is thus determined
by the 3 parameters IV, p and «a. In some sense, an ESN can
be seen as a universal dynamical system approximator, which
linearly combines the elementary dynamics contained in the
reservoir [15]. ESN have been shown to perform surprisingly
well in the context of supervised learning, in particular for
problems of prediction of times series, though it has also
been successfully used in the context of (supervised) robot
control learning [16] (also see [1] for an overview of ESN
applications).

Figure 2 illustrates the classic learning protocol for ESN
using simple linear regression as learning algorithm. The task

K input N internal units L output
units eI units

6 [\ 30 20

og / Npes >0

Fig. 1. Schematic view of an Echo State Network. Plain arrows stand for
weights that are randomly chosen and remain fixed, while dashed arrows
represent the weights to be optimized.

is to learn sinus(n/5) — 1/2xsinus’ (2PI1/10PI) (i.e. one
input node, one output node). Parameters are described in
[10]: (1) the first 100 steps are not recorded but are still
useful to stabilize the reservoir internal dynamics; (2) the
next 200 steps are recorded, at each new step, the correct
output value is written to the output nodes (this is called
“teacher forcing”); (3) At step 300, a simple linear regression
is performed to compute weights from arcs going to output
nodes; (4) the network is then evaluated during the 200 next
steps - as shown here, matching is nearly perfect (error is
below 107, averaged on 11 runs).

This figure, as well as all other results shown in the
following of this paper, have been obtained using our home-
made ESN implementation into the freely available open-
source PicoNode Neural Network library'[8].

Echo State Network results
25 T T T

oracle output
actual output
instant error -------

0.5

oracle and actual outputs ; instant errors.

-0.5

/1y VoM NN I I I
0 50 100 150 200 250 300 350 400 450 500

iteration (n)

Fig. 2. Classic learning and testing protocol for ESN using PicoNode.
Learning is performed at step 300. Parameters are similar to [10].

IV. ROBOT LEARNING BY DEMONSTRATION USING ESN

The Learning by Demonstration task is defined as the fol-
lowing. Firstly, the teacher takes control of the robotic agent
(e.g. through a joystick) and perform a set of demonstrations
with a given objective in mind. This results in a log of
sensors and actuators states for each time steps. In practical,
this log may eventually contain noisy and incomplete data

Isimbad.sourceforge.net

for a difficult task. Relying on learning may still be an
option as long as there is redundant information in the data
log (e.g. noisy sensors in a dynamic environment may be
compensated by showing the task several times). Of course,
finding an optimized controller depends on the quality of
the demonstrations, the difficulty of the task, the ability of
the controller representation formalism, the amount of the
available data and the ability for the learning algorithm to
capture relevant information.

As seen in the previous section, some works have focused
on using discrete or continuous time recurrent neural network
in the context of Robot learning by demonstration. In this
paper, a simple Echo State Network acts as the robot con-
troller (formally, fesn(sensoryinputs) — actuatorvalues.
The parameters used in these experiments are the following :
144 inputs (eg. 8x6 image, h,s,b values), 100 neurons in the
reservoir and 2 output neurons. The connection density is 5%,
the damping value is 0.8 and the noise value for regression
algorithm is 0.1. The weights are drawn in [0.5 : 0.5
range, and the output neurons uses Hyperbolic tangent. As
shown, ESN Parameters are classic parameters except for
the lack of backward connections from the output nodes to
the reservoir. Indeed, a demonstration should capture only a
biased, incomplete experience of the environment, implying
that output actuator values should depend on the present and
past sensory input values, but not the other way round (e.g.
robot may encounter a wall anytime in a new environment).

Considering learning, the classic simple regression algo-
rithm described in [11] is performed. In this setup, one single
demonstration sequence is presented several times to the ESN
and then regression is performed considering reservoir states
and output values at each step. The demonstration sequence
may (and should) include several sub-parts where the task
is shown several times so as to cope with environment vari-
ability. During exploitation, this sequence will be considered
as the temporal database from which the controller fetches
correspondance with the actual context. The important point
is that the sequence in itself is relevant from the temporal
viewpoint since this is an important information regarding
the environment. Of course, the richer the demonstration
sequence, the more robust the controller should be.

V. EXPERIMENTAL RESULTS
A. Methodology

All experiments are performed on a Khepera II with a 2D
color camera using a pad controller. Both the 8 IR sensor
values, video rgb values and left/right motor actuator values
are recorded during demonstration. Video image is downsized
to a 8x6 resolution grid?>, which is more robust and less
sensitive to noise than the full original image, and pixel hue,
saturation and brightness is used instead of RGB.

The task considered in the following consists in (1) finding

and then (2) getting closer to a possibly moving red ball (i.e.

2results not shown here were performed with other resolutions (16x12,
4x3), but no significant differences appeared compared to using 8x6 resolu-
tion.

Fig. 3.

Experimental setup

also implies target following). The supervisor demonstrates
the task by going forward slowly and turning on the left until
the red ball can be seen by the robot and then going straight
forward in the direction of the target, always trying to keep
the ball in the middle of the video image. Figure 3 shows the
experimental setup.

Validation is performed in two steps: (1) Off-line valida-
tion: two demonstrations are obtained with a real Khepera
robot. The first is used for learning and the second for valida-
tion (compute the squared error), as it is usually the case in the
standard Machine Learning scheme. This validation method
makes it possible to estimate the accuracy of the controller
as if it was a classifier, not an agent performing a task ;
(2) On-line validation: the robot is evaluated (empirically, by
the human supervisor) in the real world with regard to the
objective task according to a validation protocol (described
later). The main point of this validation step is to evaluate
the agent sensory-motor coupling w.r.t. task.

In order to evaluate the ESN controller approach, all exper-
iments are also performed with two reference algorithms: a
naive non-recurrent perceptron with hidden layer and MPL[9],
a learning by demonstration algorithm from the literature that
is known to be efficient in the context of a mobile robotics
with video camera and poor sensor quality. MPL couples a
simple yet very efficient image stochastic feature selection
algorithm through random sampling of just a few features
in the images with a simple correlation-based learning al-
gorithm. This algorithm was evaluated and validated on real
world Pioneer 2 DX mobile robot platform with video camera
for a set of navigation tasks (including target following and
slaloming), which is close to the experimental setup described
in this paper.

B. Off-line experiments

Perceptron is trained using the classic back-propagation
algorithm. MPL sampling considers using 4 random pixels
on each frame - other values have been tried, but using
only 4 appeared as roughly equivalent to using the whole
image in term of performance, in much less computation
time. MPL provides an ensemble of weighted rules which
can be tested on the validation set. As for the ESN approach,
each log is submitted 4 times, that is 1900 to 3520 steps,
from which is performed a simple linear regression. As stated
before, ESN does not feature backward connections from

output nodes to reservoir’. A simpler version of ESN without
recurrence is also evaluated, i.e. a multi-layer neural network
with random weights between inputs and reservoir and no
recurrent connection. Only the weights linking reservoir to
outputs are learned.

Two setup are considered: firstly, sensory input is limited
to a single value that is the horizontal localization of the
target (a red ball). secondly, a 2D video 8x6 color image with
hue, saturation and value is considered (i.e. 144 input nodes).
Two outputs (left and right motors) are always considered.
Regression errors are shown in table 4. Two experimental
scenario are considered using two demonstration logs : log
no.l is used for learning and log no.2 for testing, then the
other way round is considered. All experiments are performed
as described previously and each experiments is repeated 11
times.

The ESN approach gives the best results and tends to
behave very well in higher dimensions. MPL performs quite
well, which is not surprising since it was designed to be
particularly efficient in dimension reduction where there is
a great amount of data with high redundancy*. This is not
the case with Perceptron however: it encounters difficulties
as number of dimensions grow, lacking dedicated feature
selection as does MPL. As for ESN, a possible explanation
for the ability to deal with growing input nodes may rely
in the fact that learning weights is only concerned with
connections between reservoir and outputs. The randomly
set input-to-reservoir weights can be compared to feature
selection by reweighting’. The close results obtained with
and without recurrent connections do seem to vote in favor
of the feature selection hypothesis rather than the dynamic
property of standard ESN for this problem.

C. On-line experiments

The regression error is not sufficient to evaluate controllers
as it does not capture the features relevant for sensory-motor
coordinated actions, especially under-represented yet very im-
portant situations. In order to evaluate precisely the acquired
behaviors, we need to proceed in real-world evaluation. The
evaluation protocol is thus defined as two complementary
experiments : (exp.1) Evaluates wrt. finding and reaching
the target: The robot is placed in the environment with a
red ball target approximately 90 degrees on the left of the
robot at approximately 15 to 20cm. The task is considered
accomplished if the robot comes near the target by 0 to 2¢cm.
Once reached or not (i.e. robot stops moving), the ball is
moved to another position with the same settings according
to the current position of the robot. The overall success rate is
then computed over 11 controllers times 11 tries each (i.e. all
results are averaged on a total of 121 runs) ; (exp.2) Evaluates

3Indeed, if these connections are actually activated, learning may fail with
a probability of approx 0.1.

4This is also why MPL was not tested with the simple X target coordinate
setup since its main feature is that of dimension reduction

3This is more feature selection than dimensionality reduction since all arcs
are randomly weighted but none are pruned.

wrt. time taken to reach the target from three different initial
positions with different orientations: the robot is placed at
23cm from the target, with different orientations (ie. having
the target on its left, right or rear). Each experiments were
repeated 3 times for each of the 11 controllers.

The first consideration is that the basic neural network
approach could not be considered because controller learnt
off-line failed to produce any relevant behavior in the real
world. Further experiments (not shown here) revealed that
perceptron-based controller are hardly able to locate the target
and react (slowly) only if placed very close to the target.

Regarding the first experiment, the Echo State Network
success probability is 73% with recurent connections and
70% without, while MPL success rate is 67% (success is
finding and reaching the target). While the MPL architectures
show very regular behavior, ESN controllers showed different
behaviors. In particular, a few number of controllers rotate the
other way round to look for the target, and even one (failed)
controller never tried to turn at all. However, all controllers
go forward to reach the target once it is found.

Results for the second experiment are shown in table 5.
MPL gives regular results while in some cases it failed
to ever reach the target. On the contrary, ESN controllers
could perform the task in all the conditions but showed high
variance regarding time elapsed before target was reached.

An interesting remark can be noted about the difference
between positions 2 (left) and 3 (right): both display the
same starting position but with either a 90 or —90 degrees
initial rotation away from the target, which is objectively the
same wrt. distance to the target. However, position 3 results
in a much higher time to reach the target for all experiments.
This is due to the fact the human supervisor performed all
demonstrations by always rotating on the left when looking
for the target, thus encoding a (not-surprising) bias in the
exploration behavior.

Algorithm | position 1 | position 2 | position 3
MPL 57s to 80s | 9s to 10s | never reach
ESN 11s to 32s | 7s to 8s 12s to 19s
Fig. 5. positions 1 to 3 are target on : rear, left, right

D. Discussion about the experiments

While perceptron is the worst, but not that bad, in the off-
line experiment, it failed to provide any results in the on-line
experiments. In fact, the not-so-bad result with perceptron for
the regression task can be explained by the very distribution of
examples. As shown in figure 6, the distribution of the inputs
are highly biased depending on the demonstration, which
implies over-sampling for particular values. This could be
enough to provide good regression results as long as the over-
sampled examples are easy to classify, which is actually the
case. For example, by carefully looking at the data log, it can
be observed that for the vast majority of the example where
the target is in the center of the image, the given action is to

Algorithms H demo 1, learning

demo 2 testing

[demo 2 learning demo 1 testing

Using x coordinate as input
Perceptron 1.9.1072 +£4.0.107% | 1.8.1072+£9.0.10~* || 1.9.1072 £8.7.10~* | 1.6.1072 £ 4.8.10~*
ESN 0.9.1072£9.7.107% [1.1.1072 £6.2.10~% | 0.7.1072 £4.2.10~% | 2.1.1072 £ 3.5.10~°
Using 8x6 image as input
Perceptron 2.0.1072+£1.6.1073 [221072 +£2.4.1073 [2.2.1072+£2.6.1073 | 1.8.1072 £ 1.6.103
MPL 4.0.1073£4.2.107° [0.9.1072 £9.5.107° [6.0.1072 £3.7.107° | 0.6.1072 £9.7.10~°
ESN 4.0.107%£3.5.107° [0.6.1072£1.7.1072 | 6.1.10~F £4.7.107° | 0.4.1072 £ 1.2.10~°
ESN without recurences || 3.9.107%* £1.6.107° [0.5.1072 £ 1.5.1073 || 5.2.107* £ 3.0.107° | 0.4.1072 £1.3.1073

Fig. 4. Learning and testing errors averaged over N = 11 runs

go straight-forward, which actually is the classifier’s choice.
As a consequence, crucial yet not as represented examples are
not taken into account such as examples related to finding the
target.

nb of occurences

041
target X coordinate value

Fig. 6. Sensory space and example distribution for the one input setup (X
target coordinate). this figure plots the number of occurences of the target
depending on the horizontal sensory space of the robot for all examples (e.g.
target in the center a step i adds one occurence to the bar in the middle).

MPL, which also lacks memory, is a still better choice than
the perceptron in the off-line setup and much better in the on-
line setup. The main difference is that MPL does consider
each log example separately and is less subject to over-
generalization than perceptron. This is due to the learning
algorithm, specificaly designed for learning by demonstra-
tion purpose, which somewhat automaticaly re-weight under-
represented examples (while perceptron naturally doesn’t -
except if combined with a resampling method such as, e.g.
boosting[18]).

The ESN approach provides the best results, for both off-
line and on-line experiments. The difference is even more
relevant in the real-world validation experiment. As MPL,
ESN is able to capture small one-time change in the log
but thanks to another feature. Comparing standard ESN and
similar network without recurrent connections, it shows that
for the problem at hand, the feature selection feature due to
randomly set weights between the inputs and reservoir is more
important than the ability to be able to deal with temporal
sequence. Indeed, such a feature can be related to random
projection in dimensionality reduction except that connection
are randomly weighted rather than pruned. Nevertheless, ESN
is particularly well fitted for time sequence prediction, i.e.
internal dynamics are trained to predict forthcoming one-time
change in the environment. This means that even a one-time

sensor-motor specific coupling is considered as an important
information since it may be formulated as all previous steps
were considered only to predict this one time change.

VI. DISCUSSION: ESN AND ROBOT PROGRAMMING BY
DEMONSTRATION

In previous section we have shown that ESN provides
interesting results for demonstration. In the following, several
insights and analysis are given to advocate the fact that ESN
may be well-fitted for such a task.

While it is known that ESN are reliable time sequence
predictor, the setup of Robot programming by Demonstration
differs slightly from time sequence prediction. Indeed, the
provided time sequence does not represent a canonical be-
havior but rather a set of useful sub-behaviors (e.g. looking
for target, following target, avoiding obstacle - all packed in
one single data log), possibly shown several times with some
variations and, possibily, involontary glitches added by the
user. As a consequence, an ESN-based robot controller can
be seen as behaving as a quick time-series sequence offset
matching where the target sequence offset is itself perturbated
from time to time (i.e. actual perception wrt. offset value in
recorded sequence). So a desired property is good/quick re-
convergence property to the new offset in the sequence (as
long as the demonstration sequence in itself is representative
of what will be encountered in the environment).

To illustrate this property, we show a typical example in
figure 7 of what happens when we add strong white noise
perturbation to the input after learning. Experimental setup is
the same (classic) setup shown for the experiment in section
III (sinus prediction problem). At iteration 500, learning has
been performed and correctly evaluated as shown previously
in figure 2. Then, white noise is added to the inputs for
100 iterations. Between iterations 600 and 800, we evaluate
recovery from noise, which is quick and perfect. Then, a new
(punctual, this time) perturbation is added at iteration 800
that is an offset jump of half the phase length of the signal
in the input sequence. Then again, starting iteration 801,
recovery is evaluated. Same as before, recovery is performed
(in even shorter time). In both case recovery is perfect (96/100
experiments®), i.e. error is the same as error during validation

SRegarding the 4% of failed experiments, a greater amount of noise during
learning may solve this issue.

in figure 2 (steps 300-500).

Echo State Network results
2 T

oracle outpu
actual outpu
instant errol

oracle and actual outputs ; instant errors

500 550 600 650 700 750 800 850 900 950 1000
iteration (n)

Fig. 7. Perturbating an ESN: (1) recovery from 100 steps white noise
perturbation ; (2) recovery from 1/2 phase offset shift perturbation.

Thus, recoveries from white noise perturbation and offset
perturbation both result in illustrating the existence of a strong
basin of attraction (as long as the input is relevant, i.e. in-
cluded in the original demonstration). This basin of attraction
depends on the actual input sequence rather than the initial
condition, which is a useful feature when it comes to rapid
offset shifting as it is usually needed in robot programming
by demonstration. As a consequence, initial weight range
for connections between input nodes and reservoir should
be large enough to provide strong influence from the input
sequence to the reservoir dynamics. Moreover, in all exper-
iments with ESN shown in the previous section, backward
connections from the output nodes to the reservoir where
discarded, which also indirectly impacts on the influence of
the input sequence.

VII. CONCLUSIONS AND PERSPECTIVES

Echo State Networks can be trained as efficient time series
predictors, with only a simple linear regression algorithm.
Moreover, it is rather straight-forward to apply ESN in the
scope of mobile robot behavior acquisition by demonstration.
Indeed, we showed in this paper that results with an ESN-
based controller are competitive with that of a state-of-the-art
algorithm.

Even more important, we showed that ESN display very
good behavior with regards to both feature selection and
relevant temporal information acquisition, which are two key
features regarding the task at hand. Firstly, ESN learning
algorithm is able to indirectly perform feature selection by
ignoring reservoir nodes that are too strongly influenced by
non relevant sensor inputs - we showed that this feature
alone may even be enough for simple tasks (i.e. no recurrent
connection is needed). Secondly, ESN damping property
makes it possible to quickly match the actual output sequence
with desired output sequence when the input sequence break
temporal coherence. This property is even more grounded
if backward connection from output nodes to reservoir are

suppressed. Yet, this remains to be studied deeper in the
context of tasks defined as a sequence of sub-tasks.

We are currently concerned with addressing more complex
tasks requiring the ability to deal with temporal sequence such
as slaloming in a real world environment with many objects.
Another promising extension of this work is to deal with
interactive learning when the robot produces new behaviors
that are evaluated by the human teacher, making it possible
to refine parts of the initial demonstration.

REFERENCES

[11 NIPS 2006 Workshop on Echo State Networks and Liquid State Ma-
chines, 2006. http://www.esn—-1lsm.tugraz.at/.

[2] C. G. Atkeson and S. Schaal. Robot learning from demonstration. In
Proc. 14th International Conference on Machine Learning, pages 12—
20. Morgan Kaufmann, 1997.

[3] A. Billard, K. Dautenhahn, and G. Hayes. Experiments on human-robot
communication with robota, 1998.

[4] A. Billard, Y. Epars, S. Calinon, G. Cheng, and S. Schaal. Discovering
Optimal Imitation Strategies, in robotics. 47, 2004.

[5] A. Billard and R. Siegwart. Special issue on robot learning from
demonstration. Robotics And Autonomous Systems, 47(2-3):65-67,
2004.

[6] S. Calinon and A. Billard. Learning of gestures by imitation in a
humanoid robot. In Imitation and Social Learning in Robots, Humans
and Animals: Behavioural, Social and Communicative Dimensions,
pages 153-177. Cambridge University Press, K. Dautenhahn and C.L.
Nehaniv edition, 2007.

[7]1 K. Dautenhahn. The art of designing socially intelligent agents: science,
fiction and the human in the loop. Applied Artificial Intelligence
Journal, 1(7), 1998.

[8] L. Hugues and N. Bredeche. Simbad : an autonomous robot simulation
package for education and research. In Proceedings of The Ninth
International Conference on the Simulation of Adaptive Behavior
(SAB’06), pages 831-842., Rome, Italy, 2006.

[9]1 L. Hugues and A. Drogoul. Synthesis of robot’s behavior from few
examples. In IEEE/RSJ International Conference on Intelligent Robots
and Sytems, IROS’02, 2002.

[10] H. Jaeger. The echo state approach to analysing and training recurrent
neural networks. Technical report GMD report 148. German National
Research Center for Information Technology, 2001.

[11] H. Jaeger. A tutorial on training recurrent neural networks. covering
bptt, rtrl, ekf, and the echo state network approach. GMD report 159.
German National Research Center for Information Technology, 2002.

[12] D. Katagami and S. Yamada. Real robot learning with human
teaching. In The4-th Japan-Australia Joint Workshop on Intelligent
and Evolutionary Systems, pages 263-270, 2001.

[13] M. N. Nicolescu and M. J. M. ¢. Natural methods for robot task
learning: Instructive demonstrations, generalization and practice. In
In Proceedings of the Second International Joint Conference on Au-
tonomous Agents and MultiAgent Systems, 2003.

[14] S. Nolfi and D. Floreano. Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. Cambridge, MA:
MIT Press/Bradford Books, 2000.

[15] M. C. Ozturk, D. Xu, and J. C. Principe. Analysis and design of echo
state networks,. In Neural Computation, 19:1, pages 111-138. MIT
Press, 2007.

[16] M. Salmen and P. G. Ploger. Echo state networks used for motor
control. In In Proceedings of the 2005 IEEE international conference
on robotics and automation, pages 1953-1958, 2005.

[17] J. Saunders, C. L. Nehaniv, and K. Dautenhahn. Teaching robots
by moulding behavior and scaffolding the environment. In HRI ’06:
Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-
robot interaction, 2006.

[18] R. Schapire. A brief introduction to boosting. In In Proceedings
of International Joint ConferenceonArtificial Intelligence, pages 1401—
1405, 1999.

[19] R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT
Press, 1998.

