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Abstract

This thesis presents a framework for the intelligent robustcontrol of autonomous mobile robots
which carry out various tasks in real-world environments. The framework has been incrementally
developed for the deployment in two major application areas, the RoboCup robot soccer and the
service robotics domain.

The proposed framework is flexible in order to be applicable in different domains and for
different tasks. This flexibility is reached by module-based design of the software, an open or-
ganization of the functions of the framework, and by the use of paradigms from the distributed
computing community. Furthermore, the framework comprises a strong deliberative component
which due to the planning and reasoning capabilities enables the controlled robot to carry out
complex tasks. A general task description language enablesan easy and intuitive specification
of a wide range of different tasks. Moreover, the framework is able to robustly execute a tasks in
dynamic and unpredictable real-world environments and under the presence of noise, of uncer-
tainty in perception and execution and of faults at runtime in the robot system. This robustness is
achieved by a guarded plan execution, a robust mapping from the quantitative to the qualitative
representation of the world and a model-based diagnosis andrepair system.

Finally, a evaluation of the framework in successful experiments in the real-world is presented
and shortcomings of the proposed framework and future research directions are discussed.
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Chapter 1

Introduction

In this chapter we will discuss the motivation and the background which stand behind this thesis
and the work carried out during its preparation. We will showhow science and application meet
in the area of autonomous mobile robot. Moreover, we will describe two popular application
areas of autonomous mobile robots (robot soccer and servicerobots) in detail, which are the
basic application areas of the work in this thesis. The two application scenarios will guide us
throughout the reminder of this thesis. Afterwards, we discuss open questions which arise from
the above two scenarios. Finally, we briefly sketch our proposed solutions of the problems and
our contributions to the field of autonomous mobile robots.

1.1 Background and Motivation

Autonomous mobile robots have gained an increased attention by the research community during
the last decade. On the one hand the robots themselves raise alot of scientific question but on the
other hand, mobile robot have reached a status where they canserve as a real-world testbed for
various research like machine learning, evolutionary algorithms, economy and biology inspired
methods. But also in our society the awareness of such kind of robots increase. In the meanwhile
almost everybody is aware of or definitely knows a mobile robot system. Today, there are a lot of
different robots deployed in competitions like the RoboCup, floor and window cleaning, logistic
domains, of course military applications and many other domains. The good news is that most
of these mobile robots have reached robustness and public acceptance in these application areas.

It can be foreseen that in the near future the demand of mobilerobots which are able to
autonomously carry out various task will significantly increase. Therefore, the range of the
character of different tasks a robot is able to perform and the operational environments will
dramatically increase. Furthermore, due to the expected number of unexperienced user which
will have first contact with such a robot the demand of autonomy and robustness of the deployed

1



2 CHAPTER 1. INTRODUCTION

systems also will further increase.

From the research perspective the demand on autonomous mobile robots is very interesting.
Due to the variety of the robots, the tasks and the environments a lot of questions and challenges
emerge. For us one question is of major interest. How can we develop control systems for
autonomous mobile robots which are able to robustly controla robot in different tasks in dynamic
environments under the presence of noise, uncertain sensordata and faults?

In the next section we describe two popular scenarios which are used in the area of research
on autonomous mobile robots in order to answer the above question.

1.1.1 RoboCup Robotic Soccer

The Robot World Cup Initiative (RoboCup for short) is an international attempt by universities
and research centers to foster Artificial Intelligence and intelligent robotics research by provid-
ing a standardized problem that poses a tough challenge for several scientific disciplines and
technologies. The first RoboCup competition was held 1997 at IJCAI in Nagoya. The interest in
RoboCup and the number of participating teams have increased every year since then. In 2005
the RoboCup was held in Osaka Japan and attracted about 2000 participants in 330 teams from
31 nations [BJNT06]. Until a team of robots is actually able toperform a soccer game, various
technologies have to be incorporated, including multi-agent cooperation, strategy acquisition,
real-time reasoning, machine learning, robotics, perception, vision and sensor-fusion. Contrary
to other autonomous mobile robots, which are optimized for asingle heavy-duty task, robot
soccer is a task for a team of cooperative fast-moving robotsin a fast changing environment.

To interest and educate young students and researchers in the field of AI and Robotics is also
an important goal of the RoboCup. Throughout every year the RoboCup Federation organizes
a number of national and international competitions, conferences and workshops. These events
are great opportunities to objectively evaluate your work during a competition, to present and
discuss your approaches and new ideas.

The RoboCup is organized in several leagues. They differ in several aspects: simulated or
real robots, the types of sensors (global or local), and the size and type of the robots. Hence,
RoboCup provides the optimal platform and testbed for variousresearch topics.

Part of the RoboCup is the so calledMiddle Size League(MSL). Our teamMostly Harmless
1 [SBB+06] participates in this league since 2003 and we use this league as a testbed for our
research. In the MSL, teams of up to six robots whit a approximately size of 50 cm times 50
cm times 80 cm compete. Figure 1.1 shows a game situation in aninternational tournament.
The size of the field is currently up to 14m x 12m. The major difference to other leagues or

1The name Mostly Harmless originates from the title of the 5th book of the famous book series “The Hitchhiker’s
Guide to the Galaxy” by Douglas Adams.
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competitions, in addition to the size of the robots and the field, is that no global or external sensor
systems for perception are allowed. Thus the robots have to rely totally on their own sensors,
including vision. The robots are fully autonomous, i.e., their sensors, actuators, power supply and
computational power are on-board, and no external intervention by humans is allowed, except to
insert robots to or remove robots from the field. External computational power is allowed, but
most teams use it only for monitoring purposes. Wireless communication between the robots
and/or with the external computer is also allowed. As in mostof the other RoboCup leagues,
relevant objects are distinguishable by their color: the ball is orange, the goals are yellow and
blue, the robots are black, the field lines are white, the robot markings (to distinguish the teams)
are magenta and light blue. The middle-size league providesa serious challenge for research
disciplines such as cooperative multi-robot teams, autonomous navigation, sensor fusion, vision-
based perception, planning, reasoning and mechanical design, to name only a few of them.

Figure 1.1: Two robots of the RoboCup MSL Team of the Graz University of Technology (left)
during a game at the RoboCup German Open 2004.

In the past years the community decided to remove the surroundings of the field for the
middle-size league (2002 the walls were replace by a group ofpoles, 2003 the poles were also
removed), as a step towards a more realistic soccer game and to post new scientific challenges.
As the ball and also the robots are able to leave the field now and the surrounding scenery is not
defined anymore, the demands on the robots regarding ball handling, perception, and strategy
increase. It could also be foreseen that in the near future the field size further will be enlarged
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in order to foster cooperative play and that the field will be outside which raises a lot of new
challenges for the perception, e.g., robust computer vision.
Currently Artificial Intelligence for planning and cooperation do not yet play such an impor-
tant role for the success in the tournament as, for example inother leagues which use simulated
agents. But for a long-term scientific development these are the relevant issues. The problems
caused by perception (mainly vision), self-localization,mechanical and electronic design (ball
handling, robot drives and sensors) are still dominating, and make it difficult to implement adap-
tive, intelligent, and cooperative team play. All this control issues are the interesting question we
try to answer with our proposed approach of intelligent robust control.

1.1.2 Service Robots

The ultimate goal of research in the area of service robots isto relieve people from hard, dan-
gerous and monotonous work. The dream of having a mechanicalcompanion which does all the
boring work for us is as old as the mankind.

Figure 1.2 shows the prototype of our outdoor service robot which is based on a Pioneer
AT3. Its task is to deliver good like books or letters within our university campus. The campus
is about 1000 m times 500 m large and comprises all kind of buildings, streets, parking lots
and parks. The requirements for the control system of this robot are similar to those in the
previous section. But the quality and the intensity of the problems are much higher than in
the regulated soccer domain. The operational time is much longer and the environment is less
restricted but more dynamic due to open spaces, pedestrians, cars and so forth. Furthermore, the
environmental conditions like ambient light vary much morewhich increases the noise of the
perception. Fortunately, it is possible to transfer many ofthe approaches for the robot control
from the soccer domain to the service robot domain. But some ofthese approaches have to be
scaled or adapted for the increased demands.

We use the service robots domain as the second scenario for the research on robust intelligent
control of autonomous mobile robots. The use of this domain has three major aspects. Firstly, it
is the natural extension of the regulated testbed of RoboCup. Secondly, many techniques from
RoboCup can be transfered to and can be evaluated in this different domain. Moreover, the
service domain post additional challenges for the developed methods and for robotics research
in general. Finally, the service robot domain will have a lotof impact on the economy and the
society in the near future. On one hand the industry demands for intelligent logistic system and
on the other hand we face with the problems of an ageing society. Therefore, the demand for
intelligent autonomous robots will significantly increase.
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Figure 1.2: Outdoor Service Robot.

1.2 Problem Statement

This thesis is focused on is abstract intelligent robust control of autonomous mobile robots. As
said previously this kind of robot will gain even more attention in the near future and their appli-
cation for non-trivial tasks in general “everyday live” environments will significantly increase.
These scenarios raise a lot of scientific questions in order to enable robots to act robust and really
autonomous for various tasks and in different environments. Such a robot has to be equipped with
an intelligent robust control framework. Such a feasible framework should fulfill the following
requirements:

• Flexibility and reuse of components: Core components of the framework should be
reusable and a new arrangement of the components within a newframework should be
easily possible. Furthermore, the framework and its components should enable the robot
to perform a wide range of different tasks without significant modifications or even recom-
pilation.

• Planning and reasoning for complex tasks:Complex task cannot be carried out by a
robot without the capability of reasoning and planning. Therefore, an appropriate delibera-
tive component have to be part of th control system. Such capabilities furthermore demand
for an appropriate abstract logic-based representation ofthe knowledge of the robot.
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• General, expressive and intuitive task description:A robot and its control should be as
flexible as possible in order to carry out many different tasks. Therefore, a task description
language is needed which is general and expressive enough todescribe a wide range of
different task in different worlds. Furthermore, such a task description should be intuitive
in order to allow also non-experienced users to specify a task for the robot.

• Robust task execution in noisy and dynamic environments:Robots usually carry out
their tasks in the real world. The disadvantage of the real world is that it is inherently noisy,
uncertain and dynamic. Therefore, the perception of the robot and outcome of actions the
robot performs are uncertain to a certain level. Furthermore, the world is dynamic and may
evolve in a way the robot has not foreseen. Therefore, the robot has to have the capability
to robustly execute task in the presence of noise, dynamic and exogenous events.

• Fault-tolerance: Faults in the software and hardware of mobile robots are inherent. A
robot which autonomously performs a task has to have some level of fault-tolerance. It is
desirable that the robot is able to detect and localize faults in his system and is able to set
the appropriate repair or control actions in order to be ableto complete its mission or at
least to proceed to a safe mode.

The aim of this thesis is to integrate as many as possible of the above features in a general
framework for the intelligent robust control of autonomousmobile robots. The next section list
the contributions we have made to the scientific community inorder to develop our framework.

1.3 Major Contribution

The scientific contribution of this thesis is the incremental development of a framework which
allows a flexible and robust control of an autonomous mobile robot in different real-world ap-
plication like the RoboCup Middle-Size League and the servicerobotic domain. The developed
framework solves different problems which arise from the dynamic behavior and uncertainty of
the real world and the complexity of non-trivial tasks for a group of autonomous mobile robots.

• Software framework: The first significant contribution achieved during the preparation
of this thesis was the development of an open flexible software framework for the control
of autonomous mobile robots. This framework serves as the base for all further research
done during this thesis. The further research mainly concerned the robust intelligent con-
trol of mobile robots. Therefore, much work has been done in the area of hybrid control
architectures of mobile robots. The developed framework isbased on the Miro-framework
of the University of Ulm [USEK02]. Many of our developments find their way back to
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the original framework and are used by several international research groups. All fur-
ther developments were integrated into the framework in order to achieve the goal of a
intelligent robust control of autonomous mobile robots. The framework was described in
[FSW04b] and was used in different application domains like RoboCup robot soccer and
service robotics.

• Prediction of movement:

We have developed a novel prediction method for the movementof objects. The approach
is used to predict the movement of the ball in sequences of camera images in the RoboCup
environment. The method is based on Machine Learning and therecently proposed com-
putational paradigm of the Liquid State Machine. The LiquidState Machine comprise
a heavily interconnected pool of spiking neurons (the liquid) and a relatively simply set
of readout neurons. The liquid projects the input data in a high-dimensional space were
simpler readout methods like linear regression can be used.The visual input is presented
to a visual receptor field and the appropriate prediction wastrained. The main advantage
is that arbitrary non-linear predictions can be performed by the approach. The work was
published in [BKLS05] and received a nomination for the Best Paper Award at the 18th In-
ternational Conference on Industrial & Engineering Applications of Artificial Intelligence
& Expert Systems (IEA/AIE) in 2005.

• Robust plan execution:

As shortly motivated above, only a hybrid control architecture (a combination of reactive
and deliberative control) seems to be appropriate to robustly control a autonomous mobile
robot carrying out a complex task. Therefore, an abstract top level of control with reason-
ing and planning capabilities has to be part of the architecture. Usually, planning modules
lack of reactivity. This is a major drawback in highly dynamic domains like robot soccer.
We have developed a general robust framework for planning and plan execution in mobile
robots.
The main contribution in this area was the development ofplan invariants. The invariants
are part of each planning problem and are permanently monitored during plan execution.
Plan invariants enables a quick reaction to exogenous effects which invalid a long-term
plan. Such invalidation may be not recognized or even later without the use of the invari-
ants. Moreover, the parts of the planning problem for a giventask easily can be exchanged
for different applications or robot capabilities. This exchangeability forms a sort of de-
liberative programming language which can be used in different domains. The planning
framework is successfully used in several different application areas like robot soccer and
service robotics and is described in [FSW05].
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• Robust symbol grounding:

Another drawback of the use of deliberative control is that in any serious robot system
at some point in the system one has to switch from the quantitative representation of the
world to a qualitative abstract knowledge representation.This process is known in the lit-
erature as symbol grounding [RN03].
Due to the quality and the noise of the robots sensors, the quantitative world model is
inherently effected by uncertainty. We like to avoid uncertainty or probabilities on the
qualitative level because the complexity of the knowledge representation and the planning
and reasoning process will drastically increase. Due to theuncertain nature of the quanti-
tative representation we inherit problems like predicate oscillation on the qualitative level.
In order to make this symbol grounding more robust, we propose a new mechanism for
the calculation of the truth value of predicates. The approach is based on the well known
hysteresis mechanism. The idea is to delay the change of the truth value until a real signif-
icant change in the quantitative world takes place. The new symbol grounding was applied
and evaluated in the RoboCup domain. The approach and the results were published in
[FSW04a] and [SWW05].

• Model-based diagnosis for mobile robots

Even if the hardware and software of an autonomous mobile robot is carefully designed,
implemented and tested, there is always the possibility of afault at runtime. But some level
of redundancy and robustness against such fault is crucial for a truly autonomous robot. In
order to improve the robustness of the control system against faults at runtime, we enriched
the software framework with fault detection and localization capabilities.
The diagnosis capabilities are based on model-based diagnosis. The used correct behav-
ioral model of the system is mainly derived from the communication means of the different
software components of the system. Due to the CORBA-based architecture of the control
software, the derivation of the model and the monitoring of the communication is quite
simple. Deviations of the desired and the actual behavior ofthe system is detected by a
set of observers. The output of the observers triggers the diagnosis and is used in the fault
localization by logical reasoning. Moreover, we developedan approach which allows the
system to correct detected faults on the fly.
The diagnosis system was described in [SW05b] and [SW05c] and successfully tested and
evaluated in the RoboCup domain [SMW05]. We received for the proposed approach the
RoboCup Engineering Challenge Awardat the RoboCup 2005 in Osaka. Furthermore,
we worked on the integration of diagnosis of software and hardware of mobile robots.
The different nature of the both domains raised a lot of new challenges in the domain of
model-based diagnosis [SW05a].
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1.4 Related Research

Prior research related to the topics of this thesis, alternatives or former approaches are presented
and discussed within the corresponding chapter.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows. In the following chapter the developed
software framework running on our robots is motivated and described. Furthermore, the require-
ments for such software frameworks and other existing frameworks will be discussed in more de-
tails. Moreover the developed hardware of our RoboCup soccer robots will briefly described. In
Chapter 3 a novel method for the prediction of object movements in series of images is presented.
The prediction is based on the liquid state machine. Their computational paradigm enables a pre-
diction of complex movements of objects. The next chapter covers intelligent robust control. In
this chapter we introduce and describe mechanisms for robust deliberative control of robots in
dynamic and partially unpredictable domains. Chapter 5 discuss the problem of bridging the
quantitative and the qualitative representations in a world of uncertain sensors and perception.
Moreover a solution to the problems in deliberative controlcaused by this uncertainty is pre-
sented. The following chapter describes a framework for Model-Based Diagnosis for the control
software of autonomous mobile robots. Furthermore, the chapter shows how the framework is
extended towards automated repair of faults at runtime. TheChapter 7 discuss how diagnosis of
hardware and software can be integrated in a framework whichperforms automated diagnosis
and repair of faults in a mobile robot platform. The following chapter raises some directions for
future research. Finally, Chapter 9 presents a summary of thework and draws some conclusions.
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Chapter 2

Frameworks for Mobile Robots

2.1 The need for an appropriate framework

In research in the area of autonomous mobile robots an appropriate software framework is cru-
cial. The framework should allow to robustly control different mobile robots during the execution
of a wide range of different tasks. Moreover, it should be flexible enough to allow to investigate
different control strategies and algorithms. Furthermore, the extension of the framework towards
a handling of more complex tasks and environment should be easily possible. Finding the ap-
propriate framework for a special purpose is a very challenging task. Moreover, no one will
expect to develop a single framework which is appropriate for all purposes. There is always the
tradeoff between general applicability and usability. Thequestion for an appropriate framework
can be divided into two parts. The first and more easy to answerpart is which control paradigm
is used. The second part is more related to engineering and concerns the appropriate software
architecture. In [Ore04] the topic of the choice and implementing of an appropriate framework
is discussed in more detail. Parts of this chapter were published in [FSW04b].

2.1.1 Robot Control Paradigm

The robot control paradigm guides the organization of the control of a mobile robot which en-
ables the robot to perform given tasks. It structures how therobot maps its sensor readings
to actions via a more or less intelligent decision making module. One of the first attempts to
structure control was theSense-Plan-Act(SPA) paradigm. Figure 2.1 depicts the paradigm. The
paradigm was inspired by the research on Artificial Intelligence of the late 60’s and was first
successfully used by Nilsson in the robotShakey[Nil84]. It was guided by the early view on
Artificial Intelligence. The paradigm divides the control into three functionalities.SENSis re-
sponsible for the perception of the robots internal state and its environment. The data provided by

11
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the robot’s sensors are interpreted and combined to a central abstract model of the world. Based
on the information in the world model, a description of the capabilities of the robot and the goal
of the task thePLANmodule tries to find a plan (i.e., a sequence of actions) whichwill lead to
a given goal. Such a planning problem comprises an initial stateI, a set of possible actionsA
and the desired goal stateG. TheACT module executes this plan in order to achieve the goal.
Although, the SPA paradigm is very powerful and flexible it suffers from a set of drawbacks.
First of all, planning needs a lot of time even on very powerful computers. Therefore, the reac-
tion to dynamic environments is slow. Planning algorithms generally work on a qualitative and
abstract representation of the world. The design of such a representation and the transformation
of quantitative sensor data into this representation are far from being trivial.

The reactiveSense-Act(SA) control paradigm in contrast provides a completely different or-
ganization of control. Figure 2.2 depicts the SA paradigm. The paradigm is biologically inspired
by the mechanism of reflexes which directly couples the sensor input with the actor output. Such
a reflex of the robot is commonly called a behavior. More complex behaviors emerge trough
the combination of a set of different reflexes. A system whichfollows this paradigm was first
proposed in the mid 80’s with the Subsumption Architecture by Brooks [Bro86]. This architec-
ture brought a big progress in the research on mobile robots and is still popular and widely used.
Brooks argued that abstract knowledge about the world and reasoning is not necessary for the
control of a mobile robot. The paradigm is able to control a robot also in a dynamic environ-
ment because the reaction time is very slow due to the encoding of the desired behavior into a
reflex and the tight coupling of the sensors and actors. Although, relatively complex behaviors
can be achieved by blending different reflexes, the paradigmis prone to fail for more complex
tasks. This arises from the fact that no explicit information about the internal state of the robot
and about the world and no additional knowledge about the task is used. Therefore, for complex
tasks a goal-driven approach is much more appropriate than asimple instinct-driven one.

Although, the choice of an appropriate control paradigm sometimes seems to be more a
question of faith than science, there is a relatively clear commitment within the robotics research
community that the most appropriate architecture is a hybrid architecture (see Figure 2.3). Hy-
brid systems combine the advantages of the planning and the reactive paradigm while avoiding
most of their drawbacks. Such systems use reactive behaviors where reactivity is needed (e.g.,
avoiding a dynamical obstacle) and use planning and reasoning when complex decisions have
to be performed and some delay is not critical. Usually such systems comprise three layers.
TheReactive Layeruses reactive behaviors to implement a fast coupling of the sensors and the
actors in order to be reactive to a dynamic environment. Veryoften this layer implements the
basis skills of a robot like e.g. basic movement primitives and obstacle avoidance. TheDeliber-

ative Layerhas a global view on the robot and its environment and is responsible for high-level
planning in order to achieve a given goal. Typical functionalities which are located in this layer
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Figure 2.1: The Sense-Plan-Actcontrol
paradigm.
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Figure 2.2: The reactiveSense-Actcontrol
paradigm.

are mission planning, reasoning, localization, path planning and the interaction with humans or
other robots. TheSequence Layeris located between the Reactive and the Deliberative Layer and
bridges the different representation of the two layers. Thesequencer generates a set of behaviors
in order to achieve a subgoal submitted by the Deliberative Layer. It is also responsible for the
correct execution of such a set of behaviors and should inform the higher layer if the subgoal was
successfully reached or the execution failed due to some reason.
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Figure 2.3: The hybrid control paradigm.
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A more deep introduction into the different control paradigm can be found in the book by
Kortenkamp and colleagues [KBM98] and the book by Murphy [Mur02].

2.1.2 Software Architecture

The control paradigm guides the functional decomposition of the control on a more abstract view.
The software architecture on the other hand guides the decomposition in different components
and the implementation of such components. Furthermore, itconcerns about the encapsulation
of different functionalities into manageable modules. A good software architecture should also
provide among others the following features:

• robustness

• flexibility

• sensor and actor interface abstraction

• easy exchange and reuse of components

• reliable communication between components

• easy adaptation of the system for new purposes

• easy porting to other hardware platforms

• support of a defined development process

• support for test and evaluation

The question about the software architecture is not tightlycoupled to pure robotic research.
Therefore, the above requirements and principles are ignored in most of the implementations
of prototypic robot research software. Consequently, most of the research software is hard to
maintain, to port and to extent and therefore lacks of general usability. But fortunately, many
of the best-practice principles and processes from the software development community are now
widely accepted by the robotic research community. These principles among others are object-
orientated design, the use of design patterns, the reuse of established libraries, the use of widely
accepted standards and the use of test and evaluation frameworks. This leads to higher quality,
more exchangeable and more flexible software. Furthermore,a great pool of software frame-
works for robotic research have been created. Most of them can be used out of the shelf and
fulfil most of the requirements proposed by robotic research. Some of these frameworks will be
discussed more deeply in the next section.
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2.2 Existing frameworks for mobile robots

This section introduces some popular existing frameworks for mobile robot research. Some of
them are more general and flexible than others while some of them are closely related to specific
robots or tasks. The advantages and the drawbacks of the different frameworks will be presented.
A very good overview and a more formal and detailed evaluation of existing frameworks is given
in [OC03].

2.2.1 Task Control Architecture (TCA)

The Task Control Architecture (TCA) was developed by Reid Simmons at the Carnegie Mellon
University [Sim94].

TCA allows you to construct a distributed system without having to build your own remote
procedure call mechanism. At its core, TCA provides a flexiblemechanism for passing mes-
sages between processes (which were called modules). The communication mechanisms auto-
matically marshal and unmarshal data, invoke user-defined handlers when a message is received,
and include both publish/subscribe and client/server typemessages, and both blocking and non-
blocking types of messages. TCA also provides orderly accessto robot resources so that you
don’t have to build your own queuing mechanism. This features are also now available sepa-
rately from TCA in theInter Process Communication(IPC) library.

TCA simplifies building task-level control systems for mobile robots. By ”task-level”, TCA
means the integration and coordination of perception, planning and real-time control to achieve
a given set of goals (tasks). TCA provides a general control framework, and it is intended to be
used to control a wide variety of robots. TCA provides a high-level, machine independent method
for passing messages between distributed machines. Although TCA has no built-in control func-
tions for particular robots (such as path planning algorithms), it provides control functions, such
as task decomposition, monitoring, and resource management that are common to many mobile
robot applications. The development of high-level controlis supported by theTask Description

Language(TDL) [SA98]. The language consists statements to handle task and task control. The
control program written in TDL is transformed into C++ code, which will be compiled and linked
to the TCA core.

TCA can be thought of as a robot operating system — providing a shell for building specific
robot control systems. Like any good operating system, the architecture provides communica-
tion with other tasks and the outside world, facilities for constructing new behaviors from more
primitive ones, and means to control and schedule tasks and to handle the allocation of resources.
At the same time, it imposes relatively few constraints on the overall control flow and data flow
in any particular system. This enables TCA to be used for a widevariety of robots, tasks, and
environments. One successful example is the robot XAVIER [SGH+97].
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2.2.2 Saphira

Saphira has been developed by Kurt Konolige at the Stanford Research Institute (SRI) Interna-
tional [KM98]. It is an integrated architecture for robot perception and control and was first
developed within the Flakey robot project. Saphira is a wellknown and widely used framework
because it is shipped as the basic software suite with the commercial research robots of Pioneer
family by ActivMedia. Therefore, Saphira is now tightly coupled to these robots.

Saphira comprises of two architectural layers. TheSystem Architectureprovides basic com-
munication and interfaces to the actors and sensors of a robot and is implemented by theARIA

library. The interface to higher layers in the hierarchy areprovided by thestate reflector, a con-
tainer for an abstract view of the internal state of the actors and sensors of a robot. ARIA is
maintained by ActivMedia and provides access only to the hardware of robots of the Pioneer
family. The second layer is theControl Architectureand is build on top of the state reflector.
The Control Architecture comprises modules for controllinga robot. These modules mainly
concern navigation. The main features within this layer aretheLocal Perception Space(LPS),
which contains a robot-centric view on the environment up toa few meters radius around the
robot, and theGlobal Map Space(GMS), which provides a global view on the environment and
its structure. Furthermore, this layer provides the possibility to easily set up reactive behaviors
using a fuzzy blending of behaviors. The implementation of higher level tasks is supported by
the C-like scripting languageColbert [Kon97]. Colbert contains statements for a wide range of
control concepts. A big advantage of Saphira is that advanced methods for obstacle avoidance,
localization and path planning are integrated and ready-to-use.

Although Saphira is quite common in robotic research and provides an easy start for the work
with robots of the Pioneer family, it has some drawbacks which lower the value for general use.
Saphira has been evolved over a long period of time. Therefore, the design and implementation
is somehow awful. A porting of Saphira to other robot platforms is nearly impossible. Finally, an
adaptation for specific tasks beyond the functionality provided by the Colbert language is very
exhaustive.

2.2.3 Carnegie Mellon Robot Navigation Toolkit (Carmen)

The Carnegie Mellon Robot Navigation Toolkit(Carmen) is an open-source collection of soft-
ware for mobile robot control developed at the Carnegie Mellon University [MRT03]. Carmen
is modular software designed to provide basic navigation primitives including actor and sensor
control, obstacle avoidance, localization, path planning, people-tracking and mapping.

Carmen was designed to provide a consistent interface and a basic set of primitives for
robotics research on a wide variety of commercial robot platforms. The ultimate goals of Car-
men are to lower the barrier to implementing new algorithms on real and simulated robots and
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to facilitate sharing of research and algorithms between different institutions. Robotics research
covers a spectrum of different approaches and formalisms. The developers have adopted the
philosophy of making Carmen as inclusive as possible.

Hardware management
and communication

High level tasks

Localization Navigation

Collision detection

Figure 2.4: The layered architecture of Carmen.

Carmen uses a three-tier architecture (see Figure 2.4). Thebase layerprovides abstract in-
terfaces to sensors and robot platforms. There exist already a wide range of implementations
of the interfaces for robot research platforms, e.g., the Pioneer family from ActivMedia, the
B21 and the the ATRV family from iRobot, and for different rangesensors, e.g. the Sick LMS
200. Unfortunately, Carmen currently only provides interfaces and implementations for robot
platforms equipped with a differential drive. Furthermore, the base layer provides simple con-
trol loops, e.g., motion primitives. Thenavigation layerimplements navigation primitives, e.g.,
localization, path-planning and object tracking. Carmen comprises a large set of ready-to-use
implementation of advanced algorithms for path-planning [Kon00] and for laser and map-based
localization [FBDT99]. There also exist abstract interfaces which enable an easy extension of
Carmen with new navigation capabilities. The last layer hosts the user-level tasks which are
based on the functionality of the lower layers. All functionalities across the layers are encapsu-
lated in small modules with clear interfaces. Carmen uses theIPC library (see Section 2.2.1) for
the communication between those modules.

Finally, Carmen provides excellent visualization tools andtools for automated mapping of
different environments. Although Carmen provides an easy begin for the development of a robot
control software and a wide range of off-the-shelf components, the use of Carmen is mostly
related to the localization and navigation research of the developers.

2.2.4 Open Robot Control Software/Open Realtime Control Services
(OROCOS)

Open Robot Control Software[Bru01] andOpen Realtime Control Services[BSK03] are the two
parts of the OROCOS open-source project. The project aims theambitious goal of providing
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both general standards and designs for robot control applications and ready-to-use implemen-
tations of modules guided by these standards and designs. The project’s main feature is that it
provides interchangeable open-source implementation developed under state-of-the-art software
development principles. Because well established softwaredevelopment principles are hardly
found in todays robot control software.

While other existing frameworks share the common goals of interchangeability, reuse and
common interfaces with OROCOS, the project goes one step further. It also tries to establish
basic standards of notations for e.g. coordination systems, kinematic and motion control only
to name a few. These feature will also engage the interchangeof methods and code between
the robot research community. The system has a very open and extensible design enabling an
easy contribution of methods and codes to the project. Another advantage of the project is that
it supports hard real-time control which very much widens the possible application areas for the
projects.

The project provides already a wide range of control modulesranging from a simple PID
motor controller to the complete control of a six-DOF robot arm. Mobile robots are currently not
covered by the project. These types of robots are in the focusof future extensions to the project.

2.2.5 Player/Stage

Player is a device server for sensors and actors of a mobile robot [GVS+01]. The development
has been carried out as a open source project by a number of people which contribute to the
project. It provides a connection to the sensors and actors of a robot for a client through simple
TCP/IP sockets.

The message format is standardized for different types of sensors and actors. Therefore,
some level of hardware abstraction is provided. While the useof a communication by simple
socket is slim and efficient the work with messages comprising of a chunk of bytes is somehow
cumbersome. But one design goal of Player is to be very efficient to be able to serve a near
unlimited number of clients at the same time. However, the use of sockets as communication
mechanism provides independence of the used OS and programming language. The modular
design of the Player server enables an easy integration of new hardware into the server. Player
uses a uniform abstraction for various devices by the UNIX-like treating of devices as files.
Reading data from a sensor is done by an ordinary read on its device node and sending commands
to an actor is done by an ordinary write to its device node. Theserver already supports a number
of commercial research robots like the Pioneer family by ActivMedia and the B21 by iRobot.

While Player is an efficient interface to sensors and actors and is used by many researchers it
has a main drawback. It neither provides mechanisms or modules for reactive control of a robot
nor it provides any deliberative layer. Therefore, up from the sensor and actor level all parts of
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Figure 2.5: Screen shot of a simulation done with Gazebo.

the robot control have to be implemented by the user.

Together with Player comesStage. Stage is a simulator for a group of robots in a two-
dimensional bit-mapped environment. Stage simply can be used as plug-in to the Player device
server and simulates the behavior of the actors and sensor inthe given virtual environment. Stage
is able to simulate a wide range of different robot platformsand a great number of sensors includ-
ing sonar, laser scanner and odometry. Due to the usage of theOpen Dynamics Engine(ODE)
a very realistic simulation encountering many phenomena, e.g. collisions and acceleration, is
provided. Recently, with Gazebo a Player-compatible simulator for realistic three-dimensional
environments was introduced into the project. Figure 2.5 shows a screen shot of Gazebo simu-
lating a Pioneer 3AT robot equipped with a laser-scanner anda camera.

2.2.6 Middleware for Robots (Miro)

TheMiddleware for Robots(MIRO) is a distributed object oriented software frameworkfor robot
applications. It has been developed at the Department of Computer Science at the University of
Ulm [USEK02, Utz05]. The aim of the project is to provide an open flexible software framework
for applications on mobile robots. The goals for the design of Miro comprise the following:

• full object-oriented design

• client/server System design

• hardware and operating system abstraction
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• open architecture approach

• multi-platform support, communication support and interoperability

• software design patterns

• agent technology support

Miro achieved these goals by an architecture which is divided into three layers. Figure 2.6
depicts the architecture of Miro. The usage of theAdaptive Communication Environment(ACE)
and CORBA for the communication between the layers and other applications enable a flexible,
transparent and platform-independent development. Miro usesThe ACE Object Request Broker

(TAO) as CORBA framework. The implementation of the frameworkis completely performed
object-oriented in the C++ programming language.

Device Layer

PC/WorkstationSparrow 99 Pioneer 1

Frameworks

Application Application

Linux OS Linux OS Windows/Solaris OS

Application

Miro

Miro

Miro

Miro Device Layer

Communication/Configuration

Sensor/Actuator Services

Figure 2.6: The architecture of Miro [Utz05].

TheMiro Device Layerprovides object-oriented interface abstractions for all sensory and ac-
tuatory facilities of a robot. This is the platform-dependent part of Miro. TheMiro Communica-

tion and Service Layerprovides active service abstractions for sensors and actuators via CORBA
Interface Definition Language(IDL) descriptions and implements these services as network-
transparent objects in a platform-independent manner. Theprogrammer uses standard CORBA
object protocols to interface to any device, either on the local or the remote robot. TheMiro

Frameworkprovides a number of often used functional modules for mobile robot control, like
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modules for mapping, self-localization, behavior generation, path planning, logging and visual-
ization facilities.

Although Miro is a software framework and no ready-to-use robotic application, it was de-
cided to use Miro as the basis for our own control software. A complete description of Miro and
many useful examples can be found in [Tea05]. The use of Miro as a basis for further develop-
ments has the following advantages:

• Object oriented design: The design of the framework is fully object-oriented, elaborated
and easy to understand. Moreover, there are a whole bunch of ready-to-use design patterns
like, e.g., multi-threading, device reactors and so forth.

• Multi-Platform Support and Reuse: Miro comprises a great number of abstract inter-
faces for numerous different sensors and actors, e.g., odometry, bumper, sonar, laser and
differential-drives. Moreover, for all of these interfaces, already implementations for many
different robot platforms are provided. Due to the clear design and the use of CORBA and
IDL the implementation of interfaces for a new robot platform and the integration of new
interfaces is straight forward. Miro currently supports many different common robot plat-
forms like the B21 and the Pioneer family. Furthermore, many research groups use Miro
for the control of their robots. We like to mention here the RoboCup Middle-Size Teams of
the University of Ulm [KMU+04], Technical University of Munich [SKGB04] and Graz,
University of Technology [SBB+06]. Recently, contributions of different research groups
have been integrated into Miro. These contributions mainlyconcern interfaces and service
for new hardware, e.g., GPS receiver, compasses and robot platforms.

• Communication: For the communication between different components of therobot con-
trol software Miro, provides two main mechanism.

Direct CORBA method calls are used in a client/server manner for a one-to-one commu-
nication of components. These mechanism is usually used foractor and sensor interfaces.
Due to the use of CORBA, the user has not to deal with the internals of such a commu-
nication, e.g., marshalling or memory management. Furthermore, the communication is
completely transparent even if the client and the server runon different computers or use
different programming languages.

The event channel on the other hand provides on-to-n communication. The event chan-
nel follows the producer/consumer paradigm. The producer simply pushes an event of a
certain type to the channel. All consumers which are subscribed for this event are auto-
matically informed if this specific event is available. Although this mechanism has a lot
of advantages, it has to be mentioned that a heavy use of this mechanism leads to a poor
run-time performance due to the computational overhead in the event channel.
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Another extremely useful communication mechanism is the notify multicast. Roughly spo-
ken it is a very reliable Event Channel for inter-robot communication. The usual CORBA
communication mechanism like the remote method invocationand the event channel use
TCP/IP network connections in case of communication betweendifferent robots or com-
puters. Such communication is unreliable and performs verybad in environments with a
bad quality of and a high traffic on its network connections. An example for such envi-
ronments is the wireless network situation at RoboCup tournaments, where a high number
of clients communicates with high traffic over larger distances. In these environment fre-
quently the network connection totally collapses. The notify multicast instead uses UDP
packages distributed over multicast groups. It provides the same functionality as the com-
mon event channel like e.g. offer and subscription of eventsbut uses a slimmer and more
reliable transport mechanism. Furthermore, groups of heterogeneous robots are able to
communicate. By using a general description language for data, like e.g. positions, states
and objects, teams of autonomous mobile robots were able to successfully play with a
mixed team at the RoboCup 2004. The mixed teams comprised robots from the RoboCup
Middle-Size teams of Ulm, Munich and Graz [USM05].

• Behavior Engine: Miro contains a complete module for the modeling and the implemen-
tation of reactive behaviors. TheBehavior Enginefollows the behavioral control paradigm
introduced by Brooks [Bro86]. The module uses a hierarchical decomposition of behav-
iors. On the base of the hierarchy there are different simplebehaviorslike e.g. wall
following. These behaviors can be grouped inaction patterns. Such action patterns may
comprise e.g. a wall following and a local obstacle avoidance behavior. Different action
patterns can be combined to apolicy.

The transition between different action patterns are triggered by two different mechanisms.
The local transitions are emitted by a behavior and have a unique name. An action pattern
is linked by this name to a successor action pattern which will be activated next. Global
transitions directly contain the action pattern which willbe activated next. Within an acti-
vated action pattern, all its behaviors are executed concurrently. Each action pattern has an
arbiter which combines the output of the concurrent behaviors and communicates the out-
put to the actuators. Currently only a prioritized arbiter isavailable in Miro. But one can
think about of more advanced arbiters which provide a more smooth transition between
behaviors.

The type of a behavior is one of the following three types. FortheTimedBehaviorstype
the behavior is called repeatly at fixed timesteps. The behavior itself has to assure that its
calculation is finished within the timestep. Otherwise it would block the other behaviors.
EventBehaviorsare called every time one of the subscribed events occur. TheTaskBehav-
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iors type is used for behaviors which may not be able to finish theircalculations within a
fixed time. Such behaviors run within their own task while notblocking other behaviors.

Once the behaviors are implemented action patterns and policies are build up by describing
them in a XML-file. Therefore experiments with different action patterns and policies are
easy and straight forward.

Unfortunately, Miro do not provide any paradigms and implementations for a deliberative
layer. Therefore, the Miro Framework was extended by our ownplanning system. Details
about this and other contributions by our group are described more detailed in the next
section.

2.3 The Developed Framework

In order to fulfill as many as possible of the above requirements for an appropriate framework,
a novel design approach for mobile robots has been developed[FSW04b]. The approach is
based on a continuous modularization of both the robot’s software and its hardware. The hard-
ware modularization is based on an encapsulation of the robot’s various physical skills into au-
tonomous modules with defined interfaces. Therefore, hardware modules can be exchanged very
simply. This allows an easy adaptation of the robot’s hardware for new tasks and simple inves-
tigation of new modules or new module configurations. The modularization of the software is
based on two concepts: (1) software design and (2) software architecture. The software design
provides a decomposition of functionality into layers withincreasing levels of abstraction. The
design is inspired by the hybrid control paradigm. Therefore, the functionality is organized in
different layers ranging from an abstract top layer with planning and reasoning capabilities down
to a layer with direct hardware access. The software-architecture which is based on Middle-
ware for Cooperative Robotics (Miro) [USEK02] deals with the implementation details. The
Miro framework provides several ready to use interfaces to sensors and actors, methods for an
integration of new software modules into the framework and reliable transparent communication
mechanisms between software modules. The software modulesare implemented as autonomous
services which interact via client/server communication.Due to the object-oriented design and
the existence of defined interfaces, the adaptation of the framework to our platform was quite
easy. Furthermore, based on this fact, an exchange of software modules within the community is
possible. E.g., the framework was extended by adding interfaces to new hardware (e.g., Firewire,
CAN-Bus). These extensions are now publicly available. This design approach was used for the
development of the robots that form our RoboCup Middle-Size League Team (MSL) [SFF+03].
As a result the team was able to create a robot soccer team fromscratch with limited human and
financial resources within less than a year. Besides using therobots for soccer games, the robots
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are used in research in the area of service robots.

2.4 Hardware Design

In our previous studies, four skills were found which are important for a mobile robot in order to
fulfill a given task in a given environment, regardless whether the robot plays soccer or delivers
mail within an office building. These skills are: (1) movement, (2) sensing the environment,
(3) manipulating the environment and (4) information processing. These skills may differ from
task to task, e.g., a kicking mechanism in a robot soccer tournament or a manipulator arm with a
gripper in the service robot domain. An encapsulation of these skills in different loosely coupled
modules is the first step to a flexible hardware design. Therefore, the hardware of the robot is
divided into four layers. Each layer provides one of those skills. The layers are stacked to build
up the robot platform (see Figure 2.7).

There are no restrictions to the design of the layers themselves except that they have to pro-
vide the required skills and three predefined interfaces. A mechanical interface ensures that
individual layers fit together mechanically. The fast reliable Can-Bus allows the communication
within the layers [Ets01]; each layer is able to communicatedirectly with each other layer. A sin-
gle 24 V power line provides the power supply for the layers. The Can-Bus and the power line are
simply looped through the layers. Introducing new layers that provide different characteristics of
a skill is easily possible by following the guidelines introduced above. Every layer is equipped
with its own processing unit, either a C167 microcontroller or a Pentium-based Single-Board PC.
Therefore, the individual layers are able to work autonomously.

2.4.1 Driving Layer

The Driving Layer is responsible for handling the movement of the robot. In our current design
this layer is implemented as an omnidirectional drive. It isbuilt up by four orthogonal crosswise
motors each joint to an omni-wheel. By individual control of the speed and the rotating direction
of each motor the robot is able to move in any direction and to rotate around its vertical axis
simultaneously. This layer also hosts the battery packs to keep the center of gravity of the robot
low.

2.4.2 Actuator Layer

All active interactions with the environment are done by theActuator Layer. This layer is imple-
mented as a pneumatic kicking device for the purpose of playing soccer games or a manipulator
arm with a gripper during service tasks.
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Figure 2.7: The modularized robot platform.

2.4.3 Sensor Layer

The Sensor Layer provides the entire sensing of the environment. This layer actually hosts two
sensor systems. We use a Sick Laser Range Finder for proximityscans around the robot. This
sensor has a high resolution (0.5◦) and provides very reliable measurements. A disadvantage
of this sensor is the limitation of the scan to 180◦ around the robot. Therefore, this sensor is
supported by another sensor system, a ring of 24 ultrasonic sensors. Those sensors have a sig-
nificantly lower resolution and accuracy compared to the laser scanner but provide a qualitative
scan around the entire robot.

2.4.4 Control Layer

The more sophisticated information processing is done in the Control Layer. This includes more
advanced sensory data processing, the decision making process and higher level control. There-
fore, this layer is equipped with a powerful processing unit, an 850 MHz Pentium III Single
Board PC with 256 MB Ram and a 20 GB hard drive. This layer also provides a communication
channel to other robots or computers via a Wireless-LAN interface. Due to the field of view
and the connection via the Firewire-Interface the omnidirectional camera is mounted on top of
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this layer. A crucial constraint for the assembly of this layer is the use of standard interfaces
(e.g., PCI, USB, Firewire, CAN-Bus) instead of proprietary ones. This eases the exchange of
components within this layer.

2.5 Software Design

The design of the software is guided by a continuous modularization. This modularization is
divided into two important aspects of the design. The first aspect deals with the functional
organization of the software. It introduces a decomposition of the software in parts of similar
functionality and an abstraction into layers. The second aspect deals with the logical organization
of the software modules and the communication within these modules. Whereas the first aspect
is important for the design and understanding of the behavior of the robot in a more abstract
way, the second aspect is important for the software implementation. This distinction eases the
development process due to the fact that the designer of the behavior does not have to deal with
software implementation aspects and vice versa. The idea offunctional layers with different
levels of abstraction is similar to the idea of cognitive robotics [CGI+02]. As mentioned above
a combination of reactive behaviors, explicit knowledge representation, planning and reasoning
capabilities promises to be more flexible and robust. Furthermore, such an approach will be able
to perform far more complex tasks. The software design is in fact inspired by the hybrid control
paradigm. But it has to be mentioned that the proposed design differs from the general hybrid
paradigm that our design has no sequence layer. The tasks of the sequence layer are located
together with the reactive behaviors in one layer. The functionality of the software is divided
into three layers with an increasing level of abstraction. The functionality of a layer is based on
functionality of the layer below. The layers are shown in Figure 2.8.

2.5.1 Hardware Layer

The Hardware Layer implements the interfaces to the sensorsand actuators of the robot. This
layer delivers raw continuous sensory data and performs a lowlevel controlling of the actuators.
USB for the Laser Range Finder and Firewire for the omnidirectional camera are standard inter-
faces and already supported by our OS (Linux). The interfaces to modules on the CAN-Bus are
implemented as VirtualCAN-Connections. A software module is able to transparently commu-
nicate via these connections directly with one dedicated hardware module on the CAN-Bus. The
method is similar to the well known TCP/IP protocol where different applications on different
computers are able to communicate over one physical networkconnection.
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Figure 2.8: Functional view of the software (robot soccer example).

2.5.2 Continuous Layer

The Continuous Layer implements a numerical representation(quantitative view of the world)
of the sensing and acting of the robot. This layer performs the processing of range data and
the image processing. This processing provides possible positions of objects in the environment
including the robots own pose. A pose consists of position and orientation of an object. The
pose together with the motion information from the odometryare fused into a continuous world
model. The sensor fusion is done by Kalman Filters (object positions) [DGN01] and Monte Carlo
methods (own pose) [FBDT99]. For sure, all sensing and actingof a real mobile robot is afflicted
with uncertainty. Therefore, sensor fusion is done using the above probabilistic methods. The
world model represents the continuous world by estimating the most likely hypothesis for the
positions of objects and the position of the robot itself. Furthermore, this layer is responsible
for the execution of actions. Execution is based on a set of actions implemented as patterns of
prioritized simple reactive behaviors.

2.5.3 Abstract Layer

The Abstract Layer implements a symbolic representation (qualitative view of the world) about
the knowledge of the robot and a planning module for the decision making. A detailed description
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of the used planning system can be found in [Fra03]. A similarapproach also has been proven to
work in the RoboCup MSL domain [DFL02]. The core of this layer isthe Knowledge Base. It
contains the entire higher-level knowledge of the robot. This knowledge consists of previously
collected domain knowledge, an abstracted representationof the continuous world model and an
abstract description of the actions the robot is able to perform. This knowledge is represented
using a STRIPS-like representation language [FN71] enriched by the use of elements of first-
order logic (e.g., quantifiers). Based on this knowledge, thestrategy module chooses the next
goal the robot has to achieve for fulfilling the longterm task. The Planing Module generates a
plan (sequence of basic actions) which satisfies this goal. This plan is monitored permanently
for its validity during execution. The plan is canceled or updated if preconditions or invariants
of the plan or its actions are no longer valid. This plan is communicated to the Action Executor
which performs the actions of the plan. The Abstract Layer allows for an easy implementation
of a desired task by specifying the goals, actions and knowledge as logic sentences.

2.6 Software Architecture

The Software Architecture is based on Miro [USEK02]. The Software Architecture is shown
in Figure 2.9. All software modules are implemented as autonomous services. Each service
runs as an independent task. The communication between services is primarily based on two
mechanisms: (1) CORBA-Interfaces and (2) event channel. CORBA-Interfaces are described
using IDL and export methods a service is able to perform. TheIDL description of the interface is
abstract and makes no assumptions about the implementationof the interface, e.g, programming
language or platform. The use of IDL provides abstraction ofthe sensor and actor interfaces. The
event channel is a mechanism which collects and delivers events within the system. It enables
one-n communication. A service that produces an event simply pushes the event in the Event
Channel. A service which consumes an event simply subscribesto some event type on the Event
Channel. If some event of that type is available, the Event Channel delivers the event to the
subscribed service. The advantage of the Event Channel is that producers and consumers do not
have to be aware of each other in contrast to CORBA-Interfaces,where the client has to know the
server in advance. Hence, the services are independent and an adaptation of software modules or
the integration of new services is very easy and transparent. Based on the flexible design of the
framework, some extensions to the framework have been developed. These extensions are mainly
interfaces to new hardware used in our robots like the Firewire interface for digital cameras and
the CAN-Bus interface with virtual connections. Clearly, these extensions are provided to the
public. These extensions widen the number of platforms on which the framework could be used.
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Figure 2.9: Software Architecture. Solid connections represent CORBA IDL interfaces. Dashed
connections represent communication via an event.

2.7 Obtained Results and Discussion

The experiences in building a mobile robot show that this kind of design approach reduces the
time and costs for developing a mobile robot and at the same time increases the flexibility and
robustness of the robot. By using the design approach our group was able to develop a robot
soccer team from scratch with limited human and financial resources within less than a year.
The basic system was implemented by a team of only nine students (32 man-months). Another
practical result shows the advantages of the modularized hardware design. Two versions of the
Sensor Layer based on different ultrasonic sensors (Polaroid or Devantec) were developed. Both
versions work transparently within the robots. The qualityand robustness of our robots were
shown during a number of RoboCup tournaments where the hardware and software of the robots
ran stable. Moreover, the adaptability and flexibility of our control solution were impressive
during the tournaments. A player’s behavior could be changed easily in a few minutes on the
field simply by modifying sentences that to some extent resemble human language statements.
Furthermore, the framework is nearly unchanged used for successful controlling a delivery robot
within our institute.

Although the used framework has proved to be flexible and robust by the use in different
domains, it suffers from two major drawbacks: (1) communication delay on the event channel
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and (2) the time needed for planning. The extensively use of the event channel as a flexible
communication mechanism slows down the system and reduces the reactivity of the robot in
dynamic environments. Due to use of an abstract decision making module with AI planning the
robot is able to deal with very complex tasks. There are many decisions which are made in the
Abstract Layer. Therefore, the system is even less reactivebecause planning needs much time.
In the future, a better balance between the deliberative andthe reactive layer has to be achieved.

In this chapter, an approach for designing autonomous mobile robots has been presented.
The approach is based on a continuous modularization in software and hardware. Robot designs
that are based on our approach are more flexible with regard totheir intended purpose and can
be easily adapted to new tasks. The hardware modularizationis based on an encapsulation of
skills. The software modularization is based on the framework Miro. Due to the CORBA-based
architecture of the software modules an adaptation of available services and the integration of
new services is very easy. The behavior of the robot itself can be easily adapted due to the
different abstraction layers in the functionality and a logic based representation of knowledge,
goals and actions.



Chapter 3

Looking ahead

3.1 Introduction

The prediction of time series is an important issue in many different domains, such as finance,
economy, object tracking, state estimation and robotics. The aim of such predictions could be to
estimate the stock exchange price for the next day or the position of an object in the next camera
frame based on current and past observations. In the domain of robot control such predictions
are used to stabilize a robot controller. See [JW99] for a survey of different approaches in motor
control where prediction enhances the stability of a controller. In this chapter we present a
novel approach for prediction in the robotics domain. This chapter was partially published in
[BKLS05].

There are two popular approaches for this kind of prediction: (1) modeling the behavior of the
system or (2) learning of the prediction based on collected data. The former approach claims a
basic understanding of the underlying system. It is preferred if the internal structure of the system
is well know and its behavior could be sufficiently precise described by a set of equations, i.e.,
electronic circuits, technical processes or mechanical systems. A well known example for this
approach is the prediction step in state estimation with theKalman-Filters [May90]. It uses the
current state and a linear system model to predict the state for the next time step. This prediction
is optimal for linear systems. For non-linear systems, the Extended Kalman-Filter (EKF) uses a
linearization of the system. Therefore, the EKF is not optimal anymore. The latter approach is
to learn the prediction from previous collected data. The advantages are that knowledge of the
internal structure is not necessarily needed, arbitrary non-linear prediction could be learned and
in addition some past observations could be integrated in the prediction.

Artificial Neural Networks (ANN) are a common method used forthis computation.Feed-

forward networksonly have connections starting from external input nodes, possibly via one or
more intermediate hidden node processing layers, to outputnodes.Recurrent networksmay have
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Figure 3.1: Comparison of the architecture of a feed-forward(left hand side) with a recurrent
neural network (right hand side); the grey arrows sketch thedirection of computation.

connections feeding back to earlier layers or may have lateral connections (i.e. to neighboring
neurons on the same layer). See Figure 3.1 for a comparison ofthe direction of computation
between a feed-forward and a recurrent neural network. Withthis recurrence, activity can be
retained by the network over time. This provides a sort of memory within the network, enabling
it to compute functions that are more complex than just simple reactive input-output mappings.
This is a very important feature for networks that will be used for computation of time series,
because a current output is not solely a function of the current sensory input, but a function of the
current and previous sensor inputs and also of the current and previous internal network states.
This allows a system to incorporate a much richer range of dynamic behaviors. Many approaches
have been elaborated on recurrent ANNs. Some of them are dynamic recurrent neural networks
[Pea95], radial basis function networks [Bis95], Elman networks [Elm90], self-organizing maps
[Koh01], Hopfield nets [Hop82] and the “echo state” approachfrom [Jae01].

In case of autonomous agents, it is rather difficult to employstrictly supervised learning al-
gorithms for recurrent ANNs such as back-propagation, Boltzmann machines or Learning Vector
Quantization (LVQ), because the correct output is not always available or computable. It is also
very difficult to set the weights of a recurrent ANN directly for a given non-trivial task. Hence,
other learning techniques have to be developed for ANN that could simplify the learning process
of complex tasks for autonomous robots. The liquid state machine – which will be introduced in
the next subsection – is one approach that overcomes these difficulties.

Recently, networks with models of biologically more realistic neurons, e.g., spiking neurons,
in combination with simple learning algorithms have been proposed as general powerful tools
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for the computation on time series [MNM02]. In Maass et. al. [MLM02] this new computation
paradigm, a so calledLiquid State Machine(LSM), was used to predict the motion of objects
in visual inputs. The visual input was presented to a 8x8 sensor array and the prediction of
the activation of these sensors representing the position of objects for succeeding time steps
was learned. This approach appears promising, as the computation of such prediction tasks is
assumed to be similar in the human brain [Bea00]. The weaknessof the experiments in [MLM02]
is that they were only conducted on artificially generated data. The question is how the approach
performs with real-world data. Real data, e.g. the detected motion of an object in a video stream
from a camera mounted on a moving robot, are noisy and afflicted with outliers.

In this chapter we present how this approach can be extended to a real world task. We
applied the proposed approach to the RoboCup robotic-soccer domain. The task was movement
prediction for a ball in the video stream of the robot’s camera. Such a prediction is important
for reliable tracking of the ball and for decision making during a game. The remainder of this
chapter is organized as follows. The next section provides an overview of the LSM. Section 3.3
describes the prediction approach for real data. Experimental results will be reported in Section
3.4. Finally, in Section 3.5 we draw some conclusions.

3.2 The Liquid State Machine

The LSM from [MNM02] is a new framework for computations in neural micro-circuits. The
term “liquid state” refers to the idea to view the result of a computation of a neural micro-circuit
not as a stable state like an attractor that is reached. Instead, a neural micro-circuit is used as an
online computation toolthat receives a continuous input that drives the state of theneural micro-
circuit. The result of a computation is again a continuous output generated by readout neurons
given the current state of the neural micro-circuit.

Recurrent neural networks with spiking neurons represent a non-linear dynamical system
with a high-dimensional internal state, which is driven by the input. The internal state vector
x(t) is given as the contributions of all neurons within the LSM tothe membrane potential of a
readout neuron at the timet. The complete internal state is determined by the current input and
all past inputs that the network has seen so far. Hence, a history of (recent) inputs is preserved
in such a network and can be used for computation of the current output. The basic idea behind
solving tasks with a LSM is that one doesnot try to set the weights of the connections within the
pool of neurons but instead reduces learning to setting the weights of the readout neurons. This
reduces learning drastically and much simpler supervised learning algorithms which e.g., only
have to minimize the mean square error in relation to a desired output can be applied.

The LSM has several interesting features in comparison to other approaches with recurrent
circuits of spiking neural networks:
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1. The liquid state machine provides “any-time” computing,i.e., one does not have to wait
for a computation to finish before the result is available. Results start emitting from the
readout neurons as soon as input is fed into the liquid. Furthermore, different computations
can overlap in time. That is, new input can be fed into the liquid and perturb it while the
readout still gives answers to past input streams.

2. A single neural micro-circuit can not only be used to compute a special output function
via the readout neurons. Because the LSM only serves as a pool for dynamic recurrent
computation, one can use many different readout neurons to extract information for several
tasks in parallel. So a sort of “multi-tasking” can be incorporated.

3. In most cases simple learning algorithms can be used to setthe weights of the readout
neurons. The idea is similar to support vector machines, where one uses a function (usu-
ally called kernel) to project input data into a high-dimensional space. In this very high-
dimensional space simpler classifiers can be used to separate the data than in the original
input data space. The LSM has a similar effect as a kernel. Dueto the recurrence, the input
data is also projected to a high-dimensional space. Hence, in almost any case experienced
so far, simple learning rules like, e.g., linear regressionare sufficient.

4. Last but not least it is not only a computational powerful model, but it is also one of
the biological most plausible so far. Thus, it provides a hypothesis for computation in
biological neural systems.

The model of a neural micro-circuit as it is used in the LSM is based on evidence found in
[GWM00] and [TWWB02]. Still, it gives only a rough approximationto a real neural micro-
circuit since many parameters are still unknown. The neuralmicro-circuit is the biggest compu-
tational element within the LSM, although multiple neural micro-circuits could be placed within
a single virtual model. In a model of a neural micro-circuitN = nx · ny · nz neurons are placed
on a regular grid in 3D space. The number of neurons along thex, y andz axis, nx, ny and
nz respectively, can be chosen freely. One also specifies a factor to determine how many of
theN neurons should be inhibitory. Another important parameterin the definition of a neural
micro-circuit is the parameterλ. Number and range of the connections between theN neurons
within the LSM are determined by this parameterλ. The probability of a connection between
two neuronsi andj is given by

p(i,j) = C · exp−
D(i,j)

λ2 (3.1)

whereD(i,j) is the Euclidean distance between those two neurons andC is a parameter de-
pending on the type (excitatory or inhibitory) of each of thetwo connecting neurons. There exist
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four possible values forC for each connection within a neural micro-circuit:CEE, CEI , CIE

andCII . The subscripts are used depending on whether the neuronsi andj are excitatory (E)
or inhibitory (I). In our experiments we used spiking neurons according to the standard leaky-
integrate-and-fire (LIF) neuron model that are connected via dynamic synapses. The time course
for a post-synaptic current is approximated by the equation

v(t) = w · e
−

t
τsyn (3.2)

wherew is a synaptic weight andτsyn is the synaptic time constant. In case of dynamic
synapses the “weight”w depends on the history of the spikes it has seen so far according to the
model from [MWT98]. For synapses transmitting analog values(such as the output neurons in
our experimental setup), synapses are simply modeled as static synapses with a strength defined
by a constant weightw. Additionally, synapses for analog values can have delay lines, modeling
the time a potential would need to propagate along an axon.

3.3 Experimental Setup

In this section we introduce the general setup that was used during our experiments to solve
prediction tasks with real-world data from a robot. As depicted in Figure 3.2, such a network
consists of three different neuron pools: (a) an input layerthat is used to feed sensor data from
the robot into the network, (b) a pool of neurons forming the LSM according to Section 3.2 and
(c) the output layer consisting of readout neurons which perform a linear combination of the
membrane potentials obtained from the liquid neurons.

For simulation within the training and evaluation the neural circuit simulatorCSim1 was
used. Parameterization of the LSM is described below. Namesfor neuron and synapse types all
originate from terms used in theCSimenvironment. Letters I and E denote values for inhibitory
and excitatory neurons respectively.

To feed activation sequences into the liquid pool, we useexternal input neuronsthat conduct
an injection currentIinject via static analog synapses(parameters are shown in Table 3.1) into
the first layer of the liquid pool. Inspired from informationprocessing in living organisms, we
set up a cognitive mapping from input layer to liquid pool. The value ofIinject depends on the
value of the input data, in this case the activation of each single visual sensor.

The liquid pool consists ofleaky integrate and fire neurons– whose parameters are listed
in Table 3.2 — grouped in an cuboid eight times six times threelarge, that are randomly con-
nected viaDynamic Spiking Synapses(parameters are listed in Table 3.3), as described above.

1The software simulatorCSimand the appropriate documentation for the liquid state machine can be found on
the web page http://www.lsm.tugraz.at.
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Figure 3.2: Architecture of our experimental setup depicting the three different pools of neurons
and a sample input pattern with the data path overview. Example connections of a single liquid
neuron are shown: input is received from the input sensor field on the left hand side and some
random connection within the liquid. The output of every liquid neuron is projected onto every
output neuron (located on the most right hand side). The 8 times 6 times 3 neurons in the middle
form the ”liquid”.

The probability of a connection between every two neurons ismodeled by the probability distri-
bution depending on a parameterλ described in the previous section. Various combinations of
λ (connection probability) and mean connection weightsΩ (connection strength) were used for
simulation. 20% of the liquid neurons were randomly chosen to produce inhibitory potentials.
Figure 3.2 shows an example for connections within the LSM.

The information provided by the spiking neurons in the liquid pool is processed (read out)
by external output neurons(Vinit, Vresting, Inoise are the same as for the liquid neurons), each of
them connected to all neurons in the liquid pool viaStatic Spiking Synapses(τsyn = 3ms (EE) or
6ms (EI),w = −6.73 ∗ 10−5 (e.g., set after training),delaymean = 1.5ms (EE) or 0.8ms (EI) with
CV = 0.1). The output neurons perform a simple linear combination ofinputs that are provided
by the liquid pool.

We evaluate the prediction approach by carrying out severalexperiments with real-world data
in the RoboCup Middle-Size robotic soccer scenario. The experiments were conducted using a
robot of the “Mostly Harmless” RoboCup Middle-Size team [FSW04b]. The task within the
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Inoise wmean delaymean

[nA] - [ms]

EE EI EE EI

0 3 · 10−8 6 · 10−8 1.5 0.8

Table 3.1: Parameters for the static analog synapses which are used to feed input data into the
LSM. ’EE’ or ’EI’ denotes whether the source and target neurons of a connection release excita-
tory or inhibitory action potentials, respectively. Covariance fordelaymean is 0.1.

Cm Rm Vthresh Vresting Vreset Vinit Trefract Inoise Iinject

[nF ] [MΩ] [mV ] [mV ] [mV ] [mV ] [ms] [nA] [nA]

E I

30 1 15 0 (13.8, 14.5) (13.5, 14.9) 3 2 0 (13.5, 14.5)

Table 3.2: Parameters for the leaky integrate and fire neurons comprising the liquid pool. Letters
’E’ and ’I’ indicate whether the neurons emit excitatory or inhibitory action potentials.(a, b)

denotes an uniform distribution on the interval[a, b].

experiments is to predict the movement of the ball in the fieldof view a few frames into the
future. The experimental setup can be described as follows:The robot is located on the field
and points its camera across the field. The camera is a color camera with a resolution of 320
times 240 pixel. The ball is detected within an image by simple color-blob-detection leading
to a binary image of the ball. We can use this simple image preprocessing since all objects on
the RoboCup-field are color-coded and the ball is the only red one. The segmented image is
presented to the 8 times 6 sensor field of the LSM. The activation of each sensor is equivalent to
the percentage of how much of the sensory area is covered by the ball.

We collected a large set of 674 video sequences of the ball rolling with different velocities and
directions across the field. The video sequences had different lengths and contain images in 50ms
time steps. These video sequences were transfered into the equivalent sequences of activation
patterns of the input sensors. Figure 3.3 shows such a sequence. The activation sequences
were randomly divided into a training set (85%) and a validation set (15%) used to train and
evaluate the prediction. Training and evaluation was conducted for the prediction of 2 time
steps (100ms), 4 time steps (200ms) and 6 time steps (300ms) ahead. The corresponding target
activation sequences were simply obtained by shifting the input activation sequences 2, 4 or 6
steps forward in time.

Simulation for the training set was carried out sequence-by-sequence: for each collected ac-
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Umean Dmean Fmean delaymean τsyn C

con. - - [s] [ms] [ms] -

EE 0.5 1.1 0.05 1.5 3 0.3

EI 0.05 0.125 1.2 0.8 3 0.4

IE 0.25 0.7 0.02 0.8 6 0.2

II 0.32 0.144 0.06 0.8 6 0.1

Table 3.3: Parameters for the dynamic spiking synapses connecting the neurons within the liquid
pool. ’EE’, ’EI’, ’IE’ and ’II’ denote whether the source andtarget neurons of a connection emit
excitatory or inhibitory action potentials. Covariance fordelaymean is 0.1.

Figure 3.3: Upper Row: Ball movement recorded by the camera. Lower Row: Activation of the
sensor field.

tivation sequence, the neural circuit is reset, input data were assigned to the input layer, recorders
were set up to record the liquid’s activity, simulation was started, and the corresponding recorded
liquid activity are stored for the training part. The training was performed by calculating the
weights2 of all static synapses connecting each liquid neuron with all output layer neurons using
linear regression.

Analogous to the simulation with the training set, simulation was then carried out on the
validation set of activation sequences. The resulting output neuron activation sequences (output

sequences) were stored for evaluating the network’s performance.

2In fact also the injection currentsIinject for each output layer neuron was calculated. For simplification this
bias was treated as the0th weight
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3.4 Results

We introduce the mean absolute error and the correlation coefficient to evaluate the performance
of the network. The mean absolute error is the positive difference between the activation values
of target and output sequences of the validation set dividedby the number of neurons in the
input/output layer and the length of the sequence. This average error per output neuron and per
image yields a reasonable measure for the performance on validation sets with different length.
Figure 3.4 shows an example for a prediction and its error.

Figure 3.4: Sensor activation for a prediction one time stepahead. Input activation, target acti-
vation, predicted activation and error (left to right).

A problem which arises if only the mean absolute error is usedfor evaluation is that also
networks with nearly no output activation produce a low meanabsolute error — because most
of the neurons in the target activation pattern are not covered by the ball and therefore they are
not activated leading to a low average error per image. The correlation coefficient measures the
linear dependency of two variables. If the value is zero two variables are not correlated. The
correlation coefficient is calculated in similar way as the mean absolute error. Therefore the
higher the coefficient the higher the probability of gettinga correlation as large as the observed
value without coincidence involved. In our case a relation between mean absolute error and
correlation coefficient exists. A high correlation coefficient indicates a low mean absolute error.

In Figure 3.5 the mean absolute errors averaged over all single images in the movies in the
validation set and the correlation coefficients for the prediction one time step (50ms) ahead are
shown for various parameter combinations. The parameter values range for both landscapes from
0.1 to 5.7 forΩ and from 0.5 to 5.7 forλ. If bothΩ andλ are high, there is too much activation in
the liquid. Remember,λ controls the probability of a connection andΩ controls the strength of a
connection. We assume that this high activity hampers the network making a difference between
the input and the noise. Both values indicate a good area if at least one of the parameters is low.
Best results are achieved if both parameters are low (e.g.Ω=0.5,λ=1.0). The figure clearly shows
the close relation between the mean absolute error and the correlation coefficient. Furthermore,
it shows the very good results for the prediction as the correlation coefficient is close to 1.0 for
good parameter combinations.
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It should be noted that the mean absolute error has to be used with caution. During calculation
the value is divided by the number of neurons in the layer, so alot of neurons that are not
involved(the area is never reached by the ball, so it is neveractivated) contribute to the dividend.
Especially when comparing two results which differ in prediction time, we neglect the mean
absolute error from now on and focus on the correlation coefficient.
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Figure 3.5: Mean absolute error landscape on the left and correlation coefficient on the right for
a prediction one time step ahead.Ω(wscale) [0.1,5.7],λ [0.5,5.7]

We also compare the results achieved with two (100ms) and four (200ms) time steps pre-
dicted. In order to compare the results of both predictions for different parameter combinations,
we use again a landscape plot of the correlation coefficients. Figure 3.6 shows the correlation
coefficient for parameter values range from 0.1 to 5.7 forΩ and from 0.5 to 5.7 forλ. The regions
of good results remain the same as in the one time step prediction. If at least one parameter —
Ω or λ — is low the correlation coefficient reaches its maximum (about 0.7 at two time steps
and about 0.5 at four time steps). With increasingΩ andλ, the correlation coefficients decrease
again. We believe that the too high activation is again the reason for this fact. Not surprisingly
the maximum correlation compared to the one step predictionis lower because prediction gets
harder if the prediction time increases. Nevertheless, theresults are good enough for reasonable
predictions.

Figure 3.7 shows an example for the activations and the errorfor the prediction of two time
steps ahead. It clearly shows that the center of the output activation is in the region of high
activation in the input and the prediction is reasonable good. The comparison to Figure 3.4
also shows that the activation is more and more blurred around its center if the prediction time
increases.
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Figure 3.6: Correlation coefficient landscape for two time steps (100ms) on the left hand side
and four time steps (200ms) on the right hand side.

Furthermore we confronted the liquid with the task to predict 300ms (6 time steps) without
getting a proper result. We were not able to visually identify the ball position anymore. We guess
this is mainly caused by the blur of the activation.

Figure 3.7: Sensor activation for a prediction two time steps ahead. Input activation, target
activation, predicted activation and error (left to right). Parameter:Ω=1.0,λ=2.0

3.5 Discussion

In this chapter we described a biologically more realistic approach for the computation of time
series of real world images. The LSM, a new biologically inspired computation paradigm, is
used to learn ball prediction within the RoboCup robotic soccer domain. The advantages of the
LSM are that it projects the input data in a high-dimensionalspace and therefore simple learning
methods, e.g., linear regression, can be used to train the readout. Furthermore, theliquid, a
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pool of inter-connected neurons, serves as a memory which holds the current and some past
inputs up to a certain point in time (fading memory). Finally, this kind of computation is also
biologically more plausible than other approaches like Artificial Neural Networks or Kalman
Filters. Preliminary experiments within the RoboCup domain show that the LSM approach is
able to reliably predict ball movement up to 200ms ahead. But there are still open questions. One
question is how the computation is influenced by the size and topology of the LSM. Moreover,
deeper investigation should be done for more complex non-linear movements, like balls bouncing
back from an obstacle and for different ball velocities and viewing angles. Furthermore, it might
be interesting to directly control actuators with the output of the LSM. We currently work on a
goalkeeper, which intercepts the ball, controlled directly by the LSM approach.



Chapter 4

Intelligent Qualitative Control

In Chapter 2 it has been motivated that a combination of a reactive and a deliberative layer
is the most appropriate concept for the control of an autonomous mobile robot in a dynamic
environment. The existence of exogenous events makes dynamic environments unpredictable.
Therefore, also the deliberative component has to have the capability to deal with dynamic un-
predictable domains. Several such domains are used as common test-beds for the application of
qualitative techniques to robots acting in dynamic environments, e.g. robotic soccer, tour guide
robots or service and delivery robots. These domains come close to the real world where the
gathered data are error prone, agents are truly autonomous,action execution regularly fails, and
exogenous events are ubiquitous.

AGENT/ROBOT

Goals
Belief (State)

ENVIRONMENT

ACTIONSOBSERVATIONS

EXOGENOUS EVENTS
OTHER AGENTS

Figure 4.1: Interaction between agents/robots and their environment

Agents deployed in such domains have to interact with their environment. Figure 4.1 depicts

43
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the interaction between the agents/robots and their environment. An agent has a belief about
its environment and goals it has to achieve. Such beliefs arederived from domain knowledge
and environment observations. While pursuing its goal by executing actions that influence the
environment, the agent assumes these actions cause exactlythe desired changes and that its be-
lief reflects the true state of the environment. However, dueto ambiguous or noisy observations
and occlusions the belief of the agent and the state of the environment are not necessarily con-
sistent. Furthermore, other agents or exogenous events mayalso affect the environment in an
unpredictable way. Finally, actions might fail to achieve their desired effect. Clearly, an agent
has to be able to cope with such influences in order to be able tosuccessfully achieve a given
goal. In this chapter a solution is presented which enables an agent to quickly react to such in-
fluences in order to be able to successfully achieve a given goal. The ideas of this chapter were
also published in [FSW05].

To investigate the advantages of the proposed solution, experiments were conducted using
the prior introduced robot architecture. On the software side a three-layered architecture is used
that separates hardware interfaces, numerical and symbolic data processing. The symbolic layer
hosts an abstract knowledge-base (belief), a planning system which is based on classical AI
planning theories, and a plan executor. The representationlanguage used is based on the well
known STRIPS [FN71] representation language and incorporates numerous extensions thereof
that have been presented in recent years, allowing the usageof first-order logic with only minor
restrictions. A complete introduction into the topic of planning can be found in [GNT04].

The execution of a plan’s actions is twofold. For one, on an abstract layer execution is
supervised in a purely symbolic manner by monitoring conditions. On a numerical layer, where
none of the abstract layer’s symbols are known, a set of elementary behaviors corresponding
to the abstract actions are executed. This behavioral approach for low-level action execution
ensures that reactivity is achieved where needed, and incorporates tasks such as path planning or
obstacle avoidance that are not of concern to the symbolic representation.

In this chapter, the idea of plan invariants as a means to supervise plan execution is presented.
Plan invariants are conditions that have to hold during the whole plan execution. Consider a
delivery robot, based on the above described architecture.Its task is to transport a letter from
room A to roomD. This task is depicted in Figure 4.2 and 4.3. The robot believes that it is
located in roomC, the letter is in roomA and all doors are open. Its goal is that the letter is
in room D. The robot might come up with the following plan fulfilling the goal: (1) move to
Room A, (2) pick up letterL, (3) move toRoom D and (4) release letterL. In situation (a)
no exogenous events occur, the belief of the agent is always consistent with the environment.
Therefore, the robot is able to execute the plan and achievesthe desired goal. In situation (b)
the robot starts to execute the plan with action (1). Unfortunately, somebody closes the door to
roomD (2). As the robot is not able to open doors, its plan will fail.Without plan invariants the
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Figure 4.2: Successful execution of the plan: (1) move toRoom A, (2) pick up letterL, (3) move
to Room D and (4) release letterL.

robot will continue to execute the plan until it tries to execute action (3) and detects the infeasible
plan. If a plan invariant is used, e.g., roomD has to be accessible, the robot detects the violation
as it passes the closed door. Therefore, the robot is able to early detect invalid plans and to
quickly react to exogenous events. Figure 4.4 depicts the temporal course of the two different
plan executions.

In the next section the advantages of plan invariants in are discussed in more detail.

4.1 Plan Invariants

Invariants are facts that hold in the initial and all subsequent states. Their truth value is not
changed by executing actions.

There is a clear distinction between these plan invariants to action preconditions, plan pre-
conditions and invariants applied to the plan creation process. Action preconditions have to be
true in order to start execution of an action. They are only checked once at the beginning of an
action. Similarly, plan preconditions (i.e., initial state) are only checked at the beginning of plan
execution. Thus, preconditions reflect conditions for points in time whereas invariants monitor
time periods. In the past, invariants have been used to increase the speed of planning algorithms
by reducing the number of reachable states, for an overview see [RH01]. An invariant as pre-
viously described characterizes the set of reachable states of the planning problem. A state that
violates the invariant cannot possibly be reached from the initial state. For example, this has
been efficiently applied to Graphplan [BF95] as described in [FL98, FL00]. Such invariants can
be automatically synthesized as has been shown in [Rin00, KC92]. However, plan invariants
are not only useful at plan creation time but also especiallyat plan execution time. To the best
knowledge plan invariants have never been used to control plan execution.
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Figure 4.3: During execution of action (1) the exogenous event, close door toRoom D, inval-
idates the plan. The robot stops the task because there is no possible plan as the target is not
reachable anymore. In (2) the robot detects the closed door and the violation of the plan invariant
(accessible(Room D)). Due to the application, of plan invariants the infeasibility of the plan is
early detected.

There is a clear need for monitoring plan execution, becauseexecution can fail for several
reasons. Plan invariants can aid in early detection of non-executable actions, unreachable goals
or infeasible actions. Reasons for failed plans are among others the following:

• Actions are not executable: The most obvious problem that can occur while executing
a plan is that an action is not executable. The action’s precondition tells when this has
happened. If, however, an action that is a later part of the plan is not executable for reasons
that are not influenced by other actions of the plan, precondition checking will not detect
this until it is attempted to execute the failing action. An invariant, on the other hand, can
be used to constantly verify this condition. Note that the condition to be checked must not
be changed by any other action in the plan in order to use it with an invariant.

• Goal unreachable: Even if all not yet executed actions of the plan are executable, the goal
state might still be unreachable. This could for example happen if the effects of previously
executed actions are invalidated by some exogenous event. Furthermore, conditions not
influenced by the actions that are part of the plan, e.g., conditions of the initial state, may
change.

• Goal not feasible: As the environment is constantly changing, e.g., when considering a
fast paced one such as robotic soccer, the aims a robot needs to pursuit can often change.
In that case, all actions might be executable and the goal reachable and yet it might not be
necessary that the agent achieves its task.
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Figure 4.4: Plan execution for the deliver robot example in time and detection of invalid plans
by checking plan invariants and by checking action’s preconditions.
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Figure 4.5: Action execution with respect to time for discrete actions.

Consider again the closed door example mentioned in the introduction. It is not practical to
cover all such possible exogenous events, e.g., closed doors, within action preconditions, and
neither is it within plan preconditions. On one hand this maybe very exhaustive and, on the
other hand this it constrains the general usability of actions.

4.2 Basic Definitions

Throughout this paper we use the following definitions whichmainly originate from STRIPS
planning [FN71]. A planning problem is a triple(I,G,A), whereI is the initial state,G is the
goal state, andA is a set of actions. A state itself is a set of ground literals,i.e., a variable-free
predicate or its negation. The set of literals defines a conjunction of the literals. Each action
a ∈ A has an associated pre-conditionpre(a) and effecteff (a) and is able to change a state via
its execution. The pre-conditions and effects are assumed to be sets of ground literals. Execution
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Figure 4.6: Action execution with respect to time for durative actions.

of an actiona is started if its pre-conditions are fulfilled in the currentstateS. After the execution,
all literals of the action’s effect are elements of the next stateS ′ together with the elements of
S that are not influenced by actiona. A plan p is a sequence of actions[a1, . . . , an], that when
executed starting with the initial stateI results in goal stateG.

For the delivery example the planning problem is defined as follows. The set of actions is
A={move, pickup, release} with:

move(origin, dest):

pre:accessible(dest)∧ at(origin) ∧¬ at(dest)

eff: ¬ at(origin) ∧ at(dest)

pickup(position,item):

pre:at(position)∧ isat(item,position)∧∀x:object(x)¬ hold(x)

eff: hold(item)

release(position,item):

pre:at(position)∧hold(item)

eff: ¬ hold(item) ∧ isat(item,position)

The initial state is I:=isat(L, Room A) ∧ at(Room C) and the goal is defined as G:=
isat(L, Room D). The names of constants and predicate are chosen quite intuitively. The
predicateaccessible(p) indicates if a positionp is accessible for the robot. The predicateat(p)
is evaluated true if the robot is actually at the positionp. The predicateista(p,o) indicates if
the objecto is at the positionp. If the robot actually holds the objecto the predicatehold(o) is
evaluated true. The predicateobject(x) is true if thex is a moveable object. It has to be noted
that all-quantifiers for finite domains can be easily transfered in a sentence with a conjunction of



4.2. BASIC DEFINITIONS 49

the predicate instantiated with all members of the domain. Such a transfer is automatically done
by the implementation of our planning system.

A plan can be automatically derived from a planning problem and there are various algo-
rithms available for this purpose, refer to [Wel99] for an overview. For the delivery example
a planner might come up with the planp=[move(Room C, Room A), pickup(Room A,L),
move(Room A, Room D], release(Room D,L)]. The planning problem makes some implicit
assumptions for plan computation. First, it is assumed thatall actions are atomic and cannot be
interrupted. Second, the effect of an action is guaranteed to be established after its execution.
Third, there are no external events that can change a state. Only actions performed by the agent
alter states. Finally, it is assumed that the time granularity is discrete. Hence, time advances only
at some points in time but not continuously. Such advances are triggered by the action execution.

In the simplest way plan execution is done by executing each action of the plan step by step
without considering problems that may arise, e.g., a failing action or external events that cause
changes to the environment. Formally, this simple plan execution semantics is given as follows
(whereJ K denotes the interpretation function):

J< a1, . . . , an >K S = J< a2, . . . , an >K (Ja1K S)

JaK S =

{

eff (a) ∪ {x|x ∈ S ∧¬x 6∈ eff (a)} if pre(a) ⊆ S

fail if pre(a) 6⊆ S

JaK fail = fail

Given the semantics definition of plan execution it can be stated what a feasible plan is.

Definition 1 A plan p =< a1, . . . , an > |ai ∈ A is a feasible plan for a planning problem

(I,G,A) iff JpK I 6= fail andJpK I ⊇ G.

Planning algorithms always return feasible plans. However, feasibility is only a necessary
condition for a plan to be successfully executed in a real environment. Reasons for a plan to fail
are:

1. An action cannot be executed.

(a) An external event changes the state so that the pre-condition cannot be ensured.

(b) The action itself fails because of an internal event, e.g., a broken part.

2. An external event changes the state of the world in a way so that the original goal cannot
be reached anymore.

3. The action fails to establish the effect.
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In order to formalize a plan execution in the real world, the following situation is assumed.
A plan is executed by an agent/robot which has its view of the world. The agent can modify the
state of the world via actions and perceives the state of the surrounding environment via sensors.
The agent assumes that the sensor input is reliable, i.e., the perceived information reflects the real
state of the world. This assumption is obviously not true, but is sufficient good approximation
for most of the domains. Hence, during plan execution the effects of the executed actions can
be checked via the sensor inputs. For this purpose, a global functionobs(t) is assumed which
maps a point in timet to the observed state. Note that the closed world assumptionis used. Any
predicate remains false until it is observed as true.

S ⊕ obs(t) = obs(t) ∪ {l|l ∈ S ∧¬l /∈ obs(t)} (4.1)

defines an update function for the agent’s belief. The function returns all information about the
current state that is available, i.e., the observations together with derived conditions during plan
execution which are not contradicting the given observations.

In order to define the execution of an action in the real world,two cases need to be dis-
tinguished. Actions can last a fixed, known time. In this case, execution is considered done
after that time has elapsed. For a RoboCup agent, such an actioncould be the act of kicking
the ball. On the other hand, actions can continue indefinitely, e.g., a move action in a dynamic
environment can take unexpectedly long if changes in the dynamic environment require detours.
Execution of such an action is considered to be finished as soon as its effect is fulfilled. Follow-
ing the terminology previously used in [Nil94], actions with fixed duration are calleddiscrete,
and indefinitely continued actions are calleddurative.

Figure 4.5 and Figure 4.6 depict the action execution with respect to time. A discrete actiona
is executable if its preconditionpre(a) is satisfied in stateSi, where a stateSi = Si−1⊕obs(ti−1).

An action lasts for a given time and tries to establish its effecteff (a) in the succeeding state
Si+1. A durative actiona is also executable if its preconditionpre(a) is satisfied in stateSi. In
contrast to discrete actions, a durative actiona is executed until its effecteff (a) is established in
some following stateSk+1. At each time steptj, i ≤ j < k + 1 a new observation is available, a
new stateSj+1 is derivedSj+1 = Sj ⊕ obs(tj). For each stateSj+1 the conditioneff (a) ⊆ Sj+1

is evaluated. A durative action can possibly last forever ifit is impossible to establish the effect
eff (a).

For discrete actions, execution semantics can be written asfollows:
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if discrete(a) thenJaK (S) =

=











S ⊕ obs(t) if eff (a) ⊆ (S ⊕ obs(t))

JexecK(a, S ⊕ obs(t)) if pre(a) ⊆ (S ⊕ obs(t))∧ eff (a) 6⊆ (S ⊕ obs(t))

fail otherwise

(4.2)

In the above definition of the plan execution semantics for discrete actions, we can distinguish
three cases. The first line of the definition handles the case where the effect is fulfilled without
the requirement of executing the actiona. In the second line, the actiona is executed which is
represented by theexec(a, S) function. t is the time after executing the action.

JexecK (a, S) =











eff (a) ∪

{

x

∣

∣

∣

∣

∣

x ∈ S ∧

¬x 6∈ eff (a)

}

if actiona is executed

fail otherwise

(4.3)

exec(a, S) returnsfail if the actiona was not executable by the agent/robot in stateS. If
actiona is executedexec returns the effect of the actioneff (a) unified with all literals of state
S not negated byeff (a).

The last line of the execution semantics states that it returns fail if the precondition of the
action is not fulfilled. The actionreleaseis an example for a discrete action. Once the action is
triggered, it either takes a certain amount of time to complete or it fails.

For durative actions, execution semantics can be written asfollows:

if durative(a) thenJaK (S) =



















S ⊕ obs(t) if eff (a) ⊆ (S ⊕ obs(t))

JaK′ (S ⊕ obs(t)) if pre(a) ⊆ (S ⊕ obs(t))∧

eff (a) 6⊆ (S ⊕ obs(t))

fail otherwise

(4.4)

with

JaK′ (S) =

{

S if eff (a) ⊆ S

JaK′ (S ⊕ obs(t′)) otherwise
(4.5)

The precondition of a durative action is checked only at the beginning of the action. It is
assumed that one recursion of a durative action (Equation 4.5) lasts for a time span greater than
zero. t′ is the time step after the execution of one loop of the action.The actionmoveis an
example for a durative action, as it is executed until the robot reaches its destination. This may
take different amounts of time or possibly may never occur.
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Given a plan and a real-world environment it can now be definedwhat it means to be able to
reach a goal after executing a plan.

Definition 2 A plan p = [a1, . . . , an] for a given planning problem(I,G,A) is successfully

executed in a given environment ifJ[a1, . . . , an]K(I) ⊇ G.

Obviously, there is a relationship between feasible plans and executed plans as stated in the
following theorem.

Theorem 1 A planp for a planning problem(I,G,A) is successfully executed in a given envi-

ronment with observationsobs if (1) the plan is feasible, and (2) for every execution of an action

a ∈ p the condition eff(a) ⊆ JaK(S) is satisfied.

Theorem 1 states a condition for the successful execution ofa plan. If every execution of an
action has the desired effect which can be observed and the plan is feasible, then the goal must
be reached.

4.3 Extended Planning Problem

As outlined in Section 4.1, plan invariants are a useful extension to the planning problem. The
addition of an invariant to a planning problem results in thefollowing definition:

Definition 3 An extended planning problem is a tuple(I,G,A, inv) whereinv is a logical sen-

tence which states the plan invariant.

A planp for an extended planning problem is created using any commonplanning algorithm.
We call the pair(p, inv) extended plan.

The plan invariant has to be fulfilled until the execution of the plan is finished (either by
returning the goal state orfail ). A plan invariant is a more general condition for feasible plans.
It allows for considering exogenous events and problems that may occur during execution, e.g.,
failed actions. Automatic generation of such invariants isquestionable. For a deeper discussion
refer to Section 4.4. Invariants may represent knowledge that is not implicitly contained in the
planning problem, and thus cannot be automatically extracted from preconditions and effect
descriptions. An open question is how more knowledge about the environment (e.g., modeling
physical laws or the behavior of other agents) and an improved knowledge representation would
enable automatic generation of plan invariants.

The execution semantics of such an extended plan can be stated using‖ to denote parallel
execution:
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J(p, inv)K (S) = JpK (S)‖JinvK (S) (4.6)

Communication between statements executed in parallel is performed throughobs, S and the
state of plan execution.

The semantics of checking the invariant over time is defined as follows:

JinvK(S) =

{

JinvK(S ⊕ obst(t)) if inv ∪ S 6|= ⊥

fail otherwise
(4.7)

whereS is the current belief state of the agent andobs(t) results in a set of observations at
a specific point in timet. Hence, the invariant is always checked unless it contradicts the state
of the worldobs or the agent’s beliefS. For the delivery exampleinv = accessible(Room D)
∧ (accessible(Room A)∨hold(letter)) would be a feasible invariant. The invariant states that
as long as the robot does not hold the letter,Room A has to be accessible. RoomD has to be
accessible during the whole plan execution.

Definition 4 An extended planp = ([a1, . . . , an], inv) is a feasible extended plan for a planning

problem(I,G,A) iff JpK I 6= fail andJpK I ⊇ G, and all states that are passed by the plan the

invariant must hold, i.e.,∀n
i=0(Ja1, . . . , aiK(I) ∪ inv) 6|= ⊥.

Feasibility is again a necessary condition for extended plans to be executable. But it is not
guaranteed that the agent will reach its goal. Hence, it mustbe guaranteed that the invariant
does not contradict any state that is reached during plan execution. We now can easily extend
Definition 2 for extended plans.

Definition 5 An extended planp = ([a1, . . . , an], inv) for a given planning problem(I,G,A) is

successfully executed in a given environment ifJ(< a1, . . . , an >, inv)K(I) ⊇ G.

Theorem 2 An extended planp = ([a1, . . . , an], inv) for a planning problem(I,G,A) is suc-

cessfully executed in a given environment with observationsobs if (1) the plan is feasible, (2)

∀n
i=0(Ja1, . . . , aiK(I) ∪ inv) 6|= ⊥ and (3) the set of believed facts resulting from execution of

planp with simple plan execution semantics is a subset of the set of believed facts resulting from

execution in a real-world environment.

Regarding Theorem 2 (3), in real-world environments, observations lead to believed facts
that are not predictable from the plan execution, henceJaK(S) differs.
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Corollary 3 Every feasible extended plan for a planning problem(I,G,A) is a feasible plan for

the same planning problem.

The prove is quite intuitive because the invariant does not affect the planning process.

Concluding the execution of a plan does not relieve an agent ofits duties. If the plan execution
succeeds, a new objective can be considered. If plan execution fails, alternative designations need
to be aimed at. Not all possible goals might be desirable, therefore a condition that decides about
execution is needed. This condition needs to be valid from the beginning of plan creation to
the initiation of plan execution, hence the initial stateI needs to fulfill this condition, theplan

problem precondition. An agent is given a set of alternative planning problemsP1, . . . , Pn and
nondeterministically picks one out of these that has a satisfied preconditionCi thus deriving an
extended planning problem(I,Gi, A, inv).

Π =











C1 → (I,G1, A, inv)

...

Cn → (I,Gn, A, inv)











. (4.8)

The knowledge base of an agentΠ comprises of all desired reactions of the agent to a given
situation. The preconditions trigger sets of objectives the agent may pursue in the given situation.

The execution semantics of this set of planning problems canbe stated as follows:

JΠK (I) =

do for ever
select(I,Gi, A, inv) whenS |= Ci

pi = generateplan(I,Gi, A, inv)

J(pi, invi)K (S)

end do;

The functiongenerateplan generates a feasible plan. The plan could be generated by using
any planning algorithm. The use of pre-coded plans is also conceivable. The functionselect
nondeterministically selects one planning problem of the set of planning problems whose pre-
condition is fulfilled. A heuristic implementation of the function is conceivable, if some measure
of the performance/quality of the different planning problems is available.

The semantics of the extended planning problem and the plan execution define a semantics of
a general symbolic program language, if some minor restrictions are applied. Plans are similar
to sequential programs in the imperative programming. The actions pose as statements. If pre-
coded plans (equivalent to subroutines), pre-coded invariants and a defined heuristic selection
function are used, the behavior of agents acting in a dynamicenvironment can be described in a
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general symbolic way. Due to the possibility of the definition of plan invariants, the programmer
is able to ensure that the agent is reactive to exogenous or unpredicted events, without coding
each possible exception.

Plans are similar to sequential programs. If only pre-codedplans and a heuristic selection
function are used, the extended planning problem and the execution semantics defines a general
symbolic programming language for agents acting in dynamicenvironments.

The extended planning problem introduced above can be used for a definition of a pure sym-
bolic easy to use programming language for agents. The programmer can easily define which
tasks the agent should achieve (goal definition) and when it should pursuit the goal (plan precon-
ditions). Furthermore, the programmer is able to define general conditions for the task execution
(plan invariants). The programmer also may provides pre-calculated plans to the agent, which
are equivalent to sequential subroutines.

4.4 Automated Generation of Plan Invariants

In the previous sections it has been shown that plan invariants are a appropriate mechanism to
ensure and improve the plan execution in dynamic environments. Furthermore, it has been shown
how these plan invariants can be used in execution monitoring and agent programming. But so
far it was assumed that for each plan or planning problem the appropriate plan invariant is pro-
vided. In most of the cases, these invariants are hand-coded. But the hand-crafted generation of
invariants is exhaustive and sometimes far from being trivial. Therefore, an automated generation
of the invariants is desirable.

The problem of execution monitoring is not new. In the early 70’s, Fikes already presented
a monitoring mechanism for the STRIPS planning framework used in the control of the robot
Shakey [FN71]. The idea was that a special condition calledkernelis attached to each action in a
plan. Kernels are necessary conditions that ensure that if the plan is further executed it may reach
the goal state. Fikes initiated re-planning if the kernel ofan action in a plan was not satisfied,
because the goal state was not reachable anymore. The generation of the kernel is performed in
the following way:

computeKernel(G,P )
n = length(P )
Kn+1 = G.
For i = n : 1 :

Ki = (Ki+1\ eff (ai)) ∪ pre(ai)

return K



56 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

The algorithm starts with the goal state and goes backwards through the action of the plan
until it reaches the first action. The kernelKn+1 is set to goal stateG, wheren is the number of
actions in the plan. The kernelKi for an actionai is calculated in the following way. First the
algorithm removes those literals of the successor kernelKi+1 which are altered by the effect of
the actionai. Afterwards, all literals of the precondition of theai are added to this expression.
This expression forms the kernelKi and is attached to the actionai. Table 4.1 depicts the
calculated kernels for the plan of the delivery robot example.

K1: accessible(RoomD) ∧¬at(RoomD) ∧¬at(RoomA) ∧ isat(letter, RoomA) ∧

∧∀x:object(x)¬ hold(x) ∧accessible(RoomA) ∧at(RoomC)

K2: accessible(RoomD) ∧¬at(RoomD) ∧at(RoomA) ∧ isat(letter, RoomA) ∧

∧∀x:object(x)¬ hold(x)

K3: hold(letter)∧accessible(RoomD) ∧¬at(RoomD) ∧at(RoomA)

K4: at(RoomD)) ∧hold(letter)

K5: isat(letter,RoomD)

Table 4.1: Calculated kernels for the deliver robot example.

During the execution of the plan, the truth-value of the kernel Ki is checked prior the exe-
cution of actionai of the plan. If the kernel is satisfied, the execution of the plan is continued.
Otherwise a re-planning is initiated. In [FHN81] the plan execution furthermore has the possi-
bility to skip actions of the plan. If a kernel of a successor action in the plan is also satisfied
by chance, the plan executor simple skips the current actionand continues the plan execution
with the later action. Furthermore, an efficient mechanism to monitor the whole set of kernels is
provided in the work of Fikes.

The idea of kernels is somehow similar to the proposed plan invariants. The kernels provide
a simple mechanism to monitor plan execution. Moreover, a simple algorithm for the automated
generation of kernels for a plan is available. The main difference between plan invariants and
kernels is that the kernels are different for each action in aplan. The proposed plan invariant
remains the same for the whole plan. Furthermore, kernels represent only the precondition and
effects of the actions of a plan. Plan invariants in contrastshould encounter further the structure
of the task/goal and the calculated plan.

Consider the following example of the presentation of a scientific paper at a conference. The
usual way of presenting a paper starts with the submission ofa paper to a conference. If the
paper is once accepted, one registers for the conference. Therefore, the acceptance of the paper
and the registration are preconditions for the task of presenting a paper. The obvious goal of the
task is to give the talk at the conference. An appropriate plan might be to go first to the airport
and fly to the city the conference takes place. Then take a taxito the conference venue. Finally, if



4.5. RELATED RESEARCH 57

the slides are prepared one is able to give the talk. But what happens if the conference session is
canceled for some reason. It makes no sense to enter the plane, if this information is available in
advance. But it also makes no sense to put all this informationinto the preconditions of actions
like flying from A to B. This would constrain the general usability of an action. Therefore, for the
automated generation of serious general plan invariants for different tasks a general knowledge
and description of the structure of the task and reasoning capabilities are required.

4.5 Related Research

Invariants for planning problems have previously been investigated within the context of planning
domain analysis. Planning domain descriptions implicitlycontain structural features that can
be used by planners while not being stated explicitly by the domain designer. These features
can be used to speed up planning. For example, Kautz and Selman [KS98] used hand-coded
invariants provided as part of the domain description used by Black-box, as did McCluskey
and Porteous [MP97]. The use of such constraints has been demonstrated to have a significant
impact on planning efficiency [GS98]. Such invariants can beautomatically synthesized as has
been shown in [Rin00, KC92, FL98]. Even temporal features of a planning domain can be
extracted by combining domain analysis techniques and model checking in order to improve
planning performance [FLBM01]. Also noteworthy is Discoplan [GS00], a system that uses
domain description in PDDL [FL03] or UCPOP [PW92] syntax to extract various kinds of state
constraints that can then be used to speed up planning. Any forward- or backward-chaining
planning algorithm can be enhanced by applying such constraints, e.g. Graphplan [BF95], as
described in [FL00]. However, in [BMM98] Baioletti, Marcugini and Milani suggest that such a
constrained planning problem can be transformed to a non-constrained planning problem, which
allows the application of any common planning algorithm.

In [Dij76] Dijkstra introduced the concept of guarded commands by using invariants for
statements in program languages. This concept is similar toour proposed method except that we
use it for plan execution.

The logic programming language Golog [LRL+97] is based on Reiter’s variant of the Situ-
ation Calculus. It is a second-order language which enables reasoning about actions and their
effects. Golog and its derivate have been successfully usedfor the deliberative control of agents
and robots. The advantage of Golog and its successors is thatit combines logic interference,
reasoning and planning with imperative control constructslike loops, conditionals and recursive
procedures. Furthermore, it supports less standard constructs like nondeterministic action se-
lection. Therefore, Golog forms a powerful and flexible logic-based programming language for
agents and robots.

In [FFL04] DTGolog has been used to control robots in the RoboCup Middle-Size scenario.
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DTGolog is an extension of Golog which uses decision-theoretic planning. Because of the prop-
erties of decision-theoretic planning like the reasoning about different outcomes of an action
DTGolog is more suitable for dynamic environments like robot soccer. The authors extended the
DTGolog framework with a mechanism for the monitoring action execution. Decision-theoretic
planning uses models for actions which are able to predict how the state of the world evolves
during the execution of the action. These models are similarto the effects in STRIPS planning.
The predictions of the models are used during the planning process. Furthermore, the predictions
are attached to the corresponding actions in the plan. Thesepredictions are logical sentences and
are called markers. The markers are monitored during the execution of an action. If the markers
deviate from the actual state of the world the action is unable to fulfill its desired objective. The
reason for this could be that the action failed or an externalevent have changed the world in an
undesired way. In this case the execution of the action is interrupted. This is a simple mechanism
for monitoring the execution of actions and plans. The idea is similar to the plan invariants but
the marker mechanism ensures only the execution of a single action and not the execution of an
entire plan.

In [BAB+01] Beetz and colleagues present their control architecturefor the tour-guide robots
Rhino and Minerva. The architecture comprises a plan-based high-level control called the struc-
tured reactive controller. Robustness and adaptability forunforeseen situation in the plan exe-
cution is achieved by the use of prediction models and the reactive plan language (RPL) which
provides statements for robust execution.The structured reactive controller monitors the execu-
tion of plan by the the use of models of the behavior of the actions. In case of a problem or a
failure the controller is able to modify plans at the fly in order to react to such situations. Further-
more, the controller is able to execute concurrent plans andif needed postpone of one plan the
execution until a needed condition is satisfied again. Moreover, the architecture is able to learn
action models in order to improve the planning and the plan execution. In [Bee02] Beetz gives a
deeper discussion of the plan-based control of mobile robots.

4.6 Discussion

In this section a framework for executing plans in a dynamic environment has been presented.
The framework was implemented for the autonomous robotic platform introduced in Chapter 2.
The implementation was used in the RoboCup robotic soccer domain which led to promising
results. Furthermore, the operational semantics of the framework has been discussed and it
has shown under which circumstances the framework represents a language for representing
the knowledge of an agent/robot that interacts with a dynamic environment but follows given
goals. A major contribution of this section is the introduction of plan invariants which allow
for representing knowledge that can hardly be formalized inthe original STRIPS framework.
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Summarizing, the main advantages gained by the use of plan invariants are:

• Early recognition of plan failure : The success of an agent in a real-world an environment
is crucially influenced by its ability to quickly react to changes that influence its plans.

• Long-term goals: Plan invariants can be used to verify a plan when pursuing long term
goals, as the plan’s suitability is permanently monitored.

• Conditions not influenced by the agent: Plan invariants can be used to monitor condi-
tions that are independent of the agent. Such conditions arenot appropriate within action
preconditions.

• Exogenous events: It is usually not feasible to model all exogenous actions that could
occur, but plan invariants can be used to monitor significantchanges that have an impact
on the agent’s plan.

• Cooperation: In order to successfully cooperate with other planning agents it is necessary
to monitor the behavior of cooperating agents. For this task, plan invariants are perfectly
suited.

• Intuitive way to represent and code knowledge: As the agent’s knowledge commonly
has to be defined manually it is helpful to think of plan preconditions (the situation that
triggers the plan execution) and plan invariants (the condition that has to stay true at all
times of plan execution) as two distinct matters.

• Durative actions: Plan invariants can be used to detect invalid or unsuitableplans during
execution of durative actions. Durative actions, as opposed to discrete actions, can continue
indefinitely. For example, a patrol robot in an office building can continually execute an
action to wander around and to observe. As execution of this action does not finish, how
does it detect a low battery and it would be more appropriate to drive to the charging
station? Again, plan invariants offer a convenient solution.

Up to now the used plan invariants are hand-coded. It was motivated that plan invariants are
able to encounter a much wider area of domain knowledge than action invariants and precondi-
tions. For the desired automated generation of plan invariants further research is needed in the
domain of descriptions of the structure of tasks and the reasoning about such descriptions.
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Chapter 5

Bridging the Qualitative and the
Quantitative World

Consider a robot that has to provide a certain task at a certainpoint in time. This robot has
to have a knowledge about the physical world not only in termsof quantitative measurements
like probability distributions of its location but also in terms of qualitative facts like predicates
stating that a ball is in reach. This qualitative representation is necessary for computing actions
in order to fulfill the task. Of course this picture of an autonomous agent assumes a symbolic
reasoning engine on top which is used to handle high-level control in contrast to low-level control
structures which can be implemented as reactive systems. Figure 5.1 shows the relation between
the different representations of knowledge.

At the first sight the mapping of quantitative information toits qualitative representation
seems not to be big deal and in some cases this is true. For example, when dealing with control
systems for a plant with a limited (and known) number of possible interactions with the environ-
ment, the mapping problem can be solved by applying the rightthresholds and filters. However,
in applications like the robotic domain with unpredictableinteractions between the robot and its
environment the situation changes. Consider for example changes in the light condition. These
changes have a substantial impact on the visual perception of the robot. Hence, an object which
was within a one meter distance before changing the density of light maybe perceived at a higher
distance afterwards although the real situation of the relationship between the object and the
robot has not changed. Hence, the robot changes its internalstate and may choose different ac-
tions. A more severe situation can happen when environmental changes cause the robot to switch
between two contradicting states, e.g., object in reach andout of reach, which prevents the robot
from taking meaningful actions. In this chapter we will discuss these problems in more detail
and will present a approach which will decrease the impact ofsuch effects. Parts of this chapter
previously were published in [SWW05].

61
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Figure 5.1: From the real world to its qualitative representation.

The qualitative mapping problem as described before is mainly caused by unreliable percep-
tion. Hence, one solution would be to improve the perceptionalgorithms, e.g., the computer
vision system, to make it less sensitive to changes of environmental parameters like light condi-
tions. However, the mapping problem itself will not be solved. For example assume a perfect
perception system and two robots playing soccer. The situation starts and our robot assumes the
ball in reach but the opponent robot kicks the ball slightly.Hence, the situation changes and the
ball is no longer in reach. Because of the underlying definition of in reach this might mean that
the ball is now more than one meter apart from our robot which is also the case for a distance of
let us say one meter and one centimeter. In both situations, we would expect our robot to take
the same actions but because of a difference of one centimeter and the use of a sharp boundary
the perceived world is different and thus the actions as well. A solution for this problem could be
the introduction of new landmarks. In our example, a new predicate for almost reachable can be
introduced. This kind of solution can be compared with solutions for the problem of finding the
right qualitative reasoning model for a certain task. Sachenbacher and Struss [SS01] proposed
such a solution.

The drawback of using only the quantitative values for making a decision in a specific sit-
uation at a given point in time becomes obvious when considering the soccer situations of Fig-
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ure 5.2. All of the three soccer situations are different with respect to their corresponding quanti-
tative model. However, from a high-level view situations (a) and (b) become equivalent because
in both the ballB is in reach of playerT and the way to the goal is not blocked by the opponent
goalieO. Note that it seems that (a) and (b) are different because of the different distances to
the goal but for the player’sT view it makes (almost) no difference. Situation (c) is a different
situation as the way to the goal is blocked.

O

BT

(a)

T B

O

(b)

T B

O

(c)

Figure 5.2: Three situations in robotic soccer. Quantitatively all three situations are different but
qualitatively situation (a) and (b) are equivalent. Such relations are part of a qualitative model.

Although, the qualitative mapping problem can be theoretically solved by using perfect sen-
sors and qualitative modeling techniques, there is still a need for a practical solution. Perfect
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sensor input is not available and there is no indication thatthis problem will be solved soon.
This holds especially for visioning systems. Hence, there is a requirement to overcome the prob-
lem. In this paper we follow the hysteresis approach from [FSW04a]. We introduce the problem
again, present a practical solution in terms of predicate hysteresis, discuss experimental results
and open issues. The experiments indicate that the use of hysteresis really improves the overall
behavior.

5.1 Symbol Grounding and Action Selection

In order to create a continuous model of the real environment, the perceptions from different
sensors (e.g., camera, odometry) are fused. The resulting model contains the positions of objects
on the field: the ball, the two goals, and the players. There are different methods for creating
world models in dynamic and nondeterministic environments; we use a Kalman filter [May90]
for predictions of object positions and sensor fusion.

This purely quantitative model is transformed to an abstract world model, theknowledge

base, which is expressed by means of a setK of ground predicates. The knowledge base, which
is basically a conjunction of ground atoms, is the source forthe qualitative reasoning which is
performed by theplanner [Fra03]. The planner is the strategy layer of the control software for
our soccer robots, and its main responsibility is the selection of actions which shall be executed
next. The Planner makes use of classic AI planning for creating plans at runtime. It is based on
the STRIPS representation language [FN71].

This approach has, compared to reasoning based on continuous data, many advantages.
Among others, a qualitative model has only a finite number of possible states, and qualitative
models are able to cope with uncertain and incomplete knowledge. Another reason is the fact
that the programming of the robot is simplified and can also bedone by human operators who
have no programming skills. The knowledge and the strategy can be neatly expressed in logical
formulas.

As already explained, the knowledge of the robot is expressed using ground predicates. The
interpretation of an-ary predicatep ∈ P relies on the continuous world modelM . It can be
formalized as follows:

I(p(On),M) =

{

true if CONDp(O
n,M) = true

false otherwise
(5.1)

A constantO denotes an object of the environment, e.g.Ball, OwnGoal, or players. The
functionCONDp is specific for each predicatep. For example, the predicateinReach(O,M) is
defined as follows (R is the robot itself):
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COND_inReach(O, M): boolean

return (dist(R, O) < 1200)

inReach is an example for a predicate whose truth value is grounded onthe distance between
the robot and another object. For convenience, this kind of predicate is calleddistance predicate

from now on. Of course, predicates can state various kinds ofknowledge about the environment,
for example the visibility of objects (e.g.unknown(Ball) is true iff the position of the ball is
unknown) or angles between objects.

Based on the current state of the knowledge base, the planner selects a plan which shall be
executed next. A planP comprises:

1. A preconditionpreP which is a conjunction of ground literals.P can be executed only if
preP is fulfilled.

2. A sequence of actions[a1, .., an]. ai ∈ A whereA is the set of actions the robot is able
to execute. A plan is successfully finished iff all actions are finished. The sequence of
actions is either dynamically computed using classic AI planning or it is statically defined
by a human operator.

3. An invariantinvP which is a conjunction of ground literals. If an invariant ofa currently
executed plan is violated, then the plan is aborted.

A more detailed discussion of the plan execution is found in [FSW05].

5.2 A Predicate Hysteresis

The mapping from a quantitative model to symbolic predicates in a dynamic and uncertain en-
vironment leads to two major problems: First, the truth value of predicates is calculated using
thresholds, i.e., there are sharp boundaries. Thus slight changes of the environment can cause
truth value changes and result in abortion of plans due to a violation of the invariant, even if the
plan still could be finished successfully. The consequence is instability in the high-level decision
making process. Acommitmentto a plan, once it is chosen, is desired. Second, sensor data is
inherently noisy. Hence, due to the sharp boundaries, sensor noise leads tounstable knowledge,
i.e. to undesired oscillation of truth values, even if the environment does not change.

We propose apredicate hysteresisas an attempt to mitigate the problems described above.
The termhysteresisis well known from electrical engineering. It means that thecurrent state
is influenced by a decision which has been made previously. Weadapt this concept in order to
improve the robustness of the decision making process. The basic idea is that, once a predicate



66 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

?

G

B

N

t

!

t
t−h

t+h

B

G
N

Figure 5.3: Example: (a) no hysteresis, (b) with hysteresisof sizeh. G is the goalkeeper, B the
ball, the area N depicts the uncertainty of the ball positionmeasurements.

evaluates to a certain truth value, only significant changesof the environment can cause a change
of this truth value.

Thus an extended interpretation functionIH is introduced:

I(p(On),M, l) =

{

true if CONDp(O
n,M, l) = true

false otherwise
(5.2)

The variablel represents the current truth value ofp.
The functionsCONDp are also redefined. The general definition for distance predicates is:

COND_distance_pred(O, M, l): boolean

if l then

return (dist(R, O) < th + h

else

return (dist(R, O) < th - h

th denotes a threshold, which is specific for each predicate. Inthe example given above,
the predicateinReach has a threshold of 1.20m.h is thehysteresis size. In this definition, the
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Figure 5.4: Evaluation of the predicateinReach using hysteresis.

hysteresis size is defined as an absolute number. In practice, predicates with a larger threshold
may also demand a larger hysteresis because in general the sensor noise is higher for distant
objects. Thus it is often more convenient to define a hysteresis sizehrel as a percentage of the
threshold:

COND_distance_pred(O, M, l): boolean

if l then

return (dist(R, O) < th * (1+h_rel)

else

return (dist(R, O) < th * (1-h_rel)

However, in this paper the termhysteresis sizealways denotes an absolute number in mm.
Figure 5.3 gives an example for the effect of using a predicate hysteresis. It shows a goal-

keeper in his goal. The ball has approached the goalkeeper and stops at the position which is
shown in the figure.dist(R,Ball) is slightly less thanth− h, whereasth is the threshold of the
predicateinReach andh the hysteresis size.

Suppose the goal-keeper’s strategy includes the followingplans:

precondition≡ invariant: action:

P1: ¬hasBall()∧¬inReach(Ball) stay in goal
P2: ¬hasBall()∧ inReach(Ball) grab ball

In (a) as well as in (b),inReach(Ball) becomestrue and thusP2 is activated. The goalkeeper
starts moving towards the ball.
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But in (a), where no hysteresis is used, it may happen thatinReach(Ball) becomesfalse

again due to sensor noise. In this case, the current plan is aborted andP1 is reactivated. This
flipping can happen several times in quick succession, the goalkeeper activates plans and aborts
them before they can succeed.

In (b) a hysteresis of sizeh is used. As soon asinReach(Ball) becomestrue (i.e., the
distance between the robot and the ball is less thanth−h), it keeps this truth value as long as the
dist(R,Ball) is less thanth + h. Thus the truth value ofinReach(Ball) is, to a certain extent,
robust against the noise of the ball position measurement. In this example, the hysteresis size
is sufficiently large to compensate the noise, and the goalkeeper does not abortP2 after he has
made this decision. The goalkeepercommitshimself to this decision — as it would happen in a
real soccer match. If a real good goalkeeper leaves his goal in order to grab the ball, he does not
change his mind only because of a slight change of the ball position.

5.3 Experimental Results

The proposed symbol grounding with hysteresis was evaluated on our real robots within the
robotic soccer domain. We investigated how the use of a hysteresis in symbol grounding stabi-
lizes the evaluation of the truth value of predicates and reduces the number of undesired changes
of the truth value caused by noise and changes in the environment.

We conducted several static and dynamic experiments in which the robot measured the dis-
tance to objects on the field using its vision system. Based on these measurements, the symbol
grounding evaluates the truth value of the distance predicate inReach. The distance measure-
ments are not reliable and vary within certain boundaries because of noise and changes in the
environmental conditions. Therefore, there are undesiredchanges in the truth value of predicates
even if the distances do not change in the real world.

Figure 5.5 shows series of distance measurements during a static experiment. The robot was
placed 4800 mm away from the yellow goal. We recorded series of distance measurements over
periods of 30 seconds. These series were recorded at different times during the day to investigate
the influence of changing lighting conditions. Please note that the vision system was calibrated
the day before and no adaptation of the vision and camera tookplace between the different series.

As the experiment setup was totally static a perfect vision system would always report the
same distance and there would no change in the truth value of adistance predicate. But the Figure
shows that in practice the measurements are affected by noise. Furthermore, it shows the clear
dependency of the amount of noise in the data on changing lighting conditions. The extent of
noise differs within the different series recorded under different lighting conditions. This change
is caused by the fact that the color of objects is differentlyperceived under changing light and the
robot vision relies on the colors of objects. The worst conditions were at 17:00 where it became
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Figure 5.5: Distance measurements for a static object 4800 mm away from the robot at different
times during a day.

dark.

n
# Meas. µ σ ∆

h=0 h=σ h=∆
3

h=∆
2

mm mm mm

735 5202 385 1403 61 17 11 0

Table 5.1: Number of undesired truth value changesn of predicateinReach for the yellow goal
for static distance measurements at 17:00 with different sizesh for the hysteresis.

Because of the quality of the distance measurements, the symbol grounding with a fixed
threshold reports a number of truth value changes of the distance predicate. These changes
are undesired because the object positions did not change inthe real world. Table 5.1 shows
the results of the symbol grounding of the series at 17:00 andreports how different sizes of
a hysteresis stabilize the symbol grounding. The series contained 735 measurements with a
distance mean of 5202 mm and a standard deviationσ of 385 mm. The value∆ is the difference
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between the maximum and the minimum of the measured distancewithin this series. If we do
not use a hysteresis in the symbol grounding, we get 61 undesired changes of the truth value. If
we use a hysteresis with the size ofσ then we reduce the number of changes to 17. An increase
of the size of the hysteresis to∆/2 reduces the changes to zero. This clearly shows the benefit of
the use of a hysteresis. But the size of the hysteresis is always a trade-off between stability and
reactivity of the system. One has to take care that the size ofthe hysteresis does not exceed an
adequate level. Otherwise, the system will lose its reactivity.
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Figure 5.6: Position measurement for a static object 4000 mmaway from the robot while the
robot rotates. Positions are shown in the robots local coordinate system.

Figure 5.6 shows position measurements for an object withina dynamic experiment. The
robot was placed 4000 mm away from the yellow goal. We recorded a series of position mea-
surements while the robot performed a full rotation around its vertical axis. Positions are shown
in the robots local coordinate system. The robot is located in the origin and the positive r-axis



5.3. EXPERIMENTAL RESULTS 71

points to the front of the robot. If there were no inaccuracy in the vision system and the mo-
tion of the robot then the position measurements would lie ona perfect circle and the distance
measurements to the object would remain constant. But the real measurements are affected by
errors. There are three major reasons for these errors. First there is noise from the vision system.
Furthermore, there is inaccuracy in the tracking of the object with the Kalman filter. This ef-
fect causes the tangential drift and the discontinuity of the measurements. Finally, the imperfect
geometric calibration of the camera causes a deformation ofthe hypothetic circle. Distances to
objects in the rear appear shorter in the camera as distancesto objects in the front.

n
# Meas. µ σ ∆

h=0 h=σ h=∆
3

h=∆
2

mm mm mm

329 4789 485 1937 4 3 3 1

Table 5.2: Number of undesired changen of predicateinReach for the yellow goal for rotating
distance measurements with different sizesh for the hysteresis.

Table 5.2 shows the evaluation of the above position measurements. The position measure-
ments were converted to distances by calculating the Euclidean distance. Without using a hys-
teresis there are four undesired changes in the truth value of the inReach predicate for the yel-
low goal. The table shows that with an increasing size of the hysteresis the number of undesired
changes decreases to one. Please note that because all predicates are initialized with false there
is always one change in the truth value even if the predicate is always correctly evaluated true.

Figure 5.7 shows the results of another dynamic experiment.In the experiment the robot
was placed 4000 mm away from the ball and directly facing it. We recorded the distance mea-
surements to the ball while the robot was directly approaching it. If we assume again a perfect
perception then distances are supposed to monotonically decrease. The figure clearly shows that
this is not the case in our real experiment due to the imperfect perception. The evaluation of the
symbol grounding without hysteresis for this experiment reports three undesired changes of the
truth value of the predicateinReach for the ball. We calculated the mean and standard deviation
of the differences of succeeding distance measurements, but we only considered cases in which
the measured distance increased. The mean was 51 mm and the standard deviation was 8.8 mm.
If we used a hysteresis with a size ofσ, there were no undesired changes anymore.

The results of the above experiments in the real world show that quantitative perception is
always affected by noise, changes in the environment and other inaccuracies. Therefore symbol
grounding with simple thresholds can not be stable even the world does not change. This insta-
bility negatively affects the performance of the qualitative planning and reasoning process of an
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Figure 5.7: A sequence of consecutive distance measurementfor a static object while the robot
directly approaches the object.

agent. Furthermore, the results show that the proposed symbol grounding with hysteresis is able
to decrease the number of undesired changes of truth values of predicates to a minimum. This
leads to an improvement of the stability of the robot’s knowledge and increases the performance
of the qualitative decision making process.

5.4 Open Issues

Although the use of a hysteresis in symbol grounding is justified by experimental results, there
are still open questions concerning the proposed method.

There is no general answer to the question how the size of the hysteresis can be satisfactorily
chosen. The size which is appropriate to sufficiently stabilize the symbol grounding while keep-
ing the system reactive may differ from situation to situation. For example, the light conditions
are always different and unpredictable. Furthermore, a more careful investigation should be done
on the impact of the hysteresis on the reactivity of the system. A open question in this context
is the definition of an appropriate evaluation criteria. A quick idea might be to play a dozed
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simulated games with and without the hysteresis and to compare the results, like goals scored or
games won.

So far, we have not done any quantitative evaluation of how the symbol grounding with
hysteresis influences the planning and plan execution in situations with slightly changes in the
world. We assume that the hysteresis increases the performance of the plan execution as it can be
compared to a commitment to follow a certain plan even if there are changes in the environment.

More research should be done on the conjunctions of predicates using hysteresis. Assume we
use a conjunction of a large number of these predicates. If all measurements for predicates reach
the upper boundary of their hysteresis the qualitative situation is the same as all measurements
for predicates lie around the lower boundary. But the quantitative situations in the real world
may substantially differ.

We use some predicates in different plans. Regardless of in which plan a predicate is used
we use the same hysteresis size for the predicate. It might bedesirable to use different hysteresis
sizes for the same predicate in different situations in order to adjust the stability and reactivity of
a predicate for a certain situation.

A small size for the hysteresis eliminates instabilities inthe truth value without a significant
decrease of the reactivity of the predicate. We need an even larger hysteresis if the inaccuracies
in the perception become larger. But this fact negatively affects the reactivity of the system. It
might be interesting if a smaller hysteresis is sufficient ifmore qualitative knowledge about how
the world works is added to the reasoning.

5.5 Related Work and Discussion

In [DFL03] and [PAC04] hybrid systems for controlling robotsof a RoboCup MSL Team were
presented. Both useGolog for the representation of the qualitative model and the derivation
of plans. Furthermore, they use the qualitative model and decision trees to evaluate the most
appropriate action in a certain situation. This action is used if no plan is available in that situation.
The used action might not be the best but keeps the robot reactive even the planning take some
time. However, the problems arising from noise and jitter inthe quantitative model were not
accounted in those approaches. In [Ree99], an approach to action selection in Robotic Soccer
is presented. Theaction modules, which are introduced in this work, have preconditions and
invariants. The invariants can contain fewer conditions than the related preconditions in order
to avoid oscillating behavior. The modules also haveactivation factorsstating the utility of
the action. These factors are situation independent, but are increased during the execution of
an action module. This results in larger robustness of the behavior. In the work presented in
[Mül00] a similar approach was used for gaining robustness. Sachenbacher and Struss [SS01]
presents a framework for automated qualitative abstraction of quantitative models. However, a
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complete knowledge of the quantitative model is required, whereas in our case only quantitative
observations (which are incomplete and uncertain) are mapped. There are approaches which
avoid the addressed problems in symbol grounding by the usage of reasoning with uncertainties
like fuzzy logic or probabilistic networks. However, theseapproaches require different models
and modeling processes.

In this paper we addressed the problem of symbol grounding inapplications with a very high
degree of (mostly unpredictable) interactions. We introduced the concept of predicate hysteresis
to overcome some of the corresponding problems that occur inpractice. We further described em-
pirical results we obtained when using predicate hysteresis for symbol grounding on our robots.
The outcome of the predicate hysteresis substantially improved the behavior of the robots. We
further discussed open issues and future research directions.



Chapter 6

Model-Based Diagnosis for Robot Control
Software

Control software of autonomous and mobile robots is characterized by its fairly high complexity
which is in conflict with runtime requirements like stability and flexibility. Complexity is caused
by the software components implementing the basic functionality like planning, computing world
models, sensor and actuator interfaces, and their connections. Because of the high complexity,
the instability of hardware components and connections, and the underlying operating system,
complete stability of such a platform is very unlikely. Thisproblem description does not only
hold for mobile robots but all systems comprising software and hardware which interact with
the real world. But when we want to build a robot that is truly autonomous, it has to deal with
failures during its runtime without degrading the desired behavior or even worse failing to fulfill
its mission. Hence, a diagnosis system on top of the control system which does monitoring the
current behavior, locating the cause of a detected failure,and taking the appropriate actions is a
necessity. In this chapter we will present a model-based framework for this purpose. Parts of the
framework were also published in [SW05b, SMW05, SW05c].

There are several requirements for a diagnosis system in thedomain of mobile robots. First,
ideally the diagnosis system should not cause any changes ofthe control systems. If changes
are necessary, they should be as small as possible. Furthermore, the diagnosis system must not
affect the behavior of the control system. This requirementis very important in order to keep
the effort for introducing a diagnosis system as small as possible. Second, the diagnosis system
should not reduce the overall available computational power because this might decrease the
robot’s functionality, e.g., it’s ability to react to a given event in a certain amount of time. Third,
in cases where the diagnosis system itself does fail, there should be (almost) no effects on the
control system. Finally, the memory requirements of the diagnosis system should be as small as
possible. Otherwise, the diagnosis system has a too large effect on the system performance. For

75
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critical application it is desirable that the integration of a diagnosis system is part of the initial
design.

In order to fulfill the above requirements we introduce a model-based solution. This includes
a model of software components and their relationships thatare specified in the software archi-
tecture of the robot’s control system. This model is then used to derive root causes of a detected
failure. A root cause itself is a software component. The failure detection is based on obser-
vations. For this purpose we use the concept of observers, i.e., software programs that monitor
system activities like the number of active processes of a software component. If the monitored
value exceeds its pre-specified boundaries, the observer raises a conflict which causes the diag-
nosis engine to compute the root causes. Once the root cause has been identified, the diagnosis
system takes appropriate actions in order to retain the system’s correct behavior. Possible actions
are killing and re-generating processes that caused the failure. The fault detection, localization,
and correction procedures are all based on declarative models of the control software.

In this chapter, we present the foundations of model-based diagnosis, the modeling
paradigms, the observers, and the algorithm for retaining the correct state. Moreover, we present
the results of a case study which had been realized by modeling the control software architec-
ture of our mobile robot. In the used test-cases typical failures, like software components that
become inactive because of deadlocks, are represented. Thecase study shows that the overall
system performance is not degraded and that the diagnosis system always retains the desired
state.

6.1 Model-based Diagnosis

6.1.1 Foundations

In the previous section, we briefly outlined how model-baseddiagnosis works and how it can be
used to detect faults in the control software of autonomous mobile robots. In this section we will
provide a deeper knowledge about the foundations of model-based diagnosis.

An overview on the process of model-based diagnosis is shownin Figure 6.1. The funda-
mental principle of model-based diagnosis [Rei87] is that ituses a description of the correct
behavior of components and the connections among the components to detect and locate faults
in a system.

The model of the correct behavior of a system, the system description, is derived from the
specifications or requirement of the system. Such requirements or specifications are usually
present or easily to obtain. For the representation of the system description a logic-based form is
preferred in order to ease deduction and reasoning. This model does a prediction of the correct
output of the system based on current inputs. The advantage of the use of this kind of system
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Figure 6.1: Overview of the diagnosis process.

description for diagnosis is that only the correct behaviorhas to be modeled and theoretically all
faults can be detected. In other techniques for fault detection and identification (FDI) [VGST04]
each possible fault which one wants to detect has to be explicitly modeled.

The current outputs of the system are represent by observations. Such observations simply
are a snapshot of the current system behavior. Such observation range from simple discrete
information, e.g, input pins of digital circuit, up to advanced temporal integration of continuous
values, e.g., multi hypotheses tracking [LBS96]. Again, a logic-based representation of the
observation is desirable.

If a contradiction between the output of the system description (desired or correct behavior)
and the observations (current behavior) exist we have detected a fault in the system. This is
the fact because only a faulty system will show a different behavior than the expected correct
behavior. Detection of the contradiction can be easily doneby logic inference if the system
description and the observation available in a logic-basedrepresentation.

Once a fault has been detected the interesting question remains which is the root cause for
the fault. In model-based diagnosis the localization of theroot cause is done by a systematic
attempt to resolve the contradiction. Such a resolving is based on adding and removing of
assumptions about faulty components. We use Reiter’s algorithm [Rei87] in combination with a
fast propositional theorem prover [Min88] for this purpose.

More formally, the parts of the model-based diagnosis can bedefined in the following way:

Definition 6 (Diagnosis System)A diagnosis system is the tuple (SD,COMP) with:

1. the system description (SD) is a set of logical sentences (horn clauses or first order logic)

that specifies the correct behavior of the components and theconnections among the com-

ponents
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2. COMP is the set of components

It forms together with current observation of the system OBS the diagnosis problem.

Definition 7 (Diagnosis Problem) A diagnosis problem is the triple (SD,COMP,OBS) with:

1. the system description (SD) is a set of logical sentences (e.g., horn clauses) that specifies

the correct behavior of the components and the connections among the components

2. COMP is the set of components

3. OBS is a set of system observations

Definition 8 (Diagnosis) A diagnosis of a diagnosis problem (SD,COMP,OBS) is a set∆ ⊆

COMP so that SD∪ OBS∪{¬ AB(C)| CO∈ COMP\∆} ∪ { AB(CO)| CO∈ ∆} is consistent.

AB(CO) states that the component CO shows an abnormal behavior.A diagnosis is minimal iff

no proper subset is a diagnosis.

Intuitively, a diagnosis∆ is a set of faulty components which explains inconsistency between
the desired and the observed behavior of a system. In general, in practical applications one
prefers the derivation of minimal diagnosis. Naively, all diagnosis∆ can be computed by simple
checking the above properties for all possible subsets ofCOMP. But such an approach is not
feasible in practice because even for small systems the computational costs explode. Therefore,
Reiter [Rei87] proposed a more efficient and elegant way to compute diagnosis. He used conflicts
and hitting sets.

Definition 9 (Conflict) A conflict set of a diagnosis problem (SD,COMP,OBS) is a set CO⊆

COMP such that SD∪ OBS∪{¬ AB(CO)|CO∈ COMP} is inconsistent. A conflict set is minimal

iff no proper subset is a conflict set.

The conflict covers simply the property that if all components in the conflict are assumed to
work correct this leads to a inconsistency. Therefore, one has to declare at least one component
in the conflict set malfunctioning in order to resolve the conflict. If one is able to find a collection
of components assumed to be malfunctioning which resolves all conflicts a diagnosis is found.
Such calculations can be performed efficiently by using hitting sets.

Definition 10 (Hitting Set) AssumeC is a collection of sets. A hitting set for C is a setH ⊆
⋃

S∈C S such thatH ∩ S 6= ∅ for eachS ∈ C. A hitting set is minimal iff no proper subset is a

hitting set.

Hitting sets are useful in the calculation of diagnosis because of the following theorem.
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Theorem 4 A set∆ is a (minimal) diagnosis for the diagnosis problem (SD,COMP,OBS) iff∆

is a (minimal) hitting set for the collection of conflicts sets.

An algorithm for the efficient calculation of hitting sets and diagnosis will be outlined later
in this chapter.

6.1.2 Simple Example

In this section we will explain the fundamental principles of model-based diagnosis using a sim-
ple example. We will deploy model-based diagnosis on the simple circuit shown in Figure 6.2.
The circuit comprises three multipliers{M1,M2,M3} and two adders{A1, A2}. Therefore, the
set of componentsCOMP is {M1,M2,M3, A1, A2}. The circuit performs a simple arithmetic
calculation. Figure 6.2 shows the structure of the circuit and the observed inputs and outputs
(green numbers). As one can simply follow, the output of the circuit is in contradiction with the
expected outcome (red numbers). The outputf should have the value 12. But the observed value
at terminalf is 10. In order to show the principles of model-based diagnosis, we will apply it to
this example to detect and locate faulty components.
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Figure 6.2: Simple diagnosis example with contradiction between the modeled behavior and the
observations. Observations of the system are shown in green. Predictions from the system model
are shown in red.

First we have to build up the system descriptionSDwhich comprises models of the desired
behavior of the components and a description of the connections between the component.
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The behavior model of a multiplierm can be described with the following logical sentences:

1. ¬AB(m)∧Mul(m)∧ in1(m) = x∧ in2 = y → out(m) = x ∗ y

2. ¬AB(m)∧Mul(m)∧ out(m) = x∧ in1 = y ∧ in1 6= 0 → in2(m) = x/y

3. ¬AB(m)∧Mul(m)∧ out(m) = x∧ in2 = y ∧ in2 6= 0 → in1(m) = x/y

4. ¬AB(m)∧Mul(m)∧ out(m) = 0∧ in1(m) 6= 0 → in2(m) = 0

5. ¬AB(m)∧Mul(m)∧ out(m) = 0∧ in2(m) 6= 0 → in1(m) = 0

Line 1. specifies the behavior in forward direction. The linestates that the output of a
multiplier simply is the product of its inputs. The lines 2. to 5. allow a backward reasoning. If
one knows the value of the output and one input the value of thesecond input can be calculated.
The predicateMul(m) indicates that the componentm is a Multiplier. This predicate is later
used to build up the description of the complete system.

The behavior model of an addera can be described with the following logical sentences:

1. ¬AB(a)∧Add(a)∧ in1(a) = x∧ in2(a) = y → out(a) = x + y

2. ¬AB(a)∧Add(a)∧ out(a) = x∧ in1(a) = y → in2(a) = x − y

3. ¬AB(a)∧Add(a)∧ out(a) = x∧ in2(a) = y → in1(a) = x − y

Line 1 specifies the behavior in forward direction. The line states that the output of an adder
simply is the sum of its inputs. The lines 2 to 3 allow a backward reasoning. The predicate
Add(a) indicates that the componenta is an Adder.

The structure of the system and the connections among the components can be specified as
the following logical sentences which are represent a collection of facts:

1. ⇒ in1(M1) = a

2. ⇒ in2(M1) = c

3. ⇒ in1(M2) = b

4. ⇒ in2(M2) = d

5. ⇒ in1(M3) = c
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6. ⇒ in2(M3) = e

7. ⇒ in1(A1) = out(M1)

8. ⇒ in2(A1) = out(M2)

9. ⇒ in1(A2) = out(M2)

10. ⇒ in2(A2) = out(M3)

11. ⇒ in2(M1) = in1(M3)

12. ⇒ in2(A1) = in1(A2)

13. ⇒ f = out(A1)

14. ⇒ g = out(A2)

The lines 1. to 6 specify the connections for the input terminals. The lines 7. to 12. specify
the connections among the components. The lines 13. to 14. are responsible for the connections
to the output terminals.

Finally, the following fact define the type of the different components.

1. ⇒ Mul(M1)

2. ⇒ Mul(M2)

3. ⇒ Mul(M3)

4. ⇒ Add(A1)

5. ⇒ Add(A2)

Up to now we have the system descriptionSDwhich tells us how the system has to perform
if all components work properly. The actual behavior of the system is monitored by a set of
observationsOBS. The observations of the system are the values of the input and output termi-
nals. It has to be noted that there is a wide range of differenttypes of observations in different
applications. The values of observations are also specifiedas logical facts.

1. ⇒ a = 3

2. ⇒ b = 2
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3. ⇒ c = 2

4. ⇒ d = 3

5. ⇒ e = 3

6. ⇒ f = 10

7. ⇒ g = 12

The lines 1. to 5. specify the observed values of the input terminals. The lines 6. to 7. specify
the observed values of the output terminals.

The next step to deploy the system descriptionSD to deduct the values the system has to
calculate if every component of the system works correct. These deductions (the red numbers
in Figure 6.2) are{f = 12, g = 12}. Sometimes simple forward propagation of the values is
applied. Obviously, these results are in contradiction with the observations. This contradiction
shows that our assumption that all components work correctly is not true. Therefore, we have
detected a fault in the circuit. Such a consistency check areusually performed by using a
theorem prover, e.g., [Min88].

In our example we have two minimal conflicts. The minimal conflict sets{M1,M2, A1} and
{M1, A1,M3, A2} are shown in Figure 6.3.

From the intersection of the two minimal conflict sets{M1, A1} we can derive two minimum
hitting sets{M1} and{A1}. Therefore,AB(M1) andAB(A1) are single fault diagnoses. This
is obvious because each of the two diagnosis resolves both conflicts. Furthermore, the sets
{M2, A2} and{M2,M3} also resolve both conflicts. Therefore, we have derived two multiple
fault diagnoses.

6.2 Modeling Software Architectures

Software architectures provide a general view on software.Software architectures comprise
software components and their connections. Components represent a collection of classes which
implement a certain behavior. The connections between components represent dependency re-
lations like client-server relationships and data flow. Forexample a robot’s architecture might
comprise components for image processing, motion control,planning actions, and others. Dur-
ing the execution of a program the components might spawn processes and interact using method
calls, or other means of communication, like events. Figure6.4 depicts parts of the software ar-
chitecture of our mobile robot.
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Figure 6.3: Simple diagnosis example with the minimal conflicts. The first minimal conflict
comprises the components{M1,M2, A1} and is shown in green. The second minimal conflict
comprises the components{M1, A1,M3, A2} and is shown in yellow. The intersection of the
booth conflicts{M1, A1} is shown in blue.

The following formalization of the structural properties of the software architecture con-
siders the software components, their connections in termsof identifiers representing events or
procedure calls, and a classification of dependency relations which are used to repair the software
during runtime. We distinguish two different dependency relations between components, namely
weak and strong dependencies. Two components are weakly dependent if killing one component
at runtime does not require the other component to be killed and to be re-started in order to repair
the overall system. Otherwise, the relationship is a strongdependency.

Definition 11 (SAM) A software architecture model (SAM) is a tuple (CO,C,out,in,WDC,SDC)

where:

• a set of software components CO

• a set of connections C

• a function out: CO7→ 2C returning the output connections for a given component

• a function in: CO×C 7→ 2C returning the input connections for a given component and

an output connection. This function only returns those inputs that influence the value of

the specified output.2C demotes the power set of the connectionsC.
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Figure 6.4: Dependencies between software and hardware modules

• a set of weak dependencies WDC⊆ 2CO×CO

• a set of strong dependencies SDC⊆ 2CO×CO

We represent all weak and strong dependencies as ordered pair(x1, x2) with x1, x2 ∈ CO.

The direction of the connection is fromx1 to x2.

Corollary 5 If (x, y) ∈ SDC and(y, z) ∈ SDC then(x, z) ∈ SDC holds.

These reflexive relation is later used to derive appropriaterepair actions.

Hence, the SAM representing the software architecture of Figure 6.4 is :

({LASER,CAN ,OT ,GL,MO , SO ,KI ,WM ,BE ,PL},

{ObjectMeasurement ,WorldState, . . .},

{out(MO) = {MotionDelta}, . . .},

{in(MO,MotionDelta) = {CAN 1}, . . .},

{(WM ,OT ), ..}, {(LASER,GL), . . .})
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whereOT is the object tracker,GL the goal locator,MO the motion service,SO the sonar
service,KI the kicker service,WM the world model,BE the behavior engine, andPL the
planner.

The concrete behavior of the software at runtime is determined by the implemented behavior
of its software components. A formalization of the concretebehavior requires the transforma-
tion of the whole program which is not only a very difficult task but leads to models that can
hardly be used for diagnosis at runtime where resources for diagnosis are limited. Hence, an
abstraction of the concrete behavior is necessary. The ideabehind the abstract behavior model
of software components is similar to models which are based on dependencies like the one de-
scribed by [FSW99]. If all inputs to the model are correct, a software component should produce
a correct output. This conversion has to be performed for allcomponents and their output con-
nections.

The algorithm for performing this conversion is as follows where the predicateAB stands
for abnormal, andok indicates a correct event or method call.

computeModel(CO,C, out, in,WDC, SDC)
Input: the SAM.
Output: a set of horn clauses

1. LetM be the empty set.

2. For allx ∈ CO:

(a) Add¬AB(x) → ok num processes(x) to M .

(b) For alle ∈ out(x) add

¬AB(x)∧
∧

e′∈in(x,e)

ok(e′) → ok(e)

to M .

3. ReturnM .

Line 2.(a) introduces a rule which says that a correct component spawns the correct number
of processes at runtime. Because this parameter of a softwarecomponent can be easily checked
via operating-system calls, we incorporate this knowledgein our model.

For example, the rule that represents the abstract behaviorof theOT (Object Tracker) com-
ponent is:

¬AB(OT )∧ ok(Firewire) → ok(ObjectMeasurement)
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The size of the model in terms of number of literals depends onthe number of the compo-
nents, the maximum fan-in, and the maximum fan-out of the components. The fan-in and the
fan-out are both bound by the cardinality of the connections.

Theorem 6 The number of literals occurring in the model returned by calling compute-

Model(CO,C,out,in,WDC,SDC) isO(|CO| · |C|2).

If the maximum fan-in and the maximum fan-out are much smaller than the number of com-
ponents, the number of literals is of orderO(|CO|) which is almost always the case for practical
applications.

In order to locate root causes, i.e., the components of the software architecture which cause
a detected misbehavior, we have to introduce a notation of observations at the same conceptual
level. The easiest way of doing this (which has also been doneby [FSW99]) is to use the sameok
predicate for the purpose. If for example we detect a misbehavior at ObjectMeasurement, we
could represent this by the literal¬ok(ObjectMeasurement). The drawback of this represen-
tation is the impossibility of distinguishing observations and computed values. Hence, it would
be better to introduce a distinguished predicatecorrect for observations.

Definition 12 (Observation) Given a SAM(CO,C,CS). Either correct(x) or ¬correct(x)

are observations for a connectionx. The predicatecorrect(x) is true whenever the observed

connection shows the correct behavior. If we observe a failurefor x, the observation has to be

¬correct(x).

The final step for generating the model is to add rules for coupling observations to models
generated bycomputeModel. The following algorithm provides this information.

computeOBSModel(CO,C, out, in,WDC, SDC)
Input: The SAM.
Output: A set of horn clauses representing the interface between thearchitecture model and
observations.

1. LetM be the empty set.

2. For alle ∈ C add
correct(e) → ok(e) and¬correct(e) → ¬ok(e)

to the modelM .

3. For allx ∈ CO add
∧

e′∈out(x)

correct(e′) → ¬AB(x)

to the modelM .
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4. For allx ∈ CO add

correct processes(x) → ok num processes(x)

to the modelM .

5. ReturnM .

Line 2. ofcomputeOBSModel provides the interface between the observations and the de-
rived values. Line 3. captures a case where everything that is computed by a software component
is known to be correct. In this case it is very likely that the component itself is correct which is
represented by third line. In line 4. we provide an interfaceto the number of processes counter
because every component spawns a fixed number of processes. Because the number of processes
for each component is only a necessary condition for the correctness of a component it is not cor-
rect when saying that the correct number of processes implies the correctness of the component.
Therefore, we do not add such a rule to our model.

For our examplecomputeOBSModel would return the following rules forOT and
ObjectMeasurement:

correct(ObjectMeasurement) →

ok(ObjectMeasurement)

¬correct(ObjectMeasurement) →

¬ok(ObjectMeasurement)

correct(ObjectMeasurement) → ¬AB(OT )

Theorem 7 The number of literals occurring in the interface model returned by calling

computeOBSModel((CO,C, out, in,WDC, SDC)) is O(|C| · |CO|).

6.3 Monitoring Events, Method Calls, and Processes

Coupling the running program with its software architecturemodel requires an abstraction step.
The running program changes its state via changing variablevalues which is caused by inputs
from the environment. This state change is not represented in the SAM. Instead SAM repre-
sents the software components and their communication means. Therefore, we require to map
changes to communication patterns. For this purpose we introduce the concept of observers.
An observer is a piece of software that monitors a certain part of the program’s behavior during
the execution. For example, an observer might check whetherthe number of processes for one
software component is equivalent to the specified one. Or an observer checks whether a software
component produces a number of events during a certain amount of time. If an observer detects
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a behavior that contradicts its specification, it computes the appropriate observations in terms of
setting the observation predicates¬correct(x) for the corresponding connectionx, and invokes
the diagnosis engine.

Definition 13 (Observer) An observer is a tuple(S, Ω) with:

1. a set of rulesS which provides the specification for testing the behavior.

2. a setΩ comprising predicates which correspond to the observationsfor the SAM model.

The specification of the observer determines its abilities of detecting a misbehavior. An
observer for checking the number of processes of a given software component specifies exactly
this number. In the current implementation of the observer module we allow to specify the
following observers:

• Periodic event production: This rule is of the formproduces e every n ms and
checks whether an evente is produced at least everyn milliseconds.

• Conditional event production: This rule is of the formproduces e1 ever n ms

after e2 and checks whether an evente1 is produced at least everyn milliseconds after
the occurrence of an evente2.

• Spawn processes: This rule checks whether a component spawns a numbern of named
processesid and is of the formspawns n processes id.

• Periodic method calls: This rule is for checking whether a component calls a methodm at
least everyn milliseconds.calls m every n ms

The observers are used to monitor the state of the system. Forthis purpose the observers are
implemented and check their rules on a regular basis. In cases of failure the diagnosis procedure
is invoked. The following algorithm specifies the monitoring process that has been implemented
in our system.

monitoring((CO,C, out, in,WDC, SDC), OS)
Input: The SAM and a set of observerOS.

1. MS = computeModel((CO,C, out, in,WDC, SDC)).

2. MO =

computeOBSModel((CO,C, out, in,WDC, SDC)).

3. M = MS ∪MO.
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4. Do forever:

(a) LetOBSbe the empty set.

(b) For allos ∈ OS do:

i. Check the observeros.

ii. If os = (S, Ω) detects a misbehavior, add
∧

o∈Ω ¬o to OBS.

iii. Otherwise, add
∧

o∈Ω o to OBS.

(c) If at least one observer detects a failure, call the diagnosis procedure using the model
M and the observationsOBS.

Because of the simplicity of the rules monitoring does not take a lot of time. In case of
a failure of course the diagnosis procedure has to be invokedwhich is more time demanding.
However, in this case the system is not in a correct state and resources are necessary in order
to reset the system. The implementation of the observers sometimes require additional annota-
tions within the original program. In cases where the communication between components is
implemented using for example CORBA annotations are not required.

6.4 Diagnosis and Repair

The diagnosis task in our implementation is based on the model-based diagnosis (MBD)
paradigm [Rei87, dKW87] we have outlined in previous sections. In particular we use Reiter’s
hitting set algorithm [Rei87, GSW89] together with a propositional Horn clause theorem prover
[Min88]. In order to minimize diagnosis time we only search for minimal cardinality diagnoses
which can be easily obtained when using Reiter’s algorithm. We only construct the hitting set
graph until a level where the first diagnosis is computed. In most practical cases single fault
diagnoses can be found. An upper bound for computing single fault diagnosis is determined by
the amount of time required for checking consistency. In ourcase, we have logical rules that
can be easily transformed to a set of horn clauses. Hence, time required for checking consis-
tency is of the same order as the number of literals. Because wehave to check all single fault
diagnoses in the worst case and the size of the model, the worst case diagnosis time is bound
by O(|CO|2 · |C|2). This bound comes from the use of an propositional horn clauses theorem
prover.

After diagnosis those components that are responsible for adetected failure have to be killed
and restarted. We have to take care of the fact that restarting one component might require
restarting another component. This can be done by using the available information about strong
dependencies between components. The components that havea strong dependency relationship
with each other have to be restarted.



90 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

Hence, the steps for repair would be:

1. Compute the diagnoses.

2. Compute a set of components that have to be restarted. In this step we compute all com-
ponents that strongly depend on components of a diagnosis.

3. Maximize the chance of repair by using a larger set of components to be restarted.

The following algorithm implements this behavior and has tobe called by themonitoring

algorithm in step 4(c).

repair(CO,C, out, in,WDC, SDC),M,OBS

Input: The SAM, its modelM and observationsOBS.

1. Compute diagnosesD = diag(M,CO,OBS) whereD ⊆ CO.

2. For each diagnosis∆ ∈ D compute the set of strongly dependent components, i.e.,
R(∆) = ∆∪{x|x ∈ CO : (x, ∆) ∈ SDC}. Let R = {R(∆)|∆ ∈ D}.

3. Reduce the setR by eliminating all elements that are subset of another set inR.

4. Select an elementx from R.

5. Kill all processes that correspond to software components in x. Afterwards restart those
processes.

We assume that faults leading to the different diagnoses∆ are independent. Whetherrepair

was successful or not in one point in time is detected by themonitoring algorithm at a later point
in time. Hence, in principle it is possible thatrepair always tries the same correcting actions
without resulting in a correct system state. This problem can be solved either by selecting the
components to be restarted (step 4. ofrepair) non-deterministically or by storing informations
about former actions. The latter solution avoids to take thesame actions twice.

6.5 Experimental Results

The proposed diagnosis system has been implemented and tested on our mobile robot system.
The robot control system runs on an embedded Pentium III PC with 850 MHz clock rate and 256
MB of RAM. The operating system on the PC is an ordinary Linux system.
The robot control system comprises several software modules. Each module runs as an inde-
pendent process and implements different services. The services are based on CORBA. The
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communication between these services are implemented either by direct CORBA method calls
or by an event channel. The diagnosis system itself is implemented as a separate process to min-
imize the interference with the existing control system. The diagnosis system implements the
four types of observers described in Section 6.3:

• Periodic event production: This observer looks for the regular appearance of specific events
on the event channel.

• Conditional event production: This observer looks for the appearance of a specific event
on the event channel after its trigger event was perceived.

• Spawn processes: This observer checks the number of processes spawned by a software
module. This information is extracted from theprocfile system of the OS.

• Periodic method calls: This observer looks for regular invocation of specific CORBA-
methods.

The use of CORBA and OS services allows monitoring the robot control system without any
impact to it. The model of the robot control system (softwarecomponents, dependencies, ob-
servers) is specified in one XML file. Therefore, changes in the model or adaptation to other
software systems are simple and straight forward. The diagnosis system is divided into three
modules: a monitoring module (1), a diagnosis kernel (2) anda repair module (3).

The supervision of the robot control system and the interaction with the diagnosis system
work in the following way. The monitoring module starts all necessary observers according to
the model description and regularly checks for violations of the observers. If such a violation
is detected, the diagnosis kernel is informed. The diagnosis kernel derives a diagnosis based
on the model of the control system and the violated observations. The diagnosis is a set of
malfunctioning software components which explain the improper behavior of the system. The
derivation of a diagnosis is started after a certain amount of time, i.e., five seconds, within no
more changes in the state of the observer are detected. This is done for stability reasons as it
takes a certain amount of time for all observers to recognizean improper behavior. The diagnosis
will be communicated to the repair module. It executes the appropriate repair action to recover
the control system. Regarding to the set of malfunctioning components and their connections
among them and to other components the repair module starts an appropriate repair action.
The repair module first stops the malfunctioning modules andall modules which are strongly
coupled to stopped modules. After that it restarts all stopped modules according to their modeled
dependencies. This means to start that modules first other modules depending on. During the
repair action no new diagnoses are derived. We do this for stability reasons as the repair action
temporally may violate observers. After the repair action is completed the observers and the



92 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

diagnosis kernel are started again. After this stages the control system is again in the desired state.

For the evaluation of the proposed diagnosis system and its implementation, we did several
experiments on our mobile robot. We introduced artificial faults into the robot control system
and analyzed if the diagnosis system detected and located the fault and recovered the control
system. We used two different fault scenarios:

• Killing a component: A certain software component is explicitly killed. This isequivalent
to a crash of a certain component.

• Deadlock a component: A deadlock is introduced to a certain software component. This
is equivalent to a malfunctioning software component.

Figure 6.5 shows the timing diagram for the diagnosis and repair of an introduced deadlock
in the motion service (MO). After introducing the deadlock in MO the Periodic Event Observer
for the eventMotionDeltaperceives that no more events are produced. After the waiting time
the diagnosis kernel derived that MO is malfunctioning, denoted asAB(MO). Instantly the repair
process starts. The repair action comprises a stop of the Behavior Engine (BE), a stop of MO,
and a restart of MO and BE. The restart of BE is necessary becauseBE is strongly coupled with
MO. Again, after the waiting time, the diagnosis kernel derives the diagnosis that all components
work properly now. Please note that no other components wereaffected by the repair process.
The figure also shows the fact that suspending the diagnosis kernel during the repair is necessary
as observers report additional improper observations, e.g., process observer. The relatively long
time for the recovery is explained by the fact that stopping and starting of services could take a
while because of the required starting, stopping and re-configuration of hardware components.
The time for computing diagnosis is negligible because it has been less than 10 ms.

Restart BERestart MODiagnosis/Stop BE
Stop MO

Diagnosis/System Recovered

AB(MO)

Process−Observer BE

Process−Observer MO

Deadlock in MO

0 105 15 20 25 30 t/s

Event−Observer
MotionDelta

Figure 6.5: Timing diagram for diagnosis and repair of a deadlock in the motion service.
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Figure 6.6 shows a more complex scenario. Here we introduceda deadlock in the CAN-
service. After introducing the deadlock, MO and the sonar service SO produce no more data
because they get no more data from CAN. This fact is perceived by the appropriate observers.
Because of the model of the observations, the components and its connections the diagnosis
kernel recognizes the malfunctioning CAN. The repair actionis similar to the example above
except that more components are involved. After repair, thecontrol system is again in the desired
state.

We conducted also two experiments where we killed a softwarecomponent. In the first
experiment we killed the laser service (LASER). The diagnosis system successfully detected the
fault and recovered the control system by restarting BE, goallocator (GL) and LASER. The
recovery took 68 s. In a second experiment we killed the worldmodel (WM). The diagnosis
system successfully detected and repaired the fault. During this experiment it was important that
the whole process took only 20 s because the system located the fault in the WM and no other
component was affected.
The affect of the diagnosis system to the runtime performance of the robot control system is
negligible. The diagnosis system uses less than 1 % of the CPU time and less than 5 % of the
memory.

6.6 Related Research

There are many proposed and implemented systems for fault detection and repair in autonomous
systems. The Livingstone architecture by Williams and colleagues [MNPW98] was used on the
space probeDeep Space Oneto detect failures in the probe’s hardware and to recover from them.
The fault detection and recovery is based on model-based reasoning. Model-based reasoning
uses an abstracted logic-based formulation of the system model and the observations. The
advantage is that well understood reasoning algorithms could be used. Model-based diagnosis
also has been successfully applied for fault detection and localization in digital circuits and car
electronics and for software debugging of VHDL programs [FSW99]. Dearden and colleagues
[DC02] and Verma and colleagues [VGST04] used particle filtertechniques to estimate the state
of the robot and its environment. These estimations together with a model of the robot were used
to detect faults. The advantage of this approach is that it accounts uncertainties of the robot’s
sensing and acting and in its environment because the most probable state is derived from unre-
liable measurements. A drawback of such methods is that one have to build a behavioral model
of the system for each different fault one likes to detect. Rule-based approaches were proposed
by Murphy and Hershberger [MH96] to detect failures in sensing and to recover from them.
Additional sensor information were used to generate and test hypotheses to explain symptoms
resulting from sensing failures. Roumeliotis et. al. [RSB98] used a bank of Kalman filter to
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track specific failure models and the nominal model. The filter residuals were post-processed
to produce a probabilistic interpretation of the operationof the system. Such methods are
popular for linear systems affected by Gaussian noise. In [Gro04] a model-based approach for
monitoring of component-based software was presented. Thebehavior of software components
were modeled by Petri nets. Places in the net represent the state of a component. Transitions
model the interactions with other components. These interactions, sending and receiving of
messages, were used to locate a misbehavior in a software component. Liu and Coghill [LC04]
used a qualitative representation to model the trajectory of a robot arm. Reasoning about these
qualitative trajectories were used to detect and isolate faults of the robot arm. In [HW05] the
authors used hybrid automata in combination with multi-hypotheses tracking to detect and
locate faults in a miniature chemical plant.

6.7 Discussion

Previous research has dealt either with hardware diagnosisor diagnosis of software as part of the
software engineering cycle. However, diagnosis of software and repair at runtime has never been
an issue.

In this chapter we described a model-based diagnosis approach for detecting, locating and
repairing software at runtime. For this purpose a modeling technique for representing software
architectures which include components, control and data flow, and dependencies between com-
ponents has been introduced. Moreover, the concept of observers, i.e., software which monitors
the activity of the control software, together with their connections to the architecture models
have been described in the paper. Finally, the chapter presented a repair algorithm and first em-
pirical results of our implementation. These results show that software failures, e.g., deadlocks,
can be detected and corrected at runtime.
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Figure 6.6: Timing diagram for diagnosis and repair of a deadlock in the CAN service.
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Chapter 7

Model-Based Diagnosis for Hard- and
Software

7.1 Introduction

An autonomous mobile robot comprises of great bunch of hardware and software components.
The high number of different components and the heavily interaction between them cause a
fairly high complexity of the system. Furthermore, becauseof complexity the probability of
the occurrence of faults in the system during runtime increases. These facts are in conflict with
the requirements of an autonomous mobile robots like robustness, long-term stability, and the
capabilities of fulfilling a given task autonomously withinan unknown environment. Even if the
software and hardware of a truly autonomous mobile robot is well developed and tested faults
and malfunctioning components can never be totally avoided. Such faults become even worse
if there is almost no possibility for supporting actions by humans within a short period of time
because of different reasons like distance or communication problems. Examples are a planetary
rover on the Mars or an inspection robot in a nuclear power plant.

Hence, it is desirable that a robot is able to detect and repair faults of its hardware and soft-
ware autonomously. This task requires the robot to reason about its underlying system in order
to identify a misbehavior, locate the root cause for the misbehavior and to recover autonomously
from the root cause, i.e., the faults. Recovery from faults include a simple restart of components,
a reconfiguration of the components or a controlled degradation of the robots functionality. The
challenge herein is that all the detection, localization and recovery have to be performed at run-
time while the robot actually perform its mission.

Therefore, a dedicated monitoring and diagnosis system is crucial to reach the above require-
ments. But there are additional requirements for a diagnosissystem in an autonomous mobile
robot. For example, the introduction of a diagnosis system should not cause heavy changes in

97
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the hard and software of the target system. Furthermore, thediagnosis system should not affect
the overall behavior of the robots. As computational resources are usually very limited in mobile
robots the requirements for memory and computation for the diagnosis system should be as low
as possible.

In order to fulfill all the above requirements a model-based solution is preferable. Model-
based diagnosis have been successfully applied to diagnosis of integrated circuits and the debug-
ging of software. But the application mostly took place during the development process. There-
fore, the idea of the application of a model-based approach at runtime is quite novel. Model-
based diagnosis use a model of the correct behavior of a system and current observations on
the system to detect misbehaviors and to locate the cause of the fault. It is a general paradigm.
Therefore it is the ideal approach for the supervision of a system comprising of hardware and
software.

The important step in the application of model-based diagnosis is the creation of an appro-
priate abstract model of the correct behavior of the system and the determination of useful facts
about the system that could be observed by the robots sensors. The modeling of software com-
ponents and their interactions are well understood. But if one like to diagnosis of a mixed system
of hardware and software also some aspects of the physical system and its interaction with its
environment have to be modeled in a qualitative manner.

In this chapter we will (1) introduce the application area robotics for model-based systems
approach, (2) present first ideas of modeling the robot’s sub-systems and its surrounding en-
vironment, (3) identify problems that occur when modeling the systems and trying to fulfill the
previously discussed requirements, and (4) discuss the grand challenges of modeling and diagno-
sis in mobile and autonomous robotics. The chapter is organized as follows. First, we introduce
a running example from robotics. We present a model that has the capabilities of identifying
faults on an abstract level and discuss open problems and challenges. We conclude the chapter
by discussing related research and summarizing the content. Some of the ideas were previously
presented in [SW05a].

7.2 Example — A Case From Robotics

In order to give a short introduction into the problem domain, we shortly introduce our mobile
robot platform comprising hardware and software components. Figure 7.1 shows some parts
of the whole system which closely interact with the environment. The components for sensor
fusion, world modeling and high-level decision making are omitted. The robot uses an omni-
directional drive which comprises four omni-wheels, and four motors and wheel encoders. The
drive is controlled by a drive controller which receives thedesired movement commands in the
form of a motion vector and a rotation angle relative to the robot. Based on these commands the
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controller controls the speed of the motors. Furthermore the controller provides regularly odom-
etry data based on the measurements of the wheel encoders. The controller itself comprises
hardware and software components. The drive controller gets its commands from the behavior
engine which is responsible for the execution of actions like move to a position. The appropriate
action is selected by high-level decision making based on classical planning. Furthermore, the
robot is equipped with an omni-directional camera. Based on the provided images a movement
estimator measures a movement of the robot by calculating a significant optical flow in the im-
age. A laser scanner provides range information around the robot. This information is used to
determine the positions of obstacles around the robot.

Drive Controller Image
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Motor

Robot & Environment

Odometry
Data

Drive
Commands
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Obstacle

EstimatorEngine
Behavior
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Figure 7.1: Interactions between components of a mobile robot.

Because of the current lifetime and the extensive use of our robots during the last years we
observe sporadic faults in both the hardware and the software of the robots drive. We will give
two examples for such faults to motivate how these faults canbe detected, located and repaired
by a model-based approach. Consider the following situation. At certain times the circuits
for the wheel encoder hang up. Because of this, the drive controller provides odometry data
which report no movement of the robot even if the robot moves in reality. If one uses a model
of the correct interactions of the components in combination with current observations within
the system the fault and its cause can be easily detected. Forinstance, if we know that the
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system works properly, the behavior engine calculates a desired movement. The drive controller
converts this desired movement into appropriate motor speeds. It also provides an estimation of
the current movement of the robot by odometry data. Furthermore, if the robot moves, the camera
image have to change and also the position of detected obstacles in the laser scans. Suppose, the
odometry fails because of the above facts. The drive controller reports a zero movement which
suggests that the robot does not move. But if the robots motorsare working as expected the
robot may move correctly. Therefore, this might be a wrong conclusion. But if we combine this
observation with the observation from the camera and the laser range-finder, we conclude that
the odometry is malfunctioning because the laser range-finder and the camera report the desired
movement. This reasoning process is quite similar to the waya human would detect and locate
a fault. Also a appropriate repair action can be derived. A simple reset of the encoder circuit
removes the fault. In Section 6 we presented a model-based modeling paradigm for the control
software of mobile robots. The above example is an extensiontowards the diagnosis of robots
hardware and shows that more work have to be done in modeling of the environments and its
interaction with the robot. In the next section we introducethe model, the observation and the
reasoning process in more details.

7.3 Modeling for Diagnosis

The model we introduce in this section is for being used in consistency-based diagnosis [Rei87]
and describes the underlying behavior of the robot in an veryabstract way. There are several
different approaches for modeling highly dynamical systems for diagnosis including finite state
machines or probabilistic automatons. Most of them use a discrete time representation like au-
tomatons and state machines. For our model of the hardware weuse an abstraction of the real
situation which avoids dealing with time. Such abstract models have been successfully used in
other areas, e.g., representing knowledge in the automotive domain [MSS95, MS96].

For modeling we choose the component-oriented modeling paradigm. Hence, we represent
the behavior of components and their interactions. Figure 7.2 shows an overview on the modeling
of the running example.

Motor A motor M is said to be working if it receives a driving command. A working motor
causes the axis and as a consequence the wheels to rotate which moves the robot from
one place to another. However, this cause-effect chain cannot be inverted. For example,
the robot can move without the driving command because of external influences like a
collision where one robot is moving the other. Or one robot tries to go ahead while being
stuck to an obstacle. In this case the wheels are rotating butthe robot is not moving. This
fact is caused by the slippage of the wheels.
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Figure 7.2: Observations and model for the running example.

We represent the discussed cause-effect relationship using two rules. The first one ex-
presses that a drive command is necessary for switching the motors on (and vice versa).

¬Ab(M) → (drive command(M) ↔ motor on(M))

The second rule is for stating that a switched-on motor is oneof the causes for rotating
wheels.

motor on(M) → wheels rotating(M)

Wheel encoder A wheel encoderW observes the behavior of its corresponding wheel. When-
ever the wheel is rotating, the rotation speed is given back as an observation. Unfortunately
a rotating wheel and thus a wheel encoder giving back a speed does not imply that the robot
is moving. For example, consider the situation where a robotis stuck to an obstacle. How-
ever, every time the wheel encoder detects a rotation the wheels are really rotating.

¬Ab(W ) → (wheels rotating(W ) ↔ obs wheels(W ))

Vision If vision V perceives a movement via its camera, it generates a corresponding observa-
tion. This is expressed by an input proposition where the environment is setting the truth
value.
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¬Ab(V ) → (movement ↔ obs move(V ))

After stating the components’ behavior, we have to formalize the structure of the system.
For this purpose, we assume a motorm, a wheel encoderw, and a vision systemv within the
corresponding rules.

¬Ab(m) → (drive command(m) ↔ motor on(m))

motor on(m) → wheels rotating(m)

¬Ab(w) → (wheels rotating(w) ↔ obs wheels(w))

¬Ab(v) → (movement ↔ obs move(v))

Because of the fact that the wheels and the wheel encoder are both mounted on the axis of
the robot which is connected with the motor, the wheel rotation for the motorm and the encoder
w is the same which is expressed by the rule:

wheels rotating(m) ↔ wheels rotating(w)

The model for the connection of the vision system with the motor unit is not that easy be-
cause there is no direct connection between them which belong to the robot. Instead we are
only able to argue about a chain of cause-effect relationships like follows. The motor is driving
the wheels which move the robot within its environment. Because of changes within the per-
ceived image, the vision system detects the movement. This relationship can only be established
whenever the environment does not interact in an undesired or unexpected way. For example, as
stated previously, an obstacle can prevent the robot of moving but the wheels are rotating. Or
there is a movement that is caused by a person which carries the robot from one place to an-
other. In both cases the observations regarding wheel movements are contradicting the visually
perceived observations of the robot. To overcome the described problem it is necessary to model
the environment explicitly.

The relevant parts of the model of the environmentenv can be expressed by rules which
link the robot’s actuator propositions to the propositionswhich correspond to sensors. For our
example we have to provide a link from the rotating wheels to the propositionmovement which
is used by the vision system as an input. We can do this by formulating that rotating wheels
imply a movement providing that they are no other external influences like carrying the robot or
obstacles preventing the robot to move.

¬Ab(env) → (wheels rotating(m) → movement)

For each actuator a similar rule have to be provided. These rules allow to robot to reason not
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only about its components but also on states of the environment which influences the functional-
ity of the robot.

To illustrate the capabilities of our model, we introduce the observationsOBSwhich describe
a situation where the wheels are rotating but the motion is blocked by an obstacle.

OBS =











drive command(m),

obs wheels(w),

¬obs move(v)











If using the model, i.e., the system descriptionSD, and the observationsOBStogether with
the set of componentsCOMP = {env,m,w, v}, we can derive the set of conflicts and di-
agnosis. We use Reiter’s diagnosis theory [Rei87] for this purpose and obtain two conflicts
{m, env, v}, {w, env, v} from which we derive 1 double fault diagnosis{m,w} and 2 single
fault diagnoses{env}, {v}. In order to further distinguish the two single fault diagnoses it is
necessary to add new observations. This can be done by introducing a new sensor, e.g., a laser
range-finder that gives back information about the occurrence of obstacles within a certain area.

The model for a laser range-finder has to assign the observation about obstacles to the occur-
rence of obstacle in an environment.

¬Ab(L) → (obstacle ↔ obs obstacle)

Moreover, we have to extend the model for the environment. Ithas to be stated that whenever
the robot can move, an obstacle is not in reach.

¬Ab(env) → (movement → ¬obstacle)

We now extend our system by introducing a new component laserrange-finderl, i.e.,
COMP’ = {l} ∪ COMP, and add a new observation to the set of observations, i.e.,OBS’

= {obs obstacle} ∪ OBS. From the new modelSD′ which comprises all rules fromSDand the
new ones,OBS’andCOMP’ we obtain additional conflicts{l, env, v}, {m, env, l}, {w, env, l}.
Hence, we derive only one single fault diagnosis{env}. If preferring smaller diagnoses, a robot
using the described knowledge base would conclude that its systems are working correctly and
the problem is caused by external influences. Note that the conclusion can also be used to di-
agnose the robot’s software. For example, if the control software should avoid collisions with
obstacles, getting stuck because of an obstacle should never happen. Therefore, the control soft-
ware is not working correctly, and further steps have to be taken into account.
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7.4 Problems and Challenges

Although, fault detection and localization can be done in a straight forward way, this is not the
case when dealing with autonomous recovering from failure.Models for fault localization of
hardware and software has been described in literature but there are not many papers which
deal with repair and re-configuration which is necessary to recover. The following list identifies
problem and challenges that have to be tackled in order to fulfill the requirements of autonomous
systems.

Coupling different models When dealing with real-world systems we have to provide mod-
els both for hardware and software. Although, the amount of software of devices and systems
is increasing, there are always hardware components involved which directly interact with the
environment. Hence, it is required to couple different models at different level of abstraction in
order to identify root causes for a detected misbehavior. Inprinciple model-based diagnosis is
well adapted for this purpose because it is always possible to integrate models at least by using
conflicts or using the outcome of one model as an input for another. An example for the latter
coupling is the following: Consider the last example of Section 7.3 where we argued that the di-
agnosis result, i.e., an obstacle caused the misbehavior, can be used as an input for diagnosing the
robot’s control software which should avoid such situations. Hence, investigating possibilities
and theories for coupling models is a challenge for future research.

Repair Although, there is literature available which deals with repair and the selection of repair
actions, the problem can be considered as an still open problem. In most cases, repair is done
quite simple by assigning corresponding repair actions to components. However, this is not
enough in general especially when dealing with an autonomous system which has to survive in
an unknown environment. The reason is that someone has to provide all possible repair actions
in advance which can hardly be done for complex systems interacting with other systems in
a highly complex environment. In addition, the requirementof truly autonomous and mobile
systems does not allow to simply replace a component by another. In our running example
the system has to be aware about resets for solving the problem of the wheel encoder circuits.
Another example is the following: Consider a situation whereone motor of the omni-wheel
drive is broken. In principle it is possible to steer the robot by slightly modifying the control
software of the drive controller. Hence, the robot should perform the appropriate actions because
maintenance activities like replacing the broken motor is might be not possible.

The challenge here is to provide a theory and model guidelines that allow for coming up
with repair actions for certain diagnoses which are not explicitly known in advance. Such repair
actions can be derived from the representation of functionality of systems and their parts. Hence,
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solutions of configuration and re-configuration problems are might be promising starting points.

Meta-modeling Because of the previous problems and challenges it might be necessary to
provide the same reasoning capabilities on the models. For example, when changing the behavior
of the system because of recovery actions like changing the behavior of the omni-drive to a
differential drive, it is required to change the diagnosis model. Hence, reasoning capabilities
which allow for modifying a model are required. As far as we know, there is no work within
the model-based systems community which deals with meta-modeling or model generation from
generic models. Moreover, it might be necessary for an autonomous robot to establish meta
reasoning capabilities whenever required and also on previously generated meta-models. The
challenge is to provide first steps towards meta representation and reasoning for model-based
systems.

Gaining knowledge from observation Another challenge which is highly demanding would
be to generate models or at least to gain some knowledge from previously obtained observations.
A mobile and autonomous system might require to adapt its behavior to the environment. Hence,
changes of the behavior which causes changes of the underlying models would be necessary. A
system that can generate models automatically from observations which include observations re-
garding the environment, interactions, and internal states would be truly autonomous. However,
a first step would be to investigate model adaption that goes beyond adapting fault probabilities
because of previously gained experiences.

7.5 Discussion

Previous research has dealt either with hardware diagnosisor diagnosis of software as part of the
software engineering cycle. However, diagnosis of hard andsoftware and repair at runtime have
never been an issue. The related research discussed in the previous section is also relevant to this
section. This section described a model-based diagnosis approach for detecting, and locating
faults of a mobile robot platform at runtime which includes partially reasoning about the current
state of the environment. Moreover, we identify some open problems and challenges that have to
be tackled in order to provide a really autonomous diagnosisand repair system that can respond
even to faults that were not been considered when developingthe system. Two main challenges
can be identified. One is the coupling of different models which capture either different aspects
of the system or the same aspects but using a different level of abstraction. The other challenge is
to provide representation and reasoning techniques that allow for generating repair actions which
are based on the current diagnoses and the current state of the robot. These repair actions cannot
be tied to a specific diagnosis or a component but has to be autonomously generated from the
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provided functionality of the robot and its desired functionality. Moreover, the repair actions
might change the diagnosis model.



Chapter 8

Shortcomings and Future Research

The proposed framework for intelligent control of autonomous mobile robots has shown its ca-
pability to robustly control a robot in various tasks and environments. Furthermore, it has been
successfully evaluated in two real-world applications, the RoboCup Middle-Size League and ser-
vice robotics. So far we have answered most of the questions we raised in the introduction and
have provided solution to the related problems.

Obviously, we are not able to answer all the questions emerging from the control of robots
nor it is able to provide a perfect solution to all the relatedproblems. In the remainder of this
section we will discuss some of the shortcomings and the insufficient solutions for some of the
problems. The reminder of this section is similar organizedas the problem statement in the
introduction.

• Flexibility and reuse of components:The used basic Miro-framework and our extensions
have been proofed as a flexible base for research in robotics.Furthermore, we successfully
have used the framework on two different robot platforms. One shortcoming of the frame-
work is the extensive use of CORBA which slows down the application in particular situa-
tion. The communication mechanisms, e.g., event channel, used in our framework have to
be systematically analyzed and redesigned under the guidelines of software engineering in
order to improve the performance of the system.

Furthermore, more templates of general usable algorithms have to be integrated in the
framework. Despite most of the basic components are shared among the different re-
search groups, most of the components for sensor-fusion, localization and planning are
re-implemented by each group. There is a clear demand for share-able basic algorithms.
Such a attempt requires a good knowledge of the different requirements and the definition
of appropriate interfaces.

Finally, appropriate interfaces or implementations for a large set of new sensors have to be
added to the framework in order to be able to use “state of the art” equipment.

107



108 CHAPTER 8. SHORTCOMINGS AND FUTURE RESEARCH

• Planning and reasoning for complex tasks:

The value of a deliberative component in the control system of a robot is visible. The
STRIPS-based planning system of the framework is capable to derive plans for almost
every task we have evaluated so far.

But in the future more recent planning algorithms have to be integrated in the framework
in order to improve the handling of uncertainty in the deliberative layer and to improve the
planning performance for tasks with a high complexity, e.g.a great number of possible
actions, positions and items. Also multi-agent planning isa issue for the future. This topic
will discussed below.

• General, expressive and intuitive task description:

So far we are only able to specify tasks for a single robot. Cooperation and communication
between multiple robots are rudimentary part of the lower levels of the framework but such
actions are not supported by statements in the task description. In the future, it will be
desirable to specify a task for a group of robots which carry out a task in cooperation. Such
an extension of the task description inherently demands forthe integration of recent multi-
agent planning capabilities into the framework. Moreover,statements for communication
have to be part of the task description.

Furthermore, the current task description is mainly based on the STRIPS representation.
Although, it incorporates some extensions like quantifiersit still lacks of expressiveness
for some tasks. Temporal relations and some kind of support of uncertain knowledge are
possible extensions one may think about.

Finally, an exchange format for the knowledge of a robot and the description of the ca-
pabilities of a robot among heterogeneous robots will further improve the quality of the
task description. This is true especially for tasks were robots have to cooperate in order to
fulfill a task.

• Robust task execution in noisy and dynamic environments:

Plan invariants have been shown as a appropriate method to encode knowledge of the
structure of a task. Up to now the invariants are encoded by hand. We presented an
algorithm which is able to generate conditions similar to the presented invariants. But
these algorithm lacks of general applicability.

Further research should be done on the question if such invariants automatically can be
derived from a task description and how such a derivation canbe done. Furthermore,
we believe that more encoded knowledge about the structure of the tasks and the world
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can improve the quality of such invariants and could ease theautomated generation of
invariants.

Finally, it is an interesting question if it is possible to extract qualitative knowledge form
raw sensor data without taking the way via a quantitative noise-sensitive representation.

• Fault-tolerance:

The diagnosis system which we have integrated into the framework is able to detect, local-
ize and repair faults in the control software of the robots. But the used component models
have to be extended in order to increase the number and quality of the detect faults.

Furthermore, the diagnosis system have to be extended in thedirection of diagnosis of the
robot’s hardware. For this purpose models of the interaction of the robot with the physical
world are needed. Furthermore, most of this models will model the behavior of sensors
and actors which operate in the continuous world and hardly can be modeled on an abstract
level. Therefore, continuous models and techniques for diagnosis of continuous systems
have to be integrated into the diagnosis system.

So far the repair process for a detected fault in the softwarecomprises the restart of the
faulty and all its strongly related components. Which is an appropriate action if the control
software comprises of several independent applications like in our framework? But if
the control software comprises only a single application the repair action is equivalent
to a complete restart of the software. In the future work should be done on a rollback
mechanism which rolls back the execution to a earlier point in time where the fault has its
root cause. Then the root cause of the fault can be eliminatedand the correct execution can
be resumed. A interesting question is how to realize such a approach on a system which
interact with its environment physically in real-time.

Finally, work should be done on the description of the structure of and relations within
the hardware and the software systems of the robot. If such relations and the behavior
of the components of the systems are modeled more sophisticated repair actions can be
derived. Such repair action roughly can be separated into two groups. The repair actions
of the first category are derived by a planning process and denotes a sequence of actions
which drives the system back to a nominal state. Such repair action are appropriate for
transient faults like segmentation faults. The members of the other category are derived
by a reconfiguration process. If some level of redundancy is part of the system such repair
action can handle permanent faults like broken motors.
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Chapter 9

Summary and Conclusion

In this work we presented a framework which enables the robust intelligent control of au-
tonomous mobile robots for various complex tasks in dynamicreal-world environments.

The demand for such a framework was motivated by the increasing number of task in in-
dustry and everyday live which are carried out by autonomousmobile robots in regular manner.
Furthermore, today mobile robots serve as a real-world testbed for various research areas like
computer science, economy and biology. These facts make autonomous mobile robots interest-
ing for robotics and AI researcher and post a wide range of newscientific questions.

During the work for this thesis we incrementally developed the proposed control framework
in order to answer the raised question and to provide solutions to the problems which arise from
the deployment of autonomous robots in the real world.

We discussed two example application areas for autonomous mobile robots, the RoboCup
Middle Size League and service robotics, in which we successfully deployed and evaluated the
proposed framework.

The overall question we have tried to answer in this thesis was, how can we robustly and
flexibly control a robot for different tasks in dynamic environments under the presence of noise,
uncertainty and faults. The problems we have to solve in order to answer this overall question
lead to five major contributions:

• We developed a modular flexible software and hardware framework which allows us to
carry out various research in the domain of mobile robots. The developed framework is
able to serve as a basis for various tasks and was successfully deployed in the RoboCup
and the service domain. This framework is a strong foundation for our past and ongoing
research.

• We have motivated that a strong deliberative component haveto be part of a control frame-
work of a robot in order to enable a robot to carry out complex tasks. We discussed how
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the above framework has been enriched with reasoning and planning capabilities which
allows flexible deliberative control.

• We have shown the benefit of a flexible logic-based task description. We have integrated
the task description into the framework is appropriate for various tasks, expressive enough
also for complex tasks and finally intuitively readable for humans.

• We have shown the problems which arise if a robot is deployed in a noisy, uncertain and
dynamic environment. We have enriched the control framework with a robust plan execu-
tion which is able quickly to react to unforeseen situation.Furthermore, we have shown
how robustly to bridge the gap between the qualitative and the quantitative knowledge
representation for the robot in the case of a noisy and uncertain environment.

• We discussed the issue of faults at runtime in the software and hardware of mobile robots.
We presented a diagnosis system which is capable to detect, localize and repair some
faults in the control software at runtime. The diagnosis system was integrated into the
framework in order to improve its fault-tolerance. Moreover, we present results of the
diagnosis system from experiments carried out in the RoboCup environment. Finally, we
discussed how the diagnosis system can be extended in order to be able to handle faults in
the robot hardware.

All this features were integrated into a framework for the robust intelligent control of au-
tonomous mobile robots. The complete framework has been successfully deployed in the
RoboCup and service robotic scenario. The framework enabled our robots to carry out dif-
ferent tasks, e.g. robot soccer or book deliveries, in general environments under the presence of
different disturbing issues like noise and faults.

Finally, we discussed some of the shortcomings of the so far implemented framework and
point out some directions for future research.
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