Intelligent and Robust Control of
Autonomous Mobile Robots

Gerald Steinbauer

Dissertation

vorgelegt zur Erlangung des akademischen Grades
Doktor der Technischen Wissenschaften

TU

Grazm

an der Technischen UniveraitGraz
Graz, Oktober 2006

Abstract

This thesis presents a framework for the intelligent rolsasitrol of autonomous mobile robots
which carry out various tasks in real-world environmentse framework has been incrementally
developed for the deployment in two major application aréesRoboCup robot soccer and the
service robotics domain.

The proposed framework is flexible in order to be applicabldifferent domains and for
different tasks. This flexibility is reached by module-bdisiesign of the software, an open or-
ganization of the functions of the framework, and by the useasadigms from the distributed
computing community. Furthermore, the framework comgresstrong deliberative component
which due to the planning and reasoning capabilities esahle controlled robot to carry out
complex tasks. A general task description language enablessy and intuitive specification
of a wide range of different tasks. Moreover, the framewsréihle to robustly execute a tasks in
dynamic and unpredictable real-world environments anctutite presence of noise, of uncer-
tainty in perception and execution and of faults at runtimthe robot system. This robustness is
achieved by a guarded plan execution, a robust mapping fnemuantitative to the qualitative
representation of the world and a model-based diagnosisequadr system.

Finally, a evaluation of the framework in successful expents in the real-world is presented
and shortcomings of the proposed framework and future relseirections are discussed.

Acknowledgement

Doing a PhD thesis in the domain of autonomous mobile robotsespecially in RoboCup
Middle-Size League is never an one-man show. There is a ihuieh of people which helped
and supported me during the work for this thesis.

First of all I like to thank my supervisor Franz Wotawa. He @bt of faith in me and gave
me the freedom to set up a complete RoboCup Middle-Size Leagume &nd to develop and
realize a lot of my ideas. Furthermore, he gave me a brilsamntific guidance in order to learn
doing research. Moreover, he highly supported me with nomeefruitful discussions about my
work, with his wisdom about how a university works, a lot ohéling for new robots, sensors
and equipment and in the jointly establishing of the field afoaomous mobile robots at the
Graz University of Technology.

| also like to thank the second supervisor Uwe Egly from Ursitg of Technology Vienna
for his feedback to this thesis.

My great thanks goes to all current and previous membersed¥tstly HarmlessRoboCup
Middle-Size Team and particularly to ArndtiMlenfeld, Gordon Fraser, Roland Koholkargken
Wolf, Stefan Galler, Martin Weiglhofer, Mathias Brandtser, Michael Hammer, Gerald Kram-
mer, Martin Buchleitner, Simon Jantschedrg Weber and Christine Wagner. Without their
never ending patience many of the ideas and successes d@aimeand this work never have
been possible.

Furthermore, | like to thank all the researchers, professbe deans, the rectors, the admin-
istrative staff, the people from the workshops and all o#maployees of the Graz University of
Technology which supported our RoboCup Team and me duringstedars.

My love and thank goes to my parents, my brothers and my newhfavho taught me to
never stop being curious, supported me during the endlgssafaournament preparation and
always encouraged me to learn and try new things.

Last but not least | am grateful to Petra Pichler the “seceeidh of the Institute for Soft-
ware Technology. She kept away from me almost everything@atministrative and financial
nightmares to give me the time and mood to do more funny tHikgsesearch and playing with
robots.

Contents

1

Introduction 1

1.1 Background and Motivation 1
1.1.1 RoboCupRoboticSoccer. 2
1.1.2 ServiceRobots 4

1.2 ProblemStatement 5

1.3 Major Contribution 6

1.4 RelatedResearch 9

1.5 StructureoftheThesis 9

Frameworks for Mobile Robots 11

2.1 The need for an appropriate framework 11
2.1.1 RobotControl Paradigm, 11
2.1.2 Software Architecture 14

2.2 Existing frameworks for mobilerobots L 15
2.2.1 Task Control Architecture (TCA) 15
2.2.2 Saphira e 16
2.2.3 Carnegie Mellon Robot Navigation Toolkit (Carmen) . - . 16
2.2.4 Open Robot Control Software/Open Realtime Control Ses\(i@ROCOS) 17
2.25 Player/Stage e 18
2.2.6 Middleware for Robots (Miro) 19

2.3 The Developed Framework 23

2.4 Hardware Design e 24
2.4.1 DrivingLayer. e 24
2.4.2 ActuatorLayer 24
2.4.3 SensorlLayer e 25
244 ControlLayer e 25

25 SoftwareDesign. 26
251 HardwareLayer 26

Vi

CONTENTS
2.5.2 ContinuousLayer. 27
2.5.3 AbstractLayer 27
2.6 Software Architecture e 28
2.7 Obtained Resultsand Discussion uuwu.. 29
Looking ahead 31
3.1 Introduction e 31
3.2 ThelLiquid State Machine 33
3.3 Experimental Setup e 35
3.4 Results. 39
3.5 DISCUSSION o e 41
Intelligent Qualitative Control 43
4.1 Planinvariants e 45
4.2 BasicDefinitions 47
4.3 Extended Planning Problem 52
4.4 Automated Generation of Plan Invariants L. 55
45 RelatedResearch 7 5
4.6 DISCUSSION e 58
Bridging the Qualitative and the Quantitative World 61
5.1 Symbol Grounding and Action Selection 64
5.2 APredicate Hysteresis e 65
5.3 ExperimentalResults e 68
54 0penissues 2 7
5.5 Related Workand Discussion 73
Model-Based Diagnosis for Robot Control Software 75
6.1 Model-based Diagnosis 76
6.1.1 Foundations. 76
6.1.2 SimpleExample 79
6.2 Modeling Software Architectures 82
6.3 Monitoring Events, Method Calls, and Processes 87
6.4 Diagnosisand Repair 89
6.5 ExperimentalResults e 90
6.6 RelatedResearch 3 9
6.7 DISCUSSION 94

CONTENTS

7 Model-Based Diagnosis for Hard- and Software

7.1
7.2
7.3
7.4
7.5

Introduction
Example — A Case FromRobotics
Modeling for Diagnosis e
ProblemsandChallenges
DISCUSSION e

8 Shortcomings and Future Research

9 Summary and Conclusion

Vii

100
104
105

107

111

viii CONTENTS

List of Figures

1.1

1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1

3.2

3.3

3.4

Two robots of the RoboCup MSL Team of the Graz University @fhihology

(left) during a game at the RoboCup German Open2004. 3
Outdoor Service Robot. e 5
TheSense-Plan-Acatontrol paradigm. 13
The reactiv&ense-Aatontrol paradigm. 13
The hybrid control paradigm.c.... 13
The layered architecture of Carmen.o ... 17
Screen shot of a simulation done with Gazebo. 19
The architecture of Miro [Utz05]. wu.... 20
The modularized robot platform. 25
Functional view of the software (robot soccer example).. 27
Software Architecture. Solid connections represent CORBL interfaces.
Dashed connections represent communicationviaanevent.... 29

Comparison of the architecture of a feed-forward (lefichaide) with a recur-
rent neural network (right hand side); the grey arrows skébe direction of

computation. L 32

Architecture of our experimental setup depicting thieetdifferent pools of neu-
rons and a sample input pattern with the data path overviewample connec-
tions of a single liquid neuron are shown: input is receivedthe input sensor
field on the left hand side and some random connection witfeniguid. The
output of every liquid neuron is projected onto every outpetiron (located on
the most right hand side). The 8 times 6 times 3 neurons in tbdlenform the

MQUIT™. . o o e 36

Upper Row: Ball movement recorded by the camera. Lower Rastivétion of
thesensorfield.
Sensor activation for a prediction one time step aheaputlactivation, target
activation, predicted activation and error (lefttoright) 39

iX

3.5

3.6

3.7

4.1
4.2

4.3

4.4

4.5
4.6

5.1

5.2

5.3

54
5.5

5.6

5.7

6.1
6.2

LIST OF FIGURES

Mean absolute error landscape on the left and corralatefficient on the right

for a prediction one time step ahedd(wscale) [0.1,5.7],A[0.5,5.7] 40
Correlation coefficient landscape for two time steps id€)®n the left hand side
and four time steps (200ms) on the right hand side. 41

Sensor activation for a prediction two time steps ahéaolit activation, target
activation, predicted activation and error (left to rigiRprameterf2=1.0,A=2.0 . 41

Interaction between agents/robots and their environme. 43
Successful execution of the plan: (1) movelimm _A, (2) pick up letterL, (3)
move toRoom_D and (4) releaseletter. 45

During execution of action (1) the exogenous event,ecttxr toRoom_D, in-

validates the plan. The robot stops the task because thecepessible plan as
the target is not reachable anymore. In (2) the robot detketslosed door and
the violation of the plan invariant¢cessible(Room_D)). Due to the applica-

tion, of plan invariants the infeasibility of the plan is pedletected. 46
Plan execution for the deliver robot example in time aatection of invalid

plans by checking plan invariants and by checking actiorée@nditions. 47
Action execution with respect to time for discrete atsio. 47
Action execution with respect to time for durativeacto 48
From the real world to its qualitative representation.... 62

Three situations in robotic soccer. Quantltatlvelymldae situations are dlfferent
but qualitatively situation (a) and (b) are equivalent. IStedations are part of a

qualitative model. 63
Example: (a) no hysteresis, (b) with hysteresis of Biz& is the goalkeeper, B

the ball, the area N depicts the uncertainty of the ball ppsiheasurements. . . 66
Evaluation of the predicate Reach using hysteresis. 67
Distance measurements for a static object 4800 mm awaytfre robot at dif-
ferenttimesduringaday. e 69
Position measurement for a static object 4000 mm away fin@ robot while the

robot rotates. Positions are shown in the robots local ¢épatel system. 70
A sequence of consecutive distance measurement fotia abgect while the

robot directly approaches the object. 72
Overview of the diagnosis process. i oL 77

Simple diagnosis example with contradiction betweemtlbdeled behavior and
the observations. Observations of the system are showregngrPredictions
from the system model are showninred. 79

LIST OF FIGURES Xi

6.3

6.4
6.5
6.6

7.1
7.2

Simple diagnosis example with the minimal conflicts. Tilst minimal conflict
comprises the componen{d/1, M2, A1} and is shown in green. The second
minimal conflict comprises the componeft¥/ 1, A1, M3, A2} and is shown in

yellow. The intersection of the booth confligtd/1, A1} is shown in blue. 83
Dependencies between software and hardware modules. 84
Timing diagram for diagnosis and repair of a deadlockéerhotion service. . . 92
Timing diagram for diagnosis and repair of a deadlocke@AN service. . .. 95
Interactions between components of a mobilerobot. 99

Observations and model for the running example.101

Xii LIST OF FIGURES

List of Tables

3.1

3.2

3.3

4.1

5.1

5.2

Parameters for the static analog synapses which arda$eed input data into

the LSM. 'EE’ or 'EI’ denotes whether the source and targeiroas of a connec-

tion release excitatory or inhibitory action potentialsspectively. Covariance

for delaymean 1SO.1. o o 0 o 0 0 o e e e 37
Parameters for the leaky integrate and fire neurons ésimgrthe liquid pool.
Letters 'E’ and I’ indicate whether the neurons emit exwtg or inhibitory

action potentials(a, b) denotes an uniform distribution on the interf@ld]. . . . 37
Parameters for the dynamic spiking synapses conndtinigeurons within the

liquid pool. 'EE’, ’El', 'IE’ and I’ denote whether the sorce and target neurons

of a connection emit excitatory or inhibitory action potatg. Covariance for
delaymean 1SO. 1. o 0 o o e e e e 38

Calculated kernels for the deliver robotexample. 56

Number of undesired truth value changesf predicatein Reach for the yel-
low goal for static distance measurements at 17:00 witlkewfit sizes for the

hysteresis. e e 69
Number of undesired changeof predicatein Reach for the yellow goal for
rotating distance measurements with different sizéx the hysteresis. 71

Xiii

Xiv LIST OF TABLES

Chapter 1

Introduction

In this chapter we will discuss the motivation and the backgd which stand behind this thesis
and the work carried out during its preparation. We will shmw science and application meet
in the area of autonomous mobile robot. Moreover, we willctiég two popular application
areas of autonomous mobile robots (robot soccer and semnvigs) in detail, which are the
basic application areas of the work in this thesis. The twgliegtion scenarios will guide us
throughout the reminder of this thesis. Afterwards, we ukscopen questions which arise from
the above two scenarios. Finally, we briefly sketch our pseposolutions of the problems and
our contributions to the field of autonomous mobile robots.

1.1 Background and Motivation

Autonomous mobile robots have gained an increased attelnyithe research community during
the last decade. On the one hand the robots themselves tats# acientific question but on the
other hand, mobile robot have reached a status where thesecas as a real-world testbed for
various research like machine learning, evolutionary ilgms, economy and biology inspired
methods. But also in our society the awareness of such kirmbots increase. In the meanwhile
almost everybody is aware of or definitely knows a mobile taystem. Today, there are a lot of
different robots deployed in competitions like the RoboCugmrfland window cleaning, logistic
domains, of course military applications and many other @os1 The good news is that most
of these mobile robots have reached robustness and pubgpi@nce in these application areas.
It can be foreseen that in the near future the demand of moblilets which are able to
autonomously carry out various task will significantly iease. Therefore, the range of the
character of different tasks a robot is able to perform amddperational environments will
dramatically increase. Furthermore, due to the expectetbeu of unexperienced user which
will have first contact with such a robot the demand of autoypand robustness of the deployed

1

2 CHAPTER 1. INTRODUCTION

systems also will further increase.

From the research perspective the demand on autonomoutemaints is very interesting.
Due to the variety of the robots, the tasks and the enviromsreelot of questions and challenges
emerge. For us one question is of major interest. How can welale control systems for
autonomous mobile robots which are able to robustly coatrobot in different tasks in dynamic
environments under the presence of noise, uncertain sdatoand faults?

In the next section we describe two popular scenarios whielused in the area of research
on autonomous mobile robots in order to answer the aboveiqnes

1.1.1 RoboCup Robotic Soccer

The Robot World Cup Initiative (RoboCup for short) is an inteloral attempt by universities
and research centers to foster Artificial Intelligence artdlligent robotics research by provid-
ing a standardized problem that poses a tough challengestera scientific disciplines and
technologies. The first RoboCup competition was held 1997CGAllih Nagoya. The interest in
RoboCup and the number of participating teams have increasey gear since then. In 2005
the RoboCup was held in Osaka Japan and attracted about 2@@@ppats in 330 teams from
31 nations [BIJNTO6]. Until a team of robots is actually ablgpésform a soccer game, various
technologies have to be incorporated, including multiregmoperation, strategy acquisition,
real-time reasoning, machine learning, robotics, pereepvision and sensor-fusion. Contrary
to other autonomous mobile robots, which are optimized fsingle heavy-duty task, robot
soccer is a task for a team of cooperative fast-moving robadast changing environment.

To interest and educate young students and researcheesfialthof Al and Robotics is also
an important goal of the RoboCup. Throughout every year the Bopd-ederation organizes
a number of national and international competitions, carfees and workshops. These events
are great opportunities to objectively evaluate your wankirty a competition, to present and
discuss your approaches and new ideas.

The RoboCup is organized in several leagues. They differ iaragaspects: simulated or
real robots, the types of sensors (global or local), and iteeand type of the robots. Hence,
RoboCup provides the optimal platform and testbed for vanieasarch topics.

Part of the RoboCup is the so callbtiddle Size LeaguéMSL). Our teamMostly Harmless
1 [SBB*06] participates in this league since 2003 and we use thigikeas a testbed for our
research. In the MSL, teams of up to six robots whit a apprakehy size of 50 cm times 50
cm times 80 cm compete. Figure 1.1 shows a game situation intamational tournament.
The size of the field is currently up to 14m x 12m. The majoredéhce to other leagues or

1The name Mostly Harmless originates from the title of tHelfok of the famous book series “The Hitchhiker’s
Guide to the Galaxy” by Douglas Adams.

1.1. BACKGROUND AND MOTIVATION 3

competitions, in addition to the size of the robots and tHd fis that no global or external sensor
systems for perception are allowed. Thus the robots havelyaaetally on their own sensors,
including vision. The robots are fully autonomous, i.egjtisensors, actuators, power supply and
computational power are on-board, and no external intéiaeby humans is allowed, except to
insert robots to or remove robots from the field. External potational power is allowed, but
most teams use it only for monitoring purposes. Wirelessmamication between the robots
and/or with the external computer is also allowed. As in nufghe other RoboCup leagues,
relevant objects are distinguishable by their color: thikibarange, the goals are yellow and
blue, the robots are black, the field lines are white, the ratarkings (to distinguish the teams)
are magenta and light blue. The middle-size league prowadesrious challenge for research
disciplines such as cooperative multi-robot teams, autans navigation, sensor fusion, vision-
based perception, planning, reasoning and mechanicgrgesiname only a few of them.

Figure 1.1: Two robots of the RoboCup MSL Team of the Graz Usitienf Technology (left)
during a game at the RoboCup German Open 2004.

In the past years the community decided to remove the suliogs of the field for the
middle-size league (2002 the walls were replace by a groymlafs, 2003 the poles were also
removed), as a step towards a more realistic soccer game oot new scientific challenges.
As the ball and also the robots are able to leave the field narensurrounding scenery is not
defined anymore, the demands on the robots regarding ballihgnperception, and strategy
increase. It could also be foreseen that in the near fut@di¢hd size further will be enlarged

4 CHAPTER 1. INTRODUCTION

in order to foster cooperative play and that the field will hgsade which raises a lot of new
challenges for the perception, e.g., robust computerwisio

Currently Artificial Intelligence for planning and coopeaat do not yet play such an impor-
tant role for the success in the tournament as, for exampdéhier leagues which use simulated
agents. But for a long-term scientific development thesetaedlevant issues. The problems
caused by perception (mainly vision), self-localizatiomechanical and electronic design (ball
handling, robot drives and sensors) are still dominating,rmake it difficult to implement adap-
tive, intelligent, and cooperative team play. All this cahissues are the interesting question we
try to answer with our proposed approach of intelligent silmontrol.

1.1.2 Service Robots

The ultimate goal of research in the area of service robadis islieve people from hard, dan-
gerous and monotonous work. The dream of having a mecham@ogdanion which does all the
boring work for us is as old as the mankind.

Figure 1.2 shows the prototype of our outdoor service robutlwvis based on a Pioneer
AT3. Its task is to deliver good like books or letters withiarainiversity campus. The campus
is about 1000 m times 500 m large and comprises all kind ofdimgk, streets, parking lots
and parks. The requirements for the control system of thi®trare similar to those in the
previous section. But the quality and the intensity of thebfgms are much higher than in
the regulated soccer domain. The operational time is muafpeloand the environment is less
restricted but more dynamic due to open spaces, pedestranssand so forth. Furthermore, the
environmental conditions like ambient light vary much mareich increases the noise of the
perception. Fortunately, it is possible to transfer manyhefapproaches for the robot control
from the soccer domain to the service robot domain. But sontbese approaches have to be
scaled or adapted for the increased demands.

We use the service robots domain as the second scenari@fiigg®arch on robust intelligent
control of autonomous mobile robots. The use of this domasthree major aspects. Firstly, it
is the natural extension of the regulated testbed of RoboCaporfily, many techniques from
RoboCup can be transfered to and can be evaluated in thisetiffedomain. Moreover, the
service domain post additional challenges for the develapethods and for robotics research
in general. Finally, the service robot domain will have adbtmpact on the economy and the
society in the near future. On one hand the industry demaordatklligent logistic system and
on the other hand we face with the problems of an ageing sociéterefore, the demand for
intelligent autonomous robots will significantly increase

1.2. PROBLEM STATEMENT 5

Figure 1.2: Outdoor Service Robot.

1.2 Problem Statement

This thesis is focused on is abstract intelligent robustrobof autonomous mobile robots. As
said previously this kind of robot will gain even more attentin the near future and their appli-
cation for non-trivial tasks in general “everyday live” @mnments will significantly increase.
These scenarios raise a lot of scientific questions in ocdenable robots to act robust and really
autonomous for various tasks and in different environme3iish a robot has to be equipped with
an intelligent robust control framework. Such a feasibserfework should fulfill the following
requirements:

e Flexibility and reuse of components: Core components of the framework should be
reusable and a new arrangement of the components within graavework should be
easily possible. Furthermore, the framework and its coraptsishould enable the robot
to perform a wide range of different tasks without significarodifications or even recom-
pilation.

¢ Planning and reasoning for complex tasks:Complex task cannot be carried out by a
robot without the capability of reasoning and planning. rElfiere, an appropriate delibera-
tive component have to be part of th control system. Suchlibgees furthermore demand
for an appropriate abstract logic-based representatitimedfnowledge of the robot.

6 CHAPTER 1. INTRODUCTION

e General, expressive and intuitive task description:A robot and its control should be as
flexible as possible in order to carry out many different sadkherefore, a task description
language is needed which is general and expressive enowtgstoibe a wide range of
different task in different worlds. Furthermore, such &tdsscription should be intuitive
in order to allow also non-experienced users to specifylaftashe robot.

e Robust task execution in noisy and dynamic environmentsRobots usually carry out
their tasks in the real world. The disadvantage of the readldis that it is inherently noisy,
uncertain and dynamic. Therefore, the perception of thetrabd outcome of actions the
robot performs are uncertain to a certain level. Furtheenibie world is dynamic and may
evolve in a way the robot has not foreseen. Therefore, thet ifeds to have the capability
to robustly execute task in the presence of noise, dynangd@aogenous events.

e Fault-tolerance: Faults in the software and hardware of mobile robots arerenfie A
robot which autonomously performs a task has to have somne¢dévault-tolerance. It is
desirable that the robot is able to detect and localizedanlhis system and is able to set
the appropriate repair or control actions in order to be &bleomplete its mission or at
least to proceed to a safe mode.

The aim of this thesis is to integrate as many as possibleeoéliove features in a general
framework for the intelligent robust control of autonomansbile robots. The next section list
the contributions we have made to the scientific communityrder to develop our framework.

1.3 Major Contribution

The scientific contribution of this thesis is the increméd&velopment of a framework which
allows a flexible and robust control of an autonomous molaleot in different real-world ap-

plication like the RoboCup Middle-Size League and the semobetic domain. The developed
framework solves different problems which arise from thaaiyic behavior and uncertainty of
the real world and the complexity of non-trivial tasks forragp of autonomous mobile robots.

e Software framework: The first significant contribution achieved during the pregian
of this thesis was the development of an open flexible soéviramework for the control
of autonomous mobile robots. This framework serves as the fma all further research
done during this thesis. The further research mainly corezkthe robust intelligent con-
trol of mobile robots. Therefore, much work has been doné&énarea of hybrid control
architectures of mobile robots. The developed framewoblaged on the Miro-framework
of the University of Ulm [USEKO02]. Many of our developmentaditheir way back to

1.3. MAJOR CONTRIBUTION 7

the original framework and are used by several internaticgsearch groups. All fur-
ther developments were integrated into the framework ireotd achieve the goal of a
intelligent robust control of autonomous mobile robotse Tramework was described in
[FSWO04b] and was used in different application domains likédteup robot soccer and
service robotics.

e Prediction of movement:

We have developed a novel prediction method for the movewofesttjects. The approach
is used to predict the movement of the ball in sequences oémimages in the RoboCup
environment. The method is based on Machine Learning ancettemtly proposed com-
putational paradigm of the Liquid State Machine. The Lig8ithte Machine comprise
a heavily interconnected pool of spiking neurotige(liquid and a relatively simply set
of readout neurons. The liquid projects the input data ingh4tiimensional space were
simpler readout methods like linear regression can be uBee visual input is presented
to a visual receptor field and the appropriate prediction tngieed. The main advantage
is that arbitrary non-linear predictions can be performedhe approach. The work was
published in [BKLS05] and received a nomination for the BegteP@&ward at the 18 In-
ternational Conference on Industrial & Engineering Appimas of Artificial Intelligence
& Expert Systems (IEA/AIE) in 2005.

e Robust plan execution:

As shortly motivated above, only a hybrid control architeet(a combination of reactive
and deliberative control) seems to be appropriate to rbpashtrol a autonomous mobile
robot carrying out a complex task. Therefore, an abstragclaeel of control with reason-
ing and planning capabilities has to be part of the architectUsually, planning modules
lack of reactivity. This is a major drawback in highly dynantiomains like robot soccer.
We have developed a general robust framework for plannidgodan execution in mobile
robots.

The main contribution in this area was the developmemianh invariants The invariants
are part of each planning problem and are permanently nreditduring plan execution.
Plan invariants enables a quick reaction to exogenoustsefigich invalid a long-term
plan. Such invalidation may be not recognized or even latérout the use of the invari-
ants. Moreover, the parts of the planning problem for a gtesk easily can be exchanged
for different applications or robot capabilities. This Baogeability forms a sort of de-
liberative programming language which can be used in diffedomains. The planning
framework is successfully used in several different aggin areas like robot soccer and
service robotics and is described in [FSWO05].

CHAPTER 1. INTRODUCTION

e Robust symbol grounding:

Another drawback of the use of deliberative control is tmaamny serious robot system
at some point in the system one has to switch from the quéwiteepresentation of the
world to a qualitative abstract knowledge representafidns process is known in the lit-
erature as symbol grounding [RNO3].

Due to the quality and the noise of the robots sensors, thatitai@ve world model is
inherently effected by uncertainty. We like to avoid unagtty or probabilities on the
gualitative level because the complexity of the knowledgeesentation and the planning
and reasoning process will drastically increase. Due tatizertain nature of the quanti-
tative representation we inherit problems like predicatgl@tion on the qualitative level.
In order to make this symbol grounding more robust, we pre@osew mechanism for
the calculation of the truth value of predicates. The apghaa based on the well known
hysteresis mechanism. The idea is to delay the change altthevalue until a real signif-
icant change in the quantitative world takes place. The ry@abs| grounding was applied
and evaluated in the RoboCup domain. The approach and theésresarke published in
[FSWO04a] and [SWWO05].

e Model-based diagnosis for mobile robots

Even if the hardware and software of an autonomous mobiletrislkcarefully designed,
implemented and tested, there is always the possibilityfadith at runtime. But some level
of redundancy and robustness against such fault is cruwial truly autonomous robot. In
order to improve the robustness of the control system agfainks at runtime, we enriched
the software framework with fault detection and localiaatcapabilities.

The diagnosis capabilities are based on model-based diegribhe used correct behav-
ioral model of the system is mainly derived from the commatian means of the different
software components of the system. Due to the CORBA-basedextthie of the control
software, the derivation of the model and the monitoringh& tommunication is quite
simple. Deviations of the desired and the actual behavidh®fsystem is detected by a
set of observers. The output of the observers triggers tigndsis and is used in the fault
localization by logical reasoning. Moreover, we developadapproach which allows the
system to correct detected faults on the fly.

The diagnosis system was described in [SWO05b] and [SWO5c]|wawéssfully tested and
evaluated in the RoboCup domain [SMWO05]. We received for thegsed approach the
RoboCup Engineering Challenge Awaatl the RoboCup 2005 in Osaka. Furthermore,
we worked on the integration of diagnosis of software andlfware of mobile robots.
The different nature of the both domains raised a lot of neallehges in the domain of
model-based diagnosis [SWO05a].

1.4. RELATED RESEARCH 9

1.4 Related Research

Prior research related to the topics of this thesis, altesmor former approaches are presented
and discussed within the corresponding chapter.

1.5 Structure of the Thesis

The remainder of the thesis is organized as follows. In thieviing chapter the developed
software framework running on our robots is motivated arstdbed. Furthermore, the require-
ments for such software frameworks and other existing freonkes will be discussed in more de-
tails. Moreover the developed hardware of our RoboCup soobets will briefly described. In
Chapter 3 a novel method for the prediction of object movesiergeries of images is presented.
The prediction is based on the liquid state machine. Themmdational paradigm enables a pre-
diction of complex movements of objects. The next chapteeintelligent robust control. In
this chapter we introduce and describe mechanisms for ralaliberative control of robots in
dynamic and partially unpredictable domains. Chapter Sudis¢he problem of bridging the
guantitative and the qualitative representations in advofluncertain sensors and perception.
Moreover a solution to the problems in deliberative contalised by this uncertainty is pre-
sented. The following chapter describes a framework for 8i@hsed Diagnosis for the control
software of autonomous mobile robots. Furthermore, th@telnahows how the framework is
extended towards automated repair of faults at runtime.Qtrepter 7 discuss how diagnosis of
hardware and software can be integrated in a framework whegcforms automated diagnosis
and repair of faults in a mobile robot platform. The followiohapter raises some directions for
future research. Finally, Chapter 9 presents a summary eidhieand draws some conclusions.

10

CHAPTER 1.

INTRODUCTION

Chapter 2

Frameworks for Mobile Robots

2.1 The need for an appropriate framework

In research in the area of autonomous mobile robots an apategoftware framework is cru-
cial. The framework should allow to robustly control dité&t mobile robots during the execution
of a wide range of different tasks. Moreover, it should beifiexenough to allow to investigate
different control strategies and algorithms. Furthermtire extension of the framework towards
a handling of more complex tasks and environment should biéygaossible. Finding the ap-
propriate framework for a special purpose is a very challengask. Moreover, no one will
expect to develop a single framework which is appropriatefiqpurposes. There is always the
tradeoff between general applicability and usability. Testion for an appropriate framework
can be divided into two parts. The first and more easy to anpariis which control paradigm
is used. The second part is more related to engineering amzkots the appropriate software
architecture. In [Ore04] the topic of the choice and implatimg of an appropriate framework
is discussed in more detail. Parts of this chapter were giuddi in [FSWO04b].

2.1.1 Robot Control Paradigm

The robot control paradigm guides the organization of th&rob of a mobile robot which en-
ables the robot to perform given tasks. It structures howrthmt maps its sensor readings
to actions via a more or less intelligent decision making ud@d One of the first attempts to
structure control was thBense-Plan-AqiSPA) paradigm. Figure 2.1 depicts the paradigm. The
paradigm was inspired by the research on Artificial Inteltige of the late 60’s and was first
successfully used by Nilsson in the rotithakey[Nil84]. It was guided by the early view on
Artificial Intelligence. The paradigm divides the controta three functionalitiesSENSIs re-
sponsible for the perception of the robots internal statbtsrenvironment. The data provided by

11

12 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

the robot’s sensors are interpreted and combined to a tabsaact model of the world. Based
on the information in the world model, a description of thpalailities of the robot and the goal
of the task thd®PLAN module tries to find a plan (i.e., a sequence of actions) wiwidliead to

a given goal. Such a planning problem comprises an init&kgt a set of possible action

and the desired goal stafe The ACT module executes this plan in order to achieve the goal.
Although, the SPA paradigm is very powerful and flexible iffsts from a set of drawbacks.
First of all, planning needs a lot of time even on very powechmputers. Therefore, the reac-
tion to dynamic environments is slow. Planning algorithreseyally work on a qualitative and
abstract representation of the world. The design of sucpr@sentation and the transformation
of quantitative sensor data into this representation areden being trivial.

The reactiveSense-AdtSA) control paradigm in contrast provides a completelfedént or-
ganization of control. Figure 2.2 depicts the SA paradigime paradigm is biologically inspired
by the mechanism of reflexes which directly couples the ganpat with the actor output. Such
a reflex of the robot is commonly called a behavior. More caxgdehaviors emerge trough
the combination of a set of different reflexes. A system wtialows this paradigm was first
proposed in the mid 80’s with the Subsumption ArchitectyréBbooks [Bro86]. This architec-
ture brought a big progress in the research on mobile rolmotssastill popular and widely used.
Brooks argued that abstract knowledge about the world arsbnéag is not necessary for the
control of a mobile robot. The paradigm is able to control botcalso in a dynamic environ-
ment because the reaction time is very slow due to the engadithe desired behavior into a
reflex and the tight coupling of the sensors and actors. Atjhorelatively complex behaviors
can be achieved by blending different reflexes, the paradigonone to fail for more complex
tasks. This arises from the fact that no explicit informatadbout the internal state of the robot
and about the world and no additional knowledge about tHeisassed. Therefore, for complex
tasks a goal-driven approach is much more appropriate tsange instinct-driven one.

Although, the choice of an appropriate control paradigm etimes seems to be more a
guestion of faith than science, there is a relatively cleanmitment within the robotics research
community that the most appropriate architecture is a kyarchitecture (see Figure 2.3). Hy-
brid systems combine the advantages of the planning anc#utive paradigm while avoiding
most of their drawbacks. Such systems use reactive beawtoere reactivity is needed (e.g.,
avoiding a dynamical obstacle) and use planning and reagamen complex decisions have
to be performed and some delay is not critical. Usually systesns comprise three layers.
The Reactive Layeuses reactive behaviors to implement a fast coupling of¢éhea@'s and the
actors in order to be reactive to a dynamic environment. ¢gn this layer implements the
basis skills of a robot like e.g. basic movement primitived abstacle avoidance. Tieliber-
ative Layerhas a global view on the robot and its environment and is respke for high-level
planning in order to achieve a given goal. Typical functidres which are located in this layer

2.1. THE NEED FOR AN APPROPRIATE FRAMEWORK 13

Robot
§ BEHAVIOR
BEHAVIOR
Robot
SENSE - ACT
»| PLAN >
A
Y
Environment Environment
Figure 2.1: The Sense-Plan-Actcontrol Figure 2.2: The reactiv&ense-Actontrol
paradigm. paradigm.

are mission planning, reasoning, localization, path glegnand the interaction with humans or
other robots. Th&equence Layes located between the Reactive and the Deliberative Laykr an
bridges the different representation of the two layers. Sd¢gencer generates a set of behaviors
in order to achieve a subgoal submitted by the Deliberatasgek. It is also responsible for the
correct execution of such a set of behaviors and shouldrmtbe higher layer if the subgoal was
successfully reached or the execution failed due to sons®nea

Robot
PLAN
Sequencer
BEHAVIOR ‘
BEHAVIOR
BEHAVIOR

»| SENSE ACT |
Environment j

Figure 2.3: The hybrid control paradigm.

14 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

A more deep introduction into the different control paradigan be found in the book by
Kortenkamp and colleagues [KBM98] and the book by Murphy [0R]r

2.1.2 Software Architecture

The control paradigm guides the functional decompositicdh@control on a more abstract view.
The software architecture on the other hand guides the deasition in different components

and the implementation of such components. Furthermoo®niterns about the encapsulation
of different functionalities into manageable modules. Adaoftware architecture should also
provide among others the following features:

e robustness

o flexibility

e sensor and actor interface abstraction

e easy exchange and reuse of components

e reliable communication between components

e easy adaptation of the system for new purposes
e easy porting to other hardware platforms

e support of a defined development process

e support for test and evaluation

The question about the software architecture is not tigtulypled to pure robotic research.
Therefore, the above requirements and principles are éghor most of the implementations
of prototypic robot research software. Consequently, mbgheresearch software is hard to
maintain, to port and to extent and therefore lacks of geénexability. But fortunately, many
of the best-practice principles and processes from thevaodtdevelopment community are now
widely accepted by the robotic research community. Theseipies among others are object-
orientated design, the use of design patterns, the reustatflished libraries, the use of widely
accepted standards and the use of test and evaluation faksew his leads to higher quality,
more exchangeable and more flexible software. Furthernsogeeat pool of software frame-
works for robotic research have been created. Most of thembeaused out of the shelf and
fulfil most of the requirements proposed by robotic reseaBzdme of these frameworks will be
discussed more deeply in the next section.

2.2. EXISTING FRAMEWORKS FOR MOBILE ROBOTS 15

2.2 Existing frameworks for mobile robots

This section introduces some popular existing framewaoksrfobile robot research. Some of
them are more general and flexible than others while someeaf tire closely related to specific
robots or tasks. The advantages and the drawbacks of tkeeaitfframeworks will be presented.
A very good overview and a more formal and detailed evalunatieexisting frameworks is given
in [OCO3].

2.2.1 Task Control Architecture (TCA)

The Task Control Architecture (TCA) was developed by Reid Simsrett the Carnegie Mellon
University [Sim94].

TCA allows you to construct a distributed system without hgwio build your own remote
procedure call mechanism. At its core, TCA provides a flexibkrhanism for passing mes-
sages between processes (which were called modules). Tinmawaication mechanisms auto-
matically marshal and unmarshal data, invoke user-definadlers when a message is received,
and include both publish/subscribe and client/server tgpssages, and both blocking and non-
blocking types of messages. TCA also provides orderly adoessbot resources so that you
don’t have to build your own queuing mechanism. This feaume also now available sepa-
rately from TCA in thelnter Process CommunicatidiPC) library.

TCA simplifies building task-level control systems for m@bibbots. By "task-level”, TCA
means the integration and coordination of perception,mienand real-time control to achieve
a given set of goals (tasks). TCA provides a general contaohéwork, and it is intended to be
used to control a wide variety of robots. TCA provides a hig¥el, machine independent method
for passing messages between distributed machines. AlthbGA has no built-in control func-
tions for particular robots (such as path planning algarg)y it provides control functions, such
as task decomposition, monitoring, and resource managdhsrare common to many mobile
robot applications. The development of high-level conis@dupported by th@ask Description
LanguaggTDL) [SA98]. The language consists statements to handledad task control. The
control program written in TDL is transformed into C++ codéuigh will be compiled and linked
to the TCA core.

TCA can be thought of as a robot operating system — providirtged ®r building specific
robot control systems. Like any good operating system, tbleitecture provides communica-
tion with other tasks and the outside world, facilities fonstructing new behaviors from more
primitive ones, and means to control and schedule tasksdmatidle the allocation of resources.
At the same time, it imposes relatively few constraints andterall control flow and data flow
in any particular system. This enables TCA to be used for a wadiety of robots, tasks, and
environments. One successful example is the robot XAVIERHS97].

16 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

2.2.2 Saphira

Saphira has been developed by Kurt Konolige at the Stanfosg@d&eh Institute (SRI) Interna-

tional [KM98]. It is an integrated architecture for robotrpeption and control and was first
developed within the Flakey robot project. Saphira is a wedwn and widely used framework

because it is shipped as the basic software suite with thenevomal research robots of Pioneer
family by ActivMedia. Therefore, Saphira is now tightly quead to these robots.

Saphira comprises of two architectural layers. Bystem Architecturprovides basic com-
munication and interfaces to the actors and sensors of & amlgbis implemented by th&RIA
library. The interface to higher layers in the hierarchy pn@vided by thestate reflectora con-
tainer for an abstract view of the internal state of the actord sensors of a robot. ARIA is
maintained by ActivMedia and provides access only to theware of robots of the Pioneer
family. The second layer is th€@ontrol Architectureand is build on top of the state reflector.
The Control Architecture comprises modules for controllammgobot. These modules mainly
concern navigation. The main features within this layerthed ocal Perception Spac@PS),
which contains a robot-centric view on the environment up few meters radius around the
robot, and th&lobal Map SpacéGMS), which provides a global view on the environment and
its structure. Furthermore, this layer provides the poldsitbo easily set up reactive behaviors
using a fuzzy blending of behaviors. The implementationighér level tasks is supported by
the C-like scripting languag€olbert[Kon97]. Colbert contains statements for a wide range of
control concepts. A big advantage of Saphira is that adwaneethods for obstacle avoidance,
localization and path planning are integrated and reaedyst

Although Saphira is quite common in robotic research andiges an easy start for the work
with robots of the Pioneer family, it has some drawbacks twiwgver the value for general use.
Saphira has been evolved over a long period of time. Thexetbe design and implementation
is somehow awful. A porting of Saphira to other robot platisris nearly impossible. Finally, an
adaptation for specific tasks beyond the functionality et by the Colbert language is very
exhaustive.

2.2.3 Carnegie Mellon Robot Navigation Toolkit (Carmen)

The Carnegie Mellon Robot Navigation ToolKi€armen) is an open-source collection of soft-
ware for mobile robot control developed at the Carnegie MelUmiversity [MRTO03]. Carmen
is modular software designed to provide basic navigatiomipves including actor and sensor
control, obstacle avoidance, localization, path plannosgpple-tracking and mapping.

Carmen was designed to provide a consistent interface andia et of primitives for
robotics research on a wide variety of commercial robotfptats. The ultimate goals of Car-
men are to lower the barrier to implementing new algorithmseal and simulated robots and

2.2. EXISTING FRAMEWORKS FOR MOBILE ROBOTS 17

to facilitate sharing of research and algorithms betwe#arént institutions. Robotics research
covers a spectrum of different approaches and formalisnige developers have adopted the
philosophy of making Carmen as inclusive as possible.

High level tasks

Localization Navigation

Hardware management cgllision detection
and communication

Figure 2.4: The layered architecture of Carmen.

Carmen uses a three-tier architecture (see Figure 2.4) base layemprovides abstract in-
terfaces to sensors and robot platforms. There exist alraadide range of implementations
of the interfaces for robot research platforms, e.g., tten&er family from ActivMedia, the
B21 and the the ATRV family from iRobot, and for different rarggnsors, e.g. the Sick LMS
200. Unfortunately, Carmen currently only provides inteefs and implementations for robot
platforms equipped with a differential drive. Furthermaitee base layer provides simple con-
trol loops, e.g., motion primitives. Theavigation layerimplements navigation primitives, e.g.,
localization, path-planning and object tracking. Carmemjgoses a large set of ready-to-use
implementation of advanced algorithms for path-plannikgr{00] and for laser and map-based
localization [FBDT99]. There also exist abstract interiaeéhich enable an easy extension of
Carmen with new navigation capabilities. The last layer ©itlsé user-level tasks which are
based on the functionality of the lower layers. All functidities across the layers are encapsu-
lated in small modules with clear interfaces. Carmen useB@dibrary (see Section 2.2.1) for
the communication between those modules.

Finally, Carmen provides excellent visualization tools &mals for automated mapping of
different environments. Although Carmen provides an eagynider the development of a robot
control software and a wide range of off-the-shelf compasiethe use of Carmen is mostly
related to the localization and navigation research of thelbpers.

2.2.4 Open Robot Control Software/Open Realtime Control Services
(OROCOS)

Open Robot Control SoftwafBru01] andOpen Realtime Control ServiclBBSK03] are the two
parts of the OROCOS open-source project. The project aimartiistious goal of providing

18 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

both general standards and designs for robot control agigits and ready-to-use implemen-
tations of modules guided by these standards and desigrsprofect’s main feature is that it

provides interchangeable open-source implementatioeloleed under state-of-the-art software
development principles. Because well established softdavelopment principles are hardly
found in todays robot control software.

While other existing frameworks share the common goals @frahmtangeability, reuse and
common interfaces with OROCQOS, the project goes one stepefurit also tries to establish
basic standards of notations for e.g. coordination syst&msmatic and motion control only
to name a few. These feature will also engage the interchahgeethods and code between
the robot research community. The system has a very openxd@alséble design enabling an
easy contribution of methods and codes to the project. Asmiatvantage of the project is that
it supports hard real-time control which very much wideresplossible application areas for the
projects.

The project provides already a wide range of control modtaeging from a simple PID
motor controller to the complete control of a six-DOF robahaMobile robots are currently not
covered by the project. These types of robots are in the fotfigure extensions to the project.

2.2.5 Player/Stage

Playeris a device server for sensors and actors of a mobile roboS[®¥]. The development
has been carried out as a open source project by a number pliepebich contribute to the
project. It provides a connection to the sensors and act@sabot for a client through simple
TCP/IP sockets.

The message format is standardized for different types iwdms and actors. Therefore,
some level of hardware abstraction is provided. While theaise communication by simple
socket is slim and efficient the work with messages compisira chunk of bytes is somehow
cumbersome. But one design goal of Player is to be very effiteebe able to serve a near
unlimited number of clients at the same time. However, thee afssockets as communication
mechanism provides independence of the used OS and progngnanguage. The modular
design of the Player server enables an easy integrationvohaedware into the server. Player
uses a uniform abstraction for various devices by the UNK¥-treating of devices as files.
Reading data from a sensor is done by an ordinary read on itssdevde and sending commands
to an actor is done by an ordinary write to its device node. Sdreer already supports a number
of commercial research robots like the Pioneer family byiAdedia and the B21 by iRobot.

While Player is an efficient interface to sensors and actatssansed by many researchers it
has a main drawback. It neither provides mechanisms or raedat reactive control of a robot
nor it provides any deliberative layer. Therefore, up frdra sensor and actor level all parts of

2.2. EXISTING FRAMEWORKS FOR MOBILE ROBOTS 19

SRR

&) amera [
REES SE|
Controls

ime 111.700 ma time 111,640

111.680

Figure 2.5: Screen shot of a simulation done with Gazebo.

the robot control have to be implemented by the user.

Together with Player comeStage Stage is a simulator for a group of robots in a two-
dimensional bit-mapped environment. Stage simply can bd as plug-in to the Player device
server and simulates the behavior of the actors and seng@ given virtual environment. Stage
is able to simulate a wide range of different robot platfoand a great number of sensors includ-
ing sonar, laser scanner and odometry. Due to the usage Gfgee Dynamics Engin@ODE)

a very realistic simulation encountering many phenomer, eollisions and acceleration, is
provided. Recently, with Gazebo a Player-compatible sitoulfor realistic three-dimensional
environments was introduced into the project. Figure 2dwsha screen shot of Gazebo simu-
lating a Pioneer 3AT robot equipped with a laser-scannetaacamera.

2.2.6 Middleware for Robots (Miro)

TheMiddleware for RobotéMIRO) is a distributed object oriented software framewfmkrobot
applications. It has been developed at the Department of Gangcience at the University of
Ulm [USEKO02, Utz05]. The aim of the project is to provide areaglexible software framework
for applications on mobile robots. The goals for the desigMioo comprise the following:

o full object-oriented design
e client/server System design

e hardware and operating system abstraction

20 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

open architecture approach

multi-platform support, communication support and inpenability

software design patterns

agent technology support

Miro achieved these goals by an architecture which is divieo three layers. Figure 2.6
depicts the architecture of Miro. The usage of Agaptive Communication EnvironmegACE)
and CORBA for the communication between the layers and oth@icagions enable a flexible,
transparent and platform-independent development. MiesThe ACE Object Request Broker
(TAO) as CORBA framework. The implementation of the framewsrkompletely performed
object-oriented in the C++ programming language.

_A‘pplication | Application _A‘pplication
I

[[]
Miro Frameworks
[T 1 11

| Miro Sensor/Actuator Services |
L[T I | [T [T | [T [
Miro Communication/Configuration |
(L] [T T | [
Miro :I Device Layer Device La pr |
[T1
| Linux OS | | Linux OS | |Windows/SoIaris 0s |
{’s’p’;r};gv’gg""""‘; ‘Pioneer1 | | PCMorkstation |
m ‘

Figure 2.6: The architecture of Miro [Utz05].

TheMiro Device Layerprovides object-oriented interface abstractions foreails®ry and ac-
tuatory facilities of a robot. This is the platform-depentpart of Miro. TheMiro Communica-
tion and Service Laygrrovides active service abstractions for sensors andtactiaa CORBA
Interface Definition Languag@DL) descriptions and implements these services as né&twor
transparent objects in a platform-independent manner.pfiigrammer uses standard CORBA
object protocols to interface to any device, either on tlwall@r the remote robot. Thigliro
Frameworkprovides a number of often used functional modules for neolmbot control, like

2.2. EXISTING FRAMEWORKS FOR MOBILE ROBOTS 21

modules for mapping, self-localization, behavior genermatpath planning, logging and visual-
ization facilities.

Although Miro is a software framework and no ready-to-udeot@ application, it was de-
cided to use Miro as the basis for our own control softwareomplete description of Miro and
many useful examples can be found in [Tea05]. The use of Mira basis for further develop-
ments has the following advantages:

e Object oriented design The design of the framework is fully object-oriented, eedied
and easy to understand. Moreover, there are a whole buneladyto-use design patterns
like, e.g., multi-threading, device reactors and so forth.

e Multi-Platform Support and Reuse: Miro comprises a great number of abstract inter-
faces for numerous different sensors and actors, e.g., eadgnbumper, sonar, laser and
differential-drives. Moreover, for all of these interfacalready implementations for many
different robot platforms are provided. Due to the cleaigleand the use of CORBA and
IDL the implementation of interfaces for a new robot platfioand the integration of new
interfaces is straight forward. Miro currently supportsnydifferent common robot plat-
forms like the B21 and the Pioneer family. Furthermore, masgarch groups use Miro
for the control of their robots. We like to mention here the BGbp Middle-Size Teams of
the University of UIm [KMU'04], Technical University of Munich [SKGB04] and Graz,
University of Technology [SBB06]. Recently, contributions of different research groups
have been integrated into Miro. These contributions mainlycern interfaces and service
for new hardware, e.g., GPS receiver, compasses and raifurphs.

o Communication: For the communication between different components ofdbet con-
trol software Miro, provides two main mechanism.

Direct CORBA method calls are used in a client/server manmea fine-to-one commu-
nication of components. These mechanism is usually useatfor and sensor interfaces.
Due to the use of CORBA, the user has not to deal with the intemwfatuch a commu-
nication, e.g., marshalling or memory management. Furtbeg, the communication is
completely transparent even if the client and the serveorudifferent computers or use
different programming languages.

The event channel on the other hand provides on-to-n conuation. The event chan-
nel follows the producer/consumer paradigm. The produiceply pushes an event of a
certain type to the channel. All consumers which are subesdrfor this event are auto-
matically informed if this specific event is available. Adtigh this mechanism has a lot
of advantages, it has to be mentioned that a heavy use of #ihamism leads to a poor
run-time performance due to the computational overheaddarevent channel.

22

CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

Another extremely useful communication mechanism is th#ynmulticast. Roughly spo-
ken it is a very reliable Event Channel for inter-robot commation. The usual CORBA
communication mechanism like the remote method invocatimhthe event channel use
TCP/IP network connections in case of communication betvadégsrent robots or com-
puters. Such communication is unreliable and performs kag/in environments with a
bad quality of and a high traffic on its network connectiong eéample for such envi-
ronments is the wireless network situation at RoboCup touemasnwhere a high number
of clients communicates with high traffic over larger distas In these environment fre-
guently the network connection totally collapses. Thefgoatiulticast instead uses UDP
packages distributed over multicast groups. It providestime functionality as the com-
mon event channel like e.g. offer and subscription of evbuataises a slimmer and more
reliable transport mechanism. Furthermore, groups ofrbgémeous robots are able to
communicate. By using a general description language far, ke e.g. positions, states
and objects, teams of autonomous mobile robots were ablaciessfully play with a
mixed team at the RoboCup 2004. The mixed teams comprisedsrisbat the RoboCup
Middle-Size teams of UIm, Munich and Graz [USMO05].

Behavior Engine Miro contains a complete module for the modeling and thelémen-
tation of reactive behaviors. TiBehavior Engindollows the behavioral control paradigm
introduced by Brooks [Bro86]. The module uses a hierarchieabthposition of behav-
iors. On the base of the hierarchy there are different sirbpleaviorslike e.g. wall
following. These behaviors can be groupedation patterns Such action patterns may
comprise e.g. a wall following and a local obstacle avoi@aibehavior. Different action
patterns can be combined tgalicy.

The transition between different action patterns are &igd by two different mechanisms.
The local transitions are emitted by a behavior and haveguemame. An action pattern
is linked by this name to a successor action pattern whichbeilactivated next. Global
transitions directly contain the action pattern which Wil activated next. Within an acti-
vated action pattern, all its behaviors are executed coactly. Each action pattern has an
arbiter which combines the output of the concurrent beltra\aod communicates the out-
put to the actuators. Currently only a prioritized arbiteavsilable in Miro. But one can
think about of more advanced arbiters which provide a moreatmtransition between
behaviors.

The type of a behavior is one of the following three types. therTimedBehaviorsype
the behavior is called repeatly at fixed timesteps. The hehéself has to assure that its
calculation is finished within the timestep. Otherwise ituwebblock the other behaviors.
EventBehaviorare called every time one of the subscribed events occurTasikBehav-

2.3. THE DEVELOPED FRAMEWORK 23

iors type is used for behaviors which may not be able to finish teulations within a
fixed time. Such behaviors run within their own task while blatcking other behaviors.

Once the behaviors are implemented action patterns andgxodire build up by describing
them in a XML-file. Therefore experiments with differentiact patterns and policies are
easy and straight forward.

Unfortunately, Miro do not provide any paradigms and impdetations for a deliberative
layer. Therefore, the Miro Framework was extended by our planning system. Details
about this and other contributions by our group are desdribere detailed in the next
section.

2.3 The Developed Framework

In order to fulfill as many as possible of the above requireésér an appropriate framework,
a novel design approach for mobile robots has been develgi#d/04b]. The approach is
based on a continuous modularization of both the robotsswoé and its hardware. The hard-
ware modularization is based on an encapsulation of thet’solrious physical skills into au-
tonomous modules with defined interfaces. Therefore, harelwodules can be exchanged very
simply. This allows an easy adaptation of the robot’s hardviar new tasks and simple inves-
tigation of new modules or new module configurations. The utextzation of the software is
based on two concepts: (1) software design and (2) softwahgtecture. The software design
provides a decomposition of functionality into layers witicreasing levels of abstraction. The
design is inspired by the hybrid control paradigm. Therefdne functionality is organized in
different layers ranging from an abstract top layer witmpliag and reasoning capabilities down
to a layer with direct hardware access. The software-achite which is based on Middle-
ware for Cooperative Robotics (Miro) [USEKO02] deals with tingpiementation details. The
Miro framework provides several ready to use interfacestesars and actors, methods for an
integration of new software modules into the framework ai@ble transparent communication
mechanisms between software modules. The software moaidesiplemented as autonomous
services which interact via client/server communicatibue to the object-oriented design and
the existence of defined interfaces, the adaptation of Hmadwork to our platform was quite
easy. Furthermore, based on this fact, an exchange of sefm@adules within the community is
possible. E.g., the framework was extended by adding extesgto new hardware (e.g., Firewire,
CAN-Bus). These extensions are now publicly available. Te&Egh approach was used for the
development of the robots that form our RoboCup Middle-Sizague Team (MSL) [SFFO3].

As a result the team was able to create a robot soccer teanstnatch with limited human and
financial resources within less than a year. Besides usingtiads for soccer games, the robots

24 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

are used in research in the area of service robots.

2.4 Hardware Design

In our previous studies, four skills were found which are amant for a mobile robot in order to
fulfill a given task in a given environment, regardless wiethe robot plays soccer or delivers
mail within an office building. These skills are: (1) moverhe2) sensing the environment,
(3) manipulating the environment and (4) information pssieg. These skills may differ from
task to task, e.g., a kicking mechanism in a robot soccentouent or a manipulator arm with a
gripper in the service robot domain. An encapsulation oérekills in different loosely coupled
modules is the first step to a flexible hardware design. Thezethe hardware of the robot is
divided into four layers. Each layer provides one of thosksskThe layers are stacked to build
up the robot platform (see Figure 2.7).

There are no restrictions to the design of the layers themse&lxcept that they have to pro-
vide the required skills and three predefined interfaces. ekhmanical interface ensures that
individual layers fit together mechanically. The fast heleaCan-Bus allows the communication
within the layers [EtsO1]; each layer is able to communidatectly with each other layer. A sin-
gle 24V power line provides the power supply for the layettse Tan-Bus and the power line are
simply looped through the layers. Introducing new layeed grovide different characteristics of
a skill is easily possible by following the guidelines irdtwed above. Every layer is equipped
with its own processing unit, either a C167 microcontrollea ®entium-based Single-Board PC.
Therefore, the individual layers are able to work autonoshou

2.4.1 Driving Layer

The Driving Layer is responsible for handling the movemdrthe robot. In our current design

this layer is implemented as an omnidirectional drive. udt up by four orthogonal crosswise

motors each joint to an omni-wheel. By individual control ko tspeed and the rotating direction
of each motor the robot is able to move in any direction andbtate around its vertical axis

simultaneously. This layer also hosts the battery packeép khe center of gravity of the robot
low.

2.4.2 Actuator Layer

All active interactions with the environment are done byAlc¢uator Layer. This layer is imple-
mented as a pneumatic kicking device for the purpose of piagoccer games or a manipulator
arm with a gripper during service tasks.

2.4. HARDWARE DESIGN 25

Omnidirectional
Camera

Sensor Layer
Laser Range Finder
Ring of 24 Sonar Sensors

Driving Layer
Omnidirectional Drive
Odometry/Batteries

Figure 2.7: The modularized robot platform.

2.4.3 Sensor Layer

The Sensor Layer provides the entire sensing of the envieotinThis layer actually hosts two
sensor systems. We use a Sick Laser Range Finder for proxscatys around the robot. This
sensor has a high resolution (9.%nd provides very reliable measurements. A disadvantage
of this sensor is the limitation of the scan to 1&Jound the robot. Therefore, this sensor is
supported by another sensor system, a ring of 24 ultrasensoss. Those sensors have a sig-
nificantly lower resolution and accuracy compared to therlasanner but provide a qualitative
scan around the entire robot.

2.4.4 Control Layer

The more sophisticated information processing is donedrCihntrol Layer. This includes more
advanced sensory data processing, the decision makingggand higher level control. There-
fore, this layer is equipped with a powerful processing ,uait 850 MHz Pentium Il Single
Board PC with 256 MB Ram and a 20 GB hard drive. This layer alsviges a communication
channel to other robots or computers via a Wireless-LANrfate. Due to the field of view
and the connection via the Firewire-Interface the omndiomal camera is mounted on top of

26 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

this layer. A crucial constraint for the assembly of thisdays the use of standard interfaces
(e.qg., PCI, USB, Firewire, CAN-Bus) instead of proprietary on€his eases the exchange of
components within this layer.

2.5 Software Design

The design of the software is guided by a continuous modadfaon. This modularization is
divided into two important aspects of the design. The firgteas deals with the functional
organization of the software. It introduces a decompasitibthe software in parts of similar
functionality and an abstraction into layers. The secopeetdeals with the logical organization
of the software modules and the communication within thesdutes. Whereas the first aspect
is important for the design and understanding of the belnafithe robot in a more abstract
way, the second aspect is important for the software impteation. This distinction eases the
development process due to the fact that the designer okth@vior does not have to deal with
software implementation aspects and vice versa. The idéanctional layers with different
levels of abstraction is similar to the idea of cognitiveabbs [CGIT02]. As mentioned above
a combination of reactive behaviors, explicit knowledgaresentation, planning and reasoning
capabilities promises to be more flexible and robust. Funtbee, such an approach will be able
to perform far more complex tasks. The software design iaghifhspired by the hybrid control
paradigm. But it has to be mentioned that the proposed dedfifgnsdfrom the general hybrid
paradigm that our design has no sequence layer. The taske setjuence layer are located
together with the reactive behaviors in one layer. The fonelity of the software is divided
into three layers with an increasing level of abstractione Tunctionality of a layer is based on
functionality of the layer below. The layers are shown inufe?2.8.

2.5.1 Hardware Layer

The Hardware Layer implements the interfaces to the semsarsactuators of the robot. This
layer delivers raw continuous sensory data and performwiagvel controlling of the actuators.
USB for the Laser Range Finder and Firewire for the omnidioaell camera are standard inter-
faces and already supported by our OS (Linux). The intesf&a@enodules on the CAN-Bus are
implemented as VirtuaCAN-ConnectionsA software module is able to transparently commu-
nicate via these connections directly with one dedicatedvare module on the CAN-Bus. The
method is similar to the well known TCP/IP protocol where eliént applications on different
computers are able to communicate over one physical neteacmkection.

2.5. SOFTWARE DESIGN

[

Strategy Module

f

Knowledge

State Abstract World Model

I +
ﬂ Knowledge Base J—Knowledge—{ Reasoning/Planning Modul%
Game
$ I

Goals/Roles

~

Abstract

Plan/Sequence of Actions

Continious World Model/
Sensor Fusion

J |

Action Executor/
Set of Basic Actions

.

[[[
" j World Model
l\\lll\é?:lllcljs Object Object Drive Actions
Positions Positions
Vision Object N Pathplanning/ Kicking
Module Recognition Odometry AO bgtacle Commands
y, voidance
f f Iy Data
Panoramic Range Range Drive -
Image Data Data Commands
L L |
. Laser
O.n.ml Range sonar Kicker
Vision) Module
Finder

Continiuos

Hardware

Layer

Layer

Layer

Figure 2.8: Functional view of the software (robot socceregle).

2.5.2 Continuous Layer

2.5.3 Abstract Layer

27

The Continuous Layer implements a numerical representédjoantitative view of the world)
of the sensing and acting of the robot. This layer perfornespiocessing of range data and
the image processing. This processing provides possilsiéiquus of objects in the environment
including the robots own pose. A pose consists of positiah @ientation of an object. The
pose together with the motion information from the odometey fused into a continuous world
model. The sensor fusion is done by Kalman Filters (objesttjpms) [DGNO01] and Monte Carlo
methods (own pose) [FBDT99]. For sure, all sensing and acfiageal mobile robot is afflicted
with uncertainty. Therefore, sensor fusion is done usimgabove probabilistic methods. The
world model represents the continuous world by estimativegmost likely hypothesis for the
positions of objects and the position of the robot itselfrtkermore, this layer is responsible
for the execution of actions. Execution is based on a settarecimplemented as patterns of
prioritized simple reactive behaviors.

The Abstract Layer implements a symbolic representatioal{@tive view of the world) about
the knowledge of the robot and a planning module for the d@timaking. A detailed description

28 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

of the used planning system can be found in [Fra03]. A sinaifgoroach also has been proven to
work in the RoboCup MSL domain [DFL02]. The core of this layethe Knowledge Base. It
contains the entire higher-level knowledge of the robotis Kmowledge consists of previously
collected domain knowledge, an abstracted representaititie continuous world model and an
abstract description of the actions the robot is able togoerf This knowledge is represented
using a STRIPS-like representation language [FN71] endidhyethe use of elements of first-
order logic (e.g., quantifiers). Based on this knowledge sthetegy module chooses the next
goal the robot has to achieve for fulfilling the longterm ta3ke Planing Module generates a
plan (sequence of basic actions) which satisfies this gdails glan is monitored permanently
for its validity during execution. The plan is canceled odated if preconditions or invariants
of the plan or its actions are no longer valid. This plan is oamicated to the Action Executor
which performs the actions of the plan. The Abstract Laykma for an easy implementation
of a desired task by specifying the goals, actions and krdiydes logic sentences.

2.6 Software Architecture

The Software Architecture is based on Miro [USEKO02]. Thet®afe Architecture is shown
in Figure 2.9. All software modules are implemented as awtayus services. Each service
runs as an independent task. The communication betweeiteig primarily based on two
mechanisms: (1) CORBA-Interfaces and (2) event channel. CORB#faces are described
using IDL and export methods a service is able to perform.IDhelescription of the interface is
abstract and makes no assumptions about the implementdtioa interface, e.g, programming
language or platform. The use of IDL provides abstractiathefsensor and actor interfaces. The
event channel is a mechanism which collects and delivenstewethin the system. It enables
one-n communication. A service that produces an event gipyshes the event in the Event
Channel. A service which consumes an event simply subsdolssme event type on the Event
Channel. If some event of that type is available, the Event G&ladelivers the event to the
subscribed service. The advantage of the Event Channelipribducers and consumers do not
have to be aware of each other in contrast to CORBA-Interfadasie the client has to know the
server in advance. Hence, the services are independenhatthptation of software modules or
the integration of new services is very easy and transpaBaged on the flexible design of the
framework, some extensions to the framework have beenajexe! These extensions are mainly
interfaces to new hardware used in our robots like the Freeimterface for digital cameras and
the CAN-Bus interface with virtual connections. Clearly, tnextensions are provided to the
public. These extensions widen the number of platforms acthe framework could be used.

2.7. OBTAINED RESULTS AND DISCUSSION 29

Laser Scanner Object Planning Plan Action
Service Tracker Module Executor
World State ! § A § 2 A i A 2 A g
fffffffffffffffffff %) Lo s Lz . '3
L S pot 9 2 Lo
2 2 3)) =3 c -
8 1 8 = 15] '3 2 g
_ Object Pose Y ¥ . Yo = = Lo k! g
D0 |-
= T
o9 Event Channel
=SS .
Robot Pose T]
Ay b 43 b
A o o I [
777777777777777777 (- (I3} (=) 1 IS
-] 3 = !
o) BN © o
Odometry . g . 8 4 ! 8 Y Y
Vision Sonar Motion Kicker
Module Service Service Service
A =
T S <
5 g g £
°Q %) = €
> ‘E % <
8 YO §
Vision - CAN B
Service o Service

Figure 2.9: Software Architecture. Solid connections espnt CORBA IDL interfaces. Dashed
connections represent communication via an event.

2.7 Obtained Results and Discussion

The experiences in building a mobile robot show that thisllohdesign approach reduces the
time and costs for developing a mobile robot and at the same iticreases the flexibility and
robustness of the robot. By using the design approach oupgs@s able to develop a robot
soccer team from scratch with limited human and financiabueses within less than a year.
The basic system was implemented by a team of only nine stsig&2 man-months). Another
practical result shows the advantages of the modularizedivzae design. Two versions of the
Sensor Layer based on different ultrasonic sensors (Rdlar®evantec) were developed. Both
versions work transparently within the robots. The quadityg robustness of our robots were
shown during a number of RoboCup tournaments where the haedwarsoftware of the robots
ran stable. Moreover, the adaptability and flexibility ofr @ontrol solution were impressive
during the tournaments. A player’s behavior could be chdregsily in a few minutes on the
field simply by modifying sentences that to some extent rédermuman language statements.
Furthermore, the framework is nearly unchanged used faesstul controlling a delivery robot
within our institute.

Although the used framework has proved to be flexible andsbby the use in different
domains, it suffers from two major drawbacks: (1) commutiacadelay on the event channel

30 CHAPTER 2. FRAMEWORKS FOR MOBILE ROBOTS

and (2) the time needed for planning. The extensively uséefevent channel as a flexible
communication mechanism slows down the system and redbheeactivity of the robot in
dynamic environments. Due to use of an abstract decisiommgakodule with Al planning the
robot is able to deal with very complex tasks. There are maaysibns which are made in the
Abstract Layer. Therefore, the system is even less reabteause planning needs much time.
In the future, a better balance between the deliberativatanckactive layer has to be achieved.

In this chapter, an approach for designing autonomous mablbots has been presented.
The approach is based on a continuous modularization iwargtand hardware. Robot designs
that are based on our approach are more flexible with regattetointended purpose and can
be easily adapted to new tasks. The hardware modularizstibased on an encapsulation of
skills. The software modularization is based on the framrkWwdiro. Due to the CORBA-based
architecture of the software modules an adaptation of avialservices and the integration of
new services is very easy. The behavior of the robot itseif wa easily adapted due to the
different abstraction layers in the functionality and aitogased representation of knowledge,
goals and actions.

Chapter 3

Looking ahead

3.1 Introduction

The prediction of time series is an important issue in mafffgdint domains, such as finance,
economy, object tracking, state estimation and robotib& dim of such predictions could be to
estimate the stock exchange price for the next day or théigosif an object in the next camera
frame based on current and past observations. In the dorhanat control such predictions

are used to stabilize a robot controller. See [JW99] for aesuof different approaches in motor
control where prediction enhances the stability of a cdiaro In this chapter we present a
novel approach for prediction in the robotics domain. Thiapter was partially published in

[BKLSO05].

There are two popular approaches for this kind of predictj@hmodeling the behavior of the
system or (2) learning of the prediction based on collectgd.dThe former approach claims a
basic understanding of the underlying system. Itis pretéifrthe internal structure of the system
is well know and its behavior could be sufficiently precissa@ed by a set of equations, i.e.,
electronic circuits, technical processes or mechanicgtesys. A well known example for this
approach is the prediction step in state estimation withKihlenan-Filters [May90]. It uses the
current state and a linear system model to predict the siatbé next time step. This prediction
is optimal for linear systems. For non-linear systems, tkielided Kalman-Filter (EKF) uses a
linearization of the system. Therefore, the EKF is not optianymore. The latter approach is
to learn the prediction from previous collected data. Theaathges are that knowledge of the
internal structure is not necessarily needed, arbitranyglimear prediction could be learned and
in addition some past observations could be integratedeiptédiction.

Artificial Neural Networks (ANN) are a common method usedtfis computation.Feed-
forward networksonly have connections starting from external input nodessibly via one or
more intermediate hidden node processing layers, to ontmés.Recurrent networksay have

31

32 CHAPTER 3. LOOKING AHEAD

O O k input O O
/N /. Meurons /..x VAN
O O O O — O—0
n hidden \\ 1 \/

neurons / \

O O 0 O O—9+4
O O O s O O O

Figure 3.1: Comparison of the architecture of a feed-forwiefl hand side) with a recurrent
neural network (right hand side); the grey arrows sketchdtrextion of computation.

connections feeding back to earlier layers or may havedatemnections (i.e. to neighboring
neurons on the same layer). See Figure 3.1 for a comparistredlirection of computation
between a feed-forward and a recurrent neural network. Withrecurrence, activity can be
retained by the network over time. This provides a sort of imgmwithin the network, enabling
it to compute functions that are more complex than just ssmeéctive input-output mappings.
This is a very important feature for networks that will be diser computation of time series,
because a current output is not solely a function of the atisensory input, but a function of the
current and previous sensor inputs and also of the currehpeavious internal network states.
This allows a system to incorporate a much richer range caaya behaviors. Many approaches
have been elaborated on recurrent ANNs. Some of them arerdymacurrent neural networks
[Pea95], radial basis function networks [Bis95], Elman reeks [EIm90], self-organizing maps
[Koh01], Hopfield nets [Hop82] and the “echo state” approfroim [Jae01].

In case of autonomous agents, it is rather difficult to emghoitly supervised learning al-
gorithms for recurrent ANNs such as back-propagation, Badizn machines or Learning Vector
Quantization (LVQ), because the correct output is not akayailable or computable. It is also
very difficult to set the weights of a recurrent ANN directbyr fa given non-trivial task. Hence,
other learning techniques have to be developed for ANN thaldcsimplify the learning process
of complex tasks for autonomous robots. The liquid statehamac— which will be introduced in
the next subsection —is one approach that overcomes thésalties.

Recently, networks with models of biologically more reatisteurons, e.g., spiking neurons,
in combination with simple learning algorithms have beeoppsed as general powerful tools

3.2. THE LIQUID STATE MACHINE 33

for the computation on time series [MNMOZ2]. In Maass et. ILM02] this new computation
paradigm, a so calletiquid State MachindLSM), was used to predict the motion of objects
in visual inputs. The visual input was presented to a 8x8 @eagay and the prediction of
the activation of these sensors representing the posifimbjects for succeeding time steps
was learned. This approach appears promising, as the catigqpudf such prediction tasks is
assumed to be similar in the human brain [Bea00]. The weakri¢iss experiments in [MLMO02]

is that they were only conducted on artificially generated d@he question is how the approach
performs with real-world data. Real data, e.g. the detectaiibmof an object in a video stream
from a camera mounted on a moving robot, are noisy and aflistth outliers.

In this chapter we present how this approach can be extermdadréal world task. We
applied the proposed approach to the RoboCup robotic-sooceaid. The task was movement
prediction for a ball in the video stream of the robot’s caanebuch a prediction is important
for reliable tracking of the ball and for decision making idgra game. The remainder of this
chapter is organized as follows. The next section providesvarview of the LSM. Section 3.3
describes the prediction approach for real data. Expetimhegsults will be reported in Section
3.4. Finally, in Section 3.5 we draw some conclusions.

3.2 The Liquid State Machine

The LSM from [MNMO02] is a new framework for computations inumal micro-circuits. The
term “liquid state” refers to the idea to view the result ofcenputation of a neural micro-circuit
not as a stable state like an attractor that is reached.alshséeneural micro-circuit is used as an
online computation todhat receives a continuous input that drives the state afdioeal micro-
circuit. The result of a computation is again a continuoupougenerated by readout neurons
given the current state of the neural micro-circuit.

Recurrent neural networks with spiking neurons represerdralinear dynamical system
with a high-dimensional internal state, which is driven hg input. The internal state vector
x(t) is given as the contributions of all neurons within the LSMhe membrane potential of a
readout neuron at the timte The complete internal state is determined by the currgnitiand
all past inputs that the network has seen so far. Hence, @ist (recent) inputs is preserved
in such a network and can be used for computation of the duotgput. The basic idea behind
solving tasks with a LSM is that one doesttry to set the weights of the connections within the
pool of neurons but instead reduces learning to setting #ights of the readout neurons. This
reduces learning drastically and much simpler supervigathing algorithms which e.g., only
have to minimize the mean square error in relation to a désingput can be applied.

The LSM has several interesting features in comparisonherapproaches with recurrent
circuits of spiking neural networks:

34 CHAPTER 3. LOOKING AHEAD

1. The liquid state machine provides “any-time” computing,, one does not have to wait
for a computation to finish before the result is available. UResstart emitting from the
readout neurons as soon as input is fed into the liquid. Eurtbre, different computations
can overlap in time. That is, new input can be fed into theitiqand perturb it while the
readout still gives answers to past input streams.

2. A single neural micro-circuit can not only be used to cotap special output function
via the readout neurons. Because the LSM only serves as aqodymamic recurrent
computation, one can use many different readout neurondrceinformation for several
tasks in parallel. So a sort of “multi-tasking” can be inamgtted.

3. In most cases simple learning algorithms can be used ttheeteights of the readout
neurons. The idea is similar to support vector machinesyavbiee uses a function (usu-
ally called kernel) to project input data into a high-dimensl space. In this very high-
dimensional space simpler classifiers can be used to segheatlata than in the original
input data space. The LSM has a similar effect as a kernel i@t recurrence, the input
data is also projected to a high-dimensional space. Henedost any case experienced
so far, simple learning rules like, e.g., linear regressignsufficient.

4. Last but not least it is not only a computational powerfuddal, but it is also one of
the biological most plausible so far. Thus, it provides adtiipsis for computation in
biological neural systems.

The model of a neural micro-circuit as it is used in the LSMasdd on evidence found in
[GWMOO0] and [TWWBO02]. Still, it gives only a rough approximati@a a real neural micro-
circuit since many parameters are still unknown. The neurato-circuit is the biggest compu-
tational element within the LSM, although multiple neuratro-circuits could be placed within
a single virtual model. In a model of a neural micro-circdit= n, - n, - n, neurons are placed
on a regular grid in 3D space. The number of neurons along theand > axis, n,, n, and
n, respectively, can be chosen freely. One also specifies arfaxtdetermine how many of
the N neurons should be inhibitory. Another important parametehe definition of a neural
micro-circuit is the parameter. Number and range of the connections between\theeurons
within the LSM are determined by this paramekerThe probability of a connection between
two neuronsg andj is given by

_ Dl

Pg) = C-exp ¥ (3.1)

whereD; ; is the Euclidean distance between those two neurong’aisca parameter de-
pending on the type (excitatory or inhibitory) of each of thwe connecting neurons. There exist

3.3. EXPERIMENTAL SETUP 35

four possible values fof’ for each connection within a neural micro-circutzr, Crr, Crg
andC7;. The subscripts are used depending on whether the netigonts; are excitatory (E)
or inhibitory (I). In our experiments we used spiking newg@tcording to the standard leaky-
integrate-and-fire (LIF) neuron model that are connectadlynamic synapses. The time course
for a post-synaptic current is approximated by the equation

t

v(t) = w-e T (3.2)

wherew is a synaptic weight and,,, is the synaptic time constant. In case of dynamic
synapses the “weighty depends on the history of the spikes it has seen so far aogomthe
model from [MWT98]. For synapses transmitting analog valisegh as the output neurons in
our experimental setup), synapses are simply modeledtasstaapses with a strength defined
by a constant weight. Additionally, synapses for analog values can have deteslimodeling
the time a potential would need to propagate along an axon.

3.3 Experimental Setup

In this section we introduce the general setup that was usadglour experiments to solve
prediction tasks with real-world data from a robot. As dégicin Figure 3.2, such a network
consists of three different neuron pools: (a) an input ldiyat is used to feed sensor data from
the robot into the network, (b) a pool of neurons forming tt8M_according to Section 3.2 and
(c) the output layer consisting of readout neurons whicHgper a linear combination of the
membrane potentials obtained from the liquid neurons.

For simulation within the training and evaluation the néwiecuit simulator CSint was
used. Parameterization of the LSM is described below. Ndareseuron and synapse types all
originate from terms used in tl@Simenvironment. Letters | and E denote values for inhibitory
and excitatory neurons respectively.

To feed activation sequences into the liquid pool, weexernal input neuronghat conduct
an injection current;,,;..; via static analog synapsgparameters are shown in Table 3.1) into
the first layer of the liquid pool. Inspired from informatigmocessing in living organisms, we
set up a cognitive mapping from input layer to liquid pool.eNalue of/;, ;... depends on the
value of the input data, in this case the activation of eagylsivisual sensor.

The liquid pool consists ofeaky integrate and fire neuronswhose parameters are listed
in Table 3.2 — grouped in an cuboid eight times six times thaege, that are randomly con-
nected viaDynamic Spiking Synapsésarameters are listed in Table 3.3), as described above.

1The software simulato€Simand the appropriate documentation for the liquid state imactan be found on
the web page http://www.lsm.tugraz.at.

36 CHAPTER 3. LOOKING AHEAD

input input liquid output output
layer pool layer

Figure 3.2: Architecture of our experimental setup depgthe three different pools of neurons
and a sample input pattern with the data path overview. El@ognnections of a single liquid
neuron are shown: input is received from the input sensat éalthe left hand side and some
random connection within the liquid. The output of everylajneuron is projected onto every
output neuron (located on the most right hand side). The 8sientimes 3 neurons in the middle
form the “liquid”.

The probability of a connection between every two neuromsadeled by the probability distri-
bution depending on a parametedescribed in the previous section. Various combinations of
A (connection probability) and mean connection weight&onnection strength) were used for
simulation. 20% of the liquid neurons were randomly chogeproduce inhibitory potentials.
Figure 3.2 shows an example for connections within the LSM.

The information provided by the spiking neurons in the ldgpool is processed (read out)
by external output neuron@/,,it, Vyesting: Inoise are the same as for the liquid neurons), each of
them connected to all neurons in the liquid pool 8tatic Spiking Synapsé¢s,,, = 3ms (EE) or
6ms (El),w = —6.73 x 1075 (e.g., set after training)lelay,nean = 1.5mMs (EE) or 0.8ms (EI) with
CV =0.1). The output neurons perform a simple linear combinatiompidits that are provided
by the liquid pool.

We evaluate the prediction approach by carrying out seegg@riments with real-world data
in the RoboCup Middle-Size robotic soccer scenario. The éxyets were conducted using a
robot of the “Mostly Harmless” RoboCup Middle-Size team [FSWPA4The task within the

3.3. EXPERIMENTAL SETUP 37

Loise Winean delaymean
[nA] - [ms]

EE | EI |EE| El
| 0 [3-10°]6-10°|1.5] 0.8 |

Table 3.1: Parameters for the static analog synapses wrechsad to feed input data into the
LSM. 'EE’ or 'EI’ denotes whether the source and target nesrof a connection release excita-
tory or inhibitory action potentials, respectively. Cowarte fordelay,,cqn iS0.1.

C’m Rm ‘/th'resh M'esting ‘/v'eset ‘/imt Trefract Inoise Iinject
[nF] | [MQ] | [mV] | [mV] [mV] [mV] [7‘718] [nA] [nA]
E| |
130 | 1 | 15 | 0 [(138145)[(135149)[3] 2 [0 [(135145) |

Table 3.2: Parameters for the leaky integrate and fire newromprising the liquid pool. Letters
'E’ and 'I' indicate whether the neurons emit excitatory ahibitory action potentials(a, b)
denotes an uniform distribution on the inter{@lb].

experiments is to predict the movement of the ball in the fadldiew a few frames into the

future. The experimental setup can be described as foll@ws: robot is located on the field
and points its camera across the field. The camera is a caloereawith a resolution of 320

times 240 pixel. The ball is detected within an image by senglor-blob-detection leading

to a binary image of the ball. We can use this simple imagerpogssing since all objects on
the RoboCup-field are color-coded and the ball is the only red drhe segmented image is
presented to the 8 times 6 sensor field of the LSM. The aativadf each sensor is equivalent to
the percentage of how much of the sensory area is coverectath

We collected a large set of 674 video sequences of the bifigetith different velocities and
directions across the field. The video sequences had difflnegths and contain images in 50ms
time steps. These video sequences were transfered int@tivakent sequences of activation
patterns of the input sensors. Figure 3.3 shows such a segjueFhe activation sequences
were randomly divided into a training set (85%) and a valaaset (15%) used to train and
evaluate the prediction. Training and evaluation was cotetlifor the prediction of 2 time
steps (100ms), 4 time steps (200ms) and 6 time steps (300r@aylaThe corresponding target
activation sequences were simply obtained by shifting tipeiti activation sequences 2, 4 or 6
steps forward in time.

Simulation for the training set was carried out sequencednuence: for each collected ac-

38 CHAPTER 3. LOOKING AHEAD

Umean | Dmean | Fmean | delaymean | Tsyn | C
con. - - [s] [ms] [ms] | -
EE 0.5 1.1 0.05 1.5 3 103
El 0.05 | 0.125 1.2 0.8 3 0.4
IE 0.25 0.7 0.02 0.8 6 |02

Il 0.32 | 0.144 | 0.06 0.8 6 0.1

Table 3.3: Parameters for the dynamic spiking synapsescting the neurons within the liquid
pool. 'EE’, 'El', ’IE’ and 'II' denote whether the source artdrget neurons of a connection emit
excitatory or inhibitory action potentials. Covariance d@tay,,cq, 1S 0.1.

= ===

ol

Figure 3.3: Upper Row: Ball movement recorded by the cameraet®ow: Activation of the
sensor field.

tivation sequence, the neural circuit is reset, input daeewassigned to the input layer, recorders
were set up to record the liquid’s activity, simulation wee'td, and the corresponding recorded
liquid activity are stored for the training part. The traigiwas performed by calculating the
weightg of all static synapses connecting each liquid neuron witbwput layer neurons using
linear regression.

Analogous to the simulation with the training set, simaatwas then carried out on the
validation set of activation sequences. The resultingututpuron activation sequencesifput
sequenceswere stored for evaluating the network’s performance.

2|n fact also the injection currents,, j..; for each output layer neuron was calculated. For simplificathis
bias was treated as t&" weight

3.4. RESULTS 39

3.4 Results

We introduce the mean absolute error and the correlatiofficieat to evaluate the performance
of the network. The mean absolute error is the positive idiffee between the activation values
of target and output sequences of the validation set dividethe number of neurons in the
input/output layer and the length of the sequence. Thisageeerror per output neuron and per
image yields a reasonable measure for the performance mlatiah sets with different length.
Figure 3.4 shows an example for a prediction and its error.

ms - maw

Figure 3.4: Sensor activation for a prediction one time siegpad. Input activation, target acti-
vation, predicted activation and error (left to right).

A problem which arises if only the mean absolute error is usecvaluation is that also
networks with nearly no output activation produce a low mahbgolute error — because most
of the neurons in the target activation pattern are not eal/by the ball and therefore they are
not activated leading to a low average error per image. Theletion coefficient measures the
linear dependency of two variables. If the value is zero two vaealdre not correlated. The
correlation coefficient is calculated in similar way as theam absolute error. Therefore the
higher the coefficient the higher the probability of gettangorrelation as large as the observed
value without coincidence involved. In our case a relatietween mean absolute error and
correlation coefficient exists. A high correlation coe#iai indicates a low mean absolute error.

In Figure 3.5 the mean absolute errors averaged over allesimgages in the movies in the
validation set and the correlation coefficients for the mrgoh one time step (50ms) ahead are
shown for various parameter combinations. The paramele@esaange for both landscapes from
0.1t0 5.7 forQ2 and from 0.5 to 5.7 foA. If both 2 and\ are high, there is too much activation in
the liquid. Remembep, controls the probability of a connection aficcontrols the strength of a
connection. We assume that this high activity hampers theark making a difference between
the input and the noise. Both values indicate a good areaebat bne of the parameters is low.
Best results are achieved if both parameters are low(50.5,\=1.0). The figure clearly shows
the close relation between the mean absolute error and thelatoon coefficient. Furthermore,
it shows the very good results for the prediction as the tatioe coefficient is close to 1.0 for
good parameter combinations.

40 CHAPTER 3. LOOKING AHEAD

It should be noted that the mean absolute error has to be udedaution. During calculation
the value is divided by the number of neurons in the layer, $ot ®f neurons that are not
involved(the area is never reached by the ball, so it is nestvated) contribute to the dividend.
Especially when comparing two results which differ in padidin time, we neglect the mean
absolute error from now on and focus on the correlation aoefft.

error landscape corr.coef. landscape

K}
@
8 3L
1]
s

4
5 6

o
T
@

IS

wscale
@
w

N
T
N

0.026

0.024

() . L L L . ! 0.022 [9)

lambda lambda

Figure 3.5: Mean absolute error landscape on the left amélegion coefficient on the right for
a prediction one time step aheddwscale) [0.1,5.7],A [0.5,5.7]

We also compare the results achieved with two (100ms) and(20ms) time steps pre-
dicted. In order to compare the results of both predictienglifferent parameter combinations,
we use again a landscape plot of the correlation coefficidfigure 3.6 shows the correlation
coefficient for parameter values range from 0.1 to 5.7¥and from 0.5 to 5.7 foh. The regions
of good results remain the same as in the one time step predidt at least one parameter —
Q or A — is low the correlation coefficient reaches its maximum (gk7 at two time steps
and about 0.5 at four time steps). With increasingnd), the correlation coefficients decrease
again. We believe that the too high activation is again tlasaa for this fact. Not surprisingly
the maximum correlation compared to the one step predicsidmwer because prediction gets
harder if the prediction time increases. Neverthelessigbelts are good enough for reasonable
predictions.

Figure 3.7 shows an example for the activations and the @ordhe prediction of two time
steps ahead. It clearly shows that the center of the outgiviaion is in the region of high
activation in the input and the prediction is reasonabledgodhe comparison to Figure 3.4
also shows that the activation is more and more blurred ard@srcenter if the prediction time
increases.

3.5. DISCUSSION 41

corr.coef. landscape corr.coef. landscape

L ‘ 4+

L 3L

2L L
1

L 1k

I I I I |
] 1 2 4 5 6

o
o

IS
wscale

wscale
w

N

I I] I I
3 4 5 6 0 1 2 3
lambda lambda

Figure 3.6: Correlation coefficient landscape for two timepst(100ms) on the left hand side
and four time steps (200ms) on the right hand side.

Furthermore we confronted the liquid with the task to pre@@0ms (6 time steps) without
getting a proper result. We were not able to visually idgrihk ball position anymore. We guess
this is mainly caused by the blur of the activation.

Figure 3.7: Sensor activation for a prediction two time stapead. Input activation, target
activation, predicted activation and error (left to rigiRprameter2=1.0,A=2.0

3.5 Discussion

In this chapter we described a biologically more realisgpraach for the computation of time
series of real world images. The LSM, a new biologically insp computation paradigm, is
used to learn ball prediction within the RoboCup robotic sodoenain. The advantages of the
LSM are that it projects the input data in a high-dimensi@palce and therefore simple learning
methods, e.g., linear regression, can be used to train Huowe Furthermore, thiquid, a

42 CHAPTER 3. LOOKING AHEAD

pool of inter-connected neurons, serves as a memory whiltds lbe current and some past
inputs up to a certain point in time (fading memory). Finathis kind of computation is also
biologically more plausible than other approaches likefisial Neural Networks or Kalman
Filters. Preliminary experiments within the RoboCup domdiove that the LSM approach is
able to reliably predict ball movement up to 200ms ahead. ligretare still open questions. One
guestion is how the computation is influenced by the size apdiogy of the LSM. Moreover,
deeper investigation should be done for more complex neat movements, like balls bouncing
back from an obstacle and for different ball velocities aredwng angles. Furthermore, it might
be interesting to directly control actuators with the ottpiuithe LSM. We currently work on a
goalkeeper, which intercepts the ball, controlled disebtt the LSM approach.

Chapter 4

Intelligent Qualitative Control

In Chapter 2 it has been motivated that a combination of a ixeaaend a deliberative layer
is the most appropriate concept for the control of an autanmmmobile robot in a dynamic
environment. The existence of exogenous events makes dymgvironments unpredictable.
Therefore, also the deliberative component has to haveapaldlity to deal with dynamic un-
predictable domains. Several such domains are used as aoiesiebeds for the application of
gualitative techniques to robots acting in dynamic envinents, e.g. robotic soccer, tour guide
robots or service and delivery robots. These domains coosedb the real world where the
gathered data are error prone, agents are truly autonoractisn execution regularly fails, and
exogenous events are ubiquitous.

AGENT/ROBOT

Belief (State)
Goals

OBSERVATIONS ACTIONS

OTHER AGENTS
EXOGENOUS EVENTS

Figure 4.1: Interaction between agents/robots and their@mment
Agents deployed in such domains have to interact with theiirenment. Figure 4.1 depicts

43

44 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

the interaction between the agents/robots and their emviemt. An agent has a belief about
its environment and goals it has to achieve. Such beliefslanged from domain knowledge
and environment observations. While pursuing its goal byetieg actions that influence the
environment, the agent assumes these actions cause akactlgsired changes and that its be-
lief reflects the true state of the environment. However, tdusmbiguous or noisy observations
and occlusions the belief of the agent and the state of theosmaent are not necessarily con-
sistent. Furthermore, other agents or exogenous eventalsayaffect the environment in an
unpredictable way. Finally, actions might fail to achietieit desired effect. Clearly, an agent
has to be able to cope with such influences in order to be aldadoessfully achieve a given
goal. In this chapter a solution is presented which enalylesgant to quickly react to such in-
fluences in order to be able to successfully achieve a givah e ideas of this chapter were
also published in [FSWO05].

To investigate the advantages of the proposed solutiorererpnts were conducted using
the prior introduced robot architecture. On the softwade si three-layered architecture is used
that separates hardware interfaces, numerical and syerdatta processing. The symbolic layer
hosts an abstract knowledge-base (belief), a planningmsysthich is based on classical Al
planning theories, and a plan executor. The representiguage used is based on the well
known STRIPS [FN71] representation language and incorpsnaimerous extensions thereof
that have been presented in recent years, allowing the wédigst-order logic with only minor
restrictions. A complete introduction into the topic of mhéng can be found in [GNTO04].

The execution of a plan’s actions is twofold. For one, on astralt layer execution is
supervised in a purely symbolic manner by monitoring cood#. On a numerical layer, where
none of the abstract layer's symbols are known, a set of eleanebehaviors corresponding
to the abstract actions are executed. This behavioral apprfor low-level action execution
ensures that reactivity is achieved where needed, andaactes tasks such as path planning or
obstacle avoidance that are not of concern to the symbglresentation.

In this chapter, the idea of plan invariants as a means tagigspglan execution is presented.
Plan invariants are conditions that have to hold during thele plan execution. Consider a
delivery robot, based on the above described architecttsdask is to transport a letter from
room A to room D. This task is depicted in Figure 4.2 and 4.3. The robot besethat it is
located in roomC, the letter is in roomA and all doors are open. Its goal is that the letter is
in room D. The robot might come up with the following plan fulfillingelgoal: (1) move to
Room_A, (2) pick up letterL, (3) move toRoom_D and (4) release lettet. In situation (a)
no exogenous events occur, the belief of the agent is alwaysistent with the environment.
Therefore, the robot is able to execute the plan and achteeedesired goal. In situation (b)
the robot starts to execute the plan with action (1). Unfoataly, somebody closes the door to
roomD (2). As the robot is not able to open doors, its plan will f&llithout plan invariants the

4.1. PLAN INVARIANTS 45

M Room_C
L

(’@ Room_B ,G

\\ / -

3 Corridor I
Room_A @\ Nty R o @
Room_E Room_D ':

Target

Figure 4.2: Successful execution of the plan: (1) movBdom_A, (2) pick up letterl, (3) move
to Room_D and (4) release letter.

robot will continue to execute the plan until it tries to extcaction (3) and detects the infeasible
plan. If a plan invariant is used, e.g., rodihhas to be accessible, the robot detects the violation
as it passes the closed door. Therefore, the robot is ablarlp @etect invalid plans and to
quickly react to exogenous events. Figure 4.4 depicts timpdeal course of the two different
plan executions.

In the next section the advantages of plan invariants in igigdsed in more detail.

4.1 Plan Invariants

Invariants are facts that hold in the initial and all subseduwstates. Their truth value is not
changed by executing actions.

There is a clear distinction between these plan invariantection preconditions, plan pre-
conditions and invariants applied to the plan creation @sec Action preconditions have to be
true in order to start execution of an action. They are onckld once at the beginning of an
action. Similarly, plan preconditions (i.e., initial stqtare only checked at the beginning of plan
execution. Thus, preconditions reflect conditions for in time whereas invariants monitor
time periods. In the past, invariants have been used toaserthe speed of planning algorithms
by reducing the number of reachable states, for an overve®\RHO1]. An invariant as pre-
viously described characterizes the set of reachablesstathe planning problem. A state that
violates the invariant cannot possibly be reached from titeal state. For example, this has
been efficiently applied to Graphplan [BF95] as describedrirt®B, FLOO]. Such invariants can
be automatically synthesized as has been shown in [Rin00, KG9@wever, plan invariants
are not only useful at plan creation time but also especatliylan execution time. To the best
knowledge plan invariants have never been used to contalgtecution.

46 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

M Room_C
G

R

Room_A Corridor @% ,,,,,,,, Y

Room_E Room_D
Target

Exogenious Even

Figure 4.3: During execution of action (1) the exogenousievdose door taRoom_D, inval-
idates the plan. The robot stops the task because there iessibfe plan as the target is not
reachable anymore. In (2) the robot detects the closed aabtha violation of the plan invariant
(accessible(Room_D)). Due to the application, of plan invariants the infeadtipibf the plan is
early detected.

There is a clear need for monitoring plan execution, becaxseution can fail for several
reasons. Plan invariants can aid in early detection of n@cwgable actions, unreachable goals
or infeasible actions. Reasons for failed plans are amorgyothe following:

e Actions are not executable The most obvious problem that can occur while executing
a plan is that an action is not executable. The action’s prdition tells when this has
happened. If, however, an action that is a later part of the @ not executable for reasons
that are not influenced by other actions of the plan, pre¢mmdchecking will not detect
this until it is attempted to execute the failing action. Arariant, on the other hand, can
be used to constantly verify this condition. Note that theditoon to be checked must not
be changed by any other action in the plan in order to use lit anitinvariant.

e Goal unreachable Even if all not yet executed actions of the plan are exedetalhe goal
state might still be unreachable. This could for examplepkapf the effects of previously
executed actions are invalidated by some exogenous evertheFfmore, conditions not
influenced by the actions that are part of the plan, e.g.,itiond of the initial state, may
change.

e Goal not feasible As the environment is constantly changing, e.g., whenidensg a
fast paced one such as robotic soccer, the aims a robot reepdssuit can often change.
In that case, all actions might be executable and the goahatde and yet it might not be
necessary that the agent achieves its task.

4.2. BASIC DEFINITIONS 47

Early Detection by Plan Invariant Late Detection by Precondition

Belief accessible(Room_D)

Actions 1 2 3 4

Door D Closed

Figure 4.4: Plan execution for the deliver robot exampldnretand detection of invalid plans
by checking plan invariants and by checking action’s predmns.

ACTION a

/—\ AGENT

! ENVIRONMENT

Figure 4.5: Action execution with respect to time for digeractions.

Consider again the closed door example mentioned in theduntten. It is not practical to
cover all such possible exogenous events, e.g., closed,dadhin action preconditions, and
neither is it within plan preconditions. On one hand this rbayvery exhaustive and, on the
other hand this it constrains the general usability of astio

4.2 Basic Definitions

Throughout this paper we use the following definitions whic&inly originate from STRIPS
planning [FN71]. A planning problem is a tripld, G, A), where! is the initial state(7 is the
goal state, andl is a set of actions. A state itself is a set of ground literads, a variable-free
predicate or its negation. The set of literals defines a cmtijon of the literals. Each action
a € A has an associated pre-conditiore(a) and effecteff («) and is able to change a state via
its execution. The pre-conditions and effects are assumiee sets of ground literals. Execution

48 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

ACTION a

AGENT

G s, Sig QG Sk Sie1 O STATE

TIME]

i %

ENVIRONMENT

Figure 4.6: Action execution with respect to time for duratactions.

of an actioru is started if its pre-conditions are fulfilled in the curretdteS. After the execution,
all literals of the action’s effect are elements of the neatesS’ together with the elements of
S that are not influenced by actien A planp is a sequence of actioni,, . . ., a,], that when
executed starting with the initial stafeesults in goal staté'.

For the delivery example the planning problem is defined dews. The set of actions is
A={move, pickup, release} with:

move(origin, dest):
pre: accessible(dest) A at(origin) A — at(dest)
eff: — at(origin) A at(dest)

pickup(position,item):
pre: at(position) A isat(item,position) A V..pject() — hold(X)
eff: hold(item)

release(position,item):
pre: at(position) A hold(item)
eff: = hold(item) A isat(item,position)

The initial state is l:=isat(L, Room_A) A at(Room_C) and the goal is defined as G:=
isat(L, Room_D). The names of constants and predicate are chosen quifaveliu The
predicatenccessible(p) indicates if a position is accessible for the robot. The predicatép)
is evaluated true if the robot is actually at the positionThe predicatésta(p,0) indicates if
the objecto is at the positiorp. If the robot actually holds the objeactthe predicatéold(o) is
evaluated true. The predicai&ject(z) is true if thex is a moveable object. It has to be noted
that all-quantifiers for finite domains can be easily traresten a sentence with a conjunction of

4.2. BASIC DEFINITIONS 49

the predicate instantiated with all members of the domaircth& transfer is automatically done
by the implementation of our planning system.

A plan can be automatically derived from a planning problerd there are various algo-
rithms available for this purpose, refer to [Wel99] for areoxiew. For the delivery example
a planner might come up with the plar[move(Room_C, Room_A), pickup(Room_A,L),
move(Room_A, Room_D], release(Room_D,L)]. The planning problem makes some implicit
assumptions for plan computation. First, it is assumedahaictions are atomic and cannot be
interrupted. Second, the effect of an action is guarantedxktestablished after its execution.
Third, there are no external events that can change a statg.aCtions performed by the agent
alter states. Finally, it is assumed that the time granylazidiscrete. Hence, time advances only
at some points in time but not continuously. Such advaneesiggered by the action execution.

In the simplest way plan execution is done by executing eatibraof the plan step by step
without considering problems that may arise, e.g., a faifiotion or external events that cause
changes to the environment. Formally, this simple plan @@c semantics is given as follows
(where[] denotes the interpretation function):

[<ai,...,a, >] S =[<as,...,a, >] ([a1] S)

[a] S = eff (a) U{z|z € SA—x & eff(a)} if pre(a) C S
fail if pre(a) € S

[a] fail = fail

Given the semantics definition of plan execution it can beedtavhat a feasible plan is.

Definition 1 A planp =< a4,...,a, > |a; € Ais a feasible plan for a planning problem
(I,G,A)iff [p] I # fail and[p] I D G.

Planning algorithms always return feasible plans. Howeleasibility is only a necessary
condition for a plan to be successfully executed in a reareninent. Reasons for a plan to fail
are:

1. An action cannot be executed.

(&) An external event changes the state so that the pretmmdannot be ensured.

(b) The action itself fails because of an internal event, @ §roken part.

2. An external event changes the state of the world in a wahatthe original goal cannot
be reached anymore.

3. The action fails to establish the effect.

50 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

In order to formalize a plan execution in the real world, tbkofving situation is assumed.
A plan is executed by an agent/robot which has its view of tbddv The agent can modify the
state of the world via actions and perceives the state ofutrewnding environment via sensors.
The agent assumes that the sensor input is reliable, ieggifteived information reflects the real
state of the world. This assumption is obviously not trud,ibsufficient good approximation
for most of the domains. Hence, during plan execution thecedfof the executed actions can
be checked via the sensor inputs. For this purpose, a glabatibnobs(t)is assumed which
maps a point in time to the observed state. Note that the closed world assumigtissed. Any
predicate remains false until it is observed as true.

S @ obs(t) = obs(t) U{l|l € SA-L & obs(t)} (4.1)

defines an update function for the agent’s belief. The fomcteturns all information about the
current state that is available, i.e., the observationstteg with derived conditions during plan
execution which are not contradicting the given observatio

In order to define the execution of an action in the real wonkh cases need to be dis-
tinguished. Actions can last a fixed, known time. In this ¢ase=cution is considered done
after that time has elapsed. For a RoboCup agent, such an aotidsh be the act of kicking
the ball. On the other hand, actions can continue indefinieefy., a move action in a dynamic
environment can take unexpectedly long if changes in thahym environment require detours.
Execution of such an action is considered to be finished as asds effect is fulfilled. Follow-
ing the terminology previously used in [Nil94], actions viixed duration are callediscrete
and indefinitely continued actions are calthatative

Figure 4.5 and Figure 4.6 depict the action execution wispeet to time. A discrete actian
is executable if its preconditigie(a) is satisfied in staté;, where a staté; = S, 1 ®obs(t;_1).

An action lasts for a given time and tries to establish ite@fé(f («) in the succeeding state
Si+1. A durative actioru is also executable if its preconditigme(a) is satisfied in staté;. In
contrast to discrete actions, a durative actias executed until its effectff (a) is established in
some following stat&,,. At each time step;, i < j < k + 1 a new observation is available, a
new stateS;, is derivedS;, = S; @ obs(t;). For each stat§ ., the conditioneff (a) C 5,41
is evaluated. A durative action can possibly last forevérig impossible to establish the effect

eff (a).

For discrete actions, execution semantics can be writtéollas/s:

4.2. BASIC DEFINITIONS 51

if discrete(a) then[a] (S) =
S @ obs(t) if eff(a) C (S @ obs(t))
[exec](a,S @ obs(t)) if pre(a) C (S @ obs(t)) Aeff(a) Z (S @ obs(t))
fail otherwise

(4.2)

In the above definition of the plan execution semantics fecrdite actions, we can distinguish
three cases. The first line of the definition handles the cdmrermhe effect is fulfilled without
the requirement of executing the actienIn the second line, the actianis executed which is
represented by thexec(a, S) function. is the time after executing the action.

r €SN
[exec] (a, S) = eff(a)V {JJ -z & eff (a)

fail otherwise

(4.3)

} if actiona is executed

exec(a, S) returnsfail if the actiona was not executable by the agent/robot in statelf
actiona is executedxec returns the effect of the actiotff (a) unified with all literals of state
S not negated byff(a).

The last line of the execution semantics states that it metiail if the precondition of the
action is not fulfilled. The actioreleaseis an example for a discrete action. Once the action is
triggered, it either takes a certain amount of time to comepbe it fails.

For durative actions, execution semantics can be writtdallasvs:

S @ obs(t) if eff (a) C (S @ obs(t))
[a]’ (S & obs(t)) if pre(a) C (S @ obs(t)) A

if durative(a) then[a] (S) = eff (a) Z (S & obs(t)) (4.4)
fail otherwise
with
S if eff(a) C S
la]" (5) = { [a]’ (S & obs(t')) otherwise (43)

The precondition of a durative action is checked only at tbégifming of the action. It is
assumed that one recursion of a durative action (Equatl®)rasts for a time span greater than
zero. t’ is the time step after the execution of one loop of the actibhe actionmoveis an
example for a durative action, as it is executed until thetebaches its destination. This may
take different amounts of time or possibly may never occur.

52 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

Given a plan and a real-world environment it can now be defineat it means to be able to
reach a goal after executing a plan.

Definiton 2 A planp = [a4,...,a,] for a given planning probleni/, G, A) is successfully
executed in a given environmen{iiy, . .., a,]](I) 2 G.

Obviously, there is a relationship between feasible plamsexecuted plans as stated in the
following theorem.

Theorem 1 A planp for a planning problen(/, G, A) is successfully executed in a given envi-
ronment with observationss if (1) the plan is feasible, and (2) for every execution of atian
a € p the condition effa) C [a](5) is satisfied.

Theorem 1 states a condition for the successful executianptdn. If every execution of an
action has the desired effect which can be observed and dneipfeasible, then the goal must
be reached.

4.3 Extended Planning Problem

As outlined in Section 4.1, plan invariants are a useful sitin to the planning problem. The
addition of an invariant to a planning problem results infihllowing definition:

Definition 3 An extended planning problem is a tuple G, A, inv) whereinv is a logical sen-
tence which states the plan invariant.

A planp for an extended planning problem is created using any conptaaming algorithm.
We call the pair(p, inv) extended plan.

The plan invariant has to be fulfilled until the execution loé tplan is finished (either by
returning the goal state dail). A plan invariant is a more general condition for feasibleng.
It allows for considering exogenous events and problemsntiag occur during execution, e.g.,
failed actions. Automatic generation of such invariantgusstionable. For a deeper discussion
refer to Section 4.4. Invariants may represent knowledgeighnot implicitly contained in the
planning problem, and thus cannot be automatically exd@thétom preconditions and effect
descriptions. An open question is how more knowledge alfmienhvironment (e.g., modeling
physical laws or the behavior of other agents) and an imptéwewledge representation would
enable automatic generation of plan invariants.

The execution semantics of such an extended plan can be sisitgg || to denote parallel
execution:

4.3. EXTENDED PLANNING PROBLEM 53

[(p, inv)] (S) = [p] (S)[[[inv] (S) (4.6)

Communication between statements executed in paralletfierpeed throughvbs, S and the
state of plan execution.
The semantics of checking the invariant over time is defirseidiows:

[inv] (S @ obst(t)) if invUS = L

4.7
fail otherwise (4.7)

[inv](S) = {

whereS is the current belief state of the agent ambd(¢) results in a set of observations at
a specific point in time. Hence, the invariant is always checked unless it contrathhe state
of the worldobs or the agent’s belieb. For the delivery exampléw = accessible(Room_D)
A (accessible(Room_A) V hold(letter)) would be a feasible invariant. The invariant states that
as long as the robot does not hold the letféspm_A has to be accessible. Rodmmhas to be
accessible during the whole plan execution.

Definition 4 An extended plap = ([a4, ..., a,], inv) is a feasible extended plan for a planning
problem(7, G, A) iff [p] I # fail and[p] I © G, and all states that are passed by the plan the
invariant must hold, i.ey? ,([ai, ..., a](I) Uinv) & L.

Feasibility is again a necessary condition for extendedsta be executable. But it is not
guaranteed that the agent will reach its goal. Hence, it rbagjuaranteed that the invariant
does not contradict any state that is reached during placuéra. We now can easily extend
Definition 2 for extended plans.

Definition 5 An extended plap = ([a1, . . ., a,],inv) for a given planning problenli/, G, A) is
successfully executed in a given environmef(t<if a,, . .., a, >,inv)](I) 2 G.

Theorem 2 An extended plap = ([a4, ..., a,],inv) for a planning problenm(/, G, A) is suc-
cessfully executed in a given environment with observatbnsf (1) the plan is feasible, (2)

Ve o([a, ..., a;](I) Uinv) = L and (3) the set of believed facts resulting from execution of
planp with simple plan execution semantics is a subset of the sefiel/bd facts resulting from
execution in a real-world environment.

Regarding Theorem 2 (3), in real-world environments, olaens lead to believed facts
that are not predictable from the plan execution, hdageS) differs.

54 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

Corollary 3 Every feasible extended plan for a planning problgiG, A) is a feasible plan for
the same planning problem.

The prove is quite intuitive because the invariant does fietethe planning process.

Concluding the execution of a plan does not relieve an agetstddties. If the plan execution
succeeds, a new objective can be considered. If plan epadatls, alternative designations need
to be aimed at. Not all possible goals might be desirableefbee a condition that decides about
execution is needed. This condition needs to be valid froenbiginning of plan creation to
the initiation of plan execution, hence the initial stétaeeds to fulfill this condition, thelan
problem precondition An agent is given a set of alternative planning probléms .., P, and
nondeterministically picks one out of these that has afsadipreconditior”’; thus deriving an
extended planning problefd, G;, A, inv).

Cy — (1,Gq, A, inv)
m={ . . (4.8)
Cn — (I,Gp, A, inv)

The knowledge base of an agéhtomprises of all desired reactions of the agent to a given
situation. The preconditions trigger sets of objectivesaent may pursue in the given situation.
The execution semantics of this set of planning problemsesstated as follows:

[(1) =
do for ever
select(/, G;, A,inv) when S |= C;
p; = generateplan(/, G;, A, inv)
[(pi, inwi)] (S)
end do;

The functiongenerateplan generates a feasible plan. The plan could be generatedruy usi
any planning algorithm. The use of pre-coded plans is alsmaiwable. The functioselect
nondeterministically selects one planning problem of tbieo$ planning problems whose pre-
condition is fulfilled. A heuristic implementation of therfation is conceivable, if some measure
of the performance/quality of the different planning pebk is available.

The semantics of the extended planning problem and the ptaougon define a semantics of
a general symbolic program language, if some minor regtristare applied. Plans are similar
to sequential programs in the imperative programming. Ttems pose as statements. If pre-
coded plans (equivalent to subroutines), pre-coded iamtgiand a defined heuristic selection
function are used, the behavior of agents acting in a dynamiconment can be described in a

4.4. AUTOMATED GENERATION OF PLAN INVARIANTS 55

general symbolic way. Due to the possibility of the defimtad plan invariants, the programmer
is able to ensure that the agent is reactive to exogenouspoedicted events, without coding
each possible exception.

Plans are similar to sequential programs. If only pre-cqdads and a heuristic selection
function are used, the extended planning problem and theuége semantics defines a general
symbolic programming language for agents acting in dynanigronments.

The extended planning problem introduced above can be osediefinition of a pure sym-
bolic easy to use programming language for agents. The @muger can easily define which
tasks the agent should achieve (goal definition) and whémitld pursuit the goal (plan precon-
ditions). Furthermore, the programmer is able to define genditions for the task execution
(plan invariants). The programmer also may provides pleutated plans to the agent, which
are equivalent to sequential subroutines.

4.4 Automated Generation of Plan Invariants

In the previous sections it has been shown that plan invariame a appropriate mechanism to
ensure and improve the plan execution in dynamic enviromsn&urthermore, it has been shown
how these plan invariants can be used in execution mong@mnd agent programming. But so
far it was assumed that for each plan or planning problem pipecgriate plan invariant is pro-
vided. In most of the cases, these invariants are hand-c&lgdhe hand-crafted generation of
invariants is exhaustive and sometimes far from beingakiviiherefore, an automated generation
of the invariants is desirable.

The problem of execution monitoring is not new. In the eas/Fikes already presented
a monitoring mechanism for the STRIPS planning frameworldusehe control of the robot
Shakey [FN71]. The idea was that a special condition c&iédelis attached to each action in a
plan. Kernels are necessary conditions that ensure thme fflan is further executed it may reach
the goal state. Fikes initiated re-planning if the kernehofaction in a plan was not satisfied,
because the goal state was not reachable anymore. The gemefahe kernel is performed in
the following way:

computeKernelG, P)

n = length(P)
Kn+1 - G
Fori=n:1:

Ki = (K1 eff (a;)) U pre(a;)
return K

56 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

The algorithm starts with the goal state and goes backwardsigh the action of the plan
until it reaches the first action. The kerri€},.; is set to goal staté&’, wheren is the number of
actions in the plan. The kernél; for an actiona; is calculated in the following way. First the
algorithm removes those literals of the successor keffag] which are altered by the effect of
the actiona;. Afterwards, all literals of the precondition of tlag are added to this expression.
This expression forms the kernél, and is attached to the actiar). Table 4.1 depicts the
calculated kernels for the plan of the delivery robot exampl

K;: | accessible(Roomd) A —at(RoomD) A —at(RoomA) Aisat(letter, RoomA) A
AV a:object(z) ™ NOIA(X) A accessible(Room) A at(RoomC)

K,: | accessible(Roomd) A —at(RoomD) A at(RoomA) Aisat(letter, RoomA) A
AV g:object(z) ™ NOI(X)

Kj3: | hold(letter) A accessible(RoomD) A —at(RoomD) A at(RoomA)

K,: | at(RoomD)) A hold(letter)

Kj: | isat(letter,RoonD)

Table 4.1: Calculated kernels for the deliver robot example.

During the execution of the plan, the truth-value of the k¢, is checked prior the exe-
cution of actiona; of the plan. If the kernel is satisfied, the execution of thenpk continued.
Otherwise a re-planning is initiated. In [FHN81] the plareention furthermore has the possi-
bility to skip actions of the plan. If a kernel of a successatiam in the plan is also satisfied
by chance, the plan executor simple skips the current aati@hcontinues the plan execution
with the later action. Furthermore, an efficient mechanismonitor the whole set of kernels is
provided in the work of Fikes.

The idea of kernels is somehow similar to the proposed phaarignts. The kernels provide
a simple mechanism to monitor plan execution. Moreovemrgpka algorithm for the automated
generation of kernels for a plan is available. The main dhifiee between plan invariants and
kernels is that the kernels are different for each action jplaa. The proposed plan invariant
remains the same for the whole plan. Furthermore, kernptesent only the precondition and
effects of the actions of a plan. Plan invariants in contshsuld encounter further the structure
of the task/goal and the calculated plan.

Consider the following example of the presentation of a sifiepaper at a conference. The
usual way of presenting a paper starts with the submissianpper to a conference. If the
paper is once accepted, one registers for the conferenegefbhe, the acceptance of the paper
and the registration are preconditions for the task of prsg a paper. The obvious goal of the
task is to give the talk at the conference. An appropriata piaght be to go first to the airport
and fly to the city the conference takes place. Then take adale conference venue. Finally, if

4.5. RELATED RESEARCH 57

the slides are prepared one is able to give the talk. But whaptdres if the conference session is
canceled for some reason. It makes no sense to enter the pldaneinformation is available in
advance. But it also makes no sense to put all this informatitmnthe preconditions of actions
like flying from A to B. This would constrain the general usékiof an action. Therefore, for the
automated generation of serious general plan invariantdifierent tasks a general knowledge
and description of the structure of the task and reasonipglihbties are required.

4.5 Related Research

Invariants for planning problems have previously beenstigated within the context of planning
domain analysis. Planning domain descriptions implictthntain structural features that can
be used by planners while not being stated explicitly by tbmain designer. These features
can be used to speed up planning. For example, Kautz and 5¢k898] used hand-coded
invariants provided as part of the domain description usedlack-box, as did McCluskey
and Porteous [MP97]. The use of such constraints has beeordérated to have a significant
impact on planning efficiency [GS98]. Such invariants camb®matically synthesized as has
been shown in [RiN00, KC92, FL98]. Even temporal features ofamrpng domain can be
extracted by combining domain analysis techniques and haaeking in order to improve
planning performance [FLBMO1]. Also noteworthy is Discaplg5S00], a system that uses
domain description in PDDL [FLO3] or UCPOP [PW92] syntax toragt various kinds of state
constraints that can then be used to speed up planning. Amgarfd- or backward-chaining
planning algorithm can be enhanced by applying such canttrae.g. Graphplan [BF95], as
described in [FLOO]. However, in [BMM98] Baioletti, Marcugiand Milani suggest that such a
constrained planning problem can be transformed to a nastned planning problem, which
allows the application of any common planning algorithm.

In [Dij76] Dijkstra introduced the concept of guarded conmda by using invariants for
statements in program languages. This concept is similautproposed method except that we
use it for plan execution.

The logic programming language Golog [LR®7] is based on Reiter’s variant of the Situ-
ation Calculus. It is a second-order language which enabklesoning about actions and their
effects. Golog and its derivate have been successfully iase¢te deliberative control of agents
and robots. The advantage of Golog and its successors i# t@hbines logic interference,
reasoning and planning with imperative control constriikésloops, conditionals and recursive
procedures. Furthermore, it supports less standard ceitstike nondeterministic action se-
lection. Therefore, Golog forms a powerful and flexible gased programming language for
agents and robots.

In [FFLO4] DTGolog has been used to control robots in the Rolpokliddle-Size scenario.

58 CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

DTGolog is an extension of Golog which uses decision-theopéanning. Because of the prop-
erties of decision-theoretic planning like the reasonibgu different outcomes of an action
DTGolog is more suitable for dynamic environments like riodmccer. The authors extended the
DTGolog framework with a mechanism for the monitoring actéxecution. Decision-theoretic
planning uses models for actions which are able to predwt the state of the world evolves
during the execution of the action. These models are sirtol#ne effects in STRIPS planning.
The predictions of the models are used during the plannioggss. Furthermore, the predictions
are attached to the corresponding actions in the plan. Tgreskctions are logical sentences and
are called markers. The markers are monitored during theuéiee of an action. If the markers
deviate from the actual state of the world the action is um&bfulfill its desired objective. The
reason for this could be that the action failed or an extezmaht have changed the world in an
undesired way. In this case the execution of the actionésnapted. This is a simple mechanism
for monitoring the execution of actions and plans. The idesirmilar to the plan invariants but
the marker mechanism ensures only the execution of a sintjaand not the execution of an
entire plan.

In [BAB *01] Beetz and colleagues present their control architefétutbe tour-guide robots
Rhino and Minerva. The architecture comprises a plan-baggdi@ével control called the struc-
tured reactive controller. Robustness and adaptabilityfdoreseen situation in the plan exe-
cution is achieved by the use of prediction models and thetiveaplan language (RPL) which
provides statements for robust execution.The structugadtive controller monitors the execu-
tion of plan by the the use of models of the behavior of theoasti In case of a problem or a
failure the controller is able to modify plans at the fly in erdo react to such situations. Further-
more, the controller is able to execute concurrent plansifameeded postpone of one plan the
execution until a needed condition is satisfied again. Magedhe architecture is able to learn
action models in order to improve the planning and the platetion. In [Bee02] Beetz gives a
deeper discussion of the plan-based control of mobile sobot

4.6 Discussion

In this section a framework for executing plans in a dynammiirenment has been presented.
The framework was implemented for the autonomous roboétfqrim introduced in Chapter 2.
The implementation was used in the RoboCup robotic soccer idowtach led to promising
results. Furthermore, the operational semantics of thmdwork has been discussed and it
has shown under which circumstances the framework repeselanguage for representing
the knowledge of an agent/robot that interacts with a dynanvironment but follows given
goals. A major contribution of this section is the introdantof plan invariants which allow
for representing knowledge that can hardly be formalizethenoriginal STRIPS framework.

4.6. DISCUSSION 59

Summarizing, the main advantages gained by the use of planants are:

e Early recognition of plan failure : The success of an agent in a real-world an environment
is crucially influenced by its ability to quickly react to aiges that influence its plans.

e Long-term goals Plan invariants can be used to verify a plan when pursuing term
goals, as the plan’s suitability is permanently monitored.

e Conditions not influenced by the agent Plan invariants can be used to monitor condi-
tions that are independent of the agent. Such conditionsairappropriate within action
preconditions.

e Exogenous eventslt is usually not feasible to model all exogenous actioret tould
occur, but plan invariants can be used to monitor significhanges that have an impact
on the agent’s plan.

e Cooperation: In order to successfully cooperate with other planningiégi¢ is necessary
to monitor the behavior of cooperating agents. For this,tpka invariants are perfectly
suited.

¢ Intuitive way to represent and code knowledge As the agent’s knowledge commonly
has to be defined manually it is helpful to think of plan pretitans (the situation that
triggers the plan execution) and plan invariants (the desrdithat has to stay true at all
times of plan execution) as two distinct matters.

e Durative actions. Plan invariants can be used to detect invalid or unsuitglales during
execution of durative actions. Durative actions, as opptsdiscrete actions, can continue
indefinitely. For example, a patrol robot in an office builglican continually execute an
action to wander around and to observe. As execution of ttisradoes not finish, how
does it detect a low battery and it would be more appropriatdrive to the charging
station? Again, plan invariants offer a convenient solutio

Up to now the used plan invariants are hand-coded. It wasvatetl that plan invariants are
able to encounter a much wider area of domain knowledge tbi@gonanvariants and precondi-
tions. For the desired automated generation of plan inverifurther research is needed in the
domain of descriptions of the structure of tasks and theoréag about such descriptions.

60

CHAPTER 4. INTELLIGENT QUALITATIVE CONTROL

Chapter 5

Bridging the Qualitative and the
Quantitative World

Consider a robot that has to provide a certain task at a ceptait in time. This robot has
to have a knowledge about the physical world not only in teoinguantitative measurements
like probability distributions of its location but also iartns of qualitative facts like predicates
stating that a ball is in reach. This qualitative represanas necessary for computing actions
in order to fulfill the task. Of course this picture of an audorous agent assumes a symbolic
reasoning engine on top which is used to handle high-leverohbin contrast to low-level control
structures which can be implemented as reactive systemuste™.1 shows the relation between
the different representations of knowledge.

At the first sight the mapping of quantitative informationite qualitative representation
seems not to be big deal and in some cases this is true. Fopéxamhen dealing with control
systems for a plant with a limited (and known) number of gassnteractions with the environ-
ment, the mapping problem can be solved by applying the tigksholds and filters. However,
in applications like the robotic domain with unpredictalvieractions between the robot and its
environment the situation changes. Consider for exampleggsain the light condition. These
changes have a substantial impact on the visual perceptibie cobot. Hence, an object which
was within a one meter distance before changing the derfdighd maybe perceived at a higher
distance afterwards although the real situation of thetioglahip between the object and the
robot has not changed. Hence, the robot changes its intatataland may choose different ac-
tions. A more severe situation can happen when environrhamages cause the robot to switch
between two contradicting states, e.g., object in reactoahdf reach, which prevents the robot
from taking meaningful actions. In this chapter we will diss these problems in more detalil
and will present a approach which will decrease the impastioh effects. Parts of this chapter
previously were published in [SWWO05].

61

62 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

Qualitative

"Reality"
Y World Model

{ OPEN 2003

inReach(B)
fieldCenter(T)
fieldCenter(B)
AHead(B)
AHead(O1)

World Model

Figure 5.1: From the real world to its qualitative repreaéinh.

The qualitative mapping problem as described before isIgnaaused by unreliable percep-
tion. Hence, one solution would be to improve the percepélgorithms, e.g., the computer
vision system, to make it less sensitive to changes of emriemtal parameters like light condi-
tions. However, the mapping problem itself will not be salvd-or example assume a perfect
perception system and two robots playing soccer. The &tuatarts and our robot assumes the
ball in reach but the opponent robot kicks the ball slighithence, the situation changes and the
ball is no longer in reach. Because of the underlying defimigbin reach this might mean that
the ball is now more than one meter apart from our robot wrsciso the case for a distance of
let us say one meter and one centimeter. In both situatioeasyeuld expect our robot to take
the same actions but because of a difference of one centiaredethe use of a sharp boundary
the perceived world is different and thus the actions as.wedlolution for this problem could be
the introduction of new landmarks. In our example, a new igegd for almost reachable can be
introduced. This kind of solution can be compared with sohs for the problem of finding the
right qualitative reasoning model for a certain task. Sablaeher and Struss [SS01] proposed
such a solution.

The drawback of using only the quantitative values for mglkindecision in a specific sit-
uation at a given point in time becomes obvious when conisigehe soccer situations of Fig-

63

ure 5.2. All of the three soccer situations are differenhwéspect to their corresponding quanti-
tative model. However, from a high-level view situationsdad (b) become equivalent because
in both the ballB is in reach of playef’ and the way to the goal is not blocked by the opponent
goalieO. Note that it seems that (a) and (b) are different becauskeeodlifferent distances to
the goal but for the player’s view it makes (almost) no difference. Situation (c) is a&hént
situation as the way to the goal is blocked.

0]

o
|

(@)

(€)

Figure 5.2: Three situations in robotic soccer. Quantidyiall three situations are different but
gualitatively situation (a) and (b) are equivalent. Sudatrens are part of a qualitative model.

Although, the qualitative mapping problem can be theoa#lticsolved by using perfect sen-
sors and qualitative modeling techniques, there is stilkednfor a practical solution. Perfect

64 CHAPTERS. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

sensor input is not available and there is no indication thiat problem will be solved soon.
This holds especially for visioning systems. Hence, theeerequirement to overcome the prob-
lem. In this paper we follow the hysteresis approach from/ffe8a]. We introduce the problem
again, present a practical solution in terms of predicasdngsis, discuss experimental results
and open issues. The experiments indicate that the use t&rbgs really improves the overall
behavior.

5.1 Symbol Grounding and Action Selection

In order to create a continuous model of the real environytéet perceptions from different
sensors (e.g., camera, odometry) are fused. The resulbdglroontains the positions of objects
on the field: the ball, the two goals, and the players. Theseddferent methods for creating
world models in dynamic and nondeterministic environmewts use a Kalman filter [May90]
for predictions of object positions and sensor fusion.

This purely quantitative model is transformed to an abstwawrld model, theknowledge
base which is expressed by means of a &ebf ground predicates. The knowledge base, which
is basically a conjunction of ground atoms, is the sourcdHerqualitative reasoning which is
performed by thelanner[Fra03]. The planner is the strategy layer of the controtvgaife for
our soccer robots, and its main responsibility is the seleaif actions which shall be executed
next. The Planner makes use of classic Al planning for arggilans at runtime. It is based on
the STRIPS representation language [FN71].

This approach has, compared to reasoning based on corgirdada, many advantages.
Among others, a qualitative model has only a finite humberasfsible states, and qualitative
models are able to cope with uncertain and incomplete kradyy@e Another reason is the fact
that the programming of the robot is simplified and can alsddige by human operators who
have no programming skills. The knowledge and the strategybe neatly expressed in logical
formulas.

As already explained, the knowledge of the robot is expkaseng ground predicates. The
interpretation of au-ary predicatep € P relies on the continuous world mod&!. It can be
formalized as follows:

true if COND,(O™, M) = true

5.1
false otherwise ®-1)

I(p(O"), M) = {
A constantO denotes an object of the environment, eiull, OwnGoal, or players. The
functionCON D, is specific for each predicate For example, the predicate Reach(O, M) is
defined as followsR is the robot itself):

5.2. APREDICATE HYSTERESIS 65

COND_i nReach(O, M: bool ean
return (dist(R O < 1200)

inReach is an example for a predicate whose truth value is groundékeodistance between
the robot and another object. For convenience, this kindedipate is calledistance predicate
from now on. Of course, predicates can state various kinédeailedge about the environment,
for example the visibility of objects (e.ginknown(Ball) is true iff the position of the ball is
unknown) or angles between objects.

Based on the current state of the knowledge base, the plaeleetsa plan which shall be
executed next. A pla®’ comprises:

1. A preconditiorprep which is a conjunction of ground literalg? can be executed only if
prep is fulfilled.

2. A sequence of actiorns,, ..,a,]. a; € A whereA is the set of actions the robot is able
to execute. A plan is successfully finished iff all actions finished. The sequence of
actions is either dynamically computed using classic Ahplag or it is statically defined
by a human operator.

3. Aninvariantinvp which is a conjunction of ground literals. If an invariantaoturrently
executed plan is violated, then the plan is aborted.

A more detailed discussion of the plan execution is found-BWO05].

5.2 A Predicate Hysteresis

The mapping from a quantitative model to symbolic predsatea dynamic and uncertain en-
vironment leads to two major problems: First, the truth eabd predicates is calculated using
thresholds, i.e., there are sharp boundaries. Thus sliginiges of the environment can cause
truth value changes and result in abortion of plans due tolation of the invariant, even if the
plan still could be finished successfully. The consequenasstability in the high-level decision
making process. AZommitmento a plan, once it is chosen, is desired. Second, sensordata i
inherently noisy. Hence, due to the sharp boundaries, s@o$se leads tanstable knowledge
i.e. to undesired oscillation of truth values, even if theiemmment does not change.

We propose gredicate hysteresigs an attempt to mitigate the problems described above.
The termhysteresiss well known from electrical engineering. It means that tierent state
is influenced by a decision which has been made previouslyadspt this concept in order to
improve the robustness of the decision making process. @bie dea is that, once a predicate

66 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

N N \
\ N \
\ N\ N \
\ N \ \
\ \ \ |
\ N v
\ e
\ \ \ \
\ (I
\ I ! 1 |
? \ — ‘ ! |
> 1 I
| ! : ,
1
- I N /
g 1
| G ! Iy
G 3 J K / /-
¢ / / ;!
, i !
/ 7 ot
, / / /
4 / X
/ 7 / /
/ R z ,
7/ R 7
ya /_/ ~ 7
z —_ - - 4
y t-h_ - T
s // -
~ _ - -
// //'

Figure 5.3: Example: (a) no hysteresis, (b) with hysterek&zeh. G is the goalkeeper, B the
ball, the area N depicts the uncertainty of the ball posit@asurements.

evaluates to a certain truth value, only significant chaidése environment can cause a change
of this truth value.

Thus an extended interpretation functibpis introduced:

true if COND,(O"™, M,l) = true
I(p(O™), M,1) = PR 5.2
(p(O%), M, 1) { false otherwise (6-2)

The variabld represents the current truth valuepof

The functionsCON D, are also redefined. The general definition for distance pages is:

COND _di stance_pred(O, M 1):
if I then

return (dist(RL O <th + h

bool ean

el se

return (dist(R O <th - h

th denotes a threshold, which is specific for each predicatehdrexample given above,
the predicatén Reach has a threshold of 1.20nk is the hysteresis sizeln this definition, the

5.2. APREDICATE HYSTERESIS 67

VY A

T .
th—hg’ﬁwh
th

Figure 5.4: Evaluation of the predicateReach using hysteresis.

hysteresis size is defined as an absolute number. In praptedicates with a larger threshold
may also demand a larger hysteresis because in generalrtber seise is higher for distant
objects. Thus it is often more convenient to define a hystestgeh,.; as a percentage of the

threshold:

COND_di stance_pred(O, M [|): bool ean
if | then

return (dist(R, O <th * (1+h rel)
el se

return (dist(R O <th * (1-h_rel)

However, in this paper the terhysteresis sizalways denotes an absolute number in mm.

Figure 5.3 gives an example for the effect of using a predibgsteresis. It shows a goal-
keeper in his goal. The ball has approached the goalkeeplestaps at the position which is
shown in the figuredist(R, Ball) is slightly less thanh — h, whereagh is the threshold of the
predicaten Reach andh the hysteresis size.

Suppose the goal-keeper’s strategy includes the followiags:

precondition= invariant: action:
Py: | —hasBall() N —inReach(Ball) | stay in goal
Py: | mhasBall() AinReach(Ball) | grab ball

In (a) as well as in (b)in Reach(Ball) becomesrue and thus?, is activated. The goalkeeper
starts moving towards the ball.

68 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

But in (a), where no hysteresis is used, it may happenith@tach(Ball) becomesfalse
again due to sensor noise. In this case, the current plaroiseabandP; is reactivated. This
flipping can happen several times in quick succession, taégeper activates plans and aborts
them before they can succeed.

In (b) a hysteresis of sizé is used. As soon a8 Reach(Ball) becomesrue (i.e., the
distance between the robot and the ball is less thanh), it keeps this truth value as long as the
dist(R, Ball) is less tharth + h. Thus the truth value afi Reach(Ball) is, to a certain extent,
robust against the noise of the ball position measurementhis example, the hysteresis size
is sufficiently large to compensate the noise, and the geptkedoes not abort, after he has
made this decision. The goalkeegemmitshimself to this decision — as it would happen in a
real soccer match. If a real good goalkeeper leaves his gaabler to grab the ball, he does not
change his mind only because of a slight change of the baligos

5.3 Experimental Results

The proposed symbol grounding with hysteresis was evaluaiteour real robots within the
robotic soccer domain. We investigated how the use of a freg@tein symbol grounding stabi-
lizes the evaluation of the truth value of predicates andced the number of undesired changes
of the truth value caused by noise and changes in the enveaohm

We conducted several static and dynamic experiments inhathie robot measured the dis-
tance to objects on the field using its vision system. Basethe&setmeasurements, the symbol
grounding evaluates the truth value of the distance preglicadieach. The distance measure-
ments are not reliable and vary within certain boundariesibse of noise and changes in the
environmental conditions. Therefore, there are undesinadges in the truth value of predicates
even if the distances do not change in the real world.

Figure 5.5 shows series of distance measurements durifj@estperiment. The robot was
placed 4800 mm away from the yellow goal. We recorded sefidstance measurements over
periods of 30 seconds. These series were recorded at differees during the day to investigate
the influence of changing lighting conditions. Please niot¢ the vision system was calibrated
the day before and no adaptation of the vision and camergilack between the different series.

As the experiment setup was totally static a perfect visisiesn would always report the
same distance and there would no change in the truth valudisteance predicate. But the Figure
shows that in practice the measurements are affected bg.nBigthermore, it shows the clear
dependency of the amount of noise in the data on changingriggbonditions. The extent of
noise differs within the different series recorded undéedent lighting conditions. This change
is caused by the fact that the color of objects is differepélyceived under changing light and the
robot vision relies on the colors of objects. The worst cbads were at 17:00 where it became

5.3. EXPERIMENTAL RESULTS 69

6000

5000}~ . ‘ L L I,. 1

4000 1

3000 1

2000 1

10:00

—16:00
1000 1
—17:00

Distance measurement yellow goal (mm)

0 I I I I I
0 100 200 300 400 500 600 700

Measurements

Figure 5.5: Distance measurements for a static object 486@way from the robot at different
times during a day.

dark.

n

#Meas.| pu o A h=0 =y | h=2 [=2

3 2

mm | mm| mm
| 735 |5202]385|1403| 61| 17 | 11 | 0 |

Table 5.1: Number of undesired truth value change$ predicatein Reach for the yellow goal
for static distance measurements at 17:00 with differenrgssi for the hysteresis.

Because of the quality of the distance measurements, theaygntunding with a fixed
threshold reports a number of truth value changes of thamlst predicate. These changes
are undesired because the object positions did not chantdpe ireal world. Table 5.1 shows
the results of the symbol grounding of the series at 17:00rapdrts how different sizes of
a hysteresis stabilize the symbol grounding. The serietagwd 735 measurements with a
distance mean of 5202 mm and a standard deviatioh385 mm. The valué\ is the difference

70 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

between the maximum and the minimum of the measured distaiticm this series. If we do

not use a hysteresis in the symbol grounding, we get 61 urdieshanges of the truth value. If
we use a hysteresis with the sizesothen we reduce the number of changes to 17. An increase
of the size of the hysteresis fo/2 reduces the changes to zero. This clearly shows the benefit of
the use of a hysteresis. But the size of the hysteresis is alawvayde-off between stability and
reactivity of the system. One has to take care that the sitieedfiysteresis does not exceed an
adequate level. Otherwise, the system will lose its reggtiv

6000
4000{ R 1

2000(.]

s/mm
o
T
|

-2000} B

~4000f P 1

_6000 L L L L
-6000 —-4000 -2000 0 2000 4000 6000

r/mm

Figure 5.6: Position measurement for a static object 4000away from the robot while the
robot rotates. Positions are shown in the robots local énaté system.

Figure 5.6 shows position measurements for an object wahilynamic experiment. The
robot was placed 4000 mm away from the yellow goal. We reabalseries of position mea-
surements while the robot performed a full rotation arousdértical axis. Positions are shown
in the robots local coordinate system. The robot is locatetthé origin and the positive r-axis

5.3. EXPERIMENTAL RESULTS 71

points to the front of the robot. If there were no inaccuracyhe vision system and the mo-
tion of the robot then the position measurements would li@ @erfect circle and the distance
measurements to the object would remain constant. But theneasurements are affected by
errors. There are three major reasons for these errorsiti@re is noise from the vision system.
Furthermore, there is inaccuracy in the tracking of the dbpgth the Kalman filter. This ef-
fect causes the tangential drift and the discontinuity efrtfteasurements. Finally, the imperfect
geometric calibration of the camera causes a deformationeofiypothetic circle. Distances to
objects in the rear appear shorter in the camera as distemobgects in the front.

n
#Meas.| pu o A —x

h=0] h=s | h=2 [h=2

| 329 \EZ%TQE\E??\ 4133] 1]

Table 5.2: Number of undesired changef predicatein Reach for the yellow goal for rotating
distance measurements with different sizder the hysteresis.

Table 5.2 shows the evaluation of the above position measnts. The position measure-
ments were converted to distances by calculating the Eeaidlistance. Without using a hys-
teresis there are four undesired changes in the truth vélie on Reach predicate for the yel-
low goal. The table shows that with an increasing size of {fstdresis the number of undesired
changes decreases to one. Please note that because ahpedire initialized with false there
is always one change in the truth value even if the predisaaénays correctly evaluated true.

Figure 5.7 shows the results of another dynamic experimbenthe experiment the robot
was placed 4000 mm away from the ball and directly facing ie Mtorded the distance mea-
surements to the ball while the robot was directly appraaglhti If we assume again a perfect
perception then distances are supposed to monotonicaligase. The figure clearly shows that
this is not the case in our real experiment due to the impepeeption. The evaluation of the
symbol grounding without hysteresis for this experimepborés three undesired changes of the
truth value of the predicatie Reach for the ball. We calculated the mean and standard deviation
of the differences of succeeding distance measuremerita,eoonly considered cases in which
the measured distance increased. The mean was 51 mm andrttarstdeviation was 8.8 mm.
If we used a hysteresis with a sizeafthere were no undesired changes anymore.

The results of the above experiments in the real world shawdbantitative perception is
always affected by noise, changes in the environment aret othccuracies. Therefore symbol
grounding with simple thresholds can not be stable even tidwloes not change. This insta-
bility negatively affects the performance of the qualitatplanning and reasoning process of an

72 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

4500

4000

w
A
o
o

w
o
o
o

2500

2000

1500

Distance measurement ball (mm)

1000

500

0 \ \ \ \
0 50 100 150 200 250

Measurements

Figure 5.7: A sequence of consecutive distance measurdoremstatic object while the robot
directly approaches the object.

agent. Furthermore, the results show that the proposeddaygriunding with hysteresis is able
to decrease the number of undesired changes of truth valygedicates to a minimum. This
leads to an improvement of the stability of the robot’s krexlge and increases the performance
of the qualitative decision making process.

5.4 Open Issues

Although the use of a hysteresis in symbol grounding isfiestiby experimental results, there
are still open questions concerning the proposed method.

There is no general answer to the question how the size ofy$teresis can be satisfactorily
chosen. The size which is appropriate to sufficiently sitadithe symbol grounding while keep-
ing the system reactive may differ from situation to sitaati For example, the light conditions
are always different and unpredictable. Furthermore, aroareful investigation should be done
on the impact of the hysteresis on the reactivity of the sgstA open question in this context
is the definition of an appropriate evaluation criteria. Acfudea might be to play a dozed

5.5. RELATED WORK AND DISCUSSION 73

simulated games with and without the hysteresis and to cmartpa results, like goals scored or
games won.

So far, we have not done any quantitative evaluation of havsymbol grounding with
hysteresis influences the planning and plan execution uratsins with slightly changes in the
world. We assume that the hysteresis increases the perfomtd the plan execution as it can be
compared to a commitment to follow a certain plan even ifélae changes in the environment.

More research should be done on the conjunctions of prediceting hysteresis. Assume we
use a conjunction of a large number of these predicated.rffedsurements for predicates reach
the upper boundary of their hysteresis the qualitativeaiba is the same as all measurements
for predicates lie around the lower boundary. But the quatnté situations in the real world
may substantially differ.

We use some predicates in different plans. Regardless of ichwitan a predicate is used
we use the same hysteresis size for the predicate. It migihesieable to use different hysteresis
sizes for the same predicate in different situations iniot@adjust the stability and reactivity of
a predicate for a certain situation.

A small size for the hysteresis eliminates instabilitieghie truth value without a significant
decrease of the reactivity of the predicate. We need an evgarlhysteresis if the inaccuracies
in the perception become larger. But this fact negativelgas the reactivity of the system. It
might be interesting if a smaller hysteresis is sufficiembdre qualitative knowledge about how
the world works is added to the reasoning.

5.5 Related Work and Discussion

In [DFLO3] and [PACO04] hybrid systems for controlling robatta RoboCup MSL Team were
presented. Both us@olog for the representation of the qualitative model and thevd&dn

of plans. Furthermore, they use the qualitative model amikm trees to evaluate the most
appropriate action in a certain situation. This action edli§no plan is available in that situation.
The used action might not be the best but keeps the roboiveasten the planning take some
time. However, the problems arising from noise and jittetha quantitative model were not
accounted in those approaches. In [Ree99], an approachionm aefection in Robotic Soccer
is presented. Thaction moduleswhich are introduced in this work, have preconditions and
invariants. The invariants can contain fewer conditiorantthe related preconditions in order
to avoid oscillating behavior. The modules also hae#ivation factorsstating the utility of
the action. These factors are situation independent, leuinareased during the execution of
an action module. This results in larger robustness of thaer. In the work presented in
[MUI0Q] a similar approach was used for gaining robustnesshe&#acher and Struss [SS01]
presents a framework for automated qualitative abstractfayuantitative models. However, a

74 CHAPTER 5. BRIDGING THE QUALITATIVE AND THE QUANTITATIVE WORLD

complete knowledge of the quantitative model is requirdigngas in our case only quantitative
observations (which are incomplete and uncertain) are ethpdhere are approaches which
avoid the addressed problems in symbol grounding by theeustaggasoning with uncertainties
like fuzzy logic or probabilistic networks. However, thesgproaches require different models
and modeling processes.

In this paper we addressed the problem of symbol groundiagtications with a very high
degree of (mostly unpredictable) interactions. We intastlithe concept of predicate hysteresis
to overcome some of the corresponding problems that ocquastice. We further described em-
pirical results we obtained when using predicate hystefesisymbol grounding on our robots.
The outcome of the predicate hysteresis substantiallyowgal the behavior of the robots. We
further discussed open issues and future research dimsctio

Chapter 6

Model-Based Diagnosis for Robot Control
Software

Control software of autonomous and mobile robots is charaetd by its fairly high complexity
which is in conflict with runtime requirements like stalyland flexibility. Complexity is caused
by the software components implementing the basic funatityriike planning, computing world
models, sensor and actuator interfaces, and their coonsctBecause of the high complexity,
the instability of hardware components and connectiond,the underlying operating system,
complete stability of such a platform is very unlikely. Tipisoblem description does not only
hold for mobile robots but all systems comprising softwand aardware which interact with
the real world. But when we want to build a robot that is trulycemomous, it has to deal with
failures during its runtime without degrading the desiretidvior or even worse failing to fulfill
its mission. Hence, a diagnosis system on top of the congstém which does monitoring the
current behavior, locating the cause of a detected faiamd,taking the appropriate actions is a
necessity. In this chapter we will present a model-baseddveork for this purpose. Parts of the
framework were also published in [SW05b, SMWO05, SWO05c].

There are several requirements for a diagnosis system ghotfmain of mobile robots. First,
ideally the diagnosis system should not cause any changid® aontrol systems. If changes
are necessary, they should be as small as possible. Fudiesrthe diagnosis system must not
affect the behavior of the control system. This requirenienery important in order to keep
the effort for introducing a diagnosis system as small asiptes Second, the diagnosis system
should not reduce the overall available computational pdveeause this might decrease the
robot’s functionality, e.qg., it's ability to react to a giwvevent in a certain amount of time. Third,
in cases where the diagnosis system itself does fail, thereld be (almost) no effects on the
control system. Finally, the memory requirements of thguiesis system should be as small as
possible. Otherwise, the diagnosis system has a too laige eh the system performance. For

75

76 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

critical application it is desirable that the integrationaodiagnosis system is part of the initial
design.

In order to fulfill the above requirements we introduce a nkdidesed solution. This includes
a model of software components and their relationshipsateaspecified in the software archi-
tecture of the robot’s control system. This model is therduealerive root causes of a detected
failure. A root cause itself is a software component. Théufaidetection is based on obser-
vations. For this purpose we use the concept of observerssaftware programs that monitor
system activities like the number of active processes oftavace component. If the monitored
value exceeds its pre-specified boundaries, the obselgesra conflict which causes the diag-
nosis engine to compute the root causes. Once the root caadeebn identified, the diagnosis
system takes appropriate actions in order to retain thesystorrect behavior. Possible actions
are killing and re-generating processes that caused thedfail he fault detection, localization,
and correction procedures are all based on declarative Isofiéhe control software.

In this chapter, we present the foundations of model-basagndsis, the modeling
paradigms, the observers, and the algorithm for retairiagbrrect state. Moreover, we present
the results of a case study which had been realized by maggdiencontrol software architec-
ture of our mobile robot. In the used test-cases typicalifad, like software components that
become inactive because of deadlocks, are representedcasbestudy shows that the overall
system performance is not degraded and that the diagnastisnsyalways retains the desired
state.

6.1 Model-based Diagnosis

6.1.1 Foundations

In the previous section, we briefly outlined how model-badiagnosis works and how it can be
used to detect faults in the control software of autonomoaoisii@ robots. In this section we will
provide a deeper knowledge about the foundations of moastdbdiagnosis.

An overview on the process of model-based diagnosis is showigure 6.1. The funda-
mental principle of model-based diagnosis [Rei87] is thatsiés a description of the correct
behavior of components and the connections among the canfoto detect and locate faults
in a system.

The model of the correct behavior of a system, the systenrigésa, is derived from the
specifications or requirement of the system. Such requingsnar specifications are usually
present or easily to obtain. For the representation of teesydescription a logic-based form is
preferred in order to ease deduction and reasoning. Thiehaues a prediction of the correct
output of the system based on current inputs. The advanfate aise of this kind of system

6.1. MODEL-BASED DIAGNOSIS 77

System Description
(Model) Diagnosis Physical System

Derived Behavior —— Discrepancy -«——— QObserved Behavic

Figure 6.1: Overview of the diagnosis process.

description for diagnosis is that only the correct behakias to be modeled and theoretically all
faults can be detected. In other techniques for fault deteeind identification (FDI) [VGST04]
each possible fault which one wants to detect has to be ékphoodeled.

The current outputs of the system are represent by obsemgatiSuch observations simply
are a snapshot of the current system behavior. Such observange from simple discrete
information, e.g, input pins of digital circuit, up to advaed temporal integration of continuous
values, e.g., multi hypotheses tracking [LBS96]. Again, giddbased representation of the
observation is desirable.

If a contradiction between the output of the system desongddesired or correct behavior)
and the observations (current behavior) exist we have tetex fault in the system. This is
the fact because only a faulty system will show a differertdwgor than the expected correct
behavior. Detection of the contradiction can be easily doyédogic inference if the system
description and the observation available in a logic-basptesentation.

Once a fault has been detected the interesting questiorimemvaich is the root cause for
the fault. In model-based diagnosis the localization ofribet cause is done by a systematic
attempt to resolve the contradiction. Such a resolving sedaon adding and removing of
assumptions about faulty components. We use Reiter’s gigofRei87] in combination with a
fast propositional theorem prover [Min88] for this purpose

More formally, the parts of the model-based diagnosis catdfi@ed in the following way:

Definition 6 (Diagnosis System)A diagnosis system is the tuple (SD,COMP) with:

1. the system description (SD) is a set of logical sentertu@® (Clauses or first order logic)
that specifies the correct behavior of the components anddheections among the com-
ponents

78 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

2. COMP is the set of components
It forms together with current observation of the system OiBSdiagnosis problem.

Definition 7 (Diagnosis Problem) A diagnosis problem is the triple (SD,COMP,OBS) with:

1. the system description (SD) is a set of logical senteregs forn clauses) that specifies
the correct behavior of the components and the connectiomg the components

2. COMP is the set of components

3. OBS is a set of system observations

Definition 8 (Diagnosis) A diagnosis of a diagnosis problem (SD,COMP,0OBS) is a/set
COMP so that SDJ OBSU{— AB(C)| COc COMP\A} U { AB(CO)| CO € A} is consistent.
AB(CO) states that the component CO shows an abnormal beh@vahagnosis is minimal iff
no proper subset is a diagnosis.

Intuitively, a diagnosis\ is a set of faulty components which explains inconsistermtywben
the desired and the observed behavior of a system. In generafactical applications one
prefers the derivation of minimal diagnosis. Naively, adghosisA can be computed by simple
checking the above properties for all possible subsetS@MP. But such an approach is not
feasible in practice because even for small systems the wiatiignal costs explode. Therefore,
Reiter [Rei87] proposed a more efficient and elegant way to coegiagnosis. He used conflicts
and hitting sets.

Definition 9 (Conflict) A conflict set of a diagnosis problem (SD,COMP,0OBS) is a setcCO
COMP such that Sy OBSU{—~ AB(CO)CO € COMP} is inconsistent. A conflict set is minimal
iff no proper subset is a conflict set.

The conflict covers simply the property that if all comporsentthe conflict are assumed to
work correct this leads to a inconsistency. Therefore, @eth declare at least one component
in the conflict set malfunctioning in order to resolve theftion If one is able to find a collection
of components assumed to be malfunctioning which resolVewaflicts a diagnosis is found.
Such calculations can be performed efficiently by usingrytsets.

Definition 10 (Hitting Set) Assume&’' is a collection of sets. A hitting set for C is a 9étC
Ugec S such thatd N S #) for eachS € C. A hitting set is minimal iff no proper subset is a
hitting set.

Hitting sets are useful in the calculation of diagnosis bisezof the following theorem.

6.1. MODEL-BASED DIAGNOSIS 79

Theorem 4 A setA is a (minimal) diagnosis for the diagnosis problem (SD,COBBS) iffA
is a (minimal) hitting set for the collection of conflicts set

An algorithm for the efficient calculation of hitting setscadiagnosis will be outlined later
in this chapter.

6.1.2 Simple Example

In this section we will explain the fundamental principlésrodel-based diagnosis using a sim-
ple example. We will deploy model-based diagnosis on thekimircuit shown in Figure 6.2.
The circuit comprises three multipliefd/1, M2, M3} and two adder§ A1, A2}. Therefore, the
set of component§OM P is { M1, M2, M3, A1, A2}. The circuit performs a simple arithmetic
calculation. Figure 6.2 shows the structure of the circod &he observed inputs and outputs
(green numbers). As one can simply follow, the output of iiheud is in contradiction with the
expected outcome (red numbers). The outpsihould have the value 12. But the observed value
at terminalf is 10. In order to show the principles of model-based diagnage will apply it to
this example to detect and locate faulty components.

M1 ntradi ction
o ” a Cont r ad /

b. | Al 12

M2 +
| x A2 12

d. M3 +
] 6

C

eo

Figure 6.2: Simple diagnosis example with contradictiotnmieen the modeled behavior and the
observations. Observations of the system are shown in gRredictions from the system model
are shown in red.

First we have to build up the system descript®Dwhich comprises models of the desired
behavior of the components and a description of the coromeztetween the component.

80 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE
The behavior model of a multiplier. can be described with the following logical sentences:
1. =AB(m) A Mul(m)ANiny(m) = x ANing =y — out(m) =z y
2. =AB(m) A Mul(m) Aout(m) = x ANiny =y ANing # 0 — ina(m) = z/y
3. 2AB(m) A Mul(m) Aout(m) =z ANing =y Ning # 0 — iny(m) = x/y
4. = AB(m) A Mul(m) A out(m) = 0 Ainy(m) # 0 — ing(m) =0
5. 2AB(m) A Mul(m) A out(m) = 0 Aing(m) # 0 — iny(m) =0

Line 1. specifies the behavior in forward direction. The Istates that the output of a
multiplier simply is the product of its inputs. The lines 8.3. allow a backward reasoning. If
one knows the value of the output and one input the value ce¢lend input can be calculated.
The predicateM ul(m) indicates that the component is a Multiplier. This predicate is later
used to build up the description of the complete system.

The behavior model of an addercan be described with the following logical sentences:
1. =AB(a) A Add(a) Niny(a) = Ning(a) =y — out(a) =x +y
2. =AB(a) AN Add(a) Nout(a) = z Niny(a) =y — ing(a) =z —y
3. mAB(a) N Add(a) Nout(a) = x Ning(a) =y — iny(a) =x —y

Line 1 specifies the behavior in forward direction. The litees that the output of an adder
simply is the sum of its inputs. The lines 2 to 3 allow a bacldvagasoning. The predicate
Add(a) indicates that the componemis an Adder.

The structure of the system and the connections among thparents can be specified as
the following logical sentences which are represent a cdle of facts:

1. =iny(M1)=a
2. = ing(M1) =c
3. =i (M2)=0b
4. = iny(M2) =d

5 = in(M3) =c

6.1. MODEL-BASED DIAGNOSIS 81

6. = iny(M3)=e
7. = iny(Al) = out(M1)
8. = iny(Al) = out(M?2)
9. = iny(A2) = out(M2)
10. = iny(A2) = out(M3)
11. = ing(M1) =iny (M3)
12. = iny(Al) = in,(A2)
13. = f = out(Al)
14. = g = out(A2)

The lines 1. to 6 specify the connections for the input teatsinThe lines 7. to 12. specify
the connections among the components. The lines 13. to d4egponsible for the connections
to the output terminals.

Finally, the following fact define the type of the differemtroponents.

1. = Mul(M1)
2. = Mul(M?2)
3. = Mul(M3)
4. = Add(A1)

5. = Add(A2)

Up to now we have the system descript®Bwhich tells us how the system has to perform
if all components work properly. The actual behavior of tlgetem is monitored by a set of
observation®©BS The observations of the system are the values of the inglibatput termi-
nals. It has to be noted that there is a wide range of diffeygrds of observations in different
applications. The values of observations are also specifiddgical facts.

1. =a=3

2. =b=2

82 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

3. =>c=2
4, =d=3
5. =e=3
6. = f=10
7. = g=12

The lines 1. to 5. specify the observed values of the inpuatiteals. The lines 6. to 7. specify
the observed values of the output terminals.

The next step to deploy the system descript8into deduct the values the system has to
calculate if every component of the system works correcteséhdeductions (the red numbers
in Figure 6.2) aref = 12,9 = 12}. Sometimes simple forward propagation of the values is
applied. Obviously, these results are in contradictiortlie observations. This contradiction
shows that our assumption that all components work coyésthot true. Therefore, we have
detected a fault in the circuit. Such a consistency checkuaually performed by using a
theorem prover, e.g., [Min88].

In our example we have two minimal conflicts. The minimal ceh8ets{ /1, M2, A1} and
{M1, A1, M3, A2} are shown in Figure 6.3.

From the intersection of the two minimal conflict séfg 1, A1} we can derive two minimum
hitting sets{ M1} and{ A1}. Therefore AB(M1) and AB(A1) are single fault diagnoses. This
is obvious because each of the two diagnosis resolves batttiate. Furthermore, the sets
{M2, A2} and{M2, M3} also resolve both conflicts. Therefore, we have derived twtiiphe
fault diagnoses.

6.2 Modeling Software Architectures

Software architectures provide a general view on softwéBeftware architectures comprise

software components and their connections. Componentsseqira collection of classes which

implement a certain behavior. The connections between ooeis represent dependency re-
lations like client-server relationships and data flow. Example a robot’s architecture might

comprise components for image processing, motion corgfahning actions, and others. Dur-

ing the execution of a program the components might spaweegses and interact using method
calls, or other means of communication, like events. Figdedepicts parts of the software ar-

chitecture of our mobile robot.

6.2. MODELING SOFTWARE ARCHITECTURES 83

M1

, Qo Al

co 2 X A2

8.03

12 g

d.3 M3 +
903 %

Figure 6.3: Simple diagnosis example with the minimal cotgli The first minimal conflict
comprises the componentd/1, M2, A1} and is shown in green. The second minimal conflict
comprises the componen{d/1, A1, M3, A2} and is shown in yellow. The intersection of the
booth conflicts{A/1, A1} is shown in blue.

The following formalization of the structural propertie tbe software architecture con-
siders the software components, their connections in tefridentifiers representing events or
procedure calls, and a classification of dependency retdich are used to repair the software
during runtime. We distinguish two different dependendstiens between components, namely
weak and strong dependencies. Two components are wealdndept if killing one component
at runtime does not require the other component to be kilheld@a be re-started in order to repair
the overall system. Otherwise, the relationship is a staegendency.

Definition 11 (SAM) A software architecture model (SAM) is a tuple (CO,C,out,in(AEDC)
where:

e a set of software components CO
e aset of connections C
¢ afunction out: CO— 2¢ returning the output connections for a given component

e a function in: COxC — 2¢ returning the input connections for a given component and
an output connection. This function only returns those igghat influence the value of
the specified outp®¢ demotes the power set of the connectiéins

84 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

ffffffffffffffffffffff Firewire=Bus ..o Oblect = "gpcivieasurement |
' |
Laser P T Goal R e =~
i PoseEstimate WorldModel
4 - ! Locator | ____-2T00%T
USB. = ; -
I et TN A |
RangeSensor_]1 //\}‘\000/6/_,/ L g i
g —- I S
Robot A NI
Hardware Motion TR - _
 ARI B
CAN-Bus™ <— ———— | Behavior |
CAN Sonar _RangeSensor_2_#] “Engine |
strong dependenc : o
g dep y Kicker i Lo
- - - - weak dependency . -t
B Dataflow Planner i

Kicker Corba Interface
WorldState Event Channel

Figure 6.4: Dependencies between software and hardwaralesod

¢ a set of weak dependencies WRQ©*¢©

e a set of strong dependencies SDQCV*0

We represent all weak and strong dependencies as orderedpair,) with 21, z, € CO.
The direction of the connection is fram to zs.

Corollary 5 If (z,y) € SDC and(y, z) € SDC then(z, z) € SDC holds.

These reflexive relation is later used to derive approprigair actions.

Hence, the SAM representing the software architecturegnir€i6.4 is :

({LASER, CAN, OT, GL, MO, SO, KI, WM, BE, PL},
{ ObjectMeasurement, WorldState, . . .},

{out(MO) = {MotionDelta}, ...},

{in(MO, MotionDelta) = {CAN_1},...},
{(WM,OT),..},{(LASER, GL), .. .})

6.2. MODELING SOFTWARE ARCHITECTURES 85

whereOT is the object tracker7L the goal locator)M O the motion serviceSO the sonar
service, K1 the kicker service,WM the world model,BE the behavior engine, angL the
planner.

The concrete behavior of the software at runtime is detezthby the implemented behavior
of its software components. A formalization of the concitatdavior requires the transforma-
tion of the whole program which is not only a very difficult kalsut leads to models that can
hardly be used for diagnosis at runtime where resourcesiégndsis are limited. Hence, an
abstraction of the concrete behavior is necessary. Thebideimd the abstract behavior model
of software components is similar to models which are basedependencies like the one de-
scribed by [FSW99]. If all inputs to the model are correct, fvgare component should produce
a correct output. This conversion has to be performed faza@atiponents and their output con-
nections.

The algorithm for performing this conversion is as followkexe the predicatd B stands
for abnormal, andk indicates a correct event or method call.

computeModel(CO, C, out,in, W DC, SDC)
Input: the SAM.
Output: a set of horn clauses

1. Let M be the empty set.
2. Forallz € CO:
(@) Add—AB(x) — ok_num_processes(x) to M.

(b) Foralle € out(x) add

—AB(x) A /\ ok(e") — ok(e)

e’cin(x,e)
to M.

3. Return)M.

Line 2.(a) introduces a rule which says that a correct corapbspawns the correct number
of processes at runtime. Because this parameter of a softwargonent can be easily checked
via operating-system calls, we incorporate this knowladgsir model.

For example, the rule that represents the abstract behaivibe OT" (Object Tracker) com-
ponent is:

—AB(OT) A ok(Firewire) — ok(Object M easurement)

86 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

The size of the model in terms of number of literals dependhemumber of the compo-
nents, the maximum fan-in, and the maximum fan-out of thepmmmnts. The fan-in and the
fan-out are both bound by the cardinality of the connections

Theorem 6 The number of literals occurring in the model returned bylingl compute-
Model(CO,C,out,in,WDC,SDC) 8(|CO| - |C|?).

If the maximum fan-in and the maximum fan-out are much smétian the number of com-
ponents, the number of literals is of orde(| C'O|) which is almost always the case for practical
applications.

In order to locate root causes, i.e., the components of thea® architecture which cause
a detected misbehavior, we have to introduce a notation sérehtions at the same conceptual
level. The easiest way of doing this (which has also been dgfiESW99]) is to use the sanaé
predicate for the purpose. If for example we detect a mishehat Object M easurement, we
could represent this by the literabk(Object M easurement). The drawback of this represen-
tation is the impossibility of distinguishing observatsoand computed values. Hence, it would
be better to introduce a distinguished predicate-ect for observations.

Definition 12 (Observation) Given a SAM(CO, C,CS). Either correct(x) or —correct(x)
are observations for a connectian The predicatecorrect(x) is true whenever the observed
connection shows the correct behavior. If we observe a faflure;, the observation has to be

—correct(x).

The final step for generating the model is to add rules for togmbservations to models
generated byomputeModel. The following algorithm provides this information.

computeOBSModel(CO, C, out, in, W DC, SDC)

Input: The SAM.

Output: A set of horn clauses representing the interface betweearttatecture model and
observations.

1. Let M be the empty set.

2. Foralle € C' add
correct(e) — ok(e) and—correct(e) — —ok(e)
to the modell/.

3. Forallz € CO add
/\ correct(e') — —AB(x)
e’ cout(z)

to the modelM!.

6.3. MONITORING EVENTS, METHOD CALLS, AND PROCESSES 87

4. Forallz € CO add
correct_processes(x) — ok_num_processes(x)

to the model\!.
5. Return)M.

Line 2. of computeO BS Model provides the interface between the observations and the de-
rived values. Line 3. captures a case where everythingsltaimputed by a software component
is known to be correct. In this case it is very likely that tleenponent itself is correct which is
represented by third line. In line 4. we provide an interfecéhe number of processes counter
because every component spawns a fixed number of processesisBehe number of processes
for each component is only a necessary condition for theectimess of a component it is not cor-
rect when saying that the correct number of processes ishieecorrectness of the component.
Therefore, we do not add such a rule to our model.

For our examplecomputeOBSModel would return the following rules forOT and
Object M easurement:

correct(Object M easurement) —
ok(Object M easurement)
—correct(Object M easurement) —
—0k(Object M easurement)
correct(Object M easurement) — = AB(OT)

Theorem 7 The number of literals occurring in the interface model reed by calling
computeOBSModel((CO, C, out,in, WDC,SDC)) is O(|C| - |CO)).

6.3 Monitoring Events, Method Calls, and Processes

Coupling the running program with its software architectuedel requires an abstraction step.
The running program changes its state via changing variabiees which is caused by inputs
from the environment. This state change is not representéidei SAM. Instead SAM repre-
sents the software components and their communication snédrerefore, we require to map
changes to communication patterns. For this purpose wednte the concept of observers.
An observer is a piece of software that monitors a certaihqfghe program’s behavior during
the execution. For example, an observer might check whétleenumber of processes for one
software component is equivalent to the specified one. Obaarwer checks whether a software
component produces a number of events during a certain arobtime. If an observer detects

88 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

a behavior that contradicts its specification, it computesappropriate observations in terms of
setting the observation predicatesorrect(x) for the corresponding connectiaf) and invokes
the diagnosis engine.

Definition 13 (Observer) An observer is a tuplés, 2) with:
1. a set of rulesS which provides the specification for testing the behavior.

2. a sef() comprising predicates which correspond to the observationthe SAM model.

The specification of the observer determines its abilitiegedecting a misbehavior. An
observer for checking the number of processes of a givewamdtcomponent specifies exactly
this number. In the current implementation of the observedute we allow to specify the
following observers:

e Periodic event productianThis rule is of the formpr oduces e every n ns and
checks whether an events produced at least everymilliseconds.

e Conditional event productionThis rule is of the formpr oduces e; ever n ns
af t er ey and checks whether an eventis produced at least everymilliseconds after
the occurrence of an evesi.

e Spawn processed his rule checks whether a component spawns a numldrnamed
processesd and is of the fornspawns n processes id.

e Periodic method calls: This rule is for checking whether mponent calls a method at
least every: millisecondscal I s m every n ns

The observers are used to monitor the state of the systenthisgrurpose the observers are
implemented and check their rules on a regular basis. Irsaddailure the diagnosis procedure
is invoked. The following algorithm specifies the monitgriprocess that has been implemented
in our system.

monitoring((CO, C, out,in, WDC,SDC), OS)
Input: The SAM and a set of observéexs.
1. Mg = computeModel((CO, C,out,in, W DC, SDC)).

2. Mo =
computeOBSModel((CO, C,out,in, WDC SDC)).

3. M = MsU Mop.

6.4. DIAGNOSIS AND REPAIR 89

4. Do forever:

(a) LetOBSbe the empty set.
(b) For allos € OS do:

I. Check the observers.
ii. If 0os = (S,(Q2) detects a misbehavior, agd _, o to OBS
iii. Otherwise, add/\ ., o to OBS

(c) If at least one observer detects a failure, call the ddagprocedure using the model
M and the observatiorGBS

Because of the simplicity of the rules monitoring does notetakot of time. In case of
a failure of course the diagnosis procedure has to be invakech is more time demanding.
However, in this case the system is not in a correct state eswlirces are necessary in order
to reset the system. The implementation of the observergtames require additional annota-
tions within the original program. In cases where the comigation between components is
implemented using for example CORBA annotations are not redui

6.4 Diagnosis and Repair

The diagnosis task in our implementation is based on the kimded diagnosis (MBD)
paradigm [Rei87, dKW87] we have outlined in previous sectidngarticular we use Reiter's
hitting set algorithm [Rei87, GSW89] together with a propiosial Horn clause theorem prover
[Min88]. In order to minimize diagnosis time we only searoh ininimal cardinality diagnoses
which can be easily obtained when using Reiter’s algorithne. My construct the hitting set
graph until a level where the first diagnosis is computed. &sinpractical cases single fault
diagnoses can be found. An upper bound for computing siragik diagnosis is determined by
the amount of time required for checking consistency. Inaage, we have logical rules that
can be easily transformed to a set of horn clauses. Hence,raéquired for checking consis-
tency is of the same order as the number of literals. Becaudeaweto check all single fault
diagnoses in the worst case and the size of the model, the wvass diagnosis time is bound
by O(|CO|? - |C|?). This bound comes from the use of an propositional horn eltiseorem
prover.

After diagnosis those components that are responsibledetexted failure have to be killed
and restarted. We have to take care of the fact that regjaotie component might require
restarting another component. This can be done by using/tikalale information about strong
dependencies between components. The components tha biteag dependency relationship
with each other have to be restarted.

90 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

Hence, the steps for repair would be:

1. Compute the diagnoses.

2. Compute a set of components that have to be restarted.slstép we compute all com-
ponents that strongly depend on components of a diagnosis.

3. Maximize the chance of repair by using a larger set of camapts to be restarted.

The following algorithm implements this behavior and haseocalled by thenonitoring
algorithm in step 4(c).

repair(CO, C, out,in, WDC,SDC), M,OBS
Input: The SAM, its modelV/ and observation®BS.

1. Compute diagnosds = diag(M,CO,OBS) whereD C CO.

2. For each diagnosia € D compute the set of strongly dependent components, i.e.,
R(A)=AU{z|z € CO: (z,A) € SDC}. LetR = {R(A)|A € D}.

3. Reduce the s&t by eliminating all elements that are subset of another sgt in

4. Select an elementfrom R.

5. Kill all processes that correspond to software companent. Afterwards restart those
processes.

We assume that faults leading to the different diagndsese independent. Whethetpair
was successful or not in one point in time is detected bytheitoring algorithm at a later point
in time. Hence, in principle it is possible thedpair always tries the same correcting actions
without resulting in a correct system state. This problem loa solved either by selecting the
components to be restarted (step 4r@jair) non-deterministically or by storing informations
about former actions. The latter solution avoids to takestiree actions twice.

6.5 Experimental Results

The proposed diagnosis system has been implemented aad tasbur mobile robot system.

The robot control system runs on an embedded Pentium Il RIC&8B0 MHz clock rate and 256

MB of RAM. The operating system on the PC is an ordinary Linustsgn.

The robot control system comprises several software meduach module runs as an inde-
pendent process and implements different services. Thaceerare based on CORBA. The

6.5. EXPERIMENTAL RESULTS 91

communication between these services are implementeer dayhdirect CORBA method calls
or by an event channel. The diagnosis system itself is impieed as a separate process to min-
imize the interference with the existing control system.e Thagnosis system implements the
four types of observers described in Section 6.3:

¢ Periodic event productianThis observer looks for the regular appearance of speeiicts
on the event channel.

e Conditional event productionThis observer looks for the appearance of a specific event
on the event channel after its trigger event was perceived.

e Spawn processed his observer checks the number of processes spawned Hineaisn
module. This information is extracted from theoc file system of the OS.

e Periodic method calls: This observer looks for regular aatmn of specific CORBA-
methods.

The use of CORBA and OS services allows monitoring the robotrabaystem without any
impact to it. The model of the robot control system (softweomenponents, dependencies, ob-
servers) is specified in one XML file. Therefore, changes enrttodel or adaptation to other
software systems are simple and straight forward. The disigrsystem is divided into three
modules: a monitoring module (1), a diagnosis kernel (2)arepair module (3).

The supervision of the robot control system and the inteyaatith the diagnosis system
work in the following way. The monitoring module starts alaessary observers according to
the model description and regularly checks for violatiohshe observers. If such a violation
is detected, the diagnosis kernel is informed. The diagnkasinel derives a diagnosis based
on the model of the control system and the violated obs@msti The diagnosis is a set of
malfunctioning software components which explain the iomer behavior of the system. The
derivation of a diagnosis is started after a certain amoftititre, i.e., five seconds, within no
more changes in the state of the observer are detected. sTme for stability reasons as it
takes a certain amount of time for all observers to recogmizienproper behavior. The diagnosis
will be communicated to the repair module. It executes th@r@miate repair action to recover
the control system. Regarding to the set of malfunctioningmenents and their connections
among them and to other components the repair module staréppropriate repair action.
The repair module first stops the malfunctioning modules @hdodules which are strongly
coupled to stopped modules. After that it restarts all stojppodules according to their modeled
dependencies. This means to start that modules first othéuleedepending on. During the
repair action no new diagnoses are derived. We do this foilisyareasons as the repair action
temporally may violate observers. After the repair actisrcompleted the observers and the

92 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

diagnosis kernel are started again. After this stages thieal@ystem is again in the desired state.

For the evaluation of the proposed diagnosis system anohgkementation, we did several
experiments on our mobile robot. We introduced artificiallt&into the robot control system
and analyzed if the diagnosis system detected and locagetatiit and recovered the control
system. We used two different fault scenarios:

¢ Killing a component: A certain software component is explicitly killed. Thisagquivalent
to a crash of a certain component.

e Deadlock a component A deadlock is introduced to a certain software componehis T
is equivalent to a malfunctioning software component.

Figure 6.5 shows the timing diagram for the diagnosis andireg an introduced deadlock
in the motion service (MO). After introducing the deadlookMO the Periodic Event Observer
for the eventMotionDeltaperceives that no more events are produced. After the \gditine
the diagnosis kernel derived that MO is malfunctioning,ated asAB(MO). Instantly the repair
process starts. The repair action comprises a stop of thevi®etiengine (BE), a stop of MO,
and a restart of MO and BE. The restart of BE is necessary be&ttgestrongly coupled with
MO. Again, after the waiting time, the diagnosis kernel desithe diagnosis that all components
work properly now. Please note that no other components afégeted by the repair process.
The figure also shows the fact that suspending the diagnesigekduring the repair is necessary
as observers report additional improper observations, @gcess observer. The relatively long
time for the recovery is explained by the fact that stoppind starting of services could take a
while because of the required starting, stopping and réigaration of hardware components.
The time for computing diagnosis is negligible becausestleen less than 10 ms.

Event-Observer
MotionDelta ‘

Process—-Observer MO
AB(MO) ‘
Process—-Observer BE ‘
Diagnosis/Stop BE Restart MO Restart BE Diagnosis/System Recovered
Deadlock in MO Stop MO
f f f f f f -
0 5 10 15 20 25 30 ts

Figure 6.5: Timing diagram for diagnosis and repair of a ¢eadin the motion service.

6.6. RELATED RESEARCH 93

Figure 6.6 shows a more complex scenario. Here we introdacgeladlock in the CAN-
service. After introducing the deadlock, MO and the sonavise SO produce no more data
because they get no more data from CAN. This fact is perceiyatidappropriate observers.
Because of the model of the observations, the componentstamonnections the diagnosis
kernel recognizes the malfunctioning CAN. The repair actsimilar to the example above
except that more components are involved. After repairctimrol system is again in the desired
state.

We conducted also two experiments where we killed a softwaraponent. In the first
experiment we Killed the laser service (LASER). The diagnegstem successfully detected the
fault and recovered the control system by restarting BE, gumator (GL) and LASER. The
recovery took 68 s. In a second experiment we killed the wortitlel (WM). The diagnosis
system successfully detected and repaired the fault. Dtinis experiment it was important that
the whole process took only 20 s because the system locadduh in the WM and no other
component was affected.

The affect of the diagnosis system to the runtime performasfcthe robot control system is
negligible. The diagnosis system uses less than 1 % of the @RJaind less than 5 % of the
memory.

6.6 Related Research

There are many proposed and implemented systems for faatttde and repair in autonomous
systems. The Livingstone architecture by Williams andeagjues [MNPW98] was used on the
space prob®eep Space Ornte detect failures in the probe’s hardware and to recoven tleem.
The fault detection and recovery is based on model-basedmeay. Model-based reasoning
uses an abstracted logic-based formulation of the systenehand the observations. The
advantage is that well understood reasoning algorithm&ldmeiused. Model-based diagnosis
also has been successfully applied for fault detection acalikzation in digital circuits and car
electronics and for software debugging of VHDL programsWE®]. Dearden and colleagues
[DCO02] and Verma and colleagues [VGSTO04] used particle fikehniques to estimate the state
of the robot and its environment. These estimations togethk a model of the robot were used
to detect faults. The advantage of this approach is thattbaas uncertainties of the robot’s
sensing and acting and in its environment because the nusalple state is derived from unre-
liable measurements. A drawback of such methods is that aveetib build a behavioral model
of the system for each different fault one likes to detect.eRdsed approaches were proposed
by Murphy and Hershberger [MH96] to detect failures in segsand to recover from them.
Additional sensor information were used to generate artdhtgsotheses to explain symptoms
resulting from sensing failures. Roumeliotis et. al. [RSB98¢dia bank of Kalman filter to

94 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

track specific failure models and the nominal model. Therfigsiduals were post-processed
to produce a probabilistic interpretation of the operatadnthe system. Such methods are
popular for linear systems affected by Gaussian noise. Q& a model-based approach for
monitoring of component-based software was presentedb&havior of software components
were modeled by Petri nets. Places in the net representdteta component. Transitions
model the interactions with other components. These iatierss, sending and receiving of
messages, were used to locate a misbehavior in a softwangoc@mt. Liu and Coghill [LC04]
used a qualitative representation to model the trajectbeyrobot arm. Reasoning about these
gualitative trajectories were used to detect and isolaisfaf the robot arm. In [HWO05] the
authors used hybrid automata in combination with multidgtipeses tracking to detect and
locate faults in a miniature chemical plant.

6.7 Discussion

Previous research has dealt either with hardware diagopdiagnosis of software as part of the
software engineering cycle. However, diagnosis of softvzard repair at runtime has never been
an issue.

In this chapter we described a model-based diagnosis agipfoa detecting, locating and
repairing software at runtime. For this purpose a modekuipnique for representing software
architectures which include components, control and dewg #ind dependencies between com-
ponents has been introduced. Moreover, the concept of\aser.e., software which monitors
the activity of the control software, together with theimoections to the architecture models
have been described in the paper. Finally, the chaptermexta repair algorithm and first em-
pirical results of our implementation. These results shoat software failures, e.g., deadlocks,
can be detected and corrected at runtime.

6.7. DISCUSSION

Y
|] g
Diagnosis/ -+
System recovered
o
1~
— Restart BE
o
) 1 ©
Restart SO
Restart Kl
o Restart MO
o
1 o
Restart CAN
o
4 <
Stop CAN
Stop KI
o
+ ®
o
+
Stop SO o
4
Stop MO
Diagnoai/Stop BE
L ©
Deadlock in CAN

Event-Observer MO
Process-Observer MO
Event-Observer SO
Process—Observer SO
Process—Observer CAN
Process—Observer BE
Process—-Observer Ki

AB(MO)
AB(SO)
AB(CAN)

Figure 6.6: Timing diagram for diagnosis and repair of a ¢wadin the CAN service.

95

96 CHAPTER 6. MODEL-BASED DIAGNOSIS FOR ROBOT CONTROL SOFTWARE

Chapter 7

Model-Based Diagnosis for Hard- and
Software

7.1 Introduction

An autonomous mobile robot comprises of great bunch of hareand software components.
The high number of different components and the heavilyrawigon between them cause a
fairly high complexity of the system. Furthermore, becaaseomplexity the probability of
the occurrence of faults in the system during runtime iresa These facts are in conflict with
the requirements of an autonomous mobile robots like rolesst long-term stability, and the
capabilities of fulfilling a given task autonomously wittan unknown environment. Even if the
software and hardware of a truly autonomous mobile robotel @eveloped and tested faults
and malfunctioning components can never be totally avoidaath faults become even worse
if there is almost no possibility for supporting actions hyntans within a short period of time
because of different reasons like distance or communitatioblems. Examples are a planetary
rover on the Mars or an inspection robot in a nuclear powertpla

Hence, it is desirable that a robot is able to detect and régalis of its hardware and soft-
ware autonomously. This task requires the robot to reasoutats underlying system in order
to identify a misbehavior, locate the root cause for the efislvior and to recover autonomously
from the root cause, i.e., the faults. Recovery from faultilidle a simple restart of components,
a reconfiguration of the components or a controlled degi@ulaf the robots functionality. The
challenge herein is that all the detection, localizatiod eecovery have to be performed at run-
time while the robot actually perform its mission.

Therefore, a dedicated monitoring and diagnosis systenucsat to reach the above require-
ments. But there are additional requirements for a diagrsysem in an autonomous mobile
robot. For example, the introduction of a diagnosis systeaukl not cause heavy changes in

97

98 CHAPTER 7. MODEL-BASED DIAGNOSIS FOR HARD- AND SOFTWARE

the hard and software of the target system. Furthermoraliftgmosis system should not affect
the overall behavior of the robots. As computational resesiare usually very limited in mobile
robots the requirements for memory and computation for thgribsis system should be as low
as possible.

In order to fulfill all the above requirements a model-baseldtson is preferable. Model-
based diagnosis have been successfully applied to diagoiisitegrated circuits and the debug-
ging of software. But the application mostly took place dgrihe development process. There-
fore, the idea of the application of a model-based approachrdime is quite novel. Model-
based diagnosis use a model of the correct behavior of ansyatel current observations on
the system to detect misbehaviors and to locate the caube ¢dult. It is a general paradigm.
Therefore it is the ideal approach for the supervision of stesy comprising of hardware and
software.

The important step in the application of model-based diagnis the creation of an appro-
priate abstract model of the correct behavior of the systedrtlae determination of useful facts
about the system that could be observed by the robots se@msnodeling of software com-
ponents and their interactions are well understood. Buteflike to diagnosis of a mixed system
of hardware and software also some aspects of the physis&@myand its interaction with its
environment have to be modeled in a qualitative manner.

In this chapter we will (1) introduce the application arehatics for model-based systems
approach, (2) present first ideas of modeling the robot'ssyiglems and its surrounding en-
vironment, (3) identify problems that occur when modelihg systems and trying to fulfill the
previously discussed requirements, and (4) discuss timelgtzallenges of modeling and diagno-
sis in mobile and autonomous robotics. The chapter is ozgdras follows. First, we introduce
a running example from robotics. We present a model that lmsapabilities of identifying
faults on an abstract level and discuss open problems arigmipas. We conclude the chapter
by discussing related research and summarizing the corente of the ideas were previously
presented in [SWO05a].

7.2 Example — A Case From Robotics

In order to give a short introduction into the problem domawe shortly introduce our mobile

robot platform comprising hardware and software companefigure 7.1 shows some parts
of the whole system which closely interact with the enviremta The components for sensor
fusion, world modeling and high-level decision making aneitted. The robot uses an omni-

directional drive which comprises four omni-wheels, andrfmotors and wheel encoders. The
drive is controlled by a drive controller which receives ttesired movement commands in the
form of a motion vector and a rotation angle relative to tHeotoBased on these commands the

7.2. EXAMPLE — A CASE FROM ROBOTICS 99

controller controls the speed of the motors. Furthermagectintroller provides regularly odom-
etry data based on the measurements of the wheel encodeescontroller itself comprises
hardware and software components. The drive controlley iggtommands from the behavior
engine which is responsible for the execution of actions iiifove to a position. The appropriate
action is selected by high-level decision making based assatal planning. Furthermore, the
robot is equipped with an omni-directional camera. Basederptovided images a movement
estimator measures a movement of the robot by calculatingn#isant optical flow in the im-
age. A laser scanner provides range information aroundathetr This information is used to
determine the positions of obstacles around the robot.

Selected Action Estimated Movement Obstacle Posi

: b

Behavior Movement Obstacle
Engine Estimator Locator
Odometry ¢ Drive
Data Commands
Drive Controller Image Range
Scan
Encoder ¢ Motor
Increments Speeds
Wheel Omni Laser
Encoder Motors Camera Scanner
A / A A

Robot & Environment

Figure 7.1: Interactions between components of a mobiletrob

Because of the current lifetime and the extensive use of daotsaduring the last years we
observe sporadic faults in both the hardware and the sadtafathe robots drive. We will give
two examples for such faults to motivate how these faultsbeadetected, located and repaired
by a model-based approach. Consider the following situatiAnh certain times the circuits
for the wheel encoder hang up. Because of this, the drive aertiprovides odometry data
which report no movement of the robot even if the robot moveality. If one uses a model
of the correct interactions of the components in combimatiith current observations within
the system the fault and its cause can be easily detectedin$tance, if we know that the

100 CHAPTER 7. MODEL-BASED DIAGNOSIS FOR HARD- AND SOFTWARE

system works properly, the behavior engine calculates isediesiovement. The drive controller
converts this desired movement into appropriate motordgodéalso provides an estimation of
the current movement of the robot by odometry data. Furtbesnif the robot moves, the camera
image have to change and also the position of detected tdstadhe laser scans. Suppose, the
odometry fails because of the above facts. The drive cdetr@ports a zero movement which
suggests that the robot does not move. But if the robots matersvorking as expected the
robot may move correctly. Therefore, this might be a wrongctusion. But if we combine this
observation with the observation from the camera and trex lasge-finder, we conclude that
the odometry is malfunctioning because the laser rangeifiadd the camera report the desired
movement. This reasoning process is quite similar to theaviayman would detect and locate
a fault. Also a appropriate repair action can be derived. mMp# reset of the encoder circuit
removes the fault. In Section 6 we presented a model-basedédlmg paradigm for the control
software of mobile robots. The above example is an extertewards the diagnosis of robots
hardware and shows that more work have to be done in modelitigeenvironments and its
interaction with the robot. In the next section we introdtive model, the observation and the
reasoning process in more details.

7.3 Modeling for Diagnosis

The model we introduce in this section is for being used irsiancy-based diagnosis [Rei87]
and describes the underlying behavior of the robot in an abstract way. There are several
different approaches for modeling highly dynamical systéan diagnosis including finite state
machines or probabilistic automatons. Most of them use @etis time representation like au-
tomatons and state machines. For our model of the hardwaresevan abstraction of the real
situation which avoids dealing with time. Such abstract etethave been successfully used in
other areas, e.g., representing knowledge in the autoendtimnain [MSS95, MS96].

For modeling we choose the component-oriented modelingdogm. Hence, we represent
the behavior of components and their interactions. FigilgsRows an overview on the modeling
of the running example.

Motor A motor M is said to be working if it receives a driving command. A waoidkimotor
causes the axis and as a consequence the wheels to rotatemdwes the robot from
one place to another. However, this cause-effect chainatdrainverted. For example,
the robot can move without the driving command because @reat influences like a
collision where one robot is moving the other. Or one robiestto go ahead while being
stuck to an obstacle. In this case the wheels are rotatinthbubbot is not moving. This
fact is caused by the slippage of the wheels.

7.3. MODELING FOR DIAGNOSIS 101

Robot
drive_commands obs_wheels obs_move ‘
i T T obs_obstaclel\
m w v T |

wheels_rotating }

obstacle

Figure 7.2: Observations and model for the running example.

We represent the discussed cause-effect relationshig isim rules. The first one ex-
presses that a drive command is necessary for switching ¢tbh@swon (and vice versa).

—Ab(M) — (drive_command(M) < motor_on(M))

The second rule is for stating that a switched-on motor isafrthe causes for rotating
wheels.

motor_on(M) — wheels_rotating(M)

Wheel encoder A wheel encodefl observes the behavior of its corresponding wheel. When-
ever the wheel is rotating, the rotation speed is given ba@habservation. Unfortunately
a rotating wheel and thus a wheel encoder giving back a spssegbt imply that the robot
is moving. For example, consider the situation where a rizsttick to an obstacle. How-
ever, every time the wheel encoder detects a rotation thelalaee really rotating.

—Ab(W) — (wheels_rotating(W) < obs_wheels(W))

Vision If vision V' perceives a movement via its camera, it generates a coneisygoobserva-
tion. This is expressed by an input proposition where thérenmnent is setting the truth
value.

102 CHAPTER 7. MODEL-BASED DIAGNOSIS FOR HARD- AND SOFTWARE

—Ab(V) — (movement < obs_move(V))

After stating the components’ behavior, we have to forngatize structure of the system.
For this purpose, we assume a mator a wheel encodew, and a vision system within the
corresponding rules.

—Ab(m) — (drive_command(m) < motor_on(m))
motor_on(m) — wheels_rotating(m)
—Ab(w) — (wheels_rotating(w) < obs_wheels(w))

—Ab(v) — (movement < obs_move(v))

Because of the fact that the wheels and the wheel encoder #renoanted on the axis of
the robot which is connected with the motor, the wheel rotafor the motor and the encoder
w is the same which is expressed by the rule:

wheels_rotating(m) < wheels_rotating(w)

The model for the connection of the vision system with theanomit is not that easy be-
cause there is no direct connection between them which fdtothe robot. Instead we are
only able to argue about a chain of cause-effect relatisdike follows. The motor is driving
the wheels which move the robot within its environment. Bseaof changes within the per-
ceived image, the vision system detects the movement. &laganship can only be established
whenever the environment does not interact in an undesiradexpected way. For example, as
stated previously, an obstacle can prevent the robot of mgavut the wheels are rotating. Or
there is a movement that is caused by a person which careeobot from one place to an-
other. In both cases the observations regarding wheel memvesnare contradicting the visually
perceived observations of the robot. To overcome the destproblem it is necessary to model
the environment explicitly.

The relevant parts of the model of the environmemt can be expressed by rules which
link the robot’s actuator propositions to the propositioviich correspond to sensors. For our
example we have to provide a link from the rotating wheelfi&gdropositionmovement which
is used by the vision system as an input. We can do this by filatmg that rotating wheels
imply a movement providing that they are no other externdli@mces like carrying the robot or
obstacles preventing the robot to move.

—Ab(env) — (wheels_rotating(m) — movement)

For each actuator a similar rule have to be provided. Thdss allow to robot to reason not

7.3. MODELING FOR DIAGNOSIS 103

only about its components but also on states of the envirahwieich influences the functional-
ity of the robot.

To illustrate the capabilities of our model, we introduce tibservation®BSwhich describe
a situation where the wheels are rotating but the motionaskald by an obstacle.

drive_command(m),
OBS = { obs_wheels(w),
—0bs_move(v)

If using the model, i.e., the system descriptl®D, and the observatiofdBStogether with
the set of component€OMP = {env, m,w,v}, we can derive the set of conflicts and di-
agnosis. We use Reiter's diagnosis theory [Rei87] for thigopse and obtain two conflicts
{m, env,v}, {w,env,v} from which we derive 1 double fault diagnosis:,w} and 2 single
fault diagnoseqenv}, {v}. In order to further distinguish the two single fault diagaes it is
necessary to add new observations. This can be done by ucirgda new sensor, e.g., a laser
range-finder that gives back information about the occueei obstacles within a certain area.

The model for a laser range-finder has to assign the obsemalbiout obstacles to the occur-
rence of obstacle in an environment.

—Ab(L) — (obstacle < obs_obstacle)

Moreover, we have to extend the model for the environmeihiadtto be stated that whenever
the robot can move, an obstacle is not in reach.

—Ab(env) — (movement — —obstacle)

We now extend our system by introducing a new component lemage-finderl, i.e.,
COMP’ = {l} U COMP, and add a new observation to the set of observations,0BS’
= {obs_obstacle} U OBS From the new mode$ D’ which comprises all rules fro8Dand the
new onesOBS’andCOMP’ we obtain additional conflict§l, env, v}, {m, env, 1}, {w, env,}.
Hence, we derive only one single fault diagnosisv}. If preferring smaller diagnoses, a robot
using the described knowledge base would conclude thagstemss are working correctly and
the problem is caused by external influences. Note that thelgsion can also be used to di-
agnose the robot’s software. For example, if the contramsare should avoid collisions with
obstacles, getting stuck because of an obstacle should In@wpen. Therefore, the control soft-
ware is not working correctly, and further steps have to kertanto account.

104 CHAPTER 7. MODEL-BASED DIAGNOSIS FOR HARD- AND SOFTWARE

7.4 Problems and Challenges

Although, fault detection and localization can be done itraight forward way, this is not the
case when dealing with autonomous recovering from faillMedels for fault localization of
hardware and software has been described in literaturehbug tare not many papers which
deal with repair and re-configuration which is necessargtover. The following list identifies
problem and challenges that have to be tackled in orderfitl the requirements of autonomous
systems.

Coupling different models When dealing with real-world systems we have to provide mod-
els both for hardware and software. Although, the amounbtifvare of devices and systems
is increasing, there are always hardware components ieslokhich directly interact with the
environment. Hence, it is required to couple different medé different level of abstraction in
order to identify root causes for a detected misbehavioprimciple model-based diagnosis is
well adapted for this purpose because it is always possbl@egrate models at least by using
conflicts or using the outcome of one model as an input forre@rotAn example for the latter
coupling is the following: Consider the last example of Sat{.3 where we argued that the di-
agnosis result, i.e., an obstacle caused the misbehaaiobecused as an input for diagnosing the
robot’s control software which should avoid such situagioklence, investigating possibilities
and theories for coupling models is a challenge for futuseaech.

Repair Although, there is literature available which deals witpai and the selection of repair
actions, the problem can be considered as an still opengirobln most cases, repair is done
quite simple by assigning corresponding repair actionsotmpgonents. However, this is not
enough in general especially when dealing with an autonemsgstem which has to survive in
an unknown environment. The reason is that someone hasvmerall possible repair actions
in advance which can hardly be done for complex systemsaictieg with other systems in
a highly complex environment. In addition, the requiremehtruly autonomous and mobile
systems does not allow to simply replace a component by anotim our running example
the system has to be aware about resets for solving the pnatfiehe wheel encoder circuits.
Another example is the following: Consider a situation whene motor of the omni-wheel
drive is broken. In principle it is possible to steer the robyg slightly modifying the control
software of the drive controller. Hence, the robot shouldgren the appropriate actions because
maintenance activities like replacing the broken motorighnbe not possible.

The challenge here is to provide a theory and model guidelihat allow for coming up
with repair actions for certain diagnoses which are notieitfyl known in advance. Such repair
actions can be derived from the representation of funclityra systems and their parts. Hence,

7.5. DISCUSSION 105

solutions of configuration and re-configuration problenesrarght be promising starting points.

Meta-modeling Because of the previous problems and challenges it might bessary to
provide the same reasoning capabilities on the models.Xaongle, when changing the behavior
of the system because of recovery actions like changing émawor of the omni-drive to a
differential drive, it is required to change the diagnosisdel. Hence, reasoning capabilities
which allow for modifying a model are required. As far as weknthere is no work within
the model-based systems community which deals with me@elimy or model generation from
generic models. Moreover, it might be necessary for an amwous robot to establish meta
reasoning capabilities whenever required and also on quesly generated meta-models. The
challenge is to provide first steps towards meta representahd reasoning for model-based
systems.

Gaining knowledge from observation Another challenge which is highly demanding would
be to generate models or at least to gain some knowledge frewiopsly obtained observations.
A mobile and autonomous system might require to adapt itavaehto the environment. Hence,

changes of the behavior which causes changes of the unugryodels would be necessary. A
system that can generate models automatically from obsengavhich include observations re-
garding the environment, interactions, and internal stetguld be truly autonomous. However,
a first step would be to investigate model adaption that gegeriml adapting fault probabilities

because of previously gained experiences.

7.5 Discussion

Previous research has dealt either with hardware diagopdiagnosis of software as part of the
software engineering cycle. However, diagnosis of hardsarfidvare and repair at runtime have
never been an issue. The related research discussed iretheys section is also relevant to this
section. This section described a model-based diagnopi®agh for detecting, and locating
faults of a mobile robot platform at runtime which includestgally reasoning about the current
state of the environment. Moreover, we identify some opeblems and challenges that have to
be tackled in order to provide a really autonomous diagrensisrepair system that can respond
even to faults that were not been considered when develdpaégystem. Two main challenges
can be identified. One is the coupling of different modelschtgapture either different aspects
of the system or the same aspects but using a different léablstraction. The other challenge is
to provide representation and reasoning techniques tloat fdr generating repair actions which
are based on the current diagnoses and the current stateroltbt. These repair actions cannot
be tied to a specific diagnosis or a component but has to be@utmusly generated from the

106 CHAPTER 7. MODEL-BASED DIAGNOSIS FOR HARD- AND SOFTWARE

provided functionality of the robot and its desired funoabdty. Moreover, the repair actions
might change the diagnosis model.

Chapter 8

Shortcomings and Future Research

The proposed framework for intelligent control of autonarmenobile robots has shown its ca-
pability to robustly control a robot in various tasks andiemvments. Furthermore, it has been
successfully evaluated in two real-world applications,RoboCup Middle-Size League and ser-
vice robotics. So far we have answered most of the questiensised in the introduction and
have provided solution to the related problems.

Obviously, we are not able to answer all the questions emgrgom the control of robots
nor it is able to provide a perfect solution to all the relapgedblems. In the remainder of this
section we will discuss some of the shortcomings and thdfiomnt solutions for some of the
problems. The reminder of this section is similar organiasdhe problem statement in the
introduction.

¢ Flexibility and reuse of components:The used basic Miro-framework and our extensions
have been proofed as a flexible base for research in rob&ticermore, we successfully
have used the framework on two different robot platformse &mortcoming of the frame-
work is the extensive use of CORBA which slows down the appboah particular situa-
tion. The communication mechanisms, e.g., event chanset] in our framework have to
be systematically analyzed and redesigned under the gquedeaif software engineering in
order to improve the performance of the system.

Furthermore, more templates of general usable algorithews ko be integrated in the
framework. Despite most of the basic components are shaneth@ the different re-
search groups, most of the components for sensor-fusicalization and planning are
re-implemented by each group. There is a clear demand foe-stide basic algorithms.
Such a attempt requires a good knowledge of the differeniimeigpents and the definition
of appropriate interfaces.

Finally, appropriate interfaces or implementations faargé set of new sensors have to be
added to the framework in order to be able to use “state offiequipment.

107

108

CHAPTER 8. SHORTCOMINGS AND FUTURE RESEARCH

e Planning and reasoning for complex tasks:

The value of a deliberative component in the control systéra mbot is visible. The
STRIPS-based planning system of the framework is capableriwedplans for almost
every task we have evaluated so far.

But in the future more recent planning algorithms have to begirated in the framework
in order to improve the handling of uncertainty in the deldise layer and to improve the
planning performance for tasks with a high complexity, eaggreat number of possible
actions, positions and items. Also multi-agent planningissue for the future. This topic
will discussed below.

General, expressive and intuitive task description:

So far we are only able to specify tasks for a single robot. @oatpn and communication
between multiple robots are rudimentary part of the loweglkeof the framework but such
actions are not supported by statements in the task desariptn the future, it will be
desirable to specify a task for a group of robots which camtyadtask in cooperation. Such
an extension of the task description inherently demandh&mntegration of recent multi-
agent planning capabilities into the framework. Moreogtfements for communication
have to be part of the task description.

Furthermore, the current task description is mainly basethe STRIPS representation.
Although, it incorporates some extensions like quantifiessill lacks of expressiveness
for some tasks. Temporal relations and some kind of suppamaertain knowledge are
possible extensions one may think about.

Finally, an exchange format for the knowledge of a robot d@description of the ca-
pabilities of a robot among heterogeneous robots will rrimprove the quality of the
task description. This is true especially for tasks wer@tshave to cooperate in order to
fulfill a task.

Robust task execution in noisy and dynamic environments:

Plan invariants have been shown as a appropriate methodctmlerknowledge of the
structure of a task. Up to now the invariants are encoded loyl.haNe presented an
algorithm which is able to generate conditions similar te gresented invariants. But
these algorithm lacks of general applicability.

Further research should be done on the question if suchiamiarautomatically can be
derived from a task description and how such a derivationbmmone. Furthermore,
we believe that more encoded knowledge about the strucfuteedasks and the world

109

can improve the quality of such invariants and could easeathemated generation of
invariants.

Finally, it is an interesting question if it is possible tact qualitative knowledge form
raw sensor data without taking the way via a quantitative@&siensitive representation.

Fault-tolerance:

The diagnosis system which we have integrated into the fraorieis able to detect, local-
ize and repair faults in the control software of the robotst tBa used component models
have to be extended in order to increase the number andyqagtite detect faults.

Furthermore, the diagnosis system have to be extended diréhation of diagnosis of the
robot’s hardware. For this purpose models of the interaatiche robot with the physical
world are needed. Furthermore, most of this models will rhdde behavior of sensors
and actors which operate in the continuous world and haatiye modeled on an abstract
level. Therefore, continuous models and techniques fagrdiais of continuous systems
have to be integrated into the diagnosis system.

So far the repair process for a detected fault in the softwansprises the restart of the
faulty and all its strongly related components. Which is gorapriate action if the control
software comprises of several independent applicatidesih our framework? But if
the control software comprises only a single application ripair action is equivalent
to a complete restart of the software. In the future work &hdae done on a rollback
mechanism which rolls back the execution to a earlier paititne where the fault has its
root cause. Then the root cause of the fault can be elimirzatddhe correct execution can
be resumed. A interesting question is how to realize suchpeoaph on a system which
interact with its environment physically in real-time.

Finally, work should be done on the description of the strreof and relations within
the hardware and the software systems of the robot. If suakiaes and the behavior
of the components of the systems are modeled more sophesticapair actions can be
derived. Such repair action roughly can be separated imtaytewups. The repair actions
of the first category are derived by a planning process andtdera sequence of actions
which drives the system back to a nominal state. Such reptoraare appropriate for
transient faults like segmentation faults. The membersefdther category are derived
by a reconfiguration process. If some level of redundancyitqgf the system such repair
action can handle permanent faults like broken motors.

110 CHAPTER 8. SHORTCOMINGS AND FUTURE RESEARCH

Chapter 9

Summary and Conclusion

In this work we presented a framework which enables the toimislligent control of au-
tonomous mobile robots for various complex tasks in dynae®t-world environments.

The demand for such a framework was motivated by the inargasimber of task in in-
dustry and everyday live which are carried out by autononmoakile robots in regular manner.
Furthermore, today mobile robots serve as a real-worldeelstor various research areas like
computer science, economy and biology. These facts maka@ubus mobile robots interest-
ing for robotics and Al researcher and post a wide range ofsaentific questions.

During the work for this thesis we incrementally developee proposed control framework
in order to answer the raised question and to provide saisitio the problems which arise from
the deployment of autonomous robots in the real world.

We discussed two example application areas for autonomals@rrobots, the RoboCup
Middle Size League and service robotics, in which we suduotgsieployed and evaluated the
proposed framework.

The overall question we have tried to answer in this thesis, waw can we robustly and
flexibly control a robot for different tasks in dynamic eraiments under the presence of noise,
uncertainty and faults. The problems we have to solve inramanswer this overall question
lead to five major contributions:

e We developed a modular flexible software and hardware framewhich allows us to
carry out various research in the domain of mobile robotse déveloped framework is
able to serve as a basis for various tasks and was succgsiployed in the RoboCup
and the service domain. This framework is a strong found&to our past and ongoing
research.

e \We have motivated that a strong deliberative component toeve part of a control frame-
work of a robot in order to enable a robot to carry out compésks. We discussed how

111

112

CHAPTER 9. SUMMARY AND CONCLUSION

the above framework has been enriched with reasoning amhipkta capabilities which
allows flexible deliberative control.

We have shown the benefit of a flexible logic-based task desmmi We have integrated
the task description into the framework is appropriate fotous tasks, expressive enough
also for complex tasks and finally intuitively readable fonans.

We have shown the problems which arise if a robot is deplogeainoisy, uncertain and
dynamic environment. We have enriched the control framkwath a robust plan execu-
tion which is able quickly to react to unforeseen situatiéurthermore, we have shown
how robustly to bridge the gap between the qualitative amdginantitative knowledge
representation for the robot in the case of a noisy and weioeztvironment.

We discussed the issue of faults at runtime in the softwadehandware of mobile robots.
We presented a diagnosis system which is capable to deteetjZe and repair some
faults in the control software at runtime. The diagnosigeyswas integrated into the
framework in order to improve its fault-tolerance. Moregwee present results of the
diagnosis system from experiments carried out in the Robo@uipoament. Finally, we
discussed how the diagnosis system can be extended in orderable to handle faults in
the robot hardware.

All this features were integrated into a framework for théust intelligent control of au-
tonomous mobile robots. The complete framework has beeoesstully deployed in the
RoboCup and service robotic scenario. The framework enahledabots to carry out dif-
ferent tasks, e.g. robot soccer or book deliveries, in gdmgEvironments under the presence of
different disturbing issues like noise and faults.

Finally, we discussed some of the shortcomings of the sarfiagiemented framework and
point out some directions for future research.

Bibliography

[BAB*01]

[BeaOO]

[Bee02]

[BF95]

[Bis95]

[BINTO6]

[BKLS05]

[BMMO8]

Michael Beetz, Tom Arbuckle, Thorsten Belker, Maren Bentew\Volfram Bur-
gard, Armin B. Cremers, Dieter Fox, Henrik Grosskreutz, DideHnel, and Dirk
Schulz. Integrated plan-based control of autonomous&erabots in human en-
vironments.IEEE Intelligent System46(5):56—-65, 2001.

Mark F. Bear.Neuroscience: Exploring the brainWilliams and Wilkins, Balti-
more, MA, 2000.

Michael BeetzPlan-Based Control of Robotics Agents, Improving the Capiadsl
of Autonomous Robagtyolume 2554 ofLecture Notes in Atrtificial Intelligence
Springer, 2002.

Avrim Blum and Merrick Furst. Fast planning through modéng graph analysis.
In Proceedings of the 14th International Joint Conference difidial Intelligence
(IJCAI 95), pages 1636-1642, 1995.

Christopher M. Bishop.Neural Networks for Pattern RecognitiorOxford, UK:
Oxford University Press, 1995.

Asgard Bredenfeld, Adam Jacoff, Itsuki Noda, andutake Takahashi, editors.
RoboCup 2005: Robot Soccer World Cup 6lume 4020 ofLecture Notes in
Artificial Intelligence Springer, 2006.

Harald Burgsteiner, Mark Kill, Alexander Leopold, and Gerald Steinbauer. Move-
ment prediction from real-world images using a liquid stai@chine. In18th In-
ternational Conference on Industrial and Engineering Apgiions of Artificial In-
telligence and Expert Systemgolume 3533 ol_ecture Notes in Artificial Intelli-
gence pages 121-130, Bari, Italy, 2005. Springer.

Marco Baioletti, Stefano Marcugini, and Alfredo Mitda Encoding planning con-
straints into partial order planning domains. In Anthonyd®hn, Lenhart Schubert,

113

114

[Bro86]

[BruO1]

[BSKO3]

[CGI+02]

[DCO2]

[DFLO2]

[DFLO3]

[DGNO1]

[Dij76]

[dKW87]

[EIm90]

BIBLIOGRAPHY

and Stuart C. Shapiro, editoksRR’98: Principles of Knowledge Representation and
Reasoningpages 608-616. Morgan Kaufmann, San Francisco, Califat@&s.

Rodney. A. Brooks. A robust layered control system fanabile robot. IEEE
Jornal of Robotics and AutomatipRA-2(1):14-23, 1986.

Herman Bruyninckx. Open robot control software: tHeR@COS project. INEEE
International Conference on Robotics and Automation (IGRAJume 3, pages
2523-2528, 2001.

Herman Bruyninckx, Peter Soetens, and Bob Koninckye fHal-time motion con-
trol core of the Orocos project. IEEE International Conference on Robotics and
Automation (ICRA)volume 2, pages 2766-2771, 2003.

Claudio Castelpietra, Alice Guidotti, Luca locchi, DdriéNardi, and Riccardo
Rosati. Design and Implemantation of Cognitive Soccer Rol®RoboCup 2001:
Robot Soccer World Cup, Wolume 2377 ofLecture Notes in Computer Science
Springer, 2002.

Richard Dearden and Dan Clancy. Particle filters for-tmaé fault detection in
planetary rovers. IRroceedings of the Thirteenth International Workshop oinPr
ciples of Diagnosispages 1 — 6, 2002.

Frank Dylla, Alexander Ferrein, and Gerhard Lakgsare Acting and deliberating
using golog in robotic soccer — A hybrid approach. Rroc. 3rd International
Cognitive Robotics Workshop (CogRob 200%)Al Press, 2002.

Frank Dylla, Alexander Ferrein, and Gerhard Lakgere Acting and Deliberating
using Golog in Robotic Soccer - A Hybrid Architecture.The Third International
Workshop on Cognitive RoboticsAAl, 2003.

Markus Dietl, Jens-Steffen Gutmann, and BernharddlleCooperative sensing in
dynamic environments. IRroceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’01), Maui, Ha2&i01.

Edsger W. Dijkstra.A Discipline of ProgrammingSeries in Automatic Computa-
tion. Prentice-Hall, 1976.

Johan de Kleer and Brian C. Williams. Diagnosing muéifaults. Artificial Intel-
ligence 32(1):97-130, 1987.

Jeffrey L. ElIman. Finding structure in tim€ognitive Sciengel4:179-211, 1990.

BIBLIOGRAPHY 115

[Ets01]

[FBDT99]

[FFLO4]

[FHN81]

[FLOS]

[FLOO]

[FLO3]

[FLBMO1]

[FN71]

[Fra03]

[FSW99]

[FSW04a]

Konrad EtschbergerController Area Network (CAN) Basics, Protocols, Chips,
Applications IXXAT Automation, 2001.

Dieter Fox, Wolfram Burgard, Frank Dellaert, and &sttan Thrun. Monte carlo
localization: Efficient position estimation for mobile mts. InAAAI/IAAI pages
343-349, 1999.

Alexander Ferrein, Christian Fritz, and Gerhard ém@leyer. On-line decision-
theoretic golog for unpredictable domains.Rroc. of 4th International Cognitive
Robotics Workshq2004.

Richard E. Fikes, Peter Hart, and Nils Nilsson. Lé&agrand Executing Generalized
Robot Plans. In Bonnie L. Webber and Nils J. Nilsson, editeegdings in artificial
intelligence San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers In

Maria Fox and Derek Long. The automatic inference tates invariants in tim.
Journal of Articial Intelligence ResearcB:367—421, 1998.

Maria Fox and Derek Long. Utilizing automaticallyferred invariants in graph
construction and search. Wurtificial Intelligence Planning Systempages 102—
111, 2000.

Maria Fox and Derek Long.PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning DomaindJniversity of Durham, UK, 2003.

Maria Fox, Derek Long, Steven Bradley, and James bkl Using model check-
ing for pre-planning analysis. IAAAI Spring Symposium Model-Based Validation
of Intelligence pages 23-31. AAAI Press, 2001.

Richard. E. Fikes and Nils J. Nilsson. STRIPS: A new apph to the application
of theorem proving to problem solvingArtificial Intelligence 2(3-4):189-208,
1971.

Gordon Fraser. Al-Planning System for Robotic Sacddaster’s thesis, Graz
University of Technology, 2003.

Gerhard Friedrich, Markus Stumptner, and Franz WatdVlodel-based diagnosis
of hardware designsrtificial Intelligence 111(2):3—-39, 1999.

Gordon Fraser, Gerald Steinbauer, and Franz Wot&pglication of qualitative
reasoning to robotic soccer. Working Papers of the 18th International Workshop
on Qualitative Reasoning (QR-Q4004.

116

[FSWO04b]

[FSWO05]

[GNTO4]

[Gro04]

[GS98]

[GS00]

[GSW89]

[GVS+01]

[GWMOO]

[Hop82]

BIBLIOGRAPHY

Gordon Fraser, Gerald Steinbauer, and Franz WotAwaodular architecture for
a multi-purpose mobile robot. lmnovations in Applied Atrtificial Intelligence,
IEA/AIE, volume 3029 of ecture Notes in Artificial Intelligen¢c@ages 1007-1014,
Ottawa, Canada, 2004. Springer.

Gordon Fraser, Gerald Steinbauer, and Franz WotBlaa. Execution in Dynamic
Environments. IrProceedings of the 18th Conference on Industrial and Enginee
ing Applications of Artificial Intelligence and Expert Sgnsts, IEA/AIE volume
3533 ofLecture Notes in Artificial Intelligencgpages 208-217, Bauri, Italy, 2005.
Springer.

Malik Ghallab, Dana Nau, and Paolo Travergsutomated Planning Theory and
Proctice Morgan Kaufmann Publishers, 2004.

Irene Grosclaude. Model-based monitoring of congmt-based software systems.
In 15th International Workshop on Priciples of Diagnggages 155-160, Carcas-
sonne, France, 2004.

Alfonso Gerevini and Lenhart K. Schubert. Inferrstgte constraints for domain-
independent planning. IAAAI/IAAIL pages 905-912, 1998.

Alfonso Gerevini and Lenhart K. Schubert. Discongrstate constraints in DIS-
COPLAN: Some new results. IBAAI/IAAI pages 761-767, 2000.

Russell Greiner, Barbara A. Smith, and Ralph W. WilkersA correction to the
algorithm in Reiter’s theory of diagnosiartificial Intelligence 41(1):79-88, 1989.

Brian P. Gerkey, Richard T. Vaughan, Kasper Stroy, Andrewatd, Gaurav S.
Sukhatme, and Maja J Mataric. Most valuable player: A rolatice server for
distributed control. IrProceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 20papes 1226-1231, 2001.

Anirudh Gupta, Yun Wang, and Henry Markram. Organgprinciples for a di-
versity of gabaergic interneurons and synapses in the nesc8&cience287:273—
278, 2000.

John J. Hopfield. Neural networks and physical systeith emergent collective
computational abilities. IfProceedings of the National Academy of Scienod-
ume 79, pages 2554-2558, 1982.

BIBLIOGRAPHY 117

[HWO5]

[Jae01]

[IW99]

[KBMOS]

[KC92]

[KMO8]

[KMU +04]

[Koho1]

[Kon97]

[Kon0O0]

[KS98]

Michael Hofbaur and Franz Wotawa. A diagnosis-basadal analysis method for
concurrent hybrid automata. Proceedings of the 16th International Workshop on
Principles of Diagnosis (DX05pages 81-87, 2005.

Herbert Jaeger. The echo state approach to argbysihtraining recurrent neural
networks. Technical Report 148, GMD, 2001.

Micheal I. Jordan and Daniel M. Wolpert. Computatiamakor control. In M. Gaz-
zaniga, editorThe Cognitive NeurosciencddIT Press, Cambridge, MA, 1999.

David Kortenkamp, R. Peter Bonasso, and Robin Murphitoesl Artificial Intel-
ligence and Mobile Robots. Case Studies of Successful Rypdten® MIT Press,
1998.

G. Kelleher and A. G. Cohn. Automatically synthesist@main constraints from
operator descriptions. In Bernd Neumann, edRooceedings of the 10th European
Conference on Artificial Intelligen¢cgages 653—-655, Vienna, August 1992. John
Wiley and Sons.

Kurt Konolige and Karen MyersThe Saphira architecture for autonomous mobile
robots chapter 9. In Kortenkamp et al. [KBM98], 1998.

Gerhard Kraetzschmar, Gerd Mayer, Hans Utz, Philipp Bdartin Claus, Ulrich
Kaufmann, Markus Lauer, Simon Natterer, Sebastian PrzelwoRoland Reichle,
Christoph Sitter, Florian Sterk, andu@ther Palm. The ulm sparrows 2004. In
International RoboCup Symposiyg004.

Teuvo KohonenSelf-Organizing MapsSpringer-Verlag, 3 edition, 2001.

Kurt Konolige. Colbert: A language for reactive caitin sapphira. InAd-
vances in Atrtificial Intelligencevolume 1303 of_ecture Notes in Computer Sci-
ence Springer, 1997.

Kurt Konolige. A gradient method for realtime robwantrol. InProceedings of
the IEEE/RSJ International Conference on Intelligent Relaoid Systems (IRQS)
volume 1, pages 639 — 646, 2000.

Henry A. Kautz and Bart Selman. The role of domain-gpe&nowledge in the
planning as satisfiability framework. Wrtificial Intelligence Planning Systems
pages 181-189, 1998.

118

[LBS96]

[LCO04]

[LRL+97]

[May90]

[MH96]

[Min88]

[MLMO2]

[MNMO2]

[MNPWO8]

[MP97]

[MRTO3]

BIBLIOGRAPHY

Xiao-Rong Li and Yaakov Bar-Shalom. Multiple-modetiggtion with variable
structure. INEEE Trans. Automatic Contrpl/olume 41, pages 478-494, 1996.

Honghai Liu and Gorge M. Coghill. Qualitative modelin§kinematic robots. In
18th International Workshop on Qualitative Reasoniltignois, USA, 2004.

Hector Levesque, Raymond Reiter, Yves l&gmce, Fangzhen Lin, and
Richard B. Scherl. GOLOG: A logic programming language foraiyic domains.
Journal of Logic Programming31:59-84, 1997.

Peter S. Maybeck. The Kalman filter, An introductiorconcepts. IiAutonomous
Robot Vehiclespages 194—-204, 1990.

Robin R. Murphy and David Hershberger. Classifying aachbvering from sensing
failures in autonomous mobile robots. AMAI/IAAL, Vol. 2 pages 922-929, 1996.

Michel Minoux. LTUR: A Simplified Linear-time Unit Redution Algorithm for
Horn Formulae and Computer Implementatioimformation Processing Letters
29:1-12, 1988.

Wolfang Maass, Robert A. Legenstein, and Henry Markt A new approach to-
wards vision suggested by biologically realistic neuratnocircuit models. In
H. H. Buelthoff, S. W. Lee, T. A. Poggio, and C. Wallraven, edit@iologically
Motivated Computer Vision. Proc. of the Second Internatiéhiarkshop, BMCV
2002 volume 2525 of_ecture Notes in Computer Scienpages 282—-293. Springer
(Berlin), 2002.

Wolfgang Maass, Thomas Natschlaeger, and Henryikéan. Real-time comput-
ing without stable states: A new framework for neural corapiah based on per-
turbations.Neural Computation14(11):2531-2560, 2002.

Nicola Muscettola, P. Pandurang Nayak, Barney R@ldl Brian C. Williams. Re-
mote agent: To boldly go where no Al system has gone befAréficial Intelli-
gence 103(1-2):5-48, August 1998.

Thomas L. McCluskey and J. M. Porteous. Engineerindy@mpiling planning
domain models to promote validity and efficien@tificial Intelligence 95(1):1—
65, 1997.

Michael Montemerlo, Nicholas N. Roy, and Sebasti&anuh. Perspectives on stan-
dardization in mobile robot programming: The carnegie orehavigation (CAR-

BIBLIOGRAPHY 119

MEN) toolkit. In Proceedings of the Conference on Intelligent Robots anc®gst
(IROS) 2003.

[MS96] Andreas Malik and Peter Struss. Diagnosis of dynawstems does not necessar-
ily require simulation. InProceedings of the Seventh International Workshop on
Principles of Diagnosis1996.

[MSS95] Andreas Malik, Peter Struss, and Martin Sachendra€ualitative modeling is the
key — a successful feasibility study in automated genaratialiagnosis guidelines
and failuer mode and effects analysis for mechatronic dasygiems. IfProceed-
ings of the Sixth International Workshop on Principles cadnosis 1995.

[M1100] Klaus Miller. Roboterful3ball: Multiagentensystem. Master’s theniversitt
Freiburg, 2000. In German.

[Mur02] Robin R. Murphy.Introduction to Al RoboticsMIT Press, 2002.

[MWT98] Henry Markram, Yun Wang, and Misha Tsodyks. Diffetiahsignaling via the
same axon of neocortical pyramidal neuroR8IAS 95(9):5323-5328, 1998.

[Nil84] Nils J. Nilsson. Shakey the Robot. Technical Repo%,32RI International, Menlo
Park, CA, 1984.

[Nil94] Nils J. Nilsson. Teleo-reactive programs for ageontrol. Journal of Artificial
Intelligence Researgi:139-158, 1994.

[OCO03] Anders Orelaick and Henrik I. Christensen. Evaluation of ArchitectusMobile
Robotics.Autonomous Robqatd4:33-49, 2003.

[Ore04] Anders Orefick. A Component Framework for Autonomous Mobile Rob&tsD
thesis, KTH Numerical and Computer Science, 2004.

[PACO4] Vasco Pires, Miguel Arroz, and Luis Custodio. Logic 8aslybrid Decision Sys-
tem for a Multi-robot Team. IProceedings of the 8th Conference on Intelligent
Autonomous Systenfz004.

[Pea95] Barak A. Pearlmutter. Gradient calculation for agitarecurrent neural networks:
A survey. IEEE Transactions on Neural Network&(5):1212-1228, 1995.

[PW92] J. Scott Penberthy and Daniel S. Weld. UCPOP: A soundptaie, partial order
planner for ADL. In Bernhard Nebel, Charles Rich, and Williama8wut, editors,
KR’92. Principles of Knowledge Representation and Reasoritngceedings of the

120

[Ree99]

[Rei87]

[RHO1]

[RIN0O]

[RNO3]

[RSB9S]

[SA98]

[SBB+06]

[SFF-03]

[SGH97]

BIBLIOGRAPHY

Third International Conferenggpages 103-114. Morgan Kaufmann, San Mateo,
California, 1992.

Christian Reetz. Aktionsauswahl in dynamischen Umnggén am Beispiel
RoboterfuRball. Master’s thesis, Unive&itreiburg, 1999. In German.

Raymond Reiter. A theory of diagnosis from first prineg Artificial Intelligence
32(1):57-95, 1987.

Jussi Rintanen anaddy Hoffmann. An overview of recent algorithms for Al plan-
ning. Kl, 15(2):5-11, 2001.

Jussi Rintanen. An iterative algorithm for synthesizinvariants. InAAAI/IAAI
pages 806—811, 2000.

Stuart Russell and Peter NorvigArtificial Intelligence: A Modern Approach
Prentice-Hall, Englewood Cliffs, NJ, second edition, 2003.

Stergios I. Roumeliotis, Gaurav S. Sukhatme, and @eArd3ekey. Sensor fault
detection and identification in a mobile robot. IEEE Conf on Intelligent Robots
and Systemgages 1383 — 1388, Victoria, Canada, 1998.

Reid Simmons and David Apfelbaum. A task descript@mgluage for robot con-
trol. In Proceedings of Conference on Intelligent Robotics and Bysst@ctober
1998. Vancouver, Canada.

Gerald Steinbauer, Mathias Brariats¢r, Martin Buchleitner, Stefan Galler, Simon
Jantscher, Gerald Krammer, Martindvh, brg Weber, and Martin Weiglhofer.
Mostly Harmless Team Description 2006 - Robust Control of MoBlobots. In
Proceedings of the RoboCup International SymposBiramen, Germany, 2006.

Gerald Steinbauer, Michael Faschinger, Gordon Frasedt Muhlenfeld, Stefan
Richter, Gernot Vidber, and Urgen Wolf. Mostly Harmless Team Description. In
Proceedings of the International RoboCup SymposRk003.

Reid Simmons, Richard Goodwin, Karen Zita Haigh, Sven kmeand Joseph
O’Sullivan. A layered architecture for office delivery raboln W. Lewis Johnson
and Barbara Hayes-Roth, editoPspceedings of the First International Conference
on Autonomous Agents (Agents’'9@ages 245-252, New York, 5-8, 1997. ACM
Press.

BIBLIOGRAPHY 121

[Sim94]

[SKGB04]

[SMWO5]

[SSO01]

[SWO05a]

[SWO5D]

[SWO05c]

[SWWO5]

[Tea05]

[TWWB02]

[USEK02]

Reid Simmons. Structured control for autonomou®teb In|[EEE Transactions
of Robotics and Automatigorolume 10, pages 34-43, 1994.

Freek Stulp, Alexandra Kirsch, Suat Gedikli, andchael Beetz. Agilo robocup-
pers 2004. IRoboCup International Symposiug004.

Gerald Steinbauer, Martin &fth, and Franz Wotawa. Real-time diagnosis and
repair of faults of robot control software. RoboCup International Symposiym
Osaka, Japan, 2005.

Martin Sachenbacher and Peter Struss. AQUA: A Frarefor Automated Qual-
itative Abstraction. InNorking Papers of the 15th International Workshop on Qual-
itative Reasoning (QR-012001.

Gerald Steinbauer and Franz Wotawa. Challenges iimedetecting and locating
faults in autonomous mobile robots. Working Notes of the IJCAI-05 Workshop
on Model-Based Systenptsdinburgh, Scotland, 2005.

Gerald Steinbauer and Franz Wotawa. Detecting asatitay faults in the control
software of autonomous mobile robots. I6th International Workshop on Princi-
ples of Diagnosis (DX-05pages 13—-18, Monetrey, USA, 2005.

Gerald Steinbauer and Franz Wotawa. Detecting aratitay faults in the control
software of autonomous mobile robots. 1éth International Joint Conference on
Artificial Intelligence (IJCAI-05) Edinburgh, UK, 2005.

Gerald Steinbauerpdy Weber, and Franz Wotawa. From the real-world to its qual-
itative representation — practical lessons learned18ith International Workshop
on Qualitative Reasoning (QR-Q%ages 186-191, Graz, Austria, 2005.

The Miro Developer TeanMiro Manual. Department of Computer Science, Uni-
versity of Ulm, 0.9.4 edition, 2005.

Alex M. Thomson, David C. West, Yun Wang, and Peter BaenisSynaptic con-
nections and small circuits involving excitatory and intoby neurons in layers 2-5
of adult rat and cat neocortex: Triple intracellular recogd and biocytin labelling
in vitro. Cerebral Cortex12(9):936-953, 2002.

Hans Utz, Stefan Sablatng, Stefan Enderle, andh@&drK. Kraetzschmar. Miro
— middleware for mobile robot application$EEE Transactions on Robotics and
Automation, Special Issue on Object-Oriented DistribuBzhtrol Architectures
18(4):493-497, August 2002.

122 BIBLIOGRAPHY

[USMO05] Hans Utz, Freek Stulp, and ArndtiMlenfeld. Sharing belief in teams of hetero-
geneous robots. In D. Nardi, Riedmiller, Sammut M., and J. @nt&-Victor,
editors,RoboCup 2004: Robot Soccer World Cup Yilblume 3276 ofLecture
Notes in Artificial Intelligencgpages 508-515, Berlin, Heidelberg, Germany, 2005.
Springer-Verlag.

[Utz05] Hans Utz.Advanced Software Concepts and Technologies for AutonomolbigeM
Robotics PhD thesis, University of UIm, Neuroinformatics, 2005.

[VGSTO04] Vandi Verma, Geoffry Gordon, Reid Simmons, and Sé&ban Thrun. Real-time
fault diagnosislIEEE Robotics & Automation Magazingl(2):56 — 66, 2004.

[Wel99] Daniel S. Weld. Recent advances in ai planniigMagazine 20(2):93-123, 1999.

