Production Rules As Chromosomes of GA for Robotic Swarm
Applications

Kai Wing TANG and Ray A. JARVIS
ECSE, Monash University
Kai.Tang@eng.monash.edu.au and ray.jarvis@eng.monash.edu.au

Abstract

Fairly complicated data structures, other than
a string of binary digits, as chromosome rep-
resentations of genetic algorithms (GAs) have
been tried, and published, by various re-
searchers. How to choose an appropriate repre-
sentation for a GA problem is not only neces-
sary, but also a critical step. Once the genome
1is not a string of binary digits, the recombi-
nation operators have to be re-defined. How-
ever, the merits gained through the suitabil-
ity of genome representation, like faster conver-
gence, easier effect interpretation etc. outweigh
the extra effort required.

This paper presents results about an experi-
ment on utilization of production rules as chro-
mosomes of a GA problem on a common mul-
tiple robots cooperative task: environment ex-
ploration. It provides details of implementation
and gives a narration about the new devised re-
combination operators like crossover and muta-
tion.

1 Introduction

The success of application of GAs relies on two factors:
an appropriate chromosome representation and a correct
fitness evaluation function. Between these two factors,
a good former one is especially evasive. This is due to
the fact that researchers always use GAs on problems
that cannot be completely modeled or problems that
are not fully understood. If the problem is fairly easily
comprehended, other types of approaches like dynamic
programming, heuristic reasoning and hill-climbing etc.
will outperform GAs. Hence a paradox exists: If the
problem is not familiar enough, a pertinent chromosome
representation will become very hard to realize.

For the experiment being reported here, GAs are not
just used as a function optimizer to get some above

!chromosome / genome are interchangable in this context

average results. They are also used to create something,
hopefully, that is compatible with human design.
Based on this pre-requisite, the outcomes from this
experiment, if they are really good enough, have to be
interpreted or explained. Accordingly, a representation
with a cause-effect relation will be desirable.

A production rule in the format of:

if[condition;|and...and[condition,]
then
executelaction;)

will be the right choice of representation to fulfill the
requirement of explainability.

Once the data structure of genome is confirmed as
set(s) of production rules, some other related hurdles
have to be surmounted, namely:

e What is the form of genome crossover operation?

e How is mutation carried out? Should we mutate the
action of a rule, or mutate actions of a set of rules?

e How should we allocate the fitness value, or reward,
to an individual rule?

In the following sections of this paper, our solutions
to the above questions will be described in detail.

Including this introduction, this paper consists of
seven sections.

The second section outlines the scope of the multiple
robots environment exploration problem. The third sec-
tion narrates the conditions / actions of the rule sets,
parameters setting of GA, and recombination operators.
The fourth and fifth sections are the simulation results
and analysis of these results. The sixth section is a dis-
cussion about differences between the approach of this
paper and learning classifer systems. The seventh sec-
tion is the conclusion.

2 Scope of Environment Exploration
Problem

Environment exploration is one of the canonical ap-
plications used for testing the effectiveness of multiple
robots’ performance. It is such that:

A number of robots are placed in an unknown environ-
ment. Each robot has a range finder of limited effective
range so that each can detect the existence of obstacles
or other robots within a close proximity. Once a robot
realizes it is too close to other robot(s), it will stop. As
a result, all robots in the congested zone stop at once.
Then randomly one of them will re-plan a new path and
leave the zone. A short while later, another robot fol-
lows the same process. Hence, They disperse one by one
away from the congested zone and a collision is avoided.

The task is for all robots working collectively to plot all
the unknown environment into a known map by moving
around and to complete this task within the shortest
period of time.

Since the topic of this experiment is to study the possi-
bility of using GAs to design individual behaviours that
can accomplish certain collective goals and GAs nor-
mally require hundreds of generations to evolve out cer-
tain behaviours, computer simulations instead of physi-
cal robots are used in the experiment. The plan is such
that, by exercising simulations in the beginning, if the
simulated results are satisfactory, simple physical robots
will later be built to verify the validity of these simula-
tions.

All the simulations are run under a simplified environ-
mental representation. This environment represents the
real world by a grid of rectangular cells (50 by 50 cells).

Each rectangular cell represents one of the following
classes:

e Space
e Obstacle
e Robot

In each robot’s environmental map, the state of each
cell is either:

e known, or
e unknown

The size of an obstacle is grown before mapping into
the grid world, as shown in Figure 1 and hence a robot
can pass through diagonally placed adjacent obstacle
cells.

In this experiment, we take a de-centralized approach:
there is no leader - follower relation among the robots
in the group. Accordingly, every robot plans its own
action independently. The objective of this experiment
is to investigate emergence of cooperative behaviour. If

ohstacle

rofbat

can pass thraugh cannat pass through

Figure 1: A robot can pass through diagonally placed
adjacent obstacles.

a robot does not know the locations of the areas been
explored by other robot(s), no cooperation can materi-
alize. Consequently, a limited sharing of environmental
information is necessary.

Our setting is such that a robot always broadcasts its
coordinates to the others. Furthermore, once two robots
are close, and visible, to each other (no obstacle in be-
tween), they will exchange their explored environmental
map. The visibility requirement is included because the
exchange of environmental maps may be performed via
infra-red signals when physical robots are built.

Besides sharing of each other’s location, a robot also
transmits the count of unknown cells in its own environ-
mental map to other robots. The purpose of sharing of
this piece of information will be explained in the next
section.

We can see that by sharing a limited amount of infor-
mation, the problem becomes rather interesting. During
the path planning process, every member of the robotic
team has to make a choice between moving to another
robot to obtain a more accurate map, or, executing the
exploration task. Furthermore, since a robot only knows
where the other members are, but not what they are
doing; sometimes, even though a simple 'move to near-
est team member’ operation may not be easily accom-
plished. (The nearest team member may be moving
away from the original robot. As both robots move with
same speed, the original one cannot catch up the one
which is moving away).

With such a problem, we, the ones who setup this

experiment, do not know what good results will look like
in advance. Consequently, we pass the duty of individual
action design to GAs, and try to evaluate how effective
GAs will be.

2.1 Actions / Conditions of Rule Sets

The behaviours of each member of the robotic team are
governed by two sets of rules named as:

e Revision-Rule
o Next-Action-Rule

The Revision-Rule Set decides when to change the ac-
tion under execution whereas the Next-Action-Rule Set
resolves what form of the upcoming new action will be.

The moment to revise the current action or re-plan
a new path is a very critical factor that influences the
final result of the collective operation. It is because the
data available to each robot at any moment are (1) lo-
cations of other robots and (2) its own version of the
environmental map. As a result, a new path depends on
the environment data. If the elapsed time between two
path planning operations is short, the robot reads en-
vironment data, and reacts, more frequently. Thus, the
robot has more interactions with the environment. Dif-
ferent degrees of interactivity with the environment will
cause various emergent results [Holland , 1998] and good
emergent results rely on appropriate amount of of inter-
activity. Various moments to change action bring about
different amount of interactivity, so that right moment
to change action becomes a necessary criterion for good
collective performance.

These two sets of rules, aided by a handful of built-in,
exceptional conditions handling rules, form the central
nervous system of the robotic team member. The fol-
lowing two subsections describe the available values of
actions, whereas another next two about conditions, of
these two sets of rules.

Actions of Revision-Rule Set

The action portion of the Revision-Rule Set is repre-
sented by a ’true/false’ switch to control whether keep
on running the current action or stop and switch to a
new one.

Actions of Next-Action-Rule Set

The action portion of the Next-Action-Rule Set is a 5-
valued indicator that specifies five different behaviours.
They are:

1. Move to Nearest Unknown Cell
Based on its own environmental map, use distance
transform [Jarvis , 1984] to identify the nearest un-
known cell and hence plan a path towards this cell.

2. Move to Other Robot
Pick up one robot in the team and then move to

it. The method to decide which one to pick is as
follows:

Based on the environmental map, count the number
of unknown cells within a certain boundary around
the robot. Figure 2 shows an example : It is the en-
vironmental map of the robot without a label, and
the boundary around other robots for consideration
is 7 by 7 cells. It illustrates that unknown count
around robot C is the highest. The magnitude of
this count shows how deep the robot is in unknown
district. This count gives a rough estimation about
the volume of information, which is unknown to it-
self, but already explored by that team member.

O known cen

i unknown cell
B robot

:u

Figure 2: Count of Unknowns for robot A = 0, B = 19,
C =48, D = 27; so that C is the preferred one.

Presumably, a higher count means the higher the
amount of information to be gained by an approach.

3. To Spread
Use distance transform to get the whereabouts of
the unknown cell that is farthest from ALL other
robots. Use this cell as destination to plan a path.

4. Move to Centroid
Move to the centroid of the robotic team (include it-
self). This is an interesting action: If all robots take
this action at the same time, it is a collective gath-
ering operation. If only some of the robots take this
action, they will merge and then follow an invisible,
moving point. If only one robot takes this action,
its effort may be rendered totally non-productive.
5. To Stop
Remains stationary for four units of time. (A time
unit is defined as the average time for a robot to
move to its neighboring cell).

Conditions of Revision-Rule Set
The condition portion of the Revision-Rule Set consists
of four different conditions:

1. Count of Own Unknown Cells
This is the count of unknown cells in a robot’s own

environmental map. This count is quantized to a
grade between 0 to 7, i.e. a total of eight values.
For the simulation, the whole environment is rep-
resented by 50 * 50 = 2500 cells. Seven numbers,
ni1 to nr, each is greater than 0 and less than 2500,
with ny less than ng, 1 are assigned. Also, an eighth
number, ng = 0 is used as an initial value. Grade
of this unknown cell count will be equal to k if the
unknown cells count is in the range:

ngr1 > Unknown.Cell.Count > ny,

Suitable sizes of ranges in between ny and ngy; (k
= {0..6}) are parameters for GA to search.

2. Count of Group Unknown Cells

This is the summation of counts of unknown cells of
ALL robots’ environmental maps. This is not the
count of cells unknown to either, or all of the team
members. The ratio of this count to Own Unknown
Count is a rough indicator of how ignorant a robot
is compared with the whole team. This count is also
quantized to a grade between 0 and 7. (Proportion-
ally, the values ny are in the range between 0 and
2500 * number of robots).

3. Number of Steps Taken So Far
This is the count of steps taken since last path plan-
ning. The value is in a range of {0..3}. Each value
is coded to represent four steps. Therefore, if step
count is less than or equal to four, this value is 0. If
step count is greater than twelve, its value will be
3.

4. Current Action
This is the type of action being taken. The val-
ues are as described in subsection Actions of Next-
Action-Rule Set.

Thus, the rule [1][3][2][3] :: [0] means :

If
unknown count of own map is grade 1;
unknown count of total maps is grade 3;
the current path has been take 5 to 8 steps;
the current action is ”to spread”;

then
continue current action.

By utilizing this set of rules, a robot can decide
whether to re-initial a new action or not, given the in-
formation of :

1. its current action

2. its ignorance compared to that of the whole team
and

3. how long since the current action been taken

Conditions of Next-Action-Rule Set
The condition portion of the Next-Action-Rule Set also
consists of four different conditions:

1. Count of Own Unknown Cells
Same as that of the Revision-Rule Set.

2. Count of Group Unknown Cells
Same as that of the Revision-Rule Set.

3. If It is End of Path
It is a true / false switch indicates when this rule
is triggered, whether it has reached end of current
path.

4. Current Action
Same as that of Revision-Rule Set.

Thus, the rule [7][1][1][2] :: [4] means :
If
unknown count of own map is grade 7;
unknown count of total maps is grade 1;
it has reached end of the path;
the current action is ”to other robot”;
then
move to the centroid.

By utilizing this set of rules, a robot can decide what
the next action will be, given the information of :

1. its current action

2. its ignorance compared with that of the whole team
and

3. whether the current action been completed by
reaching end of the path

2.2 Exception Handling

This subsection explains the operation of the exception
handling rules.

Normally, the Next-Action-Rule Set is triggered after
firing of a Revision-Rule whose action is true’. There are
situations when the Next-Action-Rule should be fired
without prior firing of a Revision-Rule. The following
paragraph describes these situations.

Sometimes, the current action will be stopped imme-
diately and a new action, 'to nearest unknown cell’, be
taken. The second paragraph describes its reason.

Firing of Next-Action-Rule Alone Any one of the
situations will trigger the firing of Next-Action-Rule im-
mediately.

e The path is blocked by an obstacle cell
e The path is blocked by another robot
e The robot is at the end of current path

A Default New Action A robot always keeps a
record of its previous sixteen steps (excluding stops). If
the repetitive rate of these sixteen steps are greater than
four, this triggers a ’loop-trapped’ alert, which in turn
forces the robot to take the default action of ‘to nearest
unknown cell’.

3 Implementation of Simple Genetic
Algorithm (SGA)

3.1 GA Related Parameters
e Generation population: 100.

e Format of chromosome:
The rule sets as described in previous section, with
a full combination of values of conditions are used as
the chromosome. (Figure 3 is an illustration) Take
the Revision-Rule Set as an example, there are four
conditions with a maximum of 8, 8, 4 and 5 values,
respectively. Then the total count of Revision-Rules
is8*8*4*5 =1280.

B8*8*4*5 = 1280 rules
Cl C2 C3 4 A

B8*§*2*5 = 640 rules

Cl1 C2 C3 C4 A

Mezxt-Action Fule Set | | |
Fewvision Fule Set

Figure 3: Two sets of rules form the chromosome.

e Instances of first generation :
The action part of each rule is randomly assigned a
valid value.

e Selection : Baker’s Standard Universal Sampling al-
gorithm [Mitchell , 1996].

e Elitism : During the selection, the best instance
of previous generation is always copied to the new
generation.

e Crossover : 60%.
e Mutation : 4%.

e Fitness Function :
whole exploration.

1000 - time units spent for the

3.2 Recombination Operators

For the topics about cooperations of multiple robots,
there is a special feature which makes short-term reward
assignment very difficult to accomplish. With regard to
cooperation, it is very hard to distinguish, or, to iso-
late sub-tasks from the whole task. Based on the total
time consumed, the performance of the whole task can
be assessed quantitatively. However, which portion of
the task or which member of the team contributes most
cannot be evaluated.

Using our experiment as an example, one of the mem-
bers may explore just very few cells. However, its role
as a map relaying agent may substantially improve the
overall group performance.

Similarly, to discover which rule(s) among a whole set
of rules could be the main contributor(s) to a good col-
lective result, is very hard.

In the same way, a rule fired alone may not be benefi-
cial at all. But, if it is fired within an episode of rules it
may be functional as a bootstrapper and hence generates
excellent results.

It is reasonable to think that certain combinations of
rules fired within a whole exploration task will gener-
ate better results than the other combinations. (It is
not necessary for them to be fired in sequence, or, be
executed by the same robot).

To sum up, we can assign a score, or fitness value,
to a bunch of rules (those fired during a run of explo-
ration) but not to an individual rule. In such a manner,
the credit assignment methods applied in learning clas-
sifer systems (LCS) are not feasible for robotic swarm
experiment.

However, if we regard subset(s) of rules as building
blocks [Holland , 1960] [Holland , 1995] in Holland’s
”Building Block Thesis”, with some minor modifications,
the SGA [Goldberg , 1989] can readily be applied.

Crossover Operator of Rule Sets

The sole function of a crossover operation is to pick out
a good subset of genes from each parent and then try to
combine them to generate an offspring better than each
of the parents.

Now, because the chromosome and building block are
a full set and subset of rules, respectively; the basic
operation is to seek out a good subset of rules from the
parents’ full rule sets.

The steps are :

e Randomly pick out a rule which has at least been
fired once during the previous exploration, from ei-
ther of the parents going to be crossed over.

e Use conditions of this rule to generate a subset se-
lection criterion.

1. Let the total count of conditions be n, then let
the conditions of the chosen rule be C; , C5 ...
On

2. Generate a random number, m, in between the
range {1..2" — 1}. If treating m as a binary
number, m will be n bits long, with p randomly
placed bit-1’s (p in the range of {1..n}).

3. Use m as a mask by regarding bit-1’s as
requisite, bit-0’s as don’t care; and matching
the least significant bit with C),, the most
significant bit with Ci, etc. to generate a
selection criterion.

This is illustrated by taking the Revision-Rule as
an example, without loss of generality. Here, n = 4;
consequently, conditions of picked rule be C; , Cy,
C3, Cy and, m will be in the range of {1..15}.

If the randomly generated number, m, is 5, or, 0101
in binary, the criterion will be

Conditiony = Cq
and

Conditiony = Cy
If the randomly generated number, m, is 13, or, 1101
in binary, the criterion will be

Condition, = C1
and

Conditiony, = Cy

and
Conditiony = Cy

T
e 3o ek

=)

Cl C2 C3 C4 A é
L

F—» 1 3 0 2 [1] Fandomlypicka frednie

@ @ @ Combine chosen rule and
mask as a subset criterion
Revision Rule Set

Figure 4: Formation of a subset criterion.

By using this method, a subset of rules, with the
previous chosen rule among them, can be selected
(figure 4). The size of this subset depends on num-
ber of bit-1’s in m, or, p. If p = 4, the subset only
consists of 1 rule. If p = 1, dependent on p’s loca-
tion, the size of subset varies from 160 to 320 (figure
5).

éﬁ» @ @ @ @ :Or?:;oor;eMeﬁtsuns
0 2 1

@ 8% 4 % 5 = 160 rules fits this
\ criterion

5 walues

é;, @ §*8 * 4 =256 rules fits this
criterion

Figure 5: Size of subset depends value and position of p.

e From each parent, a subset of rules matching the

criterion is picked out and then swapped to generate
two new sets of rules (figure 6).

o
.

subset

- \

- | | |

\

Parent-1 Parent-2

Figure 6: Crossover operation

Mutation Operator of Rule Sets
There are two approaches to defining the rule mutation
operator. Namely,

e Based on the mutation rate, probabilistically choose

a rule from a set and then alter its action.

e Similar to the crossover operation, set a subset cri-

terion, and then set actions of ALL rules within the
subset to a fixed value.

Both of these two operators have been tried. We found

that the result of second approach is better than the first

one.

This is because the first approach introduces too little
variance to the rule set. If the mutation rate is four to
five percent, for a rule set with one thousand rules, an
average of only forty rules will be affected by mutation.
Those affected rules may scarcely or never be fired during
the next exploration. Consequently, the desired effect
of mutation does not occur and pre-mature convergence
happens.

For the second approach, a bunch of rules are mu-
tated at once. It introduces enough variations to the
gene pool. Even though a mutation may inadvertently
modify some good rules, since the crossover operations
are preformed after mutation, the subset rules altered by
mutation may be splitted and spread to other instances
within the same generation. With the aid of the selection
operation, good rules can be maintained and hence the
unnecessary detrimental effects can be curbed (figure 7).

Instance with good
genes
good genes mutated
. away
selection
good genes retained
Crossover

genes

Figure 7: Good genes are retained after mutation.

4 Simulation Results

T T
- best fitness of a generation

900+ [P e e |

S AN " average fitness

fithess

, , , \ , ,
50 100 150 200 250 300 350 400
generations

Figure 8: Convergence of fitness.

Figure 8 illustrates the rate of convergence of an empty
environment explored by ten robots, with the position of

the robotic team initially placed at the centre of the en-
vironment. It shows that the recombination operators
defined in the above subsections could enhance the per-
formance to 2/3 of the saturated result in 50 generations.
It converged to the saturated level in the 270th genera-
tion.

i -
-

Figure 9: Exploration of an environment with no obsta-
cle, the second best result.

Figure 10: Exploration of an environment with no ob-
stacle, the best result.

Figures 9 and 10 shows the conduct of cooperation in
an empty environment. These are the snapshots in equal
intervals. The grey region is unknown free, white region
is explored free area, red squares are robots and finally,
green squares are the tracks taken by some robots. Their
behaviours are more or less the same : in the beginning,
the robots spread out to the four corners. Once they
take up a certain distance away from each other, they
evenly cover the locally surrounding area. Finally, they
move to the central area to exchange their maps. The
main difference is such that, in figure 9, after gathered
in the sixth snapshot, there are some unknown cells left.
Whereas in fig. 10 the whole area are covered after merg-

ing in the sixth.

o

w0
£l
sosiwb s B i 8

HEEE
S0
£

Figure 11: Exploration of an environment with cham-
bers, the second best result.

Figure 12: Exploration of an environment with cham-
bers, the best result.

Figure 11 and 12 display the exploration of an area
with rectangular chambers. The snapshots are in equal
intervals also. The initial location of the team is at the
upper-right corner. Black blocks are unknown obstacles,
blue blocks are detected obstacles. This one is similar as
the empty environment : they move to the central area
and then spread to other regions, and finally merge.

These trials show that by using our rule-sets repre-
sentation and recombination operations, GA successfully
gives an answer to our question:

Question:

During the path planning process, every member of the
robotic team has to make a choice between moving to an-
other robot to obtain a more accurate map, or, erecuting
the exploration task. When to do which ?

Answer:

In between the tasks of exploration and map exchange,
always do the former in the beginning. Map exchange

will be advantageous only after EACH member is in pos-
session of a certain amount of information for sharing.

5 Result Analysis

Based on the emerged behaviour in the total empty
space, we can analyse the exploration efficiency in the
following way:

5]
- 7 -+
edge of
environment spiral
movement

Figure 13: Left: Effective limit of range finder. Right:
Spiral movement of a single robot in an empty area.

Figure 13 is the coverage area of range-finder of a
robot, which is 5 cell in radius. If a single robot has
to explore an environment of 50 by 50 cells by taking a
spiral path from right bottom corner to the centre, it has
to run three loops. Every loop reduces the dimension of
unknown by 15 cells, and each loop takes steps:

(Length.of.Dimension —7) x4 — 8
Therefore, the total steps count is:
((50—=T7)x4—8)+((35—7)*4—8)+((20—7)*4—8)+6 = 317

In other words, the exploration cannot be completed
in less than 317 time units by a single robot.
If there are 10 robots cooperating in a perfect sense, they
will take 317 / 10 = 32 time units to cover the whole
area. However, after exploring its own section of area,
the robots have to gather at one location to exchange
each other’s map. Since the initial position of the team
is at the centre, it is fair to claim that after 32 time units
of synchronized exploration, they will take certain time
to return from the boundary back to the centre. Among
all the members, the one return from one of four corners
will take the longest time. That is:

50/2 % V2 = 35

Hence, the optimal performance will be 32 + 35 = 67
time units.

For our evolved best instance, the optimal fitness is
909 which in turn equals to 91 time units and the effi-
ciency is:

67/91 = 73.6%

In short, it can attain 73 % of the best performance.

For the chambered environment, the analysis is not so
straight forward. We use another metric to measure the
performance, i.e. comparison with the greedy approach.
The greedy approach is such that a robot always moves
to its nearest unknown cells and it revises its action /
path stepwisely. By taking the greedy approach for the
chambered environment, we found out the required time
is 223 time units. Since ours is 132, the improvement is:

223/132 — 1 = 68.9%

Moreover, by taking the greedy approach for the
empty environment, the required time is 263 time units.
Hence, the improvement is:

263/91 — 1 = 189%

6 Discussion

The use of genetic algorithm evolution to develop be-
haviours of robotic swarms is still in an exploratory
stage. The decision about which control level to be
evolved is a hard choice. One common approach is to
evolve weights of a neural network which maps the sen-
sory inputs to motor controls of a robot. The main ad-
vantage of this approach is its free of any designers’ views
of the problem, but its disadvantage is its high sensitivity
to sensory information.

This experiment uses a set of rules to control the be-
haviours of a robotic swarm. By using this higher level
representation, we take a bold tactic to investigate: if a
deterministic approach is sufficient for this type of prob-
lems?

Initially, there is no idea about what these rules will
look like. It is no guarantee that the conditions that
form the antecede of a rule are the critical conditions
which constitute some good behaviours. Although the
rule-set is complete and sufficient to cover all possible
situations, it may still be possible that no high-quality
behaviours can be found.

The results of this experiment shows that by using
GA evolution, good behaviours which are subject to the
circumstantial constrains like the number of robots, ini-
tial position of the robot team and locations of obsta-
cles, etc., can be found. A population of individuals
with random sets of rules can evolve to a fixed rule-set
which performs very well in the simulated environment.
This evolved result may not be optimal, since optimality
is hard to be proved, but it is certainly a good result.

Therefore, we can claim that GA evolution with rule-
based chromosome representation is a feasible approach
to seek for some good collective behaviours.

The next paragraphs constitute a comparison between

our approach and the Michigan-style learning classifier
systems (LCS) [Lanzi and Riolo , 2000].
Learning classifier systems are machine learning systems
which learn to interact with a partially unknown envi-
ronment, using short- / medium-term rewards to guide
a GA core to enhance its rule-based control system. The
approach taken here has the following features in com-
mon with LCS:

e Rule-based representation of control system

e An partially unknown environment interaction
e GA-based new rules generation

However, there are three major differences:

e LCS requires short- / medium-term rewards
whereas our approach only requires an end of task
score

e LCS’ rewards are dedicated to a single rule, our re-
wards to the whole set of rules

e L.CS does not generate a full set of rules to represent
the decision tree whereas ours has to create the full
list for the running of the crossover operation

Originally, Holland et al’s [Holland and Reitman |,
1978] credit assignment scheme, bucket-brigade algo-
rithm (BBA), is based on a market model: each rule
acts as a business agent in chains leading from an ex-
ternal payoff back to a succession of suppliers / service
providers. The scheme is simple and sound; however, it
does not work as expected for robotic swarm problems
because of two reasons. We can use the same business /
market analogy to explain:

e Since it is difficult to decompose the task to smaller
sub-tasks, the reward is very long-delayed.
It is like a very long chain of service providers work-
ing in a row to offer services to an end-user. Except
the one who directly serves the end-user, each ser-
vice provider relies on its supplier’s credit to main-
tain its service. Once the end-user clears its bill,
each party in the entire chain can get its own share
of reward. This method works fine for a chain with
a few parties, but not for a very long chain. Those
parties in the head of the chain will go bankrupt
before the end-user pays.

e The sharing of reward is not evenly distributed as
BBA expected.
For BBA, the reward for nth party in the chain is:

reward * K™

where K is a constant factor.

Nevertheless, the importance of various robots at
different moments are far more complicated. In a
genuine market, if any party believes its service is
more valuable, it will adjust its price. Its supplier
and customer will subsequently tune their prices un-
til a balancing point is attained. Without this self-
regulating mechanism, a correct allocation of reward
can never be realized.

The major merit of our approach is that we success-
fully get around with credit assignment problem, which
is an essential barrier for multiple robotic research.

On the contrary, the main drawback of our approach
is the requirement to represent the whole combination of
conditions of rules. If the counts and values of conditions
are high, the total number of rules will grow geometri-
cally to an unmanagable size.

7 Conclusion

The results presented here are promising. They demon-
strate that, by using sets of rules as chromosome, asso-
ciated with the right recombination operators, GAs can
be used to generate useful behaviours in robotic swarms.

Even though the results shown in this paper (fig. 12
and fig. 10) are generated by two different set of chro-
mosomes, we have successfully applied these results in
the design of a team of robots for unknown environment
exploration. A robust solution has been formulated, and
it runs satisfactorily in simulation.

References

[Goldberg , 1989] D.E. Goldberg. Genetic Algorithms
in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading, Mass., 1989.

[Holland , 1998] J.H. Holland. Emergence: From Chaos
to Order. Cambridge, Massachusetts, Perseus Books,
1998.

[Holland , 1995] J.H. Holland. How Adaptation Builds
Complexity. Reading,Massachusetts, Addison-Wesley,
1995.

[Holland and Reitman , 1978] J.H. Holland, J.S. Reit-
man. Cognitive systems based on adaptive algorithms,
Pattern-directed inference systems, New York: Aca-
demic Press, 1978.

[Holland , 1960] J.H. Holland. On Iterative Circuit
Computers Constructed of Microelectronic Compo-
nents and Systems. Proceedings of Western Joint
Computer Conference (WJCC), 1960.

[Jarvis , 1984] R.A. Jarvis. Collision-free trajectory
planning using distance transforms, Proceedings of
National Conference and Exhibition on Robotics, Mel-
bourne, 1984.

[Lanzi and Riolo , 2000] P.L. Lanzi and R.L. Riolo. A4
Roadmap to the Last Decade of Learning Classifier
System Research, Learning Classifer systems - From
Foundations to Applications, Springer, 2000, Page 35
- 61.

[Mitchell , 1996] M. Mitchell. An Introduction to Ge-
netic Algorithms., MIT Press, Cambridge, Mas-
sachusetts. 1996.

