
Horizon-based Value Iteration

Peng Zang
Arya Irani

Charles Isbell

ABSTRACT
We present a horizon-based value iteration algorithm called Re-
verse Value Iteration (RVI). Empirical results on a variety of do-
mains, both synthetic and real, show RVI often yields speedups of
several orders of magnitude. RVI does this by ordering backups by
horizons, with preference given to closer horizons, thereby avoid-
ing many unnecessary and incorrect backups. We also compare
to related work, including prioritized and partitioned value itera-
tion approaches, and show that our technique performs favorably.
The techniques presented in RVI are complementary and can be
used in conjunction with previous techniques. We prove that RVI
converges and often has better (but never worse) complexity than
standard value iteration. To the authors’ knowledge, this is the first
comprehensive theoretical and empirical treatment of such an ap-
proach to value iteration.

1. INTRODUCTION
Reinforcement learning (RL) is a field that defines a particular

framework for specifying how an agent can act to maximize its
long-term reward in a stochastic (and perhaps only partially ob-
servable) environment. RL has broad applicability. While it has
been traditionally used in the context of single agents for planning,
learning, and control problems,there has been a tremendous amount
of recent work in applying it in multi-agent scenarios as well [4],
[13], [7]. A common approach to solving RL problems is to learn a
value function that captures the true utility of being in a given state.
In addition, value functions have many other uses. For example,
Munos and Moore [9] use the value function to guide discretization
decisions, Brafman uses them to guide exploration [2] and Kearns
and Singh [6] use it to decide between exploration and exploitation.

Value iteration is a well established, dynamic programming ap-
proach to learning value functions. It is characterized by the use
of backups[11] to propagate information about the true long-term
utility of a state from potential future states. Unfortunately, a tra-
ditional implementation of this process can have several disadvan-
tages.

One drawback of traditional value iteration is that its memory
and computational requirements scale with the number of states,
which grows exponentially with the number of state features. Var-
ious approaches such as function approximation [3], direct pol-
icy search[10], and re-representational techniques such as temporal
and state abstraction [12] have been pursued to address this issue.
However, value iteration remains one of the few techniques that
can solve MDPs exactly with no domain knowledge. In addition,
with hierarchical, modular, and re-representational techniques that

Tech Report GIT-IC-07-07.

subdivide, abstract or otherwise reduce the number of states, value
iteration can be applied successfully on very large problems.

A naive implementation can also perform a lot of unnecessary
work. A backup operation is peformed for every state in every
iteration of the algorithm, until a global convergence criterion is
met. This includes states which may already have converged to the
correct values, as well as those for which no new information is
available. In this paper, we introduce a new algorithm called Re-
verse Value Iteration (RVI) which reorders backups to mitigate this
waste. We will show that RVI converges and typically has a lower
complexity. Experimental evaluation shows that RVI often reduces
the number of backups by several orders of magnitude when com-
pared to standard value iteration. We also compare RVI to other
speedup techniques, such as prioritization and partitioning, over
which RVI still often sees a severalfold speedup. It is not a compe-
tition however; RVI is complementary to other techniques and can
be used in conjunction with them.

The rest of this paper will be organized as follows: first, we will
cover related work so that we can make appropriate comparisons
throughout the paper. This is followed by a formal problem state-
ment and introduction of our notation. We will then introduce our
algorithm and discuss its properties such as convergence and com-
plexity. Finally we will see how the algorithm bears out in practice
through a thorough empirical evaluation, before some concluding
remarks at the end.

2. RELATED WORK
The main lines of research in improving value iteration have been

in making backups asynchronous [1], prioritizing the order of back-
ups [14], partitioning of the state space [14] and parallelization of
the process as a whole [16].

Asynchronous value iteration is fundamental work demonstrat-
ing that backups can be performed in any order without breaking
convergence guarantees, as long as all states are assured an infinite
number of backups. This is the work that enables later refinements
and improvements to value iteration.

Prioritization of backups in value iteration aims to bring the idea
of prioritized sweeping, as seen in the model-free literature [8], to
model-based value iteration. This is a method relying on heuris-
tic(s) to guide the order of backups. In model-free literature, pri-
oritized sweeping is cited as often leading to a five- to ten-fold
speedup for some classes of domains such as mazes [11]. For
value iteration, prioritization of backups has to be applied carefully,
because the overhead of maintaining a priority queue can quickly
overwhelm any savings in terms of number of backups.

Partitioning of backups was developed, in part, to overcome the
overhead of prioritization methods. It also stems from the observa-
tion that value iteration performs best (i.e. with few wasted back-

ups) when states are highly connected. Thus, it makes sense to par-
tition the states such that edge cuts are minimized, yielding more
strongly connected components. Prioritization can then be applied
efficiently on the partitions as there are far fewer partitions than
states. Normal value iteration can be used within the more strongly-
connected partitions [15]. Experiments show partitioning can yield
significant gains in conjunction with prioritization although some
thought must go into the partitioning scheme. Partitioning of the
states also leads naturally to parallelization: one can assign parti-
tions to processors to gain significant speedup [16].

As we will describe in Section 4, the techniques introduced in
this paper also seek to eliminate unproductive backups. However,
rather than using a value-based heuristic for ordering backups as
prioritization and partitions methods do, we order them based on
a systematic (reverse) traversal of the state space. To the authors’
knowledge however, this is the first comprehensive theoretical and
empirical treatment of applying such a technique to value iteration
for solving MDPs.

3. PROBLEM STATEMENT AND NOTATION
We define an (finite) MDP M = (S,A,Pa

ss′ ,R
a
ss′ ,γ) by a finite set of

states S, a finite set of actions A, a transition model Pa
ss′ = Pr(s′|s,a)

specifying the probability of reaching state s′ by taking action a in
state s, a reward model Ra

ss′ = r(s,a,s′) specifying the immediate
reward received when taking action a in state s and reaching the
new state s′, and the discount factor 0≤ γ < 1.

We denote a horizon hk to be the set of states from which a ter-
minal state can be reached in exactly k steps. We call absorbing
states in which you cannot leave the state once you have arrived,
terminal states.

Let parents(s) be the set of states from which there is a non-
zero probability of transitioning to state s: {s′ : ∃a∈A(Pr(s′|s,a) >
0)}. Similarly, let children(s) = {s′ : ∃a ∈ A(Pr(s|s′,a) > 0)}.

A policy, π(s), is a mapping that dictates what action an agent
should perform in a particular state. The utility or value of a state
V π(s) is the expected long-term discounted rewards an agent re-
ceives, when following policy π from state s. V ∗(s) is the value
of state s when an agent follows an optimal policy that maximizes
the long-term expected reward. Value iteration is an algorithm for
calculating V ∗.

To simplify discussion, we make the following assumptions, with-
out loss of generality: (1) terminal states are represented as states
with only self-transitions of zero reward, (2) all rewards are strictly
positive (except the zero reward self-loops of terminal states), (3)
all optimal paths end in a terminal state; if an optimal path is cyclic,
we require either it be converted into a terminal state or all states
in the cycle be added initially in to the queue in RVI. As a conse-
quence, the value of any non-terminal state is strictly positive and
the value of any terminal states is zero.

4. REVERSE VALUE ITERATION (RVI)
Consider a deterministic grid world. The actions are left, right,

up, and down. The values of each state is initialized to zero, except
for the terminal state in the bottom right, which is set to 1.

Note how the terminal states in an MDP are the only ones with
values V ∗(s) that are known from the onset. All other values are
ultimately a function of the utilities of terminal states and the tran-
sition and reward models. In our discussion, we will call a state
and its value “informative” if and only if its value reflects, at least
in part, the utility of a terminal state. Observe that uninformative
values are eventually overwritten and do not contribute to comput-
ing V ∗. We will borrow the term “information frontier” to refer to

1 . 0 1 . 0 1 . 00 . 9

0 . 9

0 . 9

0 . 9

(a) V 0→V 1

1 . 0 1 . 01 . 00 . 9

0 . 9

0 . 9

0 . 9 0 . 8

0 . 8

0 . 8

0 . 9

0 . 9

(b) V 1→V 2

1 . 0 1 . 00 . 9

0 . 9

0 . 7 0 . 9

0 . 9

1 . 0

0 . 8

0 . 8

0 . 8

0 . 9

0 . 9 0 . 7

0 . 7

0 . 7

0 . 8

0 . 8

0 . 8

0 . 8

0 . 8

0 . 8

(c) V 2→V 3

Figure 1: Progress of Value Iteration in a simple gridworld. The in-
formation frontier is italicized. Empty cells indicate values of zero.
For a given row, the left column shows the value function at the
start of a given iteration; the center column shows, in grey, which
states are backed up, and the right column shows the resulting value
function.

the boundary between states with informative values and those with
uninformative values1.

Consider how value iteration would solve this MDP, assuming
a typical left-right, top-bottom state enumeration scheme. In Fig-
ure 1 note that the information frontier grows by just one step with
each iteration, despite all states receiving backups. This is due to
the unfortunate mismatch between the direction the backups are
performed, and the direction the information frontier travels.

The natural observation then is that if we can order the backups
along the direction of information flow, we can avoid many wasted
backups and achieve significant speedup. The key is that informa-
tion propagates along the set of optimal paths of the MDP, but in
the reverse direction i.e. beginning with the terminal state(s) and
flowing outward to all possible starting states. The set of optimal
paths is generally unknown to us, but we do know that they must
end in a terminal state; the set of optimal paths is a subset of the
set of paths that end in a terminal state. RVI works by simply or-
dering the backups along the reverse direction of paths that end in
a terminal state, as shown in Figure 2.

The basic RVI algorithm is given in Algorithm 1. RVI works by
first performing backups on the states in horizon h1 (the parents of
terminal nodes), and then the states in each successive horizon. The
queue Q dictates which states remain to be backed up. Each queue
element is a tuple (s,h) where s is the state and h is the horizon as-
sociated with s. A given state can appear in multiple horizons, but
only receives one backup per horizon (Line 14). Furthermore, ob-
serve that the queue guarantees that all backups for a given horizon
completes before backups for subsequent horizons begin.

The absence of terminal states does not invalidate the algorithm.
In general, our goal is to traverse all optimal paths in reverse so

1In the original usage of this term [15], it was associated with the
rate of change of the value of a state. Here we will not make such an
association because change in the value of state is not necessarily
due to accurate information.

1 . 0 1 . 00 . 9

0 . 9

1 . 0

(a) V 0→V 1

1 . 0 1 . 01 . 00 . 9

0 . 9

0 . 9

0 . 9 0 . 8

0 . 8

0 . 8

0 . 9

0 . 9

(b) V 1→V 2

1 . 0 1 . 00 . 9

0 . 9

0 . 7 0 . 9

0 . 9

1 . 0

0 . 8

0 . 8

0 . 8

0 . 9

0 . 9 0 . 7

0 . 7

0 . 7

0 . 8

0 . 8

0 . 8

0 . 8

0 . 8

0 . 8

(c) V 2→V 3

Figure 2: Progress of Reverse Value Iteration in a simple gridworld.

that the ordering of backups can be maximally aligned with the di-
rection information flow. Terminal states simply serve as a way to
narrow the set of paths we have to consider. If there are no termi-
nal states, then every state could potentially be a “terminal state”:
the final state where an optimal path terminates. So if a MDP has
no predefined terminal state(s), all states are initially added to the
queue.

RVI has two additional minor optimizations, omitted from Algo-
rithm 1 for the sake of readability. First, when performing backups,
children with values of zero are ignored. The reasoning is that a
state can only have a value of zero if it has never been backed up
before. In that case, the child’s value has no relevant information
to add when the expectation is being calculated for the backup. We
ignore the zero valued state by pretending that it is unreachable.
Any probability mass originally associated with that state is redis-
tributed to the rest. Note that this requires at least one next state be
non zero. When there are terminal states, this is guaranteed. When
there are no terminal states, this optimization is not performed.

The second optimization we perform is detecting and solving
self loops. If a state s has a self loop with reward r then its value
should be r/(1− γ). We detect his case, and instead of performing
a backup, we set its value directly.

5. CONVERGENCE PROPERTIES OF RVI
In this section we will show that RVI converges and analyze the

speed of that convergence. We will perform this analysis in two
parts. In the first subsection we will focus on proving convergence.
We leave discussion of the speed of that convergence to the follow-
ing subsection.

5.1 Convergence Guarantee
For the purposes of discussion, let RVI′ be an algorithm identical

to RVI, with the exception that when a state s is backed up, its
parents are added to the backup queue regardless of whether the
value of s has changed; the check at line 13 is ignored.

LEMMA 1. The first backup of a state s always results in a
change.

PROOF. V (s) is set to zero initially for all states. When a backup

Algorithm 1 Reverse Value Iteration (RVI)
Require: MDP M = (S,A,Pa

ss′ ,R
a
ss′ ,γ),

Discount factor γ,
Precision ε

1. Initialize value table V (s) = 0 for all states s ∈ S.
2. T ←{s ∈ S : s is a terminal state }
3. if T 6= /0 then
4. Initialize queue Q = {(s,1) : s ∈ parents(t),∀t ∈ T}.
5. else
6. Initialize queue Q = {(s,0) : s ∈ S}.
7. end if
8. while Q not empty do
9. (s,h)← pop(Q)

10. Backup state s:

V (s)←max
a∈A

(
∑

s′∈children(s)
Pa

ss′
[
Ra

ss′ + γV (s′)
])

11. if backup resulted in change greater than ε then
12. for all p ∈ parents(s) do
13. if (p,h+1) 6∈ Q then
14. push(Q,(p,h+1))
15. end if
16. end for
17. end if
18. end while

is performed on a state s, its new value will be strictly greater than
zero since all rewards are strictly positive. Thus a change is guar-
anteed.

LEMMA 2. All non-terminal states will receive at least one backup.

PROOF. If there are no terminal states in the MDP then all states
are initially added into the queue and thus each (non-terminal) state
will receive at least one backup. The rest of the proof will focus on
the case of MDPs with at least one terminal state.

First consider this for RVI′. For any state s, let us then de-
note the states along the optimal path from s to a terminal state
as s0,s1,s2, . . .,sn where sn is the start state and s0 is the terminal
state. We know s1 will receive at least one backup, because all par-
ents of terminal states are added onto the queue in the first iteration
of the algorithm. We also know that if state sk receives a backup,
sk+1 will receive a backup as well since the parents of a state be-
ing backed-up are added on to the queue. By induction, sn must
eventually receive a backup as well.

Now consider RVI. RVI differs from RVI′ in that parents of a
backed-up state s are only queued in RVI if the value of s changes.
For this difference to cause sn not to receive a backup, there must
be some state along the path s0 . . .sn which is never changed during
its backup. However, we know by Lemma 1 that at least one (the
first) backup for each state will cause a change. Thus RVI is the
same as RVI′ in that sn will eventually receive a backup.

LEMMA 3. In RVI′, a backup on state s in horizon h ≥ 1 that
does not change the value of s can be omitted without changing any
computed values of any state.

PROOF. Omitting a backup in horizon h obviously will not have
an effect on the previous calculation of earlier horizons. Thus we
will focus on proving that the omission will not have any impact on
values of states in horizon h and later.

Base case: Suppose a state s is backed up in horizon h with no
change in value. Clearly, the omission of this backup won’t affect

the value of s itself. Since unchanging values have no affect on
backups, no other backups in h will be affected either.

Inductive case: We’ve seen that an omission at horizon h has no
effect on the values calculated in horizon h = h+0. Let us assume
that an omission performed at horizon h has no effect on the values
calculated in horizon h+ k for some k ≥ 0. We would like to show
that it will also not effect horizon h+ k +1.

Let us consider the parent state p which would have been added
to horizon h+k+1 if child state s had received a backup in horizon
h despite not changing in value. Either (1) no other children of p
had a value change, in which case p’s value will remain unchanged
in h + k + 1, or (2) another child c 6= s of p had a value change
in horizon h + k, in which case p is added to horizon h + k + 1 for
backup independently of s’s backup in horizon h+k, and so horizon
h+ k +1 will turn out the same for this case as well.

LEMMA 4. For all horizons h ≥ 1, if the backup to a state s
leads to an incorrect value, it will get backed up at least once more
in a later horizon.

PROOF FOR RVI′ . We argue by induction. Suppose we have
a state s which is backed up incorrectly in horizon h1 = 1. This
means that the backed-up value of s relies upon the incorrect value
of one of its children, c. We know that when c receives its first
update in horizon hc ≥ h1, s will be queued for backup again in
horizon hc +1≥ h1 +1.

We have just shown that if a state s is backed up incorrectly in
horizon h1, s will be backed up in horizon hs ≥ h1 + 1. Suppose
it’s true for some k ≤ 1 that if a state is backed up incorrectly in
horizon i≤ k, that state will be backed up again horizon hs ≥ i+1.
This is our inductive hypothesis. Then what about a state s which
is backed up incorrectly in horizon k +1?

Again we know that the value of s depends on the incorrect value
of some child of s, c. If c’s last backup was in horizon hc ≤ k,
then by the inductive hypothesis, c will receive, or has received,
another backup in horizon hc′ ≥ hc + 1. By repeated application
of the inductive hypothesis, we further know that c will receive a
backup in horizon hc∗ ≥ k + 1, at which time s will be queued to
receive a backup in horizon hs ≥ k + 2. If c has not received a
backup in by the end of horizon k we know by Lemma 2 that it will
eventually, and must in horizon hc ≥ k+1. When that occurs, state
s will be added in to the queue for backup one horizon afterwards.

We have shown that if the inductive hypothesis is true for all
horizons 1≤ i≤ k, then it is true for horizon k+1 and consequently
for all horizons i≥ 1.

PROOF FOR RVI. In RVI, a parent state p is queued for backup
only when the values of one or more of its children change. If
the values of the children do not change, the value of p would not
change even if it were backed up. By Lemma 3, we can omit such
an update to p without affecting the values of any other states. Thus
if an incorrect backup would later be corrected in RVI′ (as we have
shown), it will be corrected in RVI as well.

THEOREM 1. After RVI terminates all reachable states will have
the correct values.

PROOF. We know by Lemma 2 that all reachable states receive
at least one backup. We know by Lemma 4 that if a backup is in-
correct, the state will receive another backup before RVI finishes.
Thus, RVI will not terminate while any states have incorrect val-
ues.

THEOREM 2. RVI will converge to V ∗

PROOF. RVI can be considered a form of asynchronous value
iteration. Convergence is guaranteed for such algorithms provided

that every state is backed up infinitely often [1], [5]. We note how-
ever that once the computed value of a state has reached V ∗(s) it
can be omitted from further backups without harm. Thus we can
consider the convergence to hold as long as incorrect states (states
whose computed values are not equal to V ∗(s)) are guaranteed to
get future updates for any and all points in time. Since, Lemma 4
guarantees us exactly this, RVI must converge to V ∗.

5.2 Convergence Speed
Let us denote the initial value function in which all states are

initialized to zero as V0. RVI creates a series of value functions, one
after each backup. Let us consider the value functions generated
after all states of any one horizon has been backed up and before
the next horizon has begun. We will denote the the value function
at the end of horizon hk by Vk. If RVI runs for n iterations, Vn is the
final value function returned. We are guaranteed by the previous
theorems that Vn converges to V ∗.

Recall the Bellman (optimality) equation governing the value of
a state:

V ∗(s) = maxaEs′(R(s,a,s′)+ γV ∗(s′))

Let us consider these equations in terms of horizon.

V 0 = maxaEs′R(s,a,s′)

V 1 = maxaEs′(R(s,a,s′)+ γV 0(s′))

V k = maxaEs′(R(s,a,s′)+ γV k−1(s′))

V inf = V ∗(s)

Note that for a terminal or absorbing state s, V 0(s) = V ∗(s) = 0.
Absorbing states are states with a single self-loop of zero reward.
Thus, no matter how far one looks into the future (horizon) the
result is still zero.

In some cases, for a state s, V k(s) = V ∗(s). Consider a state that
is adjacent to a terminal state st and whose optimal action is the
one which takes it to st with certainty. Due to the absorbing nature
of the terminal state, a horizon of one is sufficient to calculate its
value, V ∗(s). More formally:

V 1(s) = maxa(Es′(R(s,a,s′)+ γV 0(s′))

= R(s,a,st)+ γV 0(st)

= R(s,a,st)+ γV 1(st)
= R(s,a,st)+ γV ∗(st)
= V ∗(s)

We will call states with this property h-complete, meaning V h(s) =
V ∗(s).

LEMMA 5. If horizon h is the largest horizon that a state s ap-
pears in, then s is h-complete and its value will be correct after
horizon h. Further, state s will never receive a changing backup
after horizon h so its value will stay correct for all subsequent hori-
zons.

PROOF. We use an induction proof. When we refer to states
“appearing” we mean appearing in an optimal path of the MDP.

Base case (k = 0): Suppose horizon 0 is the largest horizon that a
state s appears in. Since optimal paths must end in a terminal state,
we know s must be a terminal state. The value of terminal states is
always zero for all horizons. That is, V 0(s) =V ∗(s). RVI initializes
the value of all terminal states to zero and does not backup terminal
states. Thus its value after horizon 0 is correct and will stay correct
for all horizons greater than 0.

Inductive case: Consider a state s in which horizon h is the
largest horizon it appears in. We will denote the set of optimal
paths in which this occurs as P. Let s′ be any next state along a
path p ∈ P. The largest horizon s′ appears in must be horizon h−1
or earlier. (If s′ were to appear in a larger horizon we could have
constructed a longer optimal path for s ending in a later horizon.)
By the inductive hypothesis, V (s′) = V ∗(s′) and further must re-
main at V ∗(s). Thus after state s is backed up it must have value
V ∗(s) and also remain that way.

At the time state s receives its backup in horizon h, all of its
children (which must have received their last backup in horizon
h− 1 or earlier) are correct by the inductive hypothesis. Thus the
backup state s receives in h will set is value to V ∗(s). Since the
inductive hypothesis also guarantees us that the children will stay
correct, the value of state s must stay correct as well.

THEOREM 3. Let Rmax denote the largest reward. Then for any
precision ε > 0, there exists a longest maximum path whose length
is L≤ logγ(ε/Rmax). Further, RVI will converge after horizon L+1.

PROOF. A consequence of γ being less than 1 and a fixed preci-
sion ε is the existence of a upper bound on the length to any optimal
path. More formally, because ||V k(s)−V k−1(s)|| ≤ γkRmax, as the
horizon k→ ∞ the difference between V k(s) and V k−1(s) becomes
arbitrarily small. Thus for any given ε, we can solve for the horizon
k = logγ(ε/Rmax) in which any changes from value updates must
be below the precision level. Any optimal paths longer than k then,
do not have to be considered as they will have negligible impact.
Thus k or as we will name it, L, can be considered an upper bound
on the maximal length of the MDP.

The largest horizon h that a state s appears in (on an optimal path)
must be less than or equal to L. By Lemma 5, after horizon h≤ L,
the value of state s will be correct and stay correct. Thus by horizon
L + 1, we know no backups can generate value changing updates
as all values are already correct and must stay correct. Since the
parents of non-changing backups are not added to the queue, the
queue must be empty after horizon L + 1 (if not sooner) and RVI
must terminate.

6. COMPLEXITY
RVI works much like value iteration. All backups with the same

priority corresponds to a horizon and can be compared to an itera-
tion in value iteration. By Theorem 3 RVI converges after roughly
logγ(ε/Rmax) horizons (iterations) giving it the same convergence
speed as value iteration.

Any difference must then lie with the iterations. For value it-
eration, each iteration requires N backups where N is the number
of states. Since each backup is O(MN) where M is the number of
actions, the complexity of each iteration is O(MN2).

RVI has an initial overhead associated with building the parent
table of O(N2). Since each iteration of value iteration is already
O(MN2) we will ignore this overhead. The complexity of RVI then
depends on the size of its iterations (horizons). In general, this is
problem dependent but we note that it can be no worse than value
iteration in which each iteration contains all states. To give the
reader some intuition of possible horizon sizes, we provide an il-
lustrative example. Consider a deterministic, circular gridworld.
The largest horizon size can be characterized by the circumference
and the number of states in the world by the area. When compared,
this yields a maximum horizon size that is roughly r times smaller
than the number of states (where r is the radius). This means RVI
will be roughly r time faster on such domains. This holds similarly
for circles of higher dimensions (e.g. spheres).

7. ANALYSIS
In the previous section, we saw that while RVI runs for roughly

as many iterations as value iteration, each iteration (horizon) is of-
ten considerably smaller. In this section, we will pursue where the
gains RVI might yield come from. We hypothesize three areas from
which RVI might extract savings:

Improved ordering which results in fewer wasted backups. If
we knew the set of optimal paths apriori, we could compute the
optimal ordering and simply perform backups according to that or-
dering. However, this is rarely the case. RVI thus must follow
the ordering of all paths in general. This maintains the property
that children will be backed up before their parents so we expect
some gains. However, as suboptimal paths often yield suboptimal
orderings, wasted backups will be inevitable. When there are ter-
minal states, RVI can cut down on the number of suboptimal paths
traversed by considering only paths that end in a terminal state.
We can compare this to prioritization methods for value iteration,
which also aim to improve the ordering. Prioritization methods use
heuristics to guess the optimal ordering. Depending on the heuris-
tics used, this can lead to arbitrary speed-ups and slow-downs. RVI
follows the ordering of a set of paths known to contain the optimal
paths and thus the optimal ordering. From a prioritization point of
view it can be considered a well bounded heuristic.

Propagation of changes in value stop as soon as updates stop af-
fecting the values of other depended-upon states. Value iteration
updates every state in each iteration, regardless of whether or not it
might actually benefit from an update. In RVI, if an update fails to
change the value of a state, then subsequent backups to its ances-
tors are not performed. This can yield large savings as it enables
traversal of suboptimal paths to stop early.

Updates are never performed on unreachable states. Since or-
dering is based on traversal starting from the end of paths, we are
guaranteed to never update states which cannot reach termination
states. This means RVI is sensitive to the discount factor γ as that
implicitly encodes a maximum length. In particular, RVI will not
update states beyond the maximum length meaning if γ is small,
RVI will only need to visit the (relatively) small number of states
around the termination points.

Understanding where RVI saves on backups allows us to char-
acterize the classes of MDPs it should work best for and those
in which its gains are less pronounced. RVI should work best on
MDPs with the following characteristics.

• Mostly deterministic domains. RVI extracts savings from
stopping propagation when values of states stop changing.
This keeps the number of states per horizon down. Non-
determinism makes this difficult as it increases the number
of children supporting the correct value of a state. If any one
of the children change in value the parent must be re-added
to the queue for backup.

• Low connectivity. The parents of states whose values have
changed are added into the next horizon. With low connec-
tivity, this in-degree will be low as well meaning horizon
sizes will tend to grow slower if at all.

• Low γ. A low γ, with respect to a fixed ε, significantly de-
creases the number of reachable states, which RVI can take
great advantage of.

• MDPs with terminal states. Terminal states allow RVI to nar-
row the set of paths it must traverse to only those that end in
a terminal state. This improves ordering and helps to keep
horizon sizes low.

The reverse then is also true. RVI’s performance gains will be
least significant in highly non-deterministic, heavily connected, high
gamma MDPs with no terminal states. We note however that RVI,
unlike heuristic based prioritization techniques, is never worse than
value iteration. As a simple example, consider a worst case sce-
nario of a fully connected MDP with random rewards. In such a
case RVI will perform (almost) identically to value iteration. The
first horizon will contain all states as there are no terminal states,
and subsequent horizons will contain all states as the changing
value of any one state will guarantee the addition of all states into
the next horizon.

Notice that many of the characteristics mentioned above are ones
that are general indicators of MDP difficulty. One way to think of
RVI and its performance characteristics is that RVI is an algorithm
that takes advantage of MDPs that are actually easier than they ap-
pear. That is, RVI solves easy problems fast and hard problems
slow whereas value iteration solves easy problems slowly and hard
problems even more slowly.

8. EXPERIMENTS
We performed a thorough empirical evaluation of RVI over a se-

ries of experiments designed to explore its behavior with respect to
changing world size (number of states), differing amounts of non-
determinism, presence of terminal states, changing discount factor
and other value iteration improvement techniques. Each of these
experiments are covered in detail in the following subsections.

Note that our evaluation is done in terms of number of back-
ups as timing is dependent on implementation language, evaluation
machine characteristics and timing tool used. In cases in which
those factors are constant, for example, when comparing our im-
plementation of RVI and VI, we note that running times have been
consistent with the number of backups. As an example, on a 1000
by 1000 grid world, value iteration ran a billion backups, taking
over a thousand seconds. In comparison, RVI ran about two mil-
lion backups, taking roughly three seconds. Speedup both in terms
of number of backups (approximately 500x) as well as running time
(approximately 350x) is about three orders of magnitude.

8.1 Scaling over world size
In this experiment, we examine how RVI scales over increasing

number of states. Value iteration will serve as the control for com-
parison. We use a plain, two dimensional deterministic gridworld.
There are no obstacles. There is one terminal state. It is placed in
the cell in the center of the grid. All rewards are set to a uniform
-1. The discount factor γ is set to 0.999, the precision ε is set to 0.1.

Results are shown in Figure 3. Note the log-log scale. We see a
large speedup with RVI. Further RVI has a shallower slope. In fact,
RVI scales linearly with the number of states. Since value iteration
does not, the resulting difference only grows. Initially RVI is only
about two orders of magnitude faster, but by a million states, the
difference has increased to three orders of magnitude.

8.2 Effects of non-determinism
We argued in section 7 that RVI should have the most prominent

gains in deterministic domains. This experiment seeks to empiri-
cally measure this effect. We use the same gridworld setup as in
the previous experiment, with two differences. First, the grid size
is set to 100 by 100. Second, cells are no longer plain ones of de-
terministic transitions. Instead, a percentage of cells are turned into
random cells, in which any action leads to any of its adjacent neigh-
bors, with uniform probability. The percentage of random cells
will simulate differing amounts of non-determinism. The number

10000 1e+05 1e+06
Number of states

10000

1e+05

1e+06

1e+07

1e+08

1e+09

N
um

be
r

of
 b

ac
ku

ps

VI
RVI

RVI and VI on different sized deterministic gridworlds

Figure 3

0.2 0.4 0.6 0.8 1
Percent of random-transition states

1e+05

1e+06

1e+07

1e+08

N
um

be
r

of
 b

ac
ku

ps
VI
RVI

RVI and VI over differing amounts of non-determinism

Figure 4

of backups that RVI and value iteration take are the response vari-
ables.

Results are shown in Figure 4. As we can see, the amount of non-
determinism has a strong influence on the efficacy of RVI. While
initially, when the world is deterministic, RVI yields a two order of
magnitude speedup, by the time half the world states are random,
the speed up is a single order of magnitude. In the most contrived
case, when (almost) all states are random, RVI is only about two
times faster than value iteration.

8.3 Presence of terminal states
One source of speedup RVI enjoys is the presence of terminal

states which enables us to narrow the set of paths we must traverse
backwards. In this experiment we seek to gain a feel for how impor-
tant this condition is. Does RVI still yield significant benefits when
there are no terminal states? For this experiment we used the same
setup as in section 8.1, with one exception: γ has been raised to
0.9995 to ensure that all paths are considered and not prematurely
cut off by the discount factor.

Figure 5 shows that similar to the terminal state case, RVI yields
large speedups. However, the amount of speedup is stable across

1000 10000 1e+05
Number of states

10000

1e+05

1e+06

1e+07

1e+08

N
um

be
r

of
 b

ac
ku

ps

VI
RVI

RVI and VI on gridworlds with no terminal states

Figure 5

0.1 0.5 0.8 0.9 0.95 0.98 0.99
Gamma

10

100

1000

10000

1e+05

1e+06

1e+07

N
um

be
r

of
 b

ac
ku

ps

VI
RVI

RVI and VI over different gammas

Figure 6

different number of states. RVI has the same slope as VI. It is con-
sistently about two orders of magnitude faster. This result implies
that the pruning of paths that RVI performs using the terminal states
has increasing yields with the number of states. This is consistent
with our understanding. As the number of states increase, the num-
ber of non-optimal paths increases much faster. Thus, so must the
savings that is gained from pruning paths that do not end in a ter-
minal state. As the number of terminal states increases such that
the amount pruned is reduced, we expect this source of speedup to
be less significant.

8.4 Response to the discount factor
Here we seek to empirically measure how RVI responds to dif-

fering discount factors. If our argument in Section 7 is correct, RVI
should yield better gains when γ is low. We use the same gridworld
setup as in Section 8.1, with two differences. First, the world is set
to 200 by 200. Second, γ will vary.

Figure 6 reflects our general sentiment that RVI works best with
a low discount factor. When γ = 0.1, RVI is faster by four orders
of magnitude. As γ is increased, both RVI and VI take longer, as

the problem becomes inherently more difficult. A larger γ means
longer and longer paths must be taken into account when comput-
ing the value of a state. However, RVI is able to extract less gains
with increasing γ. By γ = 0.95, RVI yields a two order of mag-
nitude speedup. Shortly after this point though, the curve for RVI
and VI level off and further increases to γ have little effect on the
number of backups. This is because the MDP used has an intrinsic
maximum path length. In a 200 by 200 grid world, the longest op-
timal path is roughly 200 steps. Thus, we expect the curve to level
off when the maximum path length that the γ supports approaches
200 steps. With a γ of 0.99, the 200th step is discounted at 0.13,
which is above our precision level, ε = 0.1. Thus we expect rais-
ing γ beyond 0.99 to have little impact. Sure enough, the curve is
virtually flat past γ = 0.99.

8.5 Comparison to other methods
While we have explored different aspects of RVI’s performance

on various synthetic gridworld domains, we have not compared it
with respect to modern value iteration techniques. That will be our
focus in this section. The most effective value iteration speedup
techniques to date that the authors are aware of is Wingate’s work
in partitioned and prioritized value iteration [15], [14], [17]. Thus,
comparisons here will be against his GPS (General Prioritized Solvers)
family of algorithms. Again, comparison will be in terms of num-
ber of backups to control for machine, language, and timing differ-
ences.

To ensure comparisons are performed under the same conditions
and specifically, the same world dynamics we us three different
MDPs from Wingate’s work: mountain car (MCAR), single-armed
pendulum (SAP) and double-armed pendulum (DAP). We provide
a brief description of each world below. Details can be found in
[17]. We used the same parameters, γ = 0.9 and ε = 0.0001 as was
reported in [14].

Mountain car is the well known two-dimensional, continuous,
minimum-time optimal control problem. A car must rock back and
forth until it gains enough momentum to carry itself atop a hill. All
rewards are zero except for the final reward for succeeding at the
task, which is one. The state space is a combination of position and
velocity. There are three possible actions: full throttle forward, full
throttle reverse, and zero throttle. A 90,000-state discretization of
this continuous domain was used.

The single-arm pendulum (SAP) is also a two dimensional, con-
tinuous, minimum time optimal control problem. The objective is
to learn to swing up the pendulum and balance it. The agent has
two actions available, a positive and a negative torques. Similar to
MCAR, torques available are underpowered. Reward is set to zero
except for the balanced region which has reward one. The state
space is composed of the angle of the link and its angular velocity.
A discretization of 160,000 states was used.

The double-arm pendulum (DAP) is a two-link (and thus four
dimensional) variant of SAP. Reward is setup similarly. The state
space is composed of the two link angles and their respective angu-
lar velocities. A discretization of 810,000 states was used.

GPS is a family of algorithms. We compare against the two vari-
ants, one that uses the H1 heuristic, and one that uses the H2 heuris-
tic with voting. See [14] and [17] for details. These two variants
were chosen such that at least one is the best (or near best) for all
experiments reported in the paper.

On the first two domains RVI performs the best. It is three orders
of magnitude faster than value iteration and an order of magnitude
faster than the best GPS technique. This demonstrates the strength
of our approach.

In the last domain, while still faster than value iteration, RVI

Table 1: Comparison of RVI, Value Iteration, and two GPS variants.
The unit is millions of backups

Test World RVI Value Iteration H1 H2 + voting
MCAR 0.2 30 6 2
SAP 0.4 30 15 2
DAP 29 40 18 26

is slower than H1 and also slightly slower than H2 + voting. A
detailed examination of the DAP domain explains why. In DAP,
due to the coarseness of the discretization, the world is highly non-
deterministic and connected. Some states can be reached by as
many as 19 different states. This leads to quickly-growing horizon
sizes. States are added on to subsequent horizons quickly due to the
large branching factor and they are not removed because changes
in later horizons tend to affect states in previous horizons (due to
the non-determinism) requiring them to be re-added. On DAP, by
horizon 30, the number of states had reached 800,000 – roughly
the total number of states. Since RVI runs for roughly as many
iterations as value iteration and saves primarily from smaller hori-
zon (iteration) sizes it is not difficult to see why RVI was only 25
percent faster.

Where RVI fails however, is a perfect place for integration with
other speedup techniques. RVI behaves very similar to value itera-
tion. It simply changes which states (and how many) are in which
iteration. Since gains are made by small horizons, large horizons
provide a natural place to use prioritized and partitioned backup
schemes. While integration with other techniques and associated
empirical evaluation is beyond the scope of this paper, we are op-
timistic that it will bring the best of both worlds together to yield
further speedups.

9. CONCLUSION
Traditional value iteration is often slow due to the many useless,

non-informative backups which it performs. In this paper we de-
veloped a new algorithm, RVI, that reorders backups to avoid as
many of these as possible. RVI reorders based on systematically
traversing paths in reverse order, in an effort to back up children
before their parents.

We proved that RVI converges to the optimal value function, and
with a similar speed in terms of number of iterations as value iter-
ation. However, due to the much smaller iteration sizes RVI is able
to use, it typically has a lower running time complexity.

In empirical evaluations, this bore out as RVI often improved
performance by several orders of magnitude when compared to
value iteration. On some of the harder cases, RVI was only able
to improve by 25%. To explore why this might be the case, we
covered where RVI extracts its savings and provide characteriza-
tions of the types of MDPs RVI works best on. We note that RVI
can never do worse than value iteration.

When compared to other techniques for speeding up value iter-
ation, our experiments showed mix results. In some domains, RVI
out performed prioritized and partitioned approaches by an order
of magnitude. In others it was twice as slow. A fruitful outcome of
this comparison beyond the numbers is an understanding that our
approach is complimentary to previous ones and we point out a way
that other techniques can be used in conjunction with RVI. While
no experiments were performed on such a merging, it will be the
focus of our future work.

10. REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis. Convergence rate and
termination of asynchronous iterative algorithms. In ICS ’89:
Proceedings of the 3rd international conference on
Supercomputing, pages 461–470, New York, NY, USA,
1989. ACM.

[2] R. I. Brafman and M. Tennenholtz. R-MAX - a general
polynomial time algorithm for near-optimal reinforcement
learning. In IJCAI, pages 953–958, 2001.

[3] D. Chapman and L. Kaelbling. Input generalization in
delayed reinforcement learning: An algorithm and
performance comparisons. In IJCAI, pages 726–731, 1991.

[4] C. Claus and C. Boutilier. The dynamics of reinforcement
learning in cooperative multiagent systems. In AAAI/IAAI,
pages 746–752, 1998.

[5] V. Gullapalli and A. G. Barto. Convergence of indirect
adaptive asynchronous value iteration algorithms. In J. D.
Cowan, G. Tesauro, and J. Alspector, editors, Advances in
Neural Information Processing Systems, volume 6, pages
695–702. Morgan Kaufmann Publishers, Inc., 1994.

[6] M. Kearns and S. Singh. Near-optimal reinforcement
learning in polynomial time. In Proc. 15th International
Conf. on Machine Learning, pages 260–268. Morgan
Kaufmann, San Francisco, CA, 1998.

[7] T. Makino and K. Aihara. Multi-agent reinforcement
learning algorithm to handle beliefs of other agents’ policies
and embedded beliefs. In AAMAS ’06: Proceedings of the
fifth international joint conference on Autonomous agents
and multiagent systems, pages 789–791, New York, NY,
USA, 2006. ACM.

[8] A. W. Moore and C. G. Atkeson. Prioritized sweeping:
Reinforcement learning with less data and less time.
Machine Learning, 13:103–130, 1993.

[9] R. Munos and A. W. Moore. Variable resolution
discretization for high-accuracy solutions of optimal control
problems. In IJCAI, pages 1348–1355, 1999.

[10] M. T. Rosenstein and A. G. Barto. Robot weightlifting by
direct policy search. In IJCAI, pages 839–846, 2001.

[11] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[12] R. S. Sutton, D. Precup, and S. P. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence,
112(1-2):181–211, 1999.

[13] M. Tan. Multi-agent reinforcement learning: Independent vs.
cooperative learning. In M. N. Huhns and M. P. Singh,
editors, Readings in Agents, pages 487–494. Morgan
Kaufmann, San Francisco, CA, USA, 1997.

[14] D. Wingate. Solving large mdp quickly with partitioned
value iteration. Master’s thesis, 2004.

[15] D. Wingate and K. D. Seppi. Efficient value iteration using
partitioned models. In ICMLA, pages 53–59, 2003.

[16] D. Wingate and K. D. Seppi. P3vi: a partitioned, prioritized,
parallel value iterator. In ICML ’04: Proceedings of the
twenty-first international conference on Machine learning,
page 109, New York, NY, USA, 2004. ACM.

[17] D. Wingate and K. D. Seppi. Prioritization methods for
accelerating mdp solvers. Journal of Machine Learning
Research, 6:851–881, 2005.

