Accepted for publication in the Proceedings of the 1997 Grace Hopper Celebration of Women in Computing 1

Roles of Macro-Actions in Accelerating Reinforcement Learning

Amy McGovern, Richard S. Sutton, Andrew H. Fagg
Computer Science Department, University of Massachusetts, Amherst, MA 01003
{amy/|rich|fagg}@cs.umass.edu

Abstract

We analyze the use of built-in policies, or macro-
actions, as a form of domain knowledge that can im-
prove the speed and scaling of reinforcement learn-
ing algorithms. Such macro-actions are often used in
robotics, and macro-operators are also well-known as
an aid to state-space search in Al systems. The macro-
actions we consider are closed-loop policies with termi-
nation conditions. The macro-actions can be chosen
at the same level as primitive actions. Macro-actions
commit the learning agent to act in a particular, pur-
poseful way for a sustained period of time. Overall,
macro-actions may either accelerate or retard learn-
ing, depending on the appropriateness of the macro-
actions to the particular task. We analyze their effect
in a simple example, breaking the acceleration effect
into two parts: 1) the effect of the macro-action in
changing exploratory behavior, independent of learn-
ing, and 2) the effect of the macro-action on learning,
independent of its effect on behavior. In our example,
both effects are significant, but the latter appears to be
larger. Finally, we provide a more complex gridworld
illustration of how appropriately chosen macro-actions
can accelerate overall learning.

1 Problem and Approach

Many problems in artificial intelligence (AI) are too
large to be solved practically by searching the state-
space using available primitive operators. By search-
ing for the goal using only primitive operators, the Al
system is bounded by both the depth and the breadth
of the search tree.

One way to overcome this difficulty is through
macro-actions (or macros). By chunking together
primitive actions into macro-actions, the effective
length of the solution is shortened. Both [Korf, 1985]
and [Iba, 1989] have demonstrated that using macro-
actions to search for a solution has resulted in solu-
tions in cases where the system was unable to find
answers by searching in primitive state-space, and in
finding faster solutions in cases where both systems
could solve the problem.

Reinforcement learning (RL) is a collection of meth-
ods for discovering near-optimal solutions to stochas-
tic sequential decision problems [Watkins, 1989]. An
RL system interacts with the environment by execut-
ing actions and receiving rewards from the environ-
ment. Unlike supervised learning, RL does not rely
on an outside teacher to specify the correct action for

a given state. Instead, an RL system tries different
actions and uses the feedback from the environment
to determine a closed loop policy which maximizes re-
ward.

In this work, we treat macro-actions as closed-
loop policies with termination conditions. Prior
work that has included closed-loop macro-
action policies using RL includes [Singh, 1994,
Dayan and Hinton, 1993, Precup and Sutton, 1997,
Mahadevan and Connell, 1992].

In this paper, we introduce an extension of current
RL algorithms that allows the learner to backup both
primitive and macro action values. We demonstrate
two specific tasks, which illustrate that, depending on
the situation, the use of macro operators can either
significantly improve or significantly hinder the rate
of learning. We then explore in depth some possible
reasons for these effects and finally demonstrate how
appropriately chosen macros can accelerate learning
in more complex environments.

2 Reinforcement Learning

In an RL system, a learning agent interacts with
an environment at some discrete time scale ¢t =
0,1,2,3,.... At each time step t, the agent is in some
state s;. The agent chooses an action a; which causes
a state transition at the next time step to state syy1.
The environment emits a reward r;;; for the transi-
tion from state s; to sy4+1 using action a;. The goal of
the agent is to learn a mapping from states to ac-
tions, called a policy, which maximizes the agent’s
discounted reward over time from the environment.
This discounted reward is represented by the sum
Yo v'r¢1; where v is the discount parameter.

In general, the states can be multi-dimensional,
real-valued, and incompletely known. In this paper
we examine the simple discrete case described above
for conceptual clarity. The ideas and results described
here should generalize to larger and more complex
cases.

In order to maximize the reward from the environ-
ment, the RL agent learns the estimated reward from
each state s for each action a. These values are known
as action values. In 1-step Q-learning [Watkins, 1989],
the action values are stored in an array called () where
Q(st,a) is updated at each time step ¢ as follows:

Q(st,ar) + Q(sg,ap) +ax (1)

Accepted for publication in the Proceedings of the 1997 Grace Hopper Celebration of Women in Computing 2

(vmax Q(se+1, a') = Q(st,ar) + r41)

where « is the learning rate parameter, and « is the
discount parameter.

3 Macro-actions and RL

A macro-action can be any closed loop policy with
a termination condition. The agent can choose either
a macro or a primitive action from any state unless the
agent is already executing a macro-action. Once the
agent has chosen a macro-action, it must follow the
actions defined by the macro’s policy until the termi-
nation condition is satisfied or the goal is reached.

In the gridworld examples shown in this paper, the
primitive actions allow the agent to move one square
at a time either up, down, right, or left. The macro-
actions take the agent from the current state to a wall
or obstacle in the same four directions.

As described above, in order to maximize the re-
ward received from the environment, the agent learns
action values for each state. In the corresponding
macro algorithm to Q-learning, called Macro-Q, the
action values for the primitive actions are updated us-
ing equation 1. The set of all actions available from
a state is augmented to include both primitive and
macro-actions. The macro action-values for Q(s¢, m¢)
are updated according to:

Q(s,me) < Q(s¢,my) +a x (2)
(7" max Q(se4n,a’) = Qse,me) +

n—1

Tt+1 —+ ’)/T'tJrQ + ...+ ’)/ TtJrn)

where s; is the state in which the agent chose a macro
action my¢, n is the number of time steps that the
macro took to execute, syt is the new state reached
after the macro terminates, a' is index of the maxi-
mal valued action from s¢y,, and ryy; is the reward
received at time ¢ 4+ i. Macro versions of other RL
methods can be constructed analogously.

To illustrate how the behavior of an RL agent us-
ing Q-learning compares to the behavior of an agent
using Macro-Q, two experiments were performed. In
both cases, an 11x11 empty gridworld was used, in
which the agent received a reward of 1 for reaching
the goal and a zero otherwise. The primitive actions
moved the agent one square at a time either up, down,
right, or left while the macro-actions moved the agent
to a wall or obstacle in the same four directions. Both
environments are shown in Figure 1. In the first ex-
periment (Figure 1A), the goal was located in the top
row, while in the second experiment (Figure 1B), the
goal was located in the center.

In the first experiment, 1-step Macro-Q performed
significantly better than Q-learning. Not only did
Macro-Q converge faster, but it used fewer total steps
to find the optimal path. However, Macro-Q did sig-
nificantly worse than Q-learning in the second exper-
iment. Figure 1 shows the learning curve of the agent
for both experiments.

It is clear from these experiments that macros can
help or hinder the behavior of a system. When ap-
propriate macros are used for a given task, the agent
performs very well. However, the agent’s performance
suffers with inappropriate macros. In the next two sec-
tions, we isolate and evaluate two different hypothe-
ses about why the use of macros may improve perfor-
mance.

4 Hypothesis 1: Effect of Macros on
Exploration

One possible explanation for Macro-Q’s perfor-
mance differences is that the chosen macros bias the
behavior of the agent such that it spends a majority
of its time near the edges of the world.

To examine the issue of how the macros bias the
agent’s behavior independent of how they affect the
backup of the action values, we examine what states
were visited in two different random walks where all
actions were chosen with an equal probability. In both
cases the agent took 500,000 random actions on an
11x11 gridworld without a goal state. In the first case,
the agent used primitive actions, while in the second
case the agent used both primitive and macro-actions.
The macro-actions were the same as in the previous
experiments.

Figure 2 shows the results of these experiments. As
expected, with only primitive actions, the agent vis-
ited all states equally often (Figure 2A). When the
agent had macro-actions available to it, it spent the
majority of its time along the edges of the environment
(Figure 2B).

Clearly, when the agent spends the majority of its
time near the edges and the goal is near the edge,
the agent has a higher probability of encountering the
goal. This is supported by experiments where the goal
state was in the top row. The agent with macro ac-
tions available passed the goal state (in the top row)
6630 times out of 500,000 random steps. Without
macro actions, the agent passed the goal only 4321
times out of 500,000 random steps. This difference is
statistically significant but not large enough to explain
the dramatic performance difference in learning with
macros shown in Figure 1.

The same quality that makes certain macros per-
form well in one task hinders their usefulness when the
macros do not bring the learning agent to a relevant
state. In the second world, macros necessarily move
the agent away from the goal (Figure 1B). Thus, it is
more difficult for Macro-Q to discover an appropriate
path to the goal.

5 Hypothesis 2: Effect of Macros on
Propagation of Action-Values

A second reason that macros can help an RL agent
learn more quickly is that the macro action values af-
fect the rate of action-value backup. In the case of
Q-learning, values propagate backwards one step at a
time. However, when macro values are used in the
action-value update, value information can propagate

Accepted for publication in the Proceedings of the 1997 Grace Hopper Celebration of Women in Computing 3

500

450

400!

3501 |

w
§300 F!

Z250F ;
o

sS200F F 5
L]

trials

A

avg staps

1000

o000

800

Macro-Q

trials

B

Figure 1: Learning curves of 1-step Macro-Q as compared with 1-step Q-learning for two different tasks. When
the goal is located on the edge of the world (A), Macro-Q converges to an optimal policy much quicker than
Q-learning. However, when the goal is located in the center of the world (B), Q-learning converges more quickly

than Macro-Q.

over several time steps. When a macro action takes
the agent to a good state, the corresponding action
value is updated immediately with useful information,
despite the fact that the original state is several primi-
tive actions away from the good state. On subsequent
passes through the original state, the new information
is available for actions leading to this state, whether
they are primitives or macros.

In order to asses this effect, we compare the prop-
agation of action-values during a random walk, using
Macro-Q and Q-learning. The random walk was the
same as that described in the previous section (the
random walk that used both primitive and macro ac-
tions). By comparing the two update algorithms us-
ing a fixed behavior, we eliminate any effects that may
be due to differences in state visitation probabilities.
When the agent reached the goal state, it updated its
action-values as if the trial had ended, and then exited
from the goal state without updating the action-value
for the exit move. If the agent was executing a macro-
action when it reached the goal, it updated the macro’s
action-value when it reached the goal, but continued
to follow that macro’s policy until termination of the
macro. The agent learned the path to the goal using
both Macro-Q and Q-learning.

Figure 3 shows the results of these experiments.
The relative action values for each state are repre-
sented by circles in that state. The radius of the circle
is proportional to the maximum action value in that
state. Figure 3B shows the action values after the
agent had reached the goal three times using Macro-
Q. At this point, the agent had learned how to reach
the goal from the start state. The maximum action
in the start state was a macro that moved it to the
upper left corner. From there, the maximum action
was a macro-action which took the agent directly to

the goal.

In contrast, Figure 3A shows a snapshot of the ac-
tion values after reaching the goal three times using
the same random walk but while updating only prim-
itive action values. At this point, the agent had ac-
quired very little information about the appropriate
policy, as indicated by the fact that only three of the
states had non-zero action values.

The lower row of Figure 3 (C and D) shows the
same two agents after each had reached the goal 20
times. In the case where macro values were being
backed up (Figure 3D), the agent had backed up in-
formation about much of its world. After passing the
goal only 20 times, the agent could get to the goal
from 53 of the 121 states. In the case where the agent
learned only primitive values, the policy at the start
state was still undefined. The agent had only backed
up action values for 24 of the 121 states. These il-
lustrations show that backing up action-values with
macro values can led to faster convergence.

All of these results have been replicated on larger
gridworlds (20x20). The results for the smaller case
are easier to graph and see.

6 A Larger Illustration

In the experiments described so far, the environ-
ments were very simple. Here, we examine the utility
of Macro-Q in more complicated situations, in which
30 10x10 gridworlds contain 25 randomly placed ob-
stacles. The goal was always in the upper right quad-
rant of the environment and the start state was always
in the lower left hand corner. The primitive actions
remained the same as before (up, down, right, left)
and the macros moved in the same direction five steps
or until a wall or obstacle was reached. The agent was
rewarded with a value of 1 when it reached the goal
and zero otherwise.

Accepted for publication in the Proceedings of the 1997 Grace Hopper Celebration of Women in Computing 4

Primitive actions only Primtive and Macro actions

Figure 2: Histograms for random walks using primitive actions (A) and a combination of macro and primitive
actions (B). The x and y axes represent the rows and columns of the gridworld, and each square on the graph is
one state in the environment. The z axis represents the number of times each state was visited.

Q-learning Macro-Q
o | & | G| e e o | & | G| e . .
S e
After 3 trials: A B
e oo 0@ G @ @ | |- @ o e 0o @ G @ | | o0
S [0}
After 20 trials: C D

Figure 3: State values for Q-learning and Macro-Q learning under a fixed random walk. Circle size is proportional
to the maximum action-value in that state and no circle indicates a maximum action-value of zero.

Accepted for publication in the Proceedings of the 1997 Grace Hopper Celebration of Women in Computing

||

1
60
Trials

A

L L
20 40

8000

7000

6000

5000

3000

Cummulative steps
5
o
o

2000

1000

20 40 60 80 100
Trials

B

Figure 4: These graphs show Macro-Q’s performance against Q learning using only primitive actions averaged
over 30 random environments. The graph on the left (A) shows the average number of steps per trial while the
agent was learning. The graph on the right (B) shows the cumulative number of steps during learning.

Figure 4 shows the average number of steps and
cumulative number of steps per trial averaged over
all 30 environments. One of the 30 environments is
shown in Figure 4A. In these worlds, Macro-Q con-
verged on average more quickly than Q-learning (Fig-
ure 4A). Furthermore, Macro-Q required on average
far less experience for convergence, as illustrated in
Figure 4B.

Out of the 30 randomly generated environments,
only two were troublesome for the chosen macros.
Both of these cases contained a single narrow path
through a set of obstacles between the start and the
goal. The paths were such that the macros alone could
not bring the agent close to the goal.

We have shown in these experiments that macro-
actions may either speed-up or retard learning, de-
pending on the appropriateness of the macro-actions
to the particular task. We also analyzed their effect on
the behavior of the learning agent and on action-value
propagation. Both effects were shown to be signif-
icant but the propagation of action-values seems to
be larger. Future work will investigate the automatic
acquisition of macro operators as the agent learns to
behave in the environment.

7 Acknowledgments

The authors wish to thank Andrew Barto and
Doina Precup for comments on earlier versions of the
paper. This work is supported in part by the Na-
tional Physical Science Consortium, Lockheed Martin,
Advanced Technology Labs, NSF grant ECS-9214866,
and NSF grant ECS-9511805.

References

[Dayan and Hinton, 1993] Dayan, P. and Hinton,
G. E. (1993). Feudal reinforcement learning. In Ad-
vances in Neural Information Processing Systems 5,
pages 271-278. Morgan Kaufmann.

[Iba, 1989] Iba, G. A. (1989). A heuristic approach to
the discovery of macro-operators. Machine Learn-
g, 3:285-317.

[Korf, 1985] Korf, R. E. (1985). Macro-operators: A
weak method for learning. Artificial Intelligence,
26:35-77.

[Mahadevan and Connell, 1992] Mahadevan, S. and
Connell, J. (1992). Automatic programming of
behavior-based robots using reinforcement learning,.
Artificial Intelligence, 55:311-365.

[Precup and Sutton, 1997] Precup, D. and Sutton,
R. S. (1997). Multi-time models for temporally ab-
stract planning. In Proceedings of Advances in Neu-
ral Information Processing Systems 10. MIT Press.

[Singh, 1994] Singh, S. P. (1994). Learning to Solve
Markovian Decision Processes. PhD thesis, Univer-
sity of Massachusetts, Amherst.

[Watkins, 1989] Watkins, C. J. C. H. (1989). Learn-
ing from delayed rewards. PhD thesis, Cambridge
University, Cambridge, England.

