
Accepted for publication in the Proceedings of the ���� Grace Hopper Celebration of Women in Computing �

Roles of Macro�Actions in Accelerating Reinforcement Learning

Amy McGovern� Richard S� Sutton� Andrew H� Fagg
Computer Science Department� University of Massachusetts� Amherst� MA �����

famyjrichjfaggg�cs�umass�edu

Abstract
We analyze the use of built�in policies� or macro�

actions� as a form of domain knowledge that can im�
prove the speed and scaling of reinforcement learn�
ing algorithms� Such macro�actions are often used in
robotics� and macro�operators are also well�known as
an aid to state�space search in AI systems� The macro�
actions we consider are closed�loop policies with termi�
nation conditions� The macro�actions can be chosen
at the same level as primitive actions� Macro�actions
commit the learning agent to act in a particular� pur�
poseful way for a sustained period of time� Overall�
macro�actions may either accelerate or retard learn�
ing� depending on the appropriateness of the macro�
actions to the particular task� We analyze their e�ect
in a simple example� breaking the acceleration e�ect
into two parts� �� the e�ect of the macro�action in
changing exploratory behavior� independent of learn�
ing� and �� the e�ect of the macro�action on learning�
independent of its e�ect on behavior� In our example�
both e�ects are signi�cant� but the latter appears to be
larger� Finally� we provide a more complex gridworld
illustration of how appropriately chosen macro�actions
can accelerate overall learning�

� Problem and Approach
Many problems in arti�cial intelligence 	AI� are too

large to be solved practically by searching the state�
space using available primitive operators� By search�
ing for the goal using only primitive operators� the AI
system is bounded by both the depth and the breadth
of the search tree�

One way to overcome this di
culty is through
macro�actions 	or macros�� By chunking together
primitive actions into macro�actions� the e�ective
length of the solution is shortened� Both �Korf� ��
��
and �Iba� ��
�� have demonstrated that using macro�
actions to search for a solution has resulted in solu�
tions in cases where the system was unable to �nd
answers by searching in primitive state�space� and in
�nding faster solutions in cases where both systems
could solve the problem�

Reinforcement learning 	RL� is a collection of meth�
ods for discovering near�optimal solutions to stochas�
tic sequential decision problems �Watkins� ��
��� An
RL system interacts with the environment by execut�
ing actions and receiving rewards from the environ�
ment� Unlike supervised learning� RL does not rely
on an outside teacher to specify the correct action for

a given state� Instead� an RL system tries di�erent
actions and uses the feedback from the environment
to determine a closed loop policy which maximizes re�
ward�

In this work� we treat macro�actions as closed�
loop policies with termination conditions� Prior
work that has included closed�loop macro�
action policies using RL includes �Singh� �����
Dayan and Hinton� ����� Precup and Sutton� �����
Mahadevan and Connell� ������

In this paper� we introduce an extension of current
RL algorithms that allows the learner to backup both
primitive and macro action values� We demonstrate
two speci�c tasks� which illustrate that� depending on
the situation� the use of macro operators can either
signi�cantly improve or signi�cantly hinder the rate
of learning� We then explore in depth some possible
reasons for these e�ects and �nally demonstrate how
appropriately chosen macros can accelerate learning
in more complex environments�

� Reinforcement Learning
In an RL system� a learning agent interacts with

an environment at some discrete time scale t �
�� �� �� �� ���� At each time step t� the agent is in some
state st� The agent chooses an action at which causes
a state transition at the next time step to state st���
The environment emits a reward rt�� for the transi�
tion from state st to st�� using action at� The goal of
the agent is to learn a mapping from states to ac�
tions� called a policy� which maximizes the agent�s
discounted reward over time from the environment�
This discounted reward is represented by the sumP
�

i��
�irt�i where � is the discount parameter�

In general� the states can be multi�dimensional�
real�valued� and incompletely known� In this paper
we examine the simple discrete case described above
for conceptual clarity� The ideas and results described
here should generalize to larger and more complex
cases�

In order to maximize the reward from the environ�
ment� the RL agent learns the estimated reward from
each state s for each action a� These values are known
as action values� In ��step Q�learning �Watkins� ��
���
the action values are stored in an array called Q where
Q	st� at� is updated at each time step t as follows�

Q	st� at� � Q	st� at� � �� 	��

Accepted for publication in the Proceedings of the ���� Grace Hopper Celebration of Women in Computing �

	�max
a�

Q	st��� a
���Q	st� at� � rt���

where � is the learning rate parameter� and � is the
discount parameter�

� Macro�actions and RL
A macro�action can be any closed loop policy with

a termination condition� The agent can choose either
a macro or a primitive action from any state unless the
agent is already executing a macro�action� Once the
agent has chosen a macro�action� it must follow the
actions de�ned by the macro�s policy until the termi�
nation condition is satis�ed or the goal is reached�

In the gridworld examples shown in this paper� the
primitive actions allow the agent to move one square
at a time either up� down� right� or left� The macro�
actions take the agent from the current state to a wall
or obstacle in the same four directions�

As described above� in order to maximize the re�
ward received from the environment� the agent learns
action values for each state� In the corresponding
macro algorithm to Q�learning� called Macro�Q� the
action values for the primitive actions are updated us�
ing equation �� The set of all actions available from
a state is augmented to include both primitive and
macro�actions� The macro action�values for Q	st�mt�
are updated according to�

Q	st�mt� � Q	st�mt� � �� 	��

	�nmax
a�

Q	st�n� a
���Q	st�mt� �

rt�� � �rt�� � ���� �n��rt�n�

where st is the state in which the agent chose a macro
action mt� n is the number of time steps that the
macro took to execute� st�n is the new state reached
after the macro terminates� a� is index of the maxi�
mal valued action from st�n� and rt�i is the reward
received at time t � i� Macro versions of other RL
methods can be constructed analogously�

To illustrate how the behavior of an RL agent us�
ing Q�learning compares to the behavior of an agent
using Macro�Q� two experiments were performed� In
both cases� an ��x�� empty gridworld was used� in
which the agent received a reward of � for reaching
the goal and a zero otherwise� The primitive actions
moved the agent one square at a time either up� down�
right� or left while the macro�actions moved the agent
to a wall or obstacle in the same four directions� Both
environments are shown in Figure �� In the �rst ex�
periment 	Figure �A�� the goal was located in the top
row� while in the second experiment 	Figure �B�� the
goal was located in the center�

In the �rst experiment� ��step Macro�Q performed
signi�cantly better than Q�learning� Not only did
Macro�Q converge faster� but it used fewer total steps
to �nd the optimal path� However� Macro�Q did sig�
ni�cantly worse than Q�learning in the second exper�
iment� Figure � shows the learning curve of the agent
for both experiments�

It is clear from these experiments that macros can
help or hinder the behavior of a system� When ap�
propriate macros are used for a given task� the agent
performs very well� However� the agent�s performance
su�ers with inappropriate macros� In the next two sec�
tions� we isolate and evaluate two di�erent hypothe�
ses about why the use of macros may improve perfor�
mance�

� Hypothesis �� E�ect of Macros on
Exploration

One possible explanation for Macro�Q�s perfor�
mance di�erences is that the chosen macros bias the
behavior of the agent such that it spends a majority
of its time near the edges of the world�

To examine the issue of how the macros bias the
agent�s behavior independent of how they a�ect the
backup of the action values� we examine what states
were visited in two di�erent random walks where all
actions were chosen with an equal probability� In both
cases the agent took ������� random actions on an
��x�� gridworld without a goal state� In the �rst case�
the agent used primitive actions� while in the second
case the agent used both primitive and macro�actions�
The macro�actions were the same as in the previous
experiments�

Figure � shows the results of these experiments� As
expected� with only primitive actions� the agent vis�
ited all states equally often 	Figure �A�� When the
agent had macro�actions available to it� it spent the
majority of its time along the edges of the environment
	Figure �B��

Clearly� when the agent spends the majority of its
time near the edges and the goal is near the edge�
the agent has a higher probability of encountering the
goal� This is supported by experiments where the goal
state was in the top row� The agent with macro ac�
tions available passed the goal state 	in the top row�
���� times out of ������� random steps� Without
macro actions� the agent passed the goal only ����
times out of ������� random steps� This di�erence is
statistically signi�cant but not large enough to explain
the dramatic performance di�erence in learning with
macros shown in Figure ��

The same quality that makes certain macros per�
form well in one task hinders their usefulness when the
macros do not bring the learning agent to a relevant
state� In the second world� macros necessarily move
the agent away from the goal 	Figure �B�� Thus� it is
more di
cult for Macro�Q to discover an appropriate
path to the goal�

� Hypothesis �� E�ect of Macros on
Propagation of Action�Values

A second reason that macros can help an RL agent
learn more quickly is that the macro action values af�
fect the rate of action�value backup� In the case of
Q�learning� values propagate backwards one step at a
time� However� when macro values are used in the
action�value update� value information can propagate

Accepted for publication in the Proceedings of the ���� Grace Hopper Celebration of Women in Computing �

A B

Figure �� Learning curves of ��step Macro�Q as compared with ��step Q�learning for two di�erent tasks� When
the goal is located on the edge of the world 	A�� Macro�Q converges to an optimal policy much quicker than
Q�learning� However� when the goal is located in the center of the world 	B�� Q�learning converges more quickly
than Macro�Q�

over several time steps� When a macro action takes
the agent to a good state� the corresponding action
value is updated immediately with useful information�
despite the fact that the original state is several primi�
tive actions away from the good state� On subsequent
passes through the original state� the new information
is available for actions leading to this state� whether
they are primitives or macros�

In order to asses this e�ect� we compare the prop�
agation of action�values during a random walk� using
Macro�Q and Q�learning� The random walk was the
same as that described in the previous section 	the
random walk that used both primitive and macro ac�
tions�� By comparing the two update algorithms us�
ing a �xed behavior� we eliminate any e�ects that may
be due to di�erences in state visitation probabilities�
When the agent reached the goal state� it updated its
action�values as if the trial had ended� and then exited
from the goal state without updating the action�value
for the exit move� If the agent was executing a macro�
action when it reached the goal� it updated the macro�s
action�value when it reached the goal� but continued
to follow that macro�s policy until termination of the
macro� The agent learned the path to the goal using
both Macro�Q and Q�learning�

Figure � shows the results of these experiments�
The relative action values for each state are repre�
sented by circles in that state� The radius of the circle
is proportional to the maximum action value in that
state� Figure �B shows the action values after the
agent had reached the goal three times using Macro�
Q� At this point� the agent had learned how to reach
the goal from the start state� The maximum action
in the start state was a macro that moved it to the
upper left corner� From there� the maximum action
was a macro�action which took the agent directly to

the goal�
In contrast� Figure �A shows a snapshot of the ac�

tion values after reaching the goal three times using
the same random walk but while updating only prim�
itive action values� At this point� the agent had ac�
quired very little information about the appropriate
policy� as indicated by the fact that only three of the
states had non�zero action values�

The lower row of Figure � 	C and D� shows the
same two agents after each had reached the goal ��
times� In the case where macro values were being
backed up 	Figure �D�� the agent had backed up in�
formation about much of its world� After passing the
goal only �� times� the agent could get to the goal
from �� of the ��� states� In the case where the agent
learned only primitive values� the policy at the start
state was still unde�ned� The agent had only backed
up action values for �� of the ��� states� These il�
lustrations show that backing up action�values with
macro values can led to faster convergence�

All of these results have been replicated on larger
gridworlds 	��x���� The results for the smaller case
are easier to graph and see�

� A Larger Illustration
In the experiments described so far� the environ�

ments were very simple� Here� we examine the utility
of Macro�Q in more complicated situations� in which
�� ��x�� gridworlds contain �� randomly placed ob�
stacles� The goal was always in the upper right quad�
rant of the environment and the start state was always
in the lower left hand corner� The primitive actions
remained the same as before 	up� down� right� left�
and the macros moved in the same direction �ve steps
or until a wall or obstacle was reached� The agent was
rewarded with a value of � when it reached the goal
and zero otherwise�

Accepted for publication in the Proceedings of the ���� Grace Hopper Celebration of Women in Computing �

2
4

6
8

10 2
4

6
8

10

0

0.5

1

1.5

2

2.5

x 10
4

vi
si

ts

Primitive actions only

2
4

6
8

10 2
4

6
8

10

0

0.5

1

1.5

2

2.5

x 10
4

vi
si

ts

Primtive and Macro actions

A B

Figure �� Histograms for random walks using primitive actions 	A� and a combination of macro and primitive
actions 	B�� The x and y axes represent the rows and columns of the gridworld� and each square on the graph is
one state in the environment� The z axis represents the number of times each state was visited�

Q�learning Macro�Q

G

S

G

S

After � trials� A B

G

S

G

S

After �� trials� C D

Figure �� State values for Q�learning and Macro�Q learning under a �xed random walk� Circle size is proportional
to the maximum action�value in that state and no circle indicates a maximum action�value of zero�

Accepted for publication in the Proceedings of the ���� Grace Hopper Celebration of Women in Computing �

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

Trials

C
um

m
ul

at
iv

e
st

ep
s

Q

Macro−Q

A B

Figure �� These graphs show Macro�Q�s performance against Q learning using only primitive actions averaged
over �� random environments� The graph on the left 	A� shows the average number of steps per trial while the
agent was learning� The graph on the right 	B� shows the cumulative number of steps during learning�

Figure � shows the average number of steps and
cumulative number of steps per trial averaged over
all �� environments� One of the �� environments is
shown in Figure �A� In these worlds� Macro�Q con�
verged on average more quickly than Q�learning 	Fig�
ure �A�� Furthermore� Macro�Q required on average
far less experience for convergence� as illustrated in
Figure �B�

Out of the �� randomly generated environments�
only two were troublesome for the chosen macros�
Both of these cases contained a single narrow path
through a set of obstacles between the start and the
goal� The paths were such that the macros alone could
not bring the agent close to the goal�

We have shown in these experiments that macro�
actions may either speed�up or retard learning� de�
pending on the appropriateness of the macro�actions
to the particular task� We also analyzed their e�ect on
the behavior of the learning agent and on action�value
propagation� Both e�ects were shown to be signif�
icant but the propagation of action�values seems to
be larger� Future work will investigate the automatic
acquisition of macro operators as the agent learns to
behave in the environment�

	 Acknowledgments
The authors wish to thank Andrew Barto and

Doina Precup for comments on earlier versions of the
paper� This work is supported in part by the Na�
tional Physical Science Consortium� Lockheed Martin�
Advanced Technology Labs� NSF grant ECS�����
���
and NSF grant ECS�����
���

References
�Dayan and Hinton� ����� Dayan� P� and Hinton�
G� E� 	������ Feudal reinforcement learning� In Ad�
vances in Neural Information Processing Systems ��
pages ������
� Morgan Kaufmann�

�Iba� ��
�� Iba� G� A� 	��
��� A heuristic approach to
the discovery of macro�operators� Machine Learn�
ing� ���
������

�Korf� ��
�� Korf� R� E� 	��
��� Macro�operators� A
weak method for learning� Arti�cial Intelligence�
���������

�Mahadevan and Connell� ����� Mahadevan� S� and
Connell� J� 	������ Automatic programming of
behavior�based robots using reinforcement learning�
Arti�cial Intelligence� �����������

�Precup and Sutton� ����� Precup� D� and Sutton�
R� S� 	������ Multi�time models for temporally ab�
stract planning� In Proceedings of Advances in Neu�
ral Information Processing Systems ��� MIT Press�

�Singh� ����� Singh� S� P� 	������ Learning to Solve
Markovian Decision Processes� PhD thesis� Univer�
sity of Massachusetts� Amherst�

�Watkins� ��
�� Watkins� C� J� C� H� 	��
��� Learn�
ing from delayed rewards� PhD thesis� Cambridge
University� Cambridge� England�

