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ABSTRACT

This paper introduces histogramic in-motion mappingHIMM), a new method for real-time
map building with a mobile robot in motion. HIMM represents data in a two-dimensional array,
called ahistogram grid that is updated through rapid in-motion sampling of onboard range
sensors. Rapid in-motion sampling results in a map representation that is well-suited to modeling
inaccurate and noisy range-sensor data, such as that produced by ultrasonic sensors, and requires
minimal computational overhead. Fast map-building allows the robot to immediately use the
mapped information in real-time obstacl e-avoidance algorithms. The benefits of this integrated
approach are twofold: (1) quick, accurate mapping; and (2) safe navigation of the robot toward a
given target.

HIMM has been implemented and tested on a mobile robot. Its dual functionality was
demonstrated through numerous tests in which maps of unknown obstacle courses were created,
while the robot simultaneously performed real-time obstacle avoidance maneuvers at speeds of up
to 0.78 m/sec.
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1. INTRODUCTION

This paper introduces a system in whichmapping and obstacle avoidanceare integrated. In
this system, range data from ultrasonic sensors is continuously sampled and a map is built and
updated immediately while the robot is traveling. Simultaneously, the obstacle avoidance
algorithm uses the instantaneous mapping-information to avoid newly detected obstacles.

One advantage of thisintegrated system isits ability to progressively adapt the strength of an
obstacle avoidance reaction to thelevel of evidencefor the existence of an obstacle. In other
words, the system reacts to weak evidence with a moderate steering maneuver, while stronger
evidence causes a more drastic avoidance maneuver of the vehicle. This progressive-response
approach renders the system insensitive to lowlevels of evidence which are likely to be
caused by noise or crosstalk. Without this provision, the robot would frequently perform
avoidance maneuvers for non-existing obstacles. Evidence for real obstacles, however,
grows quickly due to thegrowth rate operator (GRO) introduced in Section 3.2.

Map building methods depend strongly on
the characteristics of the sensors that
provide the raw data. Ultrasonic sensors,
for example, provide good range data but
offer only poor directionality (an opening
angle of 30° istypical for the Polaroid [19]
sensors used in our research). Another
problem with ultrasonic sensors are
specular reflectionsfrom smooth surfaces, g
such as indoor walls or furniture. Systems
using ultrasonic sensors must also cope
with frequent misreadings due to ultrasonic
noise from external sources or stray
reflections from neighboring sensors (i.e.,
crosstalk). A more detailed discussion on
relevant characteristics and limitations of \
ultrasonic sensors can be found inthe | O SO~
literature [1],[11],[12],[15]. Our method is . Flgure 1: (_ZARMEL, the first of the University of

. . Michigan's mobile robots.
designed to overcome these shortcomings
of systems based on ultrasonic sensors.

To verify the map building algorithm we tested it on our mobile robot CARMEL Computer-
Aided Robotics for Maintenance, Emergency, and Life support). CARMEL is based on a
commercially available mobile platform with a unique three-wheel drive (synchro-drive) that
permits omnidirectional steering [7]. We equipped this vehicle with aring of 24 ultrasonic
sensors [19], as shown in Fig. 1.
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This paper focuses on the map building aspect of our system, rather than on the obstacle
avoidance algorithms. A comprehensive discussion of our two obstacle avoidance methods,
the Virtual Force Field(VFF) and the Vector Field Histogram(V FH) method, isgiven in
[2],[3], and in [4],[5], respectively. Section 2 evaluates related work in map building, and
Section 3 explains our real-time map building method in detail.

2. MAP BUILDING WITH ULTRASONIC SENSORS

In order to create a map from ultrasonic range measurements, the environment must first be
scanned. To do so, many mobile robots are equipped with 24 sensors that are mounted on a
horizontal ring around the robot [2], [6], [8], [14], [17]. Ring scanningdoes not require
rotating parts and motors, and a full 360° panorama can be acquired rapidly. However, all
sensors cannot be fired at once, since this would cause significant crosstalk. Special scanning
sequences can be designed that reduce crosstalk, but increase the overall time needed to
obtain afull panorama (i.e., all 24 sensors). Typical scan times range from 100 to 500 ms, for
afull panorama.

A pioneering method for probabilistic representation of obstaclesin a grid-type world model
has been developed at Carnegie-Mellon University (CMU) [9],[16],[17]. The resulting world
model, called acertainty grid is especially suited to the unified representation of datafrom
different sensors such as ultrasonic, vision, and proximity sensors[17], as well as the accom-
modation of inaccurate sensor data such as range measurements from ultrasonic sensors.
With the certainty gridworld model, the robot's work area is represented by a two-
dimensional array of square elements denoted as cells. Each cell contains acertainty value
(CV) that indicates the measure of confidence that an obstacle exists within the cell area. CVs
are updated by aheuristic probability function that takes into account the characteristics of a
given sensor. For example, ultrasonic sensors have a conical field of view. A typical
ultrasonic sensor [19] returns a radial measure of the distance to the nearest object within the
cone, yet does not specify theangular location of the object. Thus, a distance measurementd
results from an object located anywhere within the areaA (see Fig. 2). However, an object
located near the acoustic axis (the center of the cone) is more likely to produce an echo than
an object further away from the acoustic axis[1]. Consequently, with the CMU method, CV's
are assigned to all cellsin A, but higher values are assigned to cells closer to the acoustic axis,
according to a heuristic probability function.

Additional information can be derived from a range reading concerning the sector betweenS
and A (see Fig. 2). If an echo isreceived from an object at distanced, then this sector must be
free of objects. In[9] and [16] thisis expressed by applying a probability function with
negative values to the cellsin the empty area.

In CMU's original certainty gridmethod [9],[16],[17], the mobile robot remainsstationary
while taking a panoramic scan with its ring of 24 ultrasonic sensors. Thecertainty gridis
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updated with a probabilistic functionC, that is _ Probability
applied to each one of the 24 range readings. L‘cj‘“"ed
Then, the robot moves to a new location, stops, " .

and the procedure repeats. After the robot 15 angle +15

traverses aroom in this manner, the resulting . ) Probability
certainty gridrepresents afairly accurate map of l bjec /
the room. A global path-planning method is A
employed iteratively as the map is incrementally bl ————

updated. \

More recent work by Elfes[10] introduces the \ /
occupancy grid which is similar to the certainty 30%icone-
grid. However, the occupancy gridmodels the /
sonar sensors with Gaussian uncertainty and Ce -t?i
applies a more rigorous mathematical model to r
recurring readings.

Distance measured

<)

«
—

vfh05.ds4, p18fig2.wmf S O n a r
3. REAL-TIME MAP BUILDING Figure 2: Two-dimensional projection of
WITH HIMM the conical field of view of an ultrasonic sensor.

A range reading d indicates the existence of an
_ o _ o ) object somewhere within the shaded region A
This section introduces histogramic in-motion (Carnegie Mellon's model).

mapping (HIMM), a new method for real-time map building with a mobile robot in motion.
HIMM has been developed and tested on our mobile robot CARMEL. CARMEL's 24
ultrasonic sensors are divided into six groups; each with four perpendicular sensors. The six
groups are fired in sequence, while the four sensors of each group are triggered
simultaneously. When the six groups have been triggered, a complete 360 panorama is
obtained. Our sonars are set up to measure distances betweenR,,=0.27m to R, ,,.=2m.
Therefore, each sensor awaits its echo fort=2'R_./V,,,i=11.7ms, where V,,,,,~=340m/sec is
the speed of sound in air, and the factor 2 accounts for theroundtrip of the soundwaves. A
complete panoramic scan (readings from all 24 sensors) should therefore take 6t=70.2ms.
However, the sensor controller computer runs a special signal enhancement algorithm that
reduces crosstalk significantly (approximately by afactor of 20, resulting in roughly 1 false
reading per 1500 range readings). Thisimprovement takes a toll on the processing time, so
that T=160ms is required to process all 24 readings. It should be noted that range readings
are processed and asynchronously communicated to the map building computer in groups of
4. Thisway, any range reading is presented to the map building algorithm at most
160/6=27ms after it has been taken.
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3.1 TheHistogram Grid

HIMM uses atwo-dimensional Cartesianhistogram gridfor obstacle representation. This
representation has been derived from thecertainty gridconcept described in Section 2. Like
the certainty grid each cell in the histogram gridholds a certainty value (CV) that represents
the confidence of the algorithm in the existence of an obstacle at that location. Thehistogram
grid differs from the certainty gridin the way it is built and updated. CM U's method projects
a probability profile onto all those cells affected by a range reading (i.e., all cellsin the area A
of Fig. 2). This procedure is computationally intensive and might impose a time-penalty on
real-time execution by an onboard computer. Our method, on the other hand, increments only
one cell in the histogram gridfor each range reading. For ultrasonic sensors, the incremented
cell isthe one that corresponds to the measured distanced (see Fig. 3a) and lies on the
acoustic axis of the sensor. While this approach may seem to be an oversimplification, a
probability! distribution is actually obtained by continuouslyand rapidly sampling each

sensor while the vehicle is moving. Thus, the same cell and its neighboring cells are
repeatedly incremented, as shown in Fig. 3b. Thisresultsin ahistogramic probability
distribution in which high certainty values are obtained in cells close to the actual location of
the obstacle. Note that the HIMM method is less accurate when the robot is stationary. A
comparative evaluation of the accuracy of our method is given in [20].

HIMM makes use of the "empty sector”" betweenSand A (see Fig. 4), as does CMU's
certainty gridmethod [9],[16]. However, instead of computing and projecting a negative
probability function for all cellsin the sector, we take advantage of our fast sampling
approach and decrement only those cells that are located on the line connecting center cell G
and origin cell C, (i.e., the acoustic axis, in Fig. 4).

A final note concerns the actual implementation of HIMM: Whenever a cell isincremented,
the increment (denoted I") is actually 3 (not 1, as may be expected) and the maximum CV of a
cell islimited to CV,,,=15. Decrements (denoted I'), however, take place in steps of -1 and
the minimum value is CV,,,;,=0. Note that CV,, and CV ., have been chosen arbitrarily. I
was determined experimentally (in relation to CV, ), by observing that too large avalue
would make the robot react to single, possibly false readings, while a smaller value would not
build up CVsin time for an avoidance maneuver. I was determined experimentally and in
relation to I". 1" must be smaller than I" because only one cell isincremented for each reading,
whereas multiple cells might be decremented for one reading (i.e., al cells betweenC, and C,,
in Fig. 4). Notethat it is exceedingly difficult to formulate a mathematically rigorous
relationship between those parameters. The reason is the large number of unknowns that
affect a general formulation. For example, an object may be "seen" at a certain instance by
one or more sensors simultaneously. Whether or not an echo is received depends on the
relative angles, the surface structure, the reflectiveness of the object, and the distance to the

L We use this term in the literal sense of "likelihood."
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object.

_ Hist gram Obiec

HIMM is part of a ‘\ rid \
real-timeobstacle 9 g o 00 0b 0000/ 00000600000
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not only produces 009000410000 000000\2 344

but 2l 1000000000000 0000000000
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provi des \ Certalnty
Instantaneous values
environmental \‘ 3"
information for use N
by the integrated Measured
obstacle avoidance  distance d
algorithm. To
understand how this
function is \ Direction Direction

L of motion of motion
supported, itis
necessary to wiogsspreigaom | B SONAC pFEViOUSE current
mention some reading reading
h teristi ; Figure 3:

characteri '_CS 0 a. Only one cell is incremented for each range reading. With ultrasonic
our vector field sensors, this is the cell that lies on the acoustic axis and corresponds to
histogram(VFH) the measured distance d.

method for real-time b. A histogramic probability distribution is obtained by continuous and rapid
obstacle avoidance sampling of the sensors while the vehicle is moving.

A detailed discussion of the VFH method is given in [4] and [5].

To increase the signal-to-noise ratio, the obstacle avoidance response of the VFH algorithm is
proportional to thesquareof aCV. We will call thistheSguared Certainty Value(SCV). For
example, if five readings have incremented a particular cell (,j), then CV,;=5-3=15, and
SCV”-:(15)2:225. We introduce the SCV to express our confidence that recurring range
readings represent actual obstacles (as opposed to single readings, which may be caused by
noise or crosstalk). Furthermore, the VFH obstacle avoidance response is stronger when a
cluster of SCVsis encountered, whereas single, unclustered cells provoke only a mild
response. For thisreason, we will define the termObstacle Cluster Strength(OCS) as the sum
of all SCVsin acertaincluster (i.e., agrouping of neighboring cells with CV>0).

3.2 Fast Mapping for Real-time Obstacle Avoidance

HIMM, as explained so far, serves two functions: a) it produces high CVsfor cells that

correspond to obstacles, and b) it keepslow CVsfor cells that were incremented due to mis-
readings (e.g., noise or crosstalk) or moving objects. For slow-moving vehicles, this system
works very well; yet when a vehicle is traveling at relatively high speeds (e.g.,V>0.5m/sec),
matters are more complicated. The following example explains one of these problems. Note
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that the numerical valuesin this example correspond to actual specifications of our mobile
robot CARMEL. Other systems will have different values, but the principle will be the same.

Suppose CARMEL approaches a thin vertical pole while
traveling at its maximum speedV,,,=0.78 m/sec. To

avoid acollision at this speed, CARMEL must begin an Object
avoidance maneuver at a distance of approximately \
D=100 cm from the obstacle, as shown in Fig. 5. The \ éc
obstacle isinitially detected by the robot at R, =200 cm. = ﬁrf_, —
Thus, the HIMM algorithm has at mostt.=(R .« ¥ 1 )i
D)/V,.,=1.28 sec to produce an OCS strong enough to -1
cause an avoidance maneuver. Since each sensor is fired -1
once every T,=160 msec, the robot can sample at most \ -1 /
n.=t/T,=8 readings from the same sensor’. Notethat n, is \ :% /
the critical number of readingsneeded to provoke an 1
avoidance maneuver. NN VIR

\ -1 |/ Histogram
A map building algorithm with simultaneous real-time -1 rid
obstacle avoidance must thus build a significant OCS \\ '% /
quickly and from few readings, while maintaining a high \|-1/ Increments: =3
contrast with erroneous readings (i.e., high signal-to- -1/ | Decrements: I'=-1
noise ratio). Thistask is further complicated byin- [l CViin = ©
motion sampling as the following example shows: CcO CVinax = 15

p18Abwcw, p18Hbupex, 311OL

When a stationary ultrasonic sensor is repeatedly Figure 4: Information on the empty
Sampled, it will Usua”y increment the same cell for an sector between S and A is used to
obstacle, even if that cell does not accurately correspond decrement all cells along line C, ) C..

to the obstacle. Assuming the robot was able to taken, readings, the CV of that cell will
reach the maximum value, CV =15, with an OCS = 15 = 225. The resulting cluster comprises
of one cell only. Actually, only 5 readings were needed to reach CV=15; the remaining 3
readings are "lost" because of the limit CV,,,,. In-motion sampling on the other hand, will
usually cause the samen_ sonar readings to be scattered over several neighboring cellseven
when the obstacle is a thin pole. This might result in acluster such as the one shown in

Fig. 6a. In this example, eight range readings were taken and projected onto thehistogram
gridin the following order: two readings - cell a; two readings - cell b; one reading each -
cellsc,d,e, and f. This cluster yields OCS_,= 6°+6%+3%+3%+3%+3? = 108, which is less than the
OCS that would result from the same number of readings by a stationary sensor (225). In
general, if nreadings (withn < CV, /1) are scattered equally over neighboring cells, they
will resultin OCS,,=n(I*)* which is smaller then OCS;,4=(nl*)? which results when all n,

2 For simplicity, we assume here that only one sensor can "see" the object, as is often the case with
thin vertical poles or pipes.
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readings are projected into

) To =160msec
one cell. Aswas mentioned

in Section 3.2, itis ey epnne =1.25sec

imperative for fast, real-time t, o .

obstacle avoidance that a Ne =3,=8 (no=critical number | Avoidance

high OCS is built quickly, in ofreadings) ) path \

order to cause a strong N

avoidance maneuver in time. \}
f
/

To compensate for the Vinax= /

adverse scattering effect 80cm/sec /

caused by in-motion 7

sampling, we introduce a
method to significantly
increase the growth rateof
an OCS (when readings are _

scattered in neighboring ~ pretigs.pox — Rmax=200cm —

. 10/20/90
cells). This method uses a Figure 5: With a maximum range of R,,,=200cm and a minimal avoidance
growth rate operator (GRO) distance D=100 cm, CARMEL has 1.28 sec to produce an obstacle cluster
to increment a cell (i,j) fasterstrength (OCS) strong enough to cause an avoidance maneuver.

when the immediate neighbors of the cell hold high CVs. This function isimplemented in
real-time by convolving CV,; with the 3x3 mask given in Fig. 6b, and adding the usual
increment 1"=3, yielding

D=100cm

p,0=1
CV,j=CV,+ 1"+ ¥ (W,qCVispjsg) (1)
p.q:'l
" Object - f
0 30 0.5/0.5(0.5 O 0 15 O
C e C ] e
3 3.0 051105 1215 15 0
a |b A . b
6.6 0 0 050505 6 120 0
0/0 0 o  CGROMask 190 0 0
a b c o
Certainty
values
Figure 6: a. In-motion sampling causes sonar readings of an object to be
scattered over several cells, resulting in a low OCS.
b. 3x3 mask for growth rate operator (GRO).
C. With the GRO, OCSs are built up fast and from

few readings.
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where

CV,; previous certainty value of cell (,j),
CV',; updated certainty value of cell (j),

I*  constant increment (I'=3),

w weighing factor.

with w, ,=0.5 for p=£1 and g=x1, and w, ;=1 for p=0=0

Unlike mask operators in computer vision algorithms, where the operator is applied to every
pixel after an image has been sampled, the GRO (by means of Eq. 1) is applied to each range
reading asit is projected onto thehistogram grid

The following numeric example demonstrates the function of the GRO. Using Eq. (1) to re-
construct the histogram gridin the previous example of Fig. 6a (assuming cells are read and
updated in the same order), we obtain thecluster shown in Fig 6¢. The individual steps of this
computation are listed in Table I, and the OCS of thiscluster is OCS;g,=6°+12%+
122+15%+15%+15%=999.

Table I: Example computation of an OCS using the growth rate operator (GRO) in Fig. 6b.

Readi ng Cel | cv
D000 00000000000000000000000000003000000003000000))))

1 a=a+1l" =0+ 3 = (3
2 a=-a+Il" =3 + 3 = 6
3 b=Db+I1*+ a) =0+3+ 3 = (6)
4 b=Db+I1*+ a) =6 +3+ 3 =12
5 c=c+ 1"+ Yath) =0+3+ 9 =12
6 d=d+1*+ YHath+c) =0 + 3 + 15 = 157
7 e = e + |*+ Yb+d) =0+ 3+ 13.5 =15
8 f=f + 1%+ e+f) =0+ 3+ 15 = 15"
223333311133)331333333133333113)333113))31113)3)))))))))

" Note that Cvs are linmted to CV ,,, = 15;

( ) denote tenporary val ues.

It should be clear that the GRO has little or no effect on erroneous readings. Erroneous
readings (due to noise or crosstalk) appear randomly and usually effect single, unclustered
cells, and are filtered out by the algorithm discussed above.

The only disadvantage of the GRO is the following: Without the GRO, high CVs are
usually obtained at the actual location of an object, while lower CV s (due to the inaccuracies
of the sensors) are scattered around the borders of the object. With the GRO, however, low-
certainty areas adjacent to high-certainty areas build up to high CVs, resulting in a tendency
to represent obstacles larger then they really are. This distortion, however, is not very
significant; furthermore, we can fine-tune the trade-off between more accurate maps and
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faster OCS build-up by adjusting the weighing factorw. Reducing w reduces the effect of the
GRO, and completely cancels the effect withw=0. It is also possible to set w adaptively to the
instantaneous speed of the mobile robot.

4. Experimental Results

The map building algorithms were tested on CARMEL. This platform has a maximum
travel speed of V, ,=0.78m/sec and a maximum steering rate of Q=120deg/sec; it weighs
about 125kg. A Z-80 on-board computer serves as the low-level controller of the vehicle.
Two computers were added to the platform: a 20M hz, 80386-based AT-compatible that runs
the integrated obstacle-avoidance/map-building algorithm, and a PC-compatible single-board
computer to control the sensors.

Fig. 7 shows the result of an experimental run. Three layers of information are depicted in
this figure:

a. Therobot's path, starting at S and ending at T, is plotted as the curved line. This path
resulted from an actual run of our mobile robot, with real-time obstacle avoidance by
the VFH method. CARMEL 's average speed in this run was 0.54m/sec and the
maximum speed was 0.78m/sec.

b. Obstacles and walls are shown as solid lines. Objects labeled "partitions' are two-
inch-thick styrofoam sheets with smooth surfaces. The object labeled "pole" isa 3/4
inch cardboard pipe, and the object labeled "box" is a cardboard box. In general,
poles do not cause specular reflections and are thus easy to detect from all directions.
The polein Fig. 7, however, is very slender and produces only a very weak echo,
much weaker than aflat wall or a pole of larger diameter.

c. Thehistogram gridis also reproduced in Fig. 7. Empty cells are not shown, while
filled cells are represented by small black rectangles (blobs). Each cell represents a
real-world square of size 10cmx 10cm. While the certainty values in our system may
range from O to 15, the screen-dump of Fig. 7a can only show classes of low,
medium, and high CVs, distinguished by different blob sizes. Note that the left side
of partition ais outside of the range limit of the ultrasonic sensors, and so are most of
the walls.

In order to convert the histogram gridinto a permanent map, we define an arbitrary
threshold, e.g., CV,,.—=12. Any CV<CV,, iSrejected (i.e., set to zero). This conversion
results in the final grid-type map shown in Fig. 7b for thehistogram gridin Fig. 7a

During atypical run through a densely cluttered obstacle course, CARMEL's speed may
vary considerably: from 0.8 m/sec to sometimes as low as 0.04 m/sec [2]. In agiven time
interval, more range readings are taken in a certain area when the robot travels at low speeds,
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adding undue weight to these readings. However, this undesirable effect is constrained by the
upper bound of CV,,=15, which limits the CV for any given cell. On the other hand, due to
the GRO, cellsreach CV,,, quickly and with only a few readings even when the robot is

|Blob _Cv - OV : [Bos cv_ cv
:| size Range Class :g {4 size Range Class :
: 1-5  low q1 - 15 low

613 mad |- g q1 - 613 mead :
: 1315 high T ;' 1315  high
| Partition Pole i | Partition Pole 8
| =3 Robot's | ==
1 path { L
(Ll 55
4 f !
37 e |
121 12
111 B 1} & Partition
| | Partition | [Partition

1 ) 3 4 m] 1 2 3 4 Tm]
Figure 7: a. A real-time run with CARMEL, showing the robot's path, the actual
location of the unexpected obstacles, and the resulting histogram grid.
b. The histogram grid after thresholding with CV,,..=12.

5. CONCLUSIONS

HIMM, anew method for combined real-time map building and obstacle avoidance has
been introduced and tested. In this method, inaccurate ultrasonic sensor data is statistically
modeled in atwo-dimensional histogram grid A histogramic probabilityrepresentation is
obtained through rapid, continuous sampling of the sensors during motion. With HIMM, any
range reading is immediately represented in the map and has immediate influence on the
concurrent obstacle avoidance algorithm.

Further optimization, by means of thegrowth rate operator(GRO) allows the HIMM
method to build high-contrast representations based on only a few range readings. This
feature is essential for the robot to react quickly to unexpected obstacles, even when traveling
at high speeds.
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List of Footnotes

1 We use this term in the literal sense of "likelihood."

2 For simplicity, we assume here that only one sensor can "see" the object, as is often the case with
thin vertical poles or pipes.
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