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ABSTRACT

This paper introduces histogramic in-motion mapping (HIMM), a new method for real-time
map building with a mobile robot in motion. HIMM represents data in a two-dimensional array,
called a histogram grid, that is updated through rapid in-motion sampling of onboard range
sensors. Rapid in-motion sampling results in a map representation that is well-suited to modeling
inaccurate and noisy range-sensor data, such as that produced by ultrasonic sensors, and requires
minimal computational overhead.  Fast map-building allows the robot to immediately use the
mapped information in real-time obstacle-avoidance algorithms. The benefits of this integrated
approach are twofold: (1) quick, accurate mapping; and (2) safe navigation of the robot toward a
given target. 

HIMM has been implemented and tested on a mobile robot.  Its dual functionality was
demonstrated through numerous tests in which maps of unknown obstacle courses were created,
while the robot simultaneously performed real-time obstacle avoidance maneuvers at speeds of up
to 0.78 m/sec.
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Figure 1: CARMEL, the first of the University of
Michigan's mobile robots.

1. INTRODUCTION

This paper introduces a system in which mapping and obstacle avoidance are integrated.  In
this system, range data from ultrasonic sensors is continuously sampled and a map is built and
updated immediately while the robot is traveling.  Simultaneously, the obstacle avoidance
algorithm uses the instantaneous mapping-information to avoid newly detected obstacles. 

One advantage of this integrated system is its ability to progressively adapt the strength of an
obstacle avoidance reaction to the level of evidence for the existence of an obstacle. In other
words, the system reacts to weak evidence with a moderate steering maneuver, while stronger
evidence causes a more drastic avoidance maneuver of the vehicle.  This progressive-response
approach renders the system insensitive to low levels of evidence, which are likely to be
caused by noise or crosstalk.  Without this provision, the robot would frequently perform
avoidance maneuvers for non-existing obstacles.  Evidence  for real obstacles, however,
grows quickly due to the growth rate operator (GRO) introduced in Section 3.2.
  
Map building methods depend strongly on
the characteristics of the sensors that
provide the raw data. Ultrasonic sensors,
for example, provide good range data but
offer only poor directionality (an opening
angle of 30  is typical for the Polaroid [19]o

sensors used in our research). Another
problem with ultrasonic sensors are
specular reflections from smooth surfaces,
such as indoor walls or furniture. Systems
using ultrasonic sensors must also cope
with frequent misreadings due to ultrasonic
noise from external sources or stray
reflections from neighboring sensors (i.e.,
crosstalk).  A more detailed discussion on
relevant characteristics and limitations of
ultrasonic sensors can be found in the
literature [1],[11],[12],[15]. Our method is
designed to overcome these shortcomings
of systems based on ultrasonic sensors.
 
To verify the map building algorithm we tested it on our mobile robot CARMEL (Computer-
Aided Robotics for Maintenance, Emergency, and Life support).  CARMEL is based on a
commercially available mobile platform with a unique three-wheel drive (synchro-drive) that
permits omnidirectional steering [7].  We equipped this vehicle with a ring of 24 ultrasonic
sensors [19], as shown in Fig. 1.
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This paper focuses on the map building aspect of our system, rather than on the obstacle
avoidance algorithms.  A comprehensive discussion of our two obstacle avoidance methods,
the Virtual Force Field (VFF) and the Vector Field Histogram (VFH) method, is given in
[2],[3], and in [4],[5], respectively.  Section 2 evaluates related work in map building, and
Section 3 explains our real-time map building method in detail. 

2. MAP BUILDING WITH ULTRASONIC SENSORS

In order to create a map from ultrasonic range measurements, the environment must first be
scanned.  To do so, many mobile robots are equipped with 24 sensors that are mounted on a
horizontal ring around the robot [2], [6], [8], [14], [17].  Ring scanning does not require
rotating parts and motors, and a full 360  panorama can be acquired rapidly. However, allo

sensors cannot be fired at once, since this would cause significant crosstalk.  Special scanning
sequences can be designed that reduce crosstalk, but increase the overall time needed to
obtain a full panorama (i.e., all 24 sensors).  Typical scan times range from 100 to 500 ms, for
a full panorama.

A pioneering method for probabilistic representation of obstacles in a grid-type world model
has been developed at Carnegie-Mellon University (CMU) [9],[16],[17].  The resulting world
model, called a certainty grid, is especially suited to the unified representation of data from
different sensors such as ultrasonic, vision, and proximity sensors [17], as well as the accom-
modation of inaccurate sensor data such as range measurements from ultrasonic sensors. 
With the certainty grid world model, the robot's work area is represented by a two-
dimensional array of square elements denoted as cells. Each cell contains a certainty value
(CV) that indicates the measure of confidence that an obstacle exists within the cell area. CVs
are updated by a heuristic probability function that takes into account the characteristics of a
given sensor. For example, ultrasonic sensors have a conical field of view. A typical
ultrasonic sensor [19] returns a radial measure of the distance to the nearest object within the
cone, yet does not specify the angular location of the object. Thus, a distance measurement d
results from an object located anywhere within the area A (see Fig. 2). However, an object
located near the acoustic axis (the center of the cone) is more likely to produce an echo than
an object further away from the acoustic axis [1].  Consequently, with the CMU method, CVs
are assigned to all cells in A, but higher values are assigned to cells closer to the acoustic axis,
according to a heuristic probability function.

Additional information can be derived from a range reading concerning the sector between S
and A (see Fig. 2). If an echo is received from an object at distance d, then this sector must be
free of objects. In [9] and [16] this is expressed by applying a probability function with
negative values to the cells in the empty area.

In CMU's original certainty grid method [9],[16],[17], the mobile robot remains stationary
while taking a panoramic scan with its ring of 24 ultrasonic sensors.  The certainty grid is
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Figure 2: Two-dimensional projection of
the conical field of view of an ultrasonic sensor.
A range reading d indicates the existence of an
object somewhere within the shaded region A
(Carnegie Mellon's model).

updated with a probabilistic function C  that isx

applied to each one of the 24 range readings.
Then, the robot moves to a new location, stops,
and the procedure repeats. After the robot
traverses a room in this manner, the resulting
certainty grid represents a fairly accurate map of
the room. A global path-planning method is
employed iteratively as the map is incrementally
updated. 

More recent work by Elfes [10] introduces the
occupancy grid, which is similar to the certainty
grid. However, the occupancy grid models the
sonar sensors with Gaussian uncertainty and
applies a more rigorous mathematical model to
recurring readings.

3. REAL-TIME MAP BUILDING
WITH HIMM

This section introduces histogramic in-motion
mapping (HIMM), a new method for real-time map building with a mobile robot in motion. 
HIMM has been developed and tested on our mobile robot CARMEL.  CARMEL's 24
ultrasonic sensors are divided into six groups; each with four perpendicular sensors.  The six
groups are fired in sequence, while the four sensors of each group are triggered
simultaneously. When the six groups have been triggered, a complete 360 panorama iso

obtained. Our sonars are set up to measure distances between R =0.27m to R =2m.min max

Therefore, each sensor awaits its echo for t=2 R /V =11.7ms, where V =340m/sec ismax sound sound

the speed of sound in air, and the factor 2 accounts for the roundtrip of the soundwaves. A
complete panoramic scan (readings from all 24 sensors) should therefore take 6t=70.2ms.
However, the sensor controller computer runs a special signal enhancement algorithm that
reduces crosstalk significantly (approximately by a factor of 20, resulting in roughly 1 false
reading per 1500 range readings). This improvement takes a toll on the processing time, so
that T =160ms is required to process all 24 readings.  It should be noted that range readingss

are processed and asynchronously communicated to the map building computer in groups of
4. This way, any range reading is presented to the map building algorithm at most
160/6=27ms after it has been taken. 



 We use this term in the literal sense of "likelihood."1
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3.1 The Histogram Grid

HIMM uses a two-dimensional Cartesian histogram grid for obstacle representation. This
representation has been derived from the certainty grid concept described in Section 2. Like
the certainty grid, each cell in the histogram grid holds a certainty value (CV) that represents
the confidence of the algorithm in the existence of an obstacle at that location. The histogram
grid differs from the certainty grid in the way it is built and updated. CMU's method projects
a probability profile onto all those cells affected by a range reading (i.e., all cells in the area A
of Fig. 2).  This procedure is computationally intensive and might impose a time-penalty on
real-time execution by an onboard computer.  Our method, on the other hand, increments only
one cell in the histogram grid for each range reading. For ultrasonic sensors, the incremented
cell is the one that corresponds to the measured distance d (see Fig. 3a) and lies on the
acoustic axis of the sensor.  While this approach may seem to be an oversimplification, a
probability  distribution is actually obtained by continuously and rapidly sampling each1

sensor while the vehicle is moving.  Thus, the same cell and its neighboring cells are
repeatedly incremented, as shown in Fig. 3b.  This results in a histogramic probability
distribution, in which high certainty values are obtained in cells close to the actual location of
the obstacle.  Note that the HIMM method is less accurate when the robot is stationary.  A
comparative evaluation of the accuracy of our method is given in [20].

HIMM makes use of the "empty sector" between S and A (see Fig. 4), as does CMU's
certainty grid method [9],[16].  However, instead of computing and projecting a negative
probability function for all cells in the sector, we take advantage of our fast sampling
approach and decrement only those cells that are located on the line connecting center cell Cc

and origin cell C  (i.e., the acoustic axis, in Fig. 4).o

A final note concerns the actual implementation of HIMM: Whenever a cell is incremented,
the increment (denoted I ) is actually 3 (not 1, as may be expected) and the maximum CV of a+

cell is limited to CV =15. Decrements (denoted I), however, take place in steps of -1 andmax
-

the minimum value is CV =0. Note that CV  and CV  have been chosen arbitrarily. Imin max min
+

was determined experimentally (in relation to CV ), by observing that too large a valuemax

would make the robot react to single, possibly false readings, while a smaller value would not
build up CVs in time for an avoidance maneuver.  I was determined experimentally and in-

relation to I .  I  must be smaller than I  because only one cell is incremented for each reading,+ - +

whereas multiple cells might be decremented for one reading (i.e., all cells between C  and C ,c o

in Fig. 4).  Note that it is exceedingly difficult to formulate a mathematically rigorous
relationship between those parameters.  The reason is the large number of unknowns that
affect a general formulation.  For example, an object may be "seen" at a certain instance by
one or more sensors simultaneously.  Whether or not an echo is received depends on the
relative angles, the surface structure, the reflectiveness of the object, and the distance to the
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Figure 3: 
a. Only one cell is incremented for each range reading. With ultrasonic

sensors, this is the cell that lies on the acoustic axis and corresponds to
the measured distance d.

b. A histogramic probability distribution is obtained by continuous and rapid
sampling of the sensors while the vehicle is moving. 

object.

HIMM is part of a
real-time obstacle
avoidance system; it
not only produces
maps but also
provides
instantaneous
environmental
information for use
by the integrated
obstacle avoidance
algorithm. To
understand how this
function is
supported, it is
necessary to
mention some
characteristics of
our vector field
histogram (VFH)
method for real-time
obstacle avoidance. 
A detailed discussion of the VFH method is given in [4] and [5].

To increase the signal-to-noise ratio, the obstacle avoidance response of the VFH algorithm is
proportional to the square of a CV.  We will call this the Squared Certainty Value (SCV). For
example, if five readings have incremented a particular cell (i,j), then CV =5 3=15, andi,j

SCV =(15) =225. We introduce the SCV to express our confidence that recurring rangei,j
2

readings represent actual obstacles (as opposed to single readings, which may be caused by
noise or crosstalk). Furthermore, the VFH obstacle avoidance response is stronger when a
cluster of SCVs is encountered, whereas single, unclustered cells provoke only a mild
response. For this reason, we will define the term Obstacle Cluster Strength (OCS) as the sum
of all SCVs in a certain cluster (i.e., a grouping of neighboring cells with CV>0).

3.2 Fast Mapping for Real-time Obstacle Avoidance

HIMM, as explained so far, serves two functions: a) it produces high CVs for cells that
correspond to obstacles, and b) it keeps low CVs for cells that were incremented due to mis-
readings (e.g., noise or crosstalk) or moving objects.  For slow-moving vehicles, this system
works very well; yet when a vehicle is traveling at relatively high speeds (e.g., V>0.5m/sec),
matters are more complicated. The following example explains one of these problems. Note
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 For simplicity, we assume here that only one sensor can "see" the object, as is often the case with2

thin vertical poles or pipes.
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Figure 4: Information on the empty
sector between S and A is used to
decrement all cells along line C  ) C .0 c

that the numerical values in this example correspond to actual specifications of our mobile
robot CARMEL. Other systems will have different values, but the principle will be the same.

Suppose CARMEL approaches a thin vertical pole while
traveling at its maximum speed V =0.78 m/sec. Tomax

avoid a collision at this speed, CARMEL must begin an
avoidance maneuver at a distance of approximately
D=100 cm from the obstacle, as shown in Fig. 5. The
obstacle is initially detected by the robot at R =200 cm.max

Thus, the HIMM algorithm has at most t =(R -c max

D)/V =1.28 sec to produce an OCS strong enough tomax

cause an avoidance maneuver. Since each sensor is fired
once every T =160 msec, the robot can sample at mostp

n =t /T =8 readings from the same sensor .  Note that n  isc c p c
2

the critical number of readings needed to provoke an
avoidance maneuver.

A map building algorithm with simultaneous real-time
obstacle avoidance must thus build a significant OCS
quickly and from few readings, while maintaining a high
contrast with erroneous readings (i.e., high signal-to-
noise ratio).  This task is further complicated by in-
motion sampling, as the following example shows:

When a stationary ultrasonic sensor is repeatedly
sampled, it will usually increment the same cell for an
obstacle, even if that cell does not accurately correspond
to the obstacle.  Assuming the robot was able to take n  readings, the CV of that cell willc

reach the maximum value, CV=15, with an OCS = 15 = 225.  The resulting cluster comprises2

of one cell only.  Actually, only 5 readings were needed to reach CV=15; the remaining 3
readings are "lost" because of the limit CV . In-motion sampling, on the other hand, willmax

usually cause the same n  sonar readings to be scattered over several neighboring cells, evenc

when the obstacle is a thin pole. This might result in a cluster such as the one shown in
Fig. 6a. In this example, eight range readings were taken and projected onto the histogram
grid in the following order: two readings - cell a; two readings - cell b; one reading each -
cells c,d,e, and f. This cluster yields OCS = 6 +6 +3 +3 +3 +3  = 108, which is less than thescat

2 2 2 2 2 2

OCS that would result from the same number of readings by a stationary sensor (225).  In
general, if n readings (with n < CV /I ) are scattered equally over neighboring cells, theymax

+

will result in OCS =n(I )  which is smaller then OCS =(nI ) , which results when all nscat single c
+ 2 + 2
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Figure 5: With a maximum range of R =200cm and a minimal avoidancemax

distance D=100 cm, CARMEL has 1.28 sec to produce an obstacle cluster
strength (OCS) strong enough to cause an avoidance maneuver. 

Figure 6: a. In-motion sampling causes sonar readings of an object to be
scattered over several cells, resulting in a low OCS.

b. 3×3 mask for growth rate operator (GRO).
c. With the GRO, OCSs are built up fast and from

few readings.

readings are projected into
one cell. As was mentioned
in Section 3.2, it is
imperative for fast, real-time
obstacle avoidance that a
high OCS is built quickly, in
order to cause a strong
avoidance maneuver in time.

To compensate for the
adverse scattering effect
caused by in-motion
sampling, we introduce a
method to significantly
increase the growth rate of
an OCS (when readings are
scattered in neighboring
cells). This method uses a
growth rate operator (GRO)
to increment a cell (i,j) faster
when the immediate neighbors of the cell hold high CVs. This function is implemented in
real-time by convolving CV  with the 3×3 mask given in Fig. 6b, and adding the usuali,j

increment I =3, yielding+

p,q=1
CV'  = CV  + I  +    (w  CV ) (1)i,j i,j p,q i+p,j+q

+

p,q=-1
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where
CV previous certainty value of cell (i,j),i,j

CV' updated certainty value of cell (i,j),i,j

I constant increment (I =3),+ +

w weighing factor.

with  w =0.5 for p=±1 and q=±1, and  w =1 for p=q=0p,q p,q

Unlike mask operators in computer vision algorithms, where the operator is applied to every
pixel after an image has been sampled, the GRO (by means of Eq. 1) is applied to each range
reading as it is projected onto the histogram grid.

The following numeric example demonstrates the function of the GRO. Using Eq. (1) to re-
construct the histogram grid in the previous example of Fig. 6a (assuming cells are read and
updated in the same order), we obtain the cluster shown in Fig 6c. The individual steps of this
computation are listed in Table I, and the OCS of this cluster is OCS =6 +12 +GRO

2 2

12 +15 +15 +15 =999.2 2 2 2

Table I: Example computation of an OCS using the growth rate operator (GRO) in Fig. 6b.

Reading   Cell                          CV'
))))))))))))))))))))))))))))))))))))))))))))))))))))))
1 a = a + I  = 0 + 3 = (3)+

2 a = a + I  = 3 + 3 =  6+

3 b = b + I  + ½(a) = 0 + 3 +  3 = (6)+

4 b = b + I  + ½(a) = 6 + 3 +  3 = 12+

5 c = c + I  + ½(a+b) = 0 + 3 +  9 = 12+

6 d = d + I  + ½(a+b+c) = 0 + 3 + 15 = 15+ *

7 e = e + I  + ½(b+d) = 0 + 3 + 13.5 = 15+ *

8 f = f + I  + ½(e+f) = 0 + 3 + 15 = 15+ *

)))))))))))))))))))))))))))))))))))))))))))))))))))))
 Note that CVs are limited to CV  = 15; *

max
( ) denote temporary values.

It should be clear that the GRO has little or no effect on erroneous readings. Erroneous
readings (due to noise or crosstalk) appear randomly and usually effect single, unclustered
cells, and are filtered out by the algorithm discussed above.

The only disadvantage of the GRO is the following: Without the GRO, high CVs are
usually obtained at the actual location of an object, while lower CVs (due to the inaccuracies
of the sensors) are scattered around the borders of the object. With the GRO, however, low-
certainty areas adjacent to high-certainty areas build up to high CVs, resulting in a tendency
to represent obstacles larger then they really are. This distortion, however, is not very
significant; furthermore, we can fine-tune the trade-off between more accurate maps and
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faster OCS build-up by adjusting the weighing factor w. Reducing w reduces the effect of the
GRO, and completely cancels the effect with w=0. It is also possible to set w adaptively to the
instantaneous speed of the mobile robot. 

4. Experimental Results

The map building algorithms were tested on CARMEL.  This platform has a maximum
travel speed of V =0.78m/sec and a maximum steering rate of =120deg/sec; it weighsmax

about 125kg. A Z-80 on-board computer serves as the low-level controller of the vehicle. 
Two computers were added to the platform: a 20Mhz, 80386-based AT-compatible that runs
the integrated obstacle-avoidance/map-building algorithm, and a PC-compatible single-board
computer to control the sensors.

Fig. 7 shows the result of an experimental run. Three layers of information are depicted in
this figure:

a. The robot's path, starting at S and ending at T, is plotted as the curved line. This path
resulted from an actual run of our mobile robot, with real-time obstacle avoidance by
the VFH method. CARMEL's average speed in this run was 0.54m/sec and the
maximum speed was 0.78m/sec.

b. Obstacles and walls are shown as solid lines. Objects labeled "partitions" are two-
inch-thick styrofoam sheets with smooth surfaces. The object labeled "pole" is a 3/4
inch cardboard pipe, and the object labeled "box" is a cardboard box. In general,
poles do not cause specular reflections and are thus easy to detect from all directions.
The pole in Fig. 7, however, is very slender and produces only a very weak echo,
much weaker than a flat wall or a pole of larger diameter.

c. The histogram grid is also reproduced in Fig. 7. Empty cells are not shown, while
filled cells are represented by small black rectangles (blobs). Each cell represents a
real-world square of size 10cm×10cm.  While the certainty values in our system may
range from 0 to 15, the screen-dump of Fig. 7a can only show classes of low,
medium, and high CVs, distinguished by different blob sizes.  Note that the left side
of partition a is outside of the range limit of the ultrasonic sensors, and so are most of
the walls.

In order to convert the histogram grid into a permanent map, we define an arbitrary
threshold, e.g., CV =12. Any CV<CV  is rejected (i.e., set to zero). This conversionthres thres

results in the final grid-type map shown in Fig. 7b for the histogram grid in Fig. 7a.

During a typical run through a densely cluttered obstacle course, CARMEL's speed may
vary considerably: from 0.8 m/sec to sometimes as low as 0.04 m/sec [2]. In a given time
interval, more range readings are taken in a certain area when the robot travels at low speeds,
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Figure 7: a. A real-time run with CARMEL, showing the robot's path, the actual
location of the unexpected obstacles, and the resulting histogram grid.

b. The histogram grid after thresholding with CV =12.thres

adding undue weight to these readings.  However, this undesirable effect is constrained by the
upper bound of CV =15, which limits the CV for any given cell. On the other hand, due tomax

the GRO, cells reach CV  quickly and with only a few readings even when the robot ismax

traveling at high speeds.

5. CONCLUSIONS

HIMM, a new method for combined real-time map building and obstacle avoidance has
been introduced and tested. In this method, inaccurate ultrasonic sensor data is statistically
modeled in a two-dimensional histogram grid. A  histogramic probability representation is
obtained through rapid, continuous sampling of the sensors during motion. With HIMM, any
range reading is immediately represented in the map and has immediate influence on the
concurrent obstacle avoidance algorithm.

Further optimization, by means of the growth rate operator (GRO) allows the HIMM
method to build high-contrast representations based on only a few range readings. This
feature is essential for the robot to react quickly to unexpected obstacles, even when traveling
at high speeds.
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List of Footnotes

We use this term in the literal sense of "likelihood."1

For simplicity, we assume here that only one sensor can "see" the object, as is often the case with2

thin vertical poles or pipes.


