
Path Planning, Replanning, and Execution for Autonomous Driving in Urban
and Offroad Environments

Roland Philippsen, Sascha Kolski, Kristijan Maček, and Roland Siegwart
Autonomous Systems Lab, Swiss Federal Institute of Technology (ETHZ)

Zürich, Switzerland
roland.philippsen@mavt.ethz.ch

Abstract— We present an autonomous driving system that is
capable of planning, replanning, and executing paths for driving
in urban and offroad environments. For planning, we rely on
the E∗ algorithm which computes a smooth navigation function
that takes into account traversibility information extracted from
laser scans. The path execution algorithm is centered around
a kinodynamic controller which follows the gradient of the
navigation function. This work is based on prior experience with
the SmartTer vehicle, which we are in the process of updating,
and the focus is on integration.

I. I NTRODUCTION

Every year, thousands of people are killed in road acci-
dents, with millions more injured. The vast majority of these
accidents are due to human error, with roughly 5% caused
by vehicle defects [1]. Such staggering findings motivate the
use of driver assistant systems and fully automated vehicles
to increase driver and passenger safety.

Driver assistant systems can help drivers to identify dan-
gerous vehicle states and traffic scenarios and reduce the risk
of accidents. These driver assistant systems are widespread
in all categories of vehicles and range from anti-lock brakes
to radar based adaptive cruise control. The development of
these systems has been accelerated by integrated drive-by-
wire components such as electronic gas pedals, brakes, and
steering systems.

The development of such components has also hastened
the arrival of autonomous passenger vehicles. In 1997, the
NavLab vehicles travelled ‘no hands’ across the United
States, requiring only accelerator and brake pedal interaction
from the driver [2]. In 2005, 23 autonomous vehicles started
a race across the Nevada desert in the DARPA Grand
Challenge race [3], with 5 of them finishing the 211.1 Km
distance.

Most of these systems depend on environmental structure
like driving lanes or dense sets of GPS points. However, in
many common driving scenarios neither of these sources of
information will be available, for example, when leaving a
road and entering a parking lot.

Autonomous navigation in unstructured environments is
an active research area in field robotics, and a number of
effective approaches have been developed that address this
task [4], [5], [6], [7]. A common technique is to maintain a
map of the environment and use this to plan safe paths to a
desired goal location. As the vehicle traverses the environ-
ment, it updates its map and path based on its observations.

Mapping Sensors

Traversability

power steering

throttle control

brake

Actuation

2 rotating SICKs

omnidirectional camera

encoders

camera

optical gyro

IMU

differential GPS

3 SICKs

multi−level surface map

Path Execution

look−ahead dynamic control

Path Planning

E*

Mapping

3D position information filter

Localisation

Localisation Sensors

Fig. 1. System Overview of the SmartTer autonomous vehicle. The sensors
provide information for localization, mapping, and navigation. During
localization of the robot using sensor-fusion based on a 3D information
filter, a 3D map is built and traversability data extracted. The planner uses
this information to plan a smooth navigation function that trades off collision
risk versus detours. Finally, path execution is based on a kinodynamic model
of the vehicle and uses a look-ahead of the navigation function in order to
choose motion commands that follow the gradient toward the goal while
respecting safe driving conditions and dynamic limits.

Our previous work with theSmarTerautonomous vehi-
cle [8] demonstrates reliable localization and allows us to
assemble 3D maps of an outdoor environment. However, we
also identified potential areas of improvement and are cur-
rently updating to new sensor technology, optimizing scanner
mount points, and integrating another planning algorithm
and improving its link with path execution. The medium
term goal is a robust experimental platform with stable basic
navigation on which further research can rely.

This paper concentrates on the integration of the E∗

planner and a novel algorithm for path tracking that takes into
account kinodynamic constraints. Fig. 1 shows the overall
system components. In section II we describe the compu-
tation of smooth navigation functions using E∗, section III
provides details about the interpolation method that allows to
achieve this, section IV presents our path execution approach,
and in section V we explain how these components have been
integrated.

II. I NTERPOLATEDPATH REPLANNING WITH E∗

Mobile robot path planning approaches can be divided
into five classes [9]. Road maps, exact and approximate
cell decompositions, potential fields [10], and navigation



functions. E∗ is a graph-based method for computing smooth
navigation functions.

A. The E∗ Approach

In order to resolve the problem of discrete path choices
encountered in traditional graph based methods, the con-
cept underlying E∗ is formulated in the continuous domain
independently of any specificC-space representation. The
algorithm computesC-space samples of a crossing-time map
defined by the monotonic expansion of a continuous closed
surface or a contour from the goal through the environ-
ment. By modulating the propagation speed in function
of environment characteristics, i.e. the effort of traversing
certain regions, the crossing-time map becomes a navigation
function that reflects the influence of the environment on the
optimal-path of the robot, and it suffices to follow its steepest
gradient from any point to drive the robot to the goal. The
continuous formulation allows us to interpolate “between”
edges, which resolves the issue with movement choices at a
fundamental level.

The monotonicity of the E∗ navigation function stems
from the upwind property: The wavefront can be interpreted
as the envelope of all possible locations the robot can
reach if it starts on the goal and always moves with the
maximum allowed speed. This envelope is ever expanding,
which allows us to uniquely determine the region of influence
of each location by tracing the propagation direction. If
a location is subsequently modified, it is thus possible to
determine which portions of an existing crossing-time map
can be kept intact, and which portions need re-computation.
This is the key to efficient replanning by reducing the effort
of incorporating new environmental information.

B. The E∗ Algorithm

The environment in which the robot evolves is represented
as an undirected graphG embedded in configuration space
C. Note that grids, which are used for the traversability
information of the system presented in this papers, fall into
this category. Several properties are attached to the nodesc ∈
G, two of which are relevant for a high-level understanding:

• The value v(c) ≥ 0 represents the sample of the
continuous crossing-time map at the nodec, or the
“height” of the navigation function.

• The difficulty or cost of traversing a given configuration
is encoded in the traversaleffort or risk r(c) ∈ [0, 1]. A
lower r implies a higher wavefront propagation speed.
Note that the risk is actually stored asmeta-information
m(c) to keep E∗ independent of the interpolation
method.

Nodes that awaitexpansion, which is the elementary
propagation step from a given node to its neighbors, are
queued in thewavefront. Planning proceeds until the wave-
front is empty or the node containing the robot has been
expanded. The wavefront is ordered by ascendingkey, which
is designed to result in a strictly upwind propagation order.
Similarly to D∗-Lite [11] and Field-D∗ [12], a one-step
lookahead of the crossing time calledrhs-value is used in

conjunction with the estimatedv(c) to calculate the queue
key asmin(v(c), rhs(c)). When therhs and value of a node
equal each other, the node is called (locally) consistent.
Wavefront propagation drives the algorithm towards a state
where all nodes are locally consistent.

Graph-based planners often use a spanning tree to trace
the path from the robot to the goal. E∗ extends this to a
directedupwind graphU with unique edges(c1, c2) ∈ U ⇒
(c2, c1) /∈ U . It allows to retrieve the upwind setU(c)
of nodes that were involved in computingv(c) as well as
the downwind setD(c) of nodes that were influenced by
v(c). All descendants of a node can be determined if its
environmental information changes.

E∗ is independent of the interpolation method, as long as it
respects some constraints and thekernel form given in (1).
The details of kernels are beyond the scope of this paper,
and we only presentkLSM which is a good trade-off between
smoothness and computational effort. An interpolation kernel
k is a function that estimates the crossing-time value of
a node, based on the risk (or effort) of traversing it, in
conjunction with the values of its neighbors.

(u, B) = k(c,Q) (1)

where u is the new value for nodec, B ⊆ Q(c) is the
set of neighbors used in the computation ofu, and Q(c)
is the propagator ofc at the time of expansion (2), which
ensures that only valid candidate neighbors are provided to
the kernel.

Q(c) = {n ∈ N(c) | v(n) < ∞} (2)

where N(c) is the set of neighbors (adjacent nodes) ofc.
Nodes with infinite value are either obstacles or have not
been expanded yet, such as after initialization or following an
increase inr(c). Q is ordered by ascendingv of the contained
nodes:v(Qi) ≤ v(Qj) ∀ i < j. It is possible forQ to be
empty (Q = {}) or contain a single node (Q = {Q1}).
Handling these cases is part of the required properties for a
kernel.B must accurately reflect the information used for the
computation ofu. This is required such that modifications
to the environment model can be consistently propagated to
all concerned nodes.

Listing 1 shows pseudo-code for E∗. {gi} is the set of
goal nodes,W denotes the wavefront queue, and key(c)
is the key with whichc has been inserted intoW . Note
that D(c) in line 23 has to be copied, because the call
to UpdateVertex(d) changes the upwind graphU . Proce-
dure ComputePropagator(c) applies equation (2), Pop(W )
removes and returns the top node fromW , and TopKey(W )
returns the key of the top node or∞.

III. I NTERPOLATION APPROACH

In this section we present the interpolation kernel used
for the SmartTer planning system. It is denotedkLSM be-
cause it is based on theLevel Set Method[13], which
provides a robust grid-based algorithm for calculating the
time-dependent position of an evolving curve. It is applicable



Listing 1 Pseudo code of the core procedures in E∗.

procedure Requeue(c)
01 if v(c) = rhs(c)
02 if c ∈W then removec from W
03 else
04 if c /∈W
05 insertc with key = min(v(c), rhs(c)) into W
06 else if key(c) 6= min(v(c), rhs(c))
07 removec from W
08 insertc with key = min(v(c), rhs(c)) into W
procedure UpdateVertex(c)
09 if c /∈ {gi}
10 Q← ComputePropagator(c)
11 (rhs(c), B)← k(c, Q)
12 for all u ∈ U(c) remove(u, c) from U
13 for all b ∈ B
14 if (c, b) ∈ U then remove(c, b) from U
15 add(b, c) to U
16 Requeue(c)
procedure Propagate()
17 c← Pop(W )
18 if v(c) > rhs(c)
19 v(c)← rhs(c)
20 for all n ∈ N(c) UpdateVertex(n)
21 else
22 v(c)←∞
23 for all d ∈ D(c) UpdateVertex(d)
24 UpdateVertex(c)
procedure main()
25 initialize rhs(c) = v(c) =∞ ∀c ∈ G
26 initialize goalrhs(g) =true distance∀g ∈ {gi}
27 initialize W with {gi}
28 while (rhs(crobot) 6= v(crobot)) or TopKey(W ) < v(crobot)
29 if W = {} then the goal is unreachable
30 Propagate()

when theC graph G is a regular grid. For E∗, where the
propagation speed is always positive and depends on position
only, we can use the more efficient special case calledFast
Marching [14]. It is calculated on aN -dimensional grid:

N∑
i=1

(
max(D−xiTι, 0)2 + min(D+xiTι, 0)2

)
=

1
F 2

ι

(3)

whereTι is the crossing time of the wavefront for a grid cell,
with ι anN -dimensional index,Fι is the propagation speed,
andD±xi is the finite difference that replaces the continuous
∇, with xi an axis of the grid.

The two-dimensional implementation ofkLSM is a first-
order upwind interpolation scheme for (3). The finite dif-
ference expressions are of the formD−x1Tij = (Tij −
Ti−1,j)/h, where we substitutedι = (i, j) andh is the grid
resolution (distance between two nodes).

DevelopingD±xi,j Tij leads to a quadratic equation with
coefficients that take values based on a switch on the sign
and magnitude of the finite difference operators.

It is possible to determine the terms that will yield the
optimal solution beforehand. Interpolation implies using up
to two neighbors, which need to lie on different axes. Without
loss of generality, it can be assumed that the two neighbors
leading to the best interpolation areA andC, and thatTA ≤
TC. The final expression for the crossing-time interpolation
is (4), see [15] for a detailed development.

T =

{
TA + h/F ⇐ TC − TA ≥ h/F
1
2

(
−β +

√
β2 − 4γ

)
otherwise

β = − (TA + TC)
γ = 1

2

(
T 2

A + T 2
C − h2/F 2

)
(4)

whereTA andTC are the values of the best neighbors,h is
the distance between two neighbors, andF is the propagation
speed at(i, j). Recall thatTA ≤ TC and note thatF → 0 ⇒
T →∞. The final equations forkLSM are given in (5).

(u, B) = kLSM(c,Q)
u = T

B =

{
{Q1} ⇐ TC − TA ≥ h/F

{Q1, Q2} otherwise
TA = v(Q1)

TC =

{
∞ ⇐ Q = {Q1}
v(Q2) otherwise

F = m(c)

(5)

Nodes which do not have neighbors of typeA andC, such
as neighbors of obstacles or cells on the grid border, use the
fallback solutionTA + h/F .

IV. PATH FOLLOWING - EXECUTION

Having computed a navigation function with E∗, the
question arises of how to control the vehicle’s motion such
that it tracks the potential’s gradient until the goal is reached.
The novelty presented here is combining arc based low-
level trajectory generation with global path following. The
reference point feedback loop to vehicle controls, based on
local path configuration, ensures smooth and stable path
following. It avoids oscillations often caused by replanning
or the holonomicity of gradient descent. Furthermore, the
low-level arcs which are kinodynamically feasible are tested
to ensures secure vehicle commands in the presence of ob-
stacles, based on traversability information. The algorithm is
called “Traversability-Anchored Dynamic Path Following”.

A. Reference point dynamics

Following the negative gradient of the global navigation
function from the current vehicle position{x, y} to
the goal {gx, gy}, the reference path is a set of points{
cr,d = ck; k = 1, . . . , Ng, c1 = {x, y} , cNg

= {gx, gy}
}

.
This path is further smoothed to give a reference pathCr(s)
which is described with the curvilinear parameters and curve
gradient‖Cr

′(s)‖ =
√

p′2(s) + q′2(s) 6= 0,∀s ∈ [0, sf ].
The kinematic level control objective is to find a longi-

tudinal velocity vl and steering angleφ of the vehicle to
follow the reference pathCr given by the global planner. In
particular, a desired reference point is defined onCr(sd) as:

xd = p(sd)
yd = q(sd), (0 ≤ sd ≤ sf ) . (6)



In contrast to the commonly used path following approach
using orthogonal projection of the vehicle position to the
curve Cr with a fixed lookahead, here the position of the
reference point is defined by dynamics of the curvilinear
parameterṡd which includes feedback on the vehicle pose
and velocity as in [16]:

ṡd =
coe

−αρvmax,l√
p′2(s) + q′2(s)

[
1− 2

π
arctan(ζχ(ρ))

]
, (7)

whereρ =
√

∆x2 + ∆y2 is the current lookahead distance
with ∆x = xd − x, ∆y = yd − y and vmax,l the vehicle’s
max longitudinal velocity. The factorco = eαdρo normalizes
the curvilinear speed, where theρo represents the nominal
lookahead distance andα is the convergence rate towards
it. Essentially, in nominal condition when the reference path
is straight and no obstacles are near, as described further in
Sec. IV-C, both vehicle and reference point travel atvl,max

and the lookahead distance is the nominalρo.
However, when significant curvature changes are encoun-

tered, the vehicle must slow down to follow the path at a safe
error margin. In order to quantitatively describe the necessary
vehicle steering activity alongCr a curvature effort term was
introduced in [16]:

χ(ρ) =
∑Nρ

i=1 ‖∆κi‖∆si

ρ
, ∀ρ > 0 . (8)

The smooth reference path is described as a collection
of dense waypoints

{
(xd(s), yd(s)) : s = (s1, s2 . . . , sNρ

)
}

and Nρ denotes the number of points up to the reference
point ρ. Here,∆κi = κi − κi−1 is the incremental change
in curvature and∆si = si − si−1 is the incremental change
in parameters that may be unequally spaced. Eq. (8) takes
into account all curvature (thus also direction) changes along
the reference path up to the current reference point. If the
curvature effort isχ(ρ) = 0 then the vehicle is moving
along a path with no curvature change, i.e. a straight or
circular path segment, and it may proceed at maximum
speed provided other constraints are satisfied. The factorζ
essentially determines how fast the reference point will slow
down in the presence of obstacles, thus increasing the safety
margin for largerζ but also rendering the vehicle drive less
speed-efficient. Thearctan is a saturation funtion for large
curvature efforts where both reference point and the vehicle
slow down significantly.

B. Kinodynamically feasible vehicle trajectories

The description of the car motion is based on the Acker-
mann kinematic model:

ẋ = cos θ vl , ẏ = sin θvl , θ̇ =
vl

L
tanφ , (9)

with {x, y, θ} being the robot pose and{vl, φ} the longitu-
dinal velocity and steering angle as control inputs andL the
axes distance of the front and rear wheels.

According to the Ackermann kinematics, the vehicle fol-
lows a circular path for a given kinematic level control input

{vl, φ}. Therefore a set of arc vehicle trajectories can be
defined as:

A = {ai,j = {xi,j , yi,j} ; i = 1 . . . Nv, j = 1 . . . Nκ} ,
(10)

whereNvl
denotes the number of arc sets due to longitudinal

velocity vl,i discretization andNc the number of arcs due to
curvatureκj discretization, which corresponds to a steering
angleφj .

At each control cycle a trajectoryai,j is chosen, cor-
responding to a control input(vl,i, φj) that is feasible
with respect to the environment constraints, e.g. obstacles
and goal directedness, but also according to the limitations
on the vehicle motion itself. The kinematic limitations on
the vehicle motion are the maximum longitudinal velocity
vl,max, the minimum allowed1 vehicle speedvl,min, and
the maximum steering angleφmax. The dynamic limitations
are the maximum longitudinal accelerationv̇l,max and the
maximum steering ratėφmax. The aim here is to define a
minimum set of arcs neccessary to take into account the
dynamic limitations of the vehicle at each time instant. From
Eq. 9 it follows that:

θ̈ =
vl

L cos2 φ
φ̇ +

v̇l

L
tanφ . (11)

Typically, the low-level steering control loop (e.g. power
steering) is faster than the longitudinal velocity control loop,
thus for small time increments the longitudinal velocity can
be considered constant with respect to the angular rate of
the vehicle. Therefore, the second term can be neglected in
Eq.11. Given that the vehicle is currently on a trajectory
defined by{vl, φ} and the steering rate is at its maximum
φ̇ = φ̇max, the curvature change within the kinematic level
control sample time-stepTs can be expressed as:

∆κ (φ) =
vl

L cos2 φ
φ̇maxTs . (12)

Taking the smallest curvature change within a control
cycle Ts such that switching between neighboring arcs is
feasbile according to steering limitations leads to the a-priori
number of arcs due to the curvature discretization:

Nκ = 2 · d tanφmax

L∆κ (φmax)
e+ 1 , (13)

taking into account the centralκ (φ = 0) = 0 separately.
Moreover, assuming the vehicle drives at its full longitudi-
nal acceleration capability, the number of arc sets due to
longitudial velocity discretization is obtained as:

Nvl
= dvl,max − vl,min

v̇l,maxTs
e . (14)

This minimum a-priori number of arcs can be further
refined for smoother kinematic control if computational
resources for testing each arc are available on-line. Although
the total number of arcs can be large, at each kinematic
control cycle only a small subset is dynamically feasible.
This idea is similar to the Dynamic Window approach [17]
which was first derived for a differential drive robot.

1unless the goal is reached or during an emergency brake



C. Configuration space feasible vehicle trajectories

In order to chose an optimal vehicle trajectory-arc at each
cycle Ts, each arc that is dynamically feasible is checked
for potential collision with obstacles. The global navigation
function of Sec. II provides the configuration space obstacle
regions. If a prohibited node is encountered along an arcai,j

that is less then timeTb,i = vl,i

v̇l,max
away from the starting

vehicle position, the arc is banned. For a prediction horizion
Th of vehicle motion along an arcai,j , the traversability cost
Γ(i,j)

t , cost to goalΓ(i,j)
g and orientation alignement to the

current reference point on the pathΓ(i,j)
o are given as:

Γ(i,j)
t =

Nι∑
ι=1

r
(
a
(ι)
i,j

)
, (15)

Γ(i,j)
g = v

(
a
(Nι)
i,j

)
, (16)

Γ(i,j)
o = 1− ‖∆θi,j(Ts)‖

π
, (17)

whereaι
i,j corresponds to a sampled point on the arcai,j ,

r(·) the risk of traversing the closest node on the graph
G, v(·) the value of the navigation function at the end of
the arc withNι being the number of discrete points. The
angle difference between the reference point position and
vehicle center to the actual vehicle orientation is∆θi,j(Ts) =
θd(Ts) − θi,j(Ts), for the simulated reference point and
vehicle position at timeTs. This forward simulation ensures
stable transition between arcs with respect to orientation
change.

According to the feedback scheme of the Eq. 7, the
longitudinal velocity taken at each cycle is the one that
minimizes the difference between the feasible longitudinal
velocities from the available arc set and the reference velocity
proportional to the current distance between the vehicle and
the reference pointρ:

v?
l = argmin

vl,i

{‖vl,i − µρ cos ∆θi,j(Ts)‖} , (18)

where µ = vmax

ρo
. This ensures that the kinodynamic con-

straints are satisfied with established feedback loop from the
reference point.

The optimal steering commandsφ? chosen at each control
cycle minimizes the total weighted sum cost:

φ? = argmin
φi?,j

{
Γ(i?,j) = γtΓ

(i?,j)
t + γgΓ(i?,j)

g + γΓ(i?,j)
o

}
.

(19)

V. I NTEGRATION

Our vehicle is a Smart fortwo passenger car that has been
modified for autonomous operation. SmartTer localization is
based on an information filter that fuses data from encoders,
an optical gyro for precise measurement of the heading angle,
an IMU for 6DOF motion estimation, and a differential GPS.
Three fixed laser scanners and two rotating laser scanners
acquire information for mapping, yielding traversability in-
formation and a 3D representation of the environment [8].

Fig. 2. Our autonomous Smart car platform. There are three fixed laser
range finders mounted on the front of the vehicle and on the sides of the
roof, and two spinning laser range finders mounted together on the center
of the roof.

To test our current integration efforts at an early stage,
the results presented below are based on runs simulated in
an environment created from logged real-world data. This
permits relatively fast and lightweight experimentation with-
out the risk of hardware failure and removes the complexity
of localization and mapping which would distract from
developing planning and execution. The simulation interacts
with the vehicle code through the same APIs as on the real
vehicle, so the effort involved in porting to the SmartTer is
reduced.

To generate this world representation we play back the
log files from test runs performed on our vehicle into a
high resolution traversabiltiy map which the simulator uses
to emulate the laser scanner on the vehicle. Based on this
artificial sensor data, cells that contain obstacles are extended
to configuration space to reflect the actual size of the vehicle.
As the Smart is not of circular shape and does not have a
differential drive, here a worst case estimation is done taking
into account the car’s size and steering system. As the Smart
is probably the most circle-like car in the market the risk of
potential lock because of too conservativeC-space extension
stays low.

While the car moves, thisC-space extended map is updated
from the laser readings and fed to the E∗ motion planner.
E∗ calculates an optimal path on this map and extracts a
local goal from that path that is handed to the local planner
described in section IV that controls the vehicle toward this
local goal.

VI. RESULTS

The first simulation illustrates the replanning behavior
with the help of a simplified example shown in fig. 3. The
robot discovers the traversability for each cell the front laser
scanner sweeps (unkown cells are supposed to be free). As it
progresses toward the goal, it adapts its plan as it incorporates
this new knowledge. In the top right zoom of fig. 3 it is about
to discover that the traversability of the region it enters is
very low. It then attempts to go around below the wall to the
right, as it has not yet discovered that there is no passage



Fig. 3. This exploration example illustrates replanning. In the lower left
you can see which parts of the environment have been discovered by the
robot (darker regions signify lower traversability, obstacles are green). On
the right you see two zooms to the robot position, with the navigation
function in blue (darker means closer to the goal) and the obstacles in pink.

(a) global view (b) zoom

Fig. 4. These reruns based on real data illustrate how the system would
perform on SmartTer. Note how obstacle are grown by the radius of the
vehicle.

there. Once the robot discovers the even less traversable
region to the right, the plan is adapted to turn back once
more and go through the previously more expensive passage
which now has a lower accumulated traversability cost (see
the loop-back trajectory in the lower right).

In fig. 4, real data acquired from a run with SmartTer
on our campus has been fed into the simulator in order to
study real-world cases. Here, instead of directly discovering
traversibility as in the simplified example above, we use
simulated laser scans to feed theC-space traversibility map.
Changes are accumulated until a threshold is reached and
then the navigation function is updated by propagating out

these changes until the wavefront reaches the robot.

VII. C ONCLUSION AND OUTLOOK

We have presented the autonomous driving system we
are developing on the SmartTer vehicle. Traversibility-map
based planning and kinodynamic path tracking have been
described in detail. With E∗ we directly receive smooth
navigation functions, which avoids post-processing – the path
can be directly fed into our controller, which has proven its
performance in outdoor tests on the SmartTer in urban and
offroad environments.

As mentioned in the introduction, the system presented
here is an improvement over a previous version, and we
focussed on the integration of E∗ and high-performance
dynamical path tracking. It is still work in progress and
the results we have presented are based on simulations to
show that the algorithms work properly together. Next will
come the integration on the updated vehicle, with the goal
of testing autonomous driving and 3D mapping approaches.

REFERENCES

[1] M. Shell, “Final report of the european esafety working group
on road safety, online available,” 2003. [Online]. Available:
http://europa.eu.int/informationsociety/activities/esafety/indexen.htm

[2] C. Thorpe, T. Jochem, and D. Pomerleau, “The 1997 automated high-
way demonstration,” in1997 International Symposium on Robotics
Research, 1997.

[3] “Darpa grand challenge race website.” [Online]. Available:
http://www.darpa.mil/grandchallenge

[4] A. Kelly, “An intelligent predictive control approach to the high speed
cross country autonomous navigation problem,” Ph.D. dissertation,
Carnegie Mellon University, 1995.

[5] A. Stentz and M. Hebert, “A complete navigation system for goal
acquisition in unknown environments,”Autonomous Robots, vol. 2,
no. 2, pp. 127–145, 1995.

[6] O. Brock and O. Khatib, “High-speed navigation using the global
dynamic window approach,” inIEEE International Conference on
Robotics and Automation (ICRA), 1999.

[7] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja, and
K. Schwehr, “Recent progress in local and global traversability for
planetary rovers,” inIEEE International Conference on Robotics and
Automation (ICRA), 2000.

[8] P. Lamon, S. Kolski, and R. Siegwart, “The SmartTer - a vehicle for
fully autonomous navigation and mapping in outdoor environments,”
in Proceedings of the CLAWAR, Brussels, Belgium, 2006.

[9] J.-C. Latombe,Robot motion planning. Dordrecht, Netherlands:
Kluwer Academic Publishers, 1991.

[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1,
1986.

[11] S. Koenig and M. Likhachev, “D* lite,” inProceedings of the National
Conference on Artificial Intelligence (AAAI), 2002.

[12] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: The Field D* algorithm,”Journal of Field Robotics, vol. 23,
no. 2, pp. 79–101, Feb. 2006.

[13] J. Sethian,Level Set Methods – Evolving interfaces in geometry,
fluid mechanics, computer vision, and materials science. Cambridge
University Press, 1996.

[14] R. Kimmel and J. Sethian, “Computing geodesic paths on manifolds,”
Proc. Natl. Acad. Sci. USA, vol. 95, no. 15, pp. 8431–8435, July 1998.

[15] R. Philippsen and R. Siegwart, “An interpolated dynamic navigation
function,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2005.

[16] K. Macek, I. Petrovic, and R. Siegwart, “A control method for stable
and smooth path following of mobile robots,” inProceedings of the
European Conference on Mobile Robots, 2005.

[17] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,”IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, March 1997.


