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Abstract—We present an autonomous driving system that is ‘ mum_'l‘:jg:::fce s H Traversability ‘
capable of planning, replanning, and executing paths for driving
in urban and offroad environments. For planning, we rely on T L
the E* algorithm which computes a smooth navigation function Localisation Path Planning ‘
that takes into account traversibility information extracted from aD positon information fier e
laser scans. The path execution algorithm is centered around L
a kinodynamic controller which follows the gradient of the Mapping Sensors
navigation function. This work is based on prior experience with B O mera Path Execution

look-ahead dynamic control

the SmartTer vehicle, which we are in the process of updating,
and the focus is on integration.
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Every year, thousands of people are killed in road acci- | ssicxs brake
dents, with millions more injured. The vast majority of these
accidents are due to human error, with roughly 5% causddp- 1. System Overview of the SmartTer autonomous vehicle. The sensors
by vehicle defects [1]. Such staggering findings motivate thl%rowde information for localization, mapping, and navigation. During

- : -~ localization of the robot using sensor-fusion based on a 3D information
use of driver assistant systems and fully automated vehicl@er, a 3D map is built and traversability data extracted. The planner uses

to increase driver and passenger safety. this information to plan a smooth navigation function that trades off collision
sk versus detours. Finally, path execution is based on a kinodynamic model

Driver aS,SIStant systems Ca_n help dr-|vers to Identlfy da'i_)l_f the vehicle and uses a look-ahead of the navigation function in order to
gerous vehicle states and traffic scenarios and reduce the réskose motion commands that follow the gradient toward the goal while
of accidents. These driver assistant systems are widespreggpecting safe driving conditions and dynamic limits.
in all categories of vehicles and range from anti-lock brakes
to radar based adaptive cruise control. The development of ) ) )
these systems has been accelerated by integrated drive-by@QUr previous work with theSmarTerautonomous vehi-
wire components such as electronic gas pedals, brakes, [8] demonstrates reliable localization and allows us to
steering systems. assemble 3D maps of an outdoor environment. However, we
The development of such components has also haster@g0 identified potential areas of improvement and are cur-
the arrival of autonomous passenger vehicles. In 1997, tf@ntly updating to new sensor technology, optimizing scanner
NavLab vehicles travelled ‘no hands’ across the Unite?Ount points, and integrating another planning algorithm
States, requiring only accelerator and brake pedal interacti@?d improving its link with path execution. The medium
from the driver [2]. In 2005, 23 autonomous vehicles starteferm goal is a robust experimental platform with stable basic
a race across the Nevada desert in the DARPA GrantRvigation on which further research can rely.
Challenge race [3], with 5 of them finishing the 211.1 Km This paper concentrates on the integration of the E
distance. planner and a novel algorithm for path tracking that takes into
Most of these systems depend on environmental structu@gcount kinodynamic constraints. Fig. 1 shows the overall
like driving lanes or dense sets of GPS points. However, ifystem components. In section Il we describe the compu-
many common driving scenarios neither of these sources &#ion of smooth navigation functions using,Esection IlI
information will be available, for examp|e, when |eaving aprovides details about the interpolation method that allows to
road and entering a parking lot. achieve this, section IV presents our path execution approach,
Autonomous navigation in unstructured environments ignd in section V we explain how these components have been
an active research area in field robotics, and a number titegrated.
effective approaches have been developed that address this
task [4], [5], [6], [7]- A common technique is to maintain a
map of the environment and use this to plan safe paths to aMobile robot path planning approaches can be divided
desired goal location. As the vehicle traverses the enviromto five classes [9]. Road maps, exact and approximate
ment, it updates its map and path based on its observationsll decompositions, potential fields [10], and navigation

Il. INTERPOLATEDPATH REPLANNING WITH E*



functions. E is a graph-based method for computing smooticonjunction with the estimated(c) to calculate the queue
navigation functions. key asmin(v(c), rhs(c)). When therhs and value of a node
equal each other, the node is called (locally) consistent.
A. The E Approach Wavefront propagation drives the algorithm towards a state
In order to resolve the problem of discrete path choiceghere all nodes are locally consistent.
encountered in traditional graph based methods, the Con-Graph-based p|anners often use a Spanning tree to trace
cept underlying E is formulated in the continuous domainthe path from the robot to the goal* Eextends this to a
indep_endently of any specifi€-space representatic_m. Thedirectedupwind graphU with unique edgesc,, ;) € U =
algorithm computeg-space samples of a crossing-time magc, ¢,) ¢ U. It allows to retrieve the upwind set/(c)
defined by the monotonic expansion of a continuous closesf nodes that were involved in computingc) as well as
surface or a contour from the goal through the environthe downwind setD(c) of nodes that were influenced by
ment. By modulating the propagation speed in functiop(c). All descendants of a node can be determined if its
of environment characteristics, i.e. the effort of traversingnvironmental information changes.

certain regions, the crossing-time map becomes a navigationg* is independent of the interpolation method, as long as it
function that reflects the influence of the environment on thﬁéspects some constraints and Kegnel form given in (1).
optimal-path of the robot, and it suffices to follow its steepesthe details of kernels are beyond the scope of this paper,
gradient from any point to drive the robot to the goal. Theynd we only preserit sy Which is a good trade-off between
continuous formulation allows us to interpolate “between'smoothness and computational effort. An interpolation kernel
edges, which resolves the issue with movement choices aj;ajs a function that estimates the crossing-time value of

fundamental level. a node, based on the risk (or effort) of traversing it, in
The monotonicity of the E navigation function stems conjunction with the values of its neighbors.

from the upwind property: The wavefront can be interpreted

as the envelope of all possible locations the robot can (u, B) = k(c, Q) (1)
reach if it starts on the goal and always moves with the ] .
maximum allowed speed. This envelope is ever expandinghere v is the new value for node, B C Q(c) is the
which allows us to uniquely determine the region of influenc&®t of neighbors used in the computation«ofand Q(c)

of each location by tracing the propagation direction. IfS the propagator ot at the time of expansion (2), which

a location is subsequently modified, it is thus possible t§NSures that only valid candidate neighbors are provided to
determine which portions of an existing crossing-time mafhe kernel.

can be kept intact, and which portions need re-computation.

This is the key to efficient replanning by reducing the effort Qc) ={n € N(c) | v(n) < oo} (2)

of incorporating new environmental information. where N(c) is the set of neighbors (adjacent nodes)cof

B. The E Algorithm Nodes with infinite value are either obstacles or have not
e%een expanded yet, such as after initialization or following an

The environment in which the robot evolves is represent Acrease in'(c). Q is ordered by ascendingof the contained
as an undirected grapi embedded in configuration Spacenodes:v(Qq;) < 0(Q;) Vi < j. It is possible forQ to be

C. Note that grids, which are used for the traversability

. : L . ‘empty (2 = {}) or contain a single nodeQX = {Q1}).
mformatlon of the system pre_sented in this papers, fal IntPiandling these cases is part of the required properties for a
this category. Several properties are attached to the nodes

G two of which are relevant for a high-level understandin kernel. B must accurately reflect the information used for the
' 9 g(':omputation ofu. This is required such that modifications
« The value v(c) > 0 represents the sample of they, the environment model can be consistently propagated to
continuous crossing-time map at the nodeor the 4| concerned nodes.
“height” of the navigation function. _ _ Listing 1 shows pseudo-code forE{g;} is the set of

« The difficulty or cost of traversing a given conflguratlongoa| nodes,IV denotes the wavefront queue, and (y
is encoded in the traverseffortor riskr(c) € [0,1]. A 5 the key with whiche has been inserted intd/. Note
lower 7 implies a higher wavefront propagation speedinai p(c) in line 23 has to be copied, because the call
Note that the risk is actually stored aeta-information UpdateVertex{) changes the upwind graph. Proce-
m(c) to keep E independent of the interpolation y e ComputePropagatoy(applies equation (2), Pop()

method. removes and returns the top node fréth and TopKey{V)
Nodes that awaitexpansion which is the elementary returns the key of the top node oc.

propagation step from a given node to its neighbors, are

queued in thevavefront Planning proceeds until the wave- II. INTERPOLATION APPROACH

front is empty or the node containing the robot has been In this section we present the interpolation kernel used
expanded. The wavefront is ordered by ascendlsgwhich  for the SmartTer planning system. It is denotedy be-

is designed to result in a strictly upwind propagation ordecause it is based on theevel Set Method13], which
Similarly to D*-Lite [11] and Field-D [12], a one-step provides a robust grid-based algorithm for calculating the
lookahead of the crossing time callets-value is used in time-dependent position of an evolving curve. It is applicable



Listing 1 Pseudo code of the core procedures in E

procedure Requeuef)

01 if v(c) = rhs(c) T A +h/F < Te—Ta > h/F
82 elslfec € W then removec from W ﬁ + /752 ) otherwise
04 ifegw | | §= (T +To)
05 insertc with key = min(v(c), rhs(c)) into W 11272 p2 2
8? else if ke@ # m‘;l(v(c),rhs(c)) T=3 ( AT 1c /F?) @
remaovec frrom
08 insertc with key = min(v(c), rhs(c)) into W whereT andTc are the values of the best neighbalisis
83"3‘?‘;2 %pv‘;ateve”ex@ the distance between two neighbors, @hi the propagation
10 Q HgéomputePropagatm'X speed ati, j). Recall thatlx < T¢ and note that” — 0 =
11 (rhs(c), B) < k(c,Q) T — oo. The final equations fok sy are given in (5).
12 for allu € U(c) remove(u, c) from U
13 forallb € B
14 if (¢,b) € U then remove(c, b) from U
15 add(b, ) to U (u, B) = kism(c, Q)
16 Requeuei)
procedure Propagate() u="T
17 ¢+ PopW) T —Tax > h/F
18 if v(c) > rhs(c) = {Q1} = C_ A2 h/
19  w(c) « rhs(c) {Q1,Q2} otherwise
20 for alln € N(c) UpdateVertext) Ta = U(Q1) (5)
21 else
§§ ?(C)fdooD()Udtvtn@ Tc = > < Q=1{}
or a S 4 paateverte: - .
24 UpdateVertex() U§Q2) otherwise
procedure main() F=m(c
25 initialize rhs(c) = v(c) = 00 Ve € G (
26 initialize goalrhs(g) =true distance’g € {g;} Nodes which do not have neighbors of tyfpe@andC, such

27 initialize W with {g;} i lls on the grid border, use the
28 while (hs(crobon) 7 »(crobod) OF TOpKEYW) < v(crapod) as neighbors of obstacles or ce g '

29  if W = {} then the goal is unreachable fallback solutionTa + h/F.
30 Propagate()
V. PATH FOLLOWING - EXECUTION

Having computed a navigation function with* Ethe
guestion arises of how to control the vehicle’s motion such

propagation speed is always positive and depends on positi t it tracks the potential’s gragient unt.il _the goal is reached.
only, we can use the more efficient special case cafest The novelty presented here is combining arc based low-

Marching [14]. It is calculated on aV-dimensional grid: level trajectory generation with global path following. The
reference point feedback loop to vehicle controls, based on

local path configuration, ensures smooth and stable path

1 following. It avoids oscillations often caused by replanning
2 ®3) or the holonomicity of gradient descent. Furthermore, the

‘ low-level arcs which are kinodynamically feasible are tested
whereT, is the crossing time of the wavefront for a grid cell,to ensures secure vehicle commands in the presence of ob-
with . an N-dimensional indexF; is the propagation speed, stacles, based on traversability information. The algorithm is
and D**: is the finite difference that replaces the continuousalled “Traversability-Anchored Dynamic Path Following”.
V, with z; an axis of the grid. ) )

The two-dimensional implementation éfsy is a first- A. Reference point dynamics
order upwind interpolation scheme for (3). The finite dif- Following the negative gradient of the global navigation

when theC graph G is a regular grid. For E where the

N
Z max(D~*T,,0)* + min(D**'T,,0)?) =

=1

ference expressions are of the for*'T;; = (7;; — function from the current vehicle positio{z,y} to
T;i-1,5)/h, where we substituted= (i, j) and is the grid the goal {g.,g,}, the reference path is a set of points
resolution (distance between two nodes). {era=c;k=1,...,Ng,c1 ={x,y},en, = {929y} }-

Developing D**:iT}; leads to a quadratic equation with This path is further smoothed to give a reference gas)
coefficients that take values based on a switch on the sigvhich is described with the curvilinear parametemnd curve
and magnitude of the finite difference operators. gradient||C,.'(s)|| = /p"2(s) + ¢"%(s) # 0,Vs € [0, s¢].

It is possible to determine the terms that will yield the The kinematic level control objective is to find a longi-
optimal solution beforehand. Interpolation implies using upudinal velocity v; and steering angle of the vehicle to
to two neighbors, which need to lie on different axes. Withoufollow the reference pathi, given by the global planner. In
loss of generality, it can be assumed that the two neighboparticular, a desired reference point is definedCp(s,) as:
leading to the best interpolation afeandC, and thatT) <
Tc. The final expression for the crossing-time interpolation g = p(sa)
is (4), see [15] for a detailed development. ya = q(sq),(0<sq<sg). (6)



In contrast to the commonly used path following approackiv;, ¢}. Therefore a set of arc vehicle trajectories can be
using orthogonal projection of the vehicle position to thelefined as:
curve C,. with a fixed lookahead, here the position of the . .
" . . . ’ . . = 4.7 — .5 Yi5 05 :1-~-Nv7 :1N/1 5
reference point is defined by dynamics of the curvilinear A=Aais ={wijvighii J }(10)

pa(rjamelzter_? Wh'_Ch 1|r;)c.ludes feedback on the vehicle pos(i’/vhereNm denotes the number of arc sets due to longitudinal
and velocity as in [16]: velocity v; ; discretization andV, the number of arcs due to

curvatures; discretization, which corresponds to a steering
Coeiapvmam,l

fa= e ment 1y 2 etan(ou(p) |, (1) An9e9r . .
P2(8) + q'2(s) ™ At each control cycle a trajectory, ; is chosen, cor-

5 5 _ responding to a control inputv;;,¢;) that is feasible
wherep = /Az” + Ay? is the current lookahead distanceih respect to the environment constraints, e.g. obstacles
with Az = 24 — z, Ay = yq —y and v, the vehicle’s

_ , o X and goal directedness, but also according to the limitations
max longitudinal velocity. The factar, = e**~ normalizes

S ~> on the vehicle motion itself. The kinematic limitations on

the curvilinear speed, where thg represents the nominal yhe ehicle motion are the maximum longitudinal velocity

lookahead distance and is the convergence rate towardsvl the minimum allowed vehicle speedv; ,nin, and
max ,mins

it. Essentially, in nominal condition when the reference patfha maximum steering angl&,... The dynamic limitations
is straight and no obstacles are near, as described furtherjiny the maximum IongitudinaizacceIeratia‘m and the
imazx

Sec. IV-C, both vehicle and reference point travebgt, .. maximum steering raté,,... The aim here is to define a

and the lookahead distance is the nomipal minimum set of arcs neccessary to take into account the

However, when significant curvature changes are encoufiynamic imitations of the vehicle at each time instant. From
tered, the vehicle must slow down to follow the path at a saf'gq 9 it follows that:

error margin. In order to quantitatively describe the necessary

vehicle steering activity along, a curvature effort term was §— LQ¢ + Ltang. (11)
introduced in [16]: Lcos® ¢ L
N Typically, the low-level steering control loop (e.g. power
2 i 1Ak As; Y g .
x(p) = &=L L Vp>0. (8) steering) is faster than the longitudinal velocity control loop,
P thus for small time increments the longitudinal velocity can

The smooth reference path is described as a collectidre considered constant with respect to the angular rate of
of dense waypoint (z4(s), ya(s)) : s = (s1,s2...,sn,)}  the vehicle. Therefore, the second term can be neglected in
and N, denotes the number of points up to the referencEq.11. Given that the vehicle is currently on a trajectory
point p. Here, Ax; = k; — k;,—1 is the incremental change defined by{v;, ¢} and the steering rate is at its maximum
in curvature andAs; = s; — s;_1 is the incremental change ¢ = ¢nq2, the curvature change within the kinematic level
in parameteis that may be unequally spaced. Eg. (8) takesontrol sample time-step, can be expressed as:
into account all curvature (thus also direction) changes along
the reference path up to the current reference point. If the Ak (¢)

= maaTs. (12)
) A . Lcos? ¢
curvature effort isy(p) = 0 then the vehicle is moving . o
along a path with no curvature change, i.e. a straight or Taking the smallest curvature change within a control

circular path segment, and it may proceed at maximuffycle Zs such that switching between neighboring arcs is
speed provided other constraints are satisfied. The fajctorfeaSb”e according to steering I|m|tat|on_s Iea(_js to the a-priori
essentially determines how fast the reference point will slogUMper of arcs due to the curvature discretization:

down in the presence of obstacles, thus increasing the safety Ne=2.[ tan ¢paq 141 (13)
margin for larger¢ but also rendering the vehicle drive less " LA (¢maz) ’

speed-efficient. Therctan is a saturation funtion for large taking into account the central (¢ = 0) = 0 separately.
curvature efforts where both reference point and the vehicloreover, assuming the vehicle drives at its full longitudi-
slow down significantly. nal acceleration capability, the number of arc sets due to
longitudial velocity discretization is obtained as:

Uy

B. Kinodynamically feasible vehicle trajectories

The description of the car motion is based on the Acker- N,, = [M} . (14)
mann kinematic model: Ot.maaTs

This minimum a-priori number of arcs can be further
refined for smoother kinematic control if computational
resources for testing each arc are available on-line. Although
the total number of arcs can be large, at each kinematic
control cycle only a small subset is dynamically feasible.
This idea is similar to the Dynamic Window approach [17]
|which was first derived for a differential drive robot.

z = cosfuy, ) = sin Qv , 9:%tan¢, 9)

with {z,y, 0} being the robot pose anfd;, ¢} the longitu-
dinal velocity and steering angle as control inputs éntthe
axes distance of the front and rear wheels.

According to the Ackermann kinematics, the vehicle fo
lows a circular path for a given kinematic level control input unless the goal is reached or during an emergency brake



C. Configuration space feasible vehicle trajectories

In order to chose an optimal vehicle trajectory-arc at each
cycle T, each arc that is dynamically feasible is checked
for potential collision with obstacles. The global navigation
function of Sec. Il provides the configuration space obstacle
regions. If a prohibited node is encountered along arugyc
that is less then timd; ; = Ul”lm away from the starting
vehicle position, the arc is banned. For a prediction horizion
T, of vehicle motion along an arg; ;, the traversability cost
Fg’"j), cost to goaIF_ff’j) and orientation alignement to the

current reference point on the palﬂé"”j) are given as:

o N, Fig. 2. Our autonomous Smart car platform. There are three fixed laser
F(m) _ Z r (a(-L)) (15) range finders mounted on the front of the vehicle and on the sides of the
t — vy )7 roof, and two spinning laser range finders mounted together on the center
N =1 N of the roof.
Fg”) v (al(-vjf)) , (16)
F(()i,j) - 11— w, (17) To test our current integration efforts at an early stage,
T the results presented below are based on runs simulated in

wherea; ; corresponds to a sampled point on the afg, an environment created from logged real-world data. This
r(-) the risk of traversing the closest node on the grappermits relatively fast and lightweight experimentation with-
G, v(-) the value of the navigation function at the end ofout the risk of hardware failure and removes the complexity
the arc with N, being the number of discrete points. Theof localization and mapping which would distract from
angle difference between the reference point position ardkveloping planning and execution. The simulation interacts
vehicle center to the actual vehicle orientatiol\®; ;(T,) =  with the vehicle code through the same APIs as on the real
04(Ts) — 6, ;(Ts), for the simulated reference point andvehicle, so the effort involved in porting to the SmartTer is
vehicle position at timd’,. This forward simulation ensures reduced.
stable transition between arcs with respect to orientation To generate this world representation we play back the
change. log files from test runs performed on our vehicle into a
According to the feedback scheme of the Eq. 7, thhigh resolution traversabiltiy map which the simulator uses
longitudinal velocity taken at each cycle is the one thato emulate the laser scanner on the vehicle. Based on this
minimizes the difference between the feasible longitudinalrtificial sensor data, cells that contain obstacles are extended
velocities from the available arc set and the reference velocity configuration space to reflect the actual size of the vehicle.
proportional to the current distance between the vehicle aks the Smart is not of circular shape and does not have a
the reference poing: differential drive, here a worst case estimation is done taking
into account the car’s size and steering system. As the Smart
is probably the most circle-like car in the market the risk of

] ) ) potential lock because of too conservatixspace extension
where ;, = %maz This ensures that the kinodynamic CON=stays low.

straints are satisfied with established feedback loop from the\yhile the car moves, thié-space extended map is updated

v; = argmin {||v;; — ppcos A0, ;(Ts)||}, (18)

Vi,i

reference _point. _ from the laser readings and fed to thé Eotion planner.
The optimal steering commangs chosen at each control g« cajculates an optimal path on this map and extracts a
cycle minimizes the total weighted sum cost: local goal from that path that is handed to the local planner
N . i i*.j i i described in section IV that controls the vehicle toward this
v Ty {F( D=l g T 49T J)} " local goal.
o (19)
VI. RESULTS

V. INTEGRATION The first simulation illustrates the replanning behavior

Our vehicle is a Smart fortwo passenger car that has bewiith the help of a simplified example shown in fig. 3. The
modified for autonomous operation. SmartTer localization iBbot discovers the traversability for each cell the front laser
based on an information filter that fuses data from encoderscanner sweeps (unkown cells are supposed to be free). As it
an optical gyro for precise measurement of the heading angfgrogresses toward the goal, it adapts its plan as it incorporates
an IMU for 6DOF motion estimation, and a differential GPSthis new knowledge. In the top right zoom of fig. 3 it is about
Three fixed laser scanners and two rotating laser scannéosdiscover that the traversability of the region it enters is
acquire information for mapping, yielding traversability in-very low. It then attempts to go around below the wall to the
formation and a 3D representation of the environment [8].right, as it has not yet discovered that there is no passage



these changes until the wavefront reaches the robot.

VII. CONCLUSION AND OUTLOOK

We have presented the autonomous driving system we
are developing on the SmartTer vehicle. Traversibility-map
based planning and kinodynamic path tracking have been
described in detail. With £ we directly receive smooth
navigation functions, which avoids post-processing — the path
can be directly fed into our controller, which has proven its
performance in outdoor tests on the SmartTer in urban and
offroad environments.

As mentioned in the introduction, the system presented
here is an improvement over a previous version, and we
focussed on the integration of*Eand high-performance
dynamical path tracking. It is still work in progress and
the results we have presented are based on simulations to
show that the algorithms work properly together. Next will
come the integration on the updated vehicle, with the goal
of testing autonomous driving and 3D mapping approaches.

(1]
Fig. 3. This exploration example illustrates replanning. In the lower left
you can see which parts of the environment have been discovered by the
robot (darker regions signify lower traversability, obstacles are green). Orj2]
the right you see two zooms to the robot position, with the navigation
function in blue (darker means closer to the goal) and the obstacles in pink.

(3]
(4]
(5]
(6]

(7]

(8]

(a) global view

(9]

(b) zoom

Fig. 4. These reruns based on real data illustrate how the system wo&ilcP]
perform on SmartTer. Note how obstacle are grown by the radius of the
vehicle. [11]

[12]
there. Once the robot discovers the even less traversable
region to the right, the plan is adapted to turn back oncgs3]
more and go through the previously more expensive passage
which now has a lower accumulated traversability cost (se{§4]
the loop-back trajectory in the lower right).

In fig. 4, real data acquired from a run with SmartTef15]
on our campus has been fed into the simulator in order to
study real-world cases. Here, instead of directly discoverings]
traversibility as in the simplified example above, we use
simulated laser scans to feed tfiespace traversibility map. 17
Changes are accumulated until a threshold is reached and
then the navigation function is updated by propagating out
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