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Abstract— We present a sampling-based path planning al-
gorithm capable of efficiently generating solutions for high-
dimensional manipulation problems involving challenging inverse
kinematics and complex obstacles. Our algorithm extends the
Rapidly-exploring Random Tree (RRT) algorithm to cope with
goals that are specified in a subspace of the manipulator
configuration space through which the search tree is being grown.
Underspecified goals occur naturally in arm planning, where the
final end effector position is crucial but the configuration of the
rest of the arm is not. To achieve this, the algorithm bootstraps an
optimal local controller based on the transpose of the Jacobian to
a global RRT search. The resulting approach, known as Jacobian
Transpose-directed Rapidly Exploring Random Trees (JT-RRTs),
is able to combine the configuration space exploration of RRTs
with a workspace goal bias to produce direct paths through
complex environments extremely efficiently, without the need for
any inverse kinematics. We compare our algorithm to a recently-
developed competing approach and provide results from both
simulation and a 7 degree-of-freedom robotic arm.

I. INTRODUCTION

Path planning for robotic systems operating in real envi-
ronments is hard. Not only must such systems deal with the
standard planning challenges of potentially high-dimensional
and complex search spaces, but they must also cope with im-
perfect information regarding their surroundings and perhaps
their tasks, dynamic environments, and limited deliberation
time. As such, planning algorithms used by these systems
must be extremely efficient to generate solutions that can be
executed quickly while they are still applicable.

In response to these demands, researchers have developed
sampling-based algorithms that rapidly generate solutions in
very high-dimensional search spaces. One of the most widely-
used of these algorithms is the Rapidly-exploring Random
Tree (RRT) algorithm [1]. This algorithm grows a search tree
out from an initial position in the search space (the initial
configuration) and uses random sampling of the search space
to bias the growth of this tree towards unexplored regions.
Consequently, it explores the space extremely efficiently. Be-
cause randomization is used to grow the tree, the algorithm
copes well with both very high-dimensional search spaces and
very large branching factors. Further, the RRT algorithm can
bias its search towards a particular goal configuration, which
significantly improves its efficiency in generating a solution to
a given planning problem.

Fig. 1. The Barrett Whole Arm Manipulator (WAM) used for manipulation
in populated indoor environments.

Because of their ability to solve very complex, high-
dimensional planning problems and their relative ease of im-
plementation, RRTs have been used in a huge range of motion
planning scenarios [1], [2], [3], [4], [5]. In particular, they
have been used for high-dimensional manipulation planning
[6], which is our current focus. In this scenario, the aim is to
generate a trajectory for a manipulator to take it from some
initial configuration to a desired goal. However, in contrast to
many of the other domains in which RRTs have been used,
in manipulator planning the goal is usually not specified as a
single desired joint configuration, but rather a desired location
in workspace of the end effector of the arm. For example, if we
are trying to solve a grasping problem in which we want our
robotic arm to pick up a cup for us from the sink, we are trying
to figure out how it can plan to have its hand (end effector)



(a) (b) (c)
Fig. 2. Redundant Manipulators can have an infinite number of configurations corresponding to the same end-effector pose in space. Figures (a) through (c)
show three different configurations of our WAM that result in the same hand pose.

make particular contact with the cup. Unfortunately, if we are
dealing with a redundant manipulator, then this end effector
workspace goal corresponds to a potentially infinite number
of configuration space goals for the manipulator. Further, no
closed-form solution exists for solving the mapping from
workspace goal to configuration space goal(s) for complex
manipulators.

As a result, the standard RRT algorithm does not perform
exceptionally well in this problem domain. Instead, other
approaches have been developed that attempt to directly ad-
dress this inverse kinematics challenge. However, all of these
approaches have limitations, as we discuss in the following
section.

In this paper, we present an extension to the RRT algorithm
that is able to overcome the problem of inverse kinematics by
exploiting the nature of the Jacobian as a transformation from
configuration space to workspace. The resulting algorithm is
able to harness the power of the RRT algorithm for exploring
very high-dimensional spaces while also being able to focus
its search towards a desired goal in workspace.

We begin by discussing the problem of inverse kinematics in
redundant manipulator planning and describe existing planning
algorithms that attempt to deal with this problem. In particular,
we discuss a recent algorithm by Bertram et al. [6] that does
a nice job of extending the RRT algorithm to operate without
requiring a solution to the inverse kinematics of the manipu-
lator. We then describe an analytical method for producing a
configuration-space trajectory that follows a workspace path.
We use this method to develop an RRT-based algorithm that
is able to efficiently focus its search towards a goal specified
in workspace, while still exploring configuration space. We
provide a number of results comparing our algorithm to the
current state of the art in manipulation planning and illustrate
its effectiveness in both simulation and on a physical 7 DOF
manipulator arm.

II. REDUNDANT MANIPULATOR PLANNING

The standard path planning problem can be formulated as
a search for a path from some initial configuration qstart

of a system to some desired goal configuration qgoal. The
configuration space through which this path is searched for

represents the set of all possible states or permutations of
the system. In robotic manipulation, where we have a robotic
system comprised of several links connected to each other
through various joints (see Figure 1 for an example such
robot), the configuration space corresponds to all the different
shapes the arm can make in space. Each of these shapes is
formed by a unique set of joint angles (and/or joint offsets
for robots with prismatic joints), and the configuration space
is thus exponential in the number of joints contained in the
manipulator. In such cases, a configuration of the system is
the set of angles for the joints for a particular shape.

Because the configuration space for a manipulator with
several joints can be extremely vast and high-dimensional,
classical planning techniques based on discretizing the con-
figuration space and then deterministically searching through
this space (e.g. Dijkstra’s search [7] or A* [8]) are usually far
too memory and computation intensive to generate solutions to
manipulator path planning problems. Instead, sampling-based
planning techniques have shown themselves to be very well
suited to this class of planning problem. Perhaps the most
popular sampling-based algorithm in robotics is the Rapidly-
exploring Random Tree (RRT) algorithm [1].

RRTs search for paths through configuration space by
growing a search tree from the initial configuration qstart and
trying to connect this tree to the goal configuration qgoal. To
do this, they randomly sample points in the full configuration
space and then attempt to extend the search tree out towards
these points. As a result, the growth of the tree is biased
towards previously unvisited regions of the configuration space
and exploration occurs very quickly.

As mentioned earlier, they can also be made far more effi-
cient by focusing their growth more directly towards the goal.
To do this, rather than randomly sampling points to extend
towards at every iteration of the algorithm, they occasionally
(with some probability pg) select the goal configuration as the
point to extend the tree towards. This has the effect of pulling
the tree in the direction of the goal and usually produces
solutions for significantly less computation. This goal bias is
a very important feature of the RRT algorithm as it improves
the chances of reaching within a desired tolerance of the goal
without needing to explore the entire configuration space to



Fig. 3. The Jacobian transpose provides a mapping from joint space to workspace that enables the manipulator to approximately traverse a workspace path.
This mapping can be used to extend our configuration space search tree towards a goal specified in workspace.

that tolerance.
For most robotic path planning problems, constructing this

desired goal configuration qgoal is straightforward: we know
where we would like the robotic system to end up, and we can
figure out where that location corresponds to in the robot’s
configuration space. However, when dealing with redundant
manipulators, such as our 7 link robotic arm, solving for
this mapping from workspace to joint space known as the
manipulator’s inverse kinematics is extremely challenging.
In fact, for manipulators with more than six links there is
no closed-form solution to this problem [9], and even for
manipulators with six or fewer links there may be an infinite
number of configuration space states that result in the same
workspace state.

Researchers have investigated various ways of getting
around this problem. Classically, the most common approaches
use numerical approximation to compute a solution to the
inverse kinematics (IK) problem [10]. However, as described
in [6], these approaches can fail to converge to a valid solution
and are usually limited to finding only one of the potentially
infinite number of solutions. This can be particularly disadvan-
tageous for manipulator planning in environments containing
obstacles because it is likely that the single configuration space
goal returned may be unreachable. Even if no obstacles are
present, this goal still may not be feasible given the limitations
of the mechanism.

To overcome the limitations of these numerical
approximation-based techniques, Bertram et al. [6] developed
a nice extension to the RRT algorithm that removes the need
for an inverse kinematics solution and can handle a goal
specified in the workspace of the manipulator end effector.
In their approach, rather than selecting the goal configuration
as the sample point to extend the tree towards (with some
probability pg), they select the configuration in the search
tree that is closest to the workspace goal using a workspace
distance metric and then extend out from this configuration
in a random direction. This algorithm has a number of nice
properties relative to the numerical IK approximations and
standard RRT approach. First, no explicit inverse kinematics
is required for planning. Secondly, all configurations reached
during the search are valid, so there is no problem of planning
to invalid goal configurations based on inaccurate inverse

kinematics. Finally, because the workspace goal is used to
influence the growth of the tree, convergence is typically
much faster than with the standard RRT algorithm.

The algorithm we present in the following sections shares
the same motivation as that of Bertram et al.’s, namely, it
attempts to remove the need for explicit solutions to the
inverse kinematics problem without sacrificing the efficiency
of the resulting planning process. However, our approach
tries to exploit the workspace goal even further to improve
convergence. Rather than randomly extending the search tree
out from the node closest to the workspace goal, it computes
the best extension from this node towards the goal. In the
following section we describe how this extension can be
calculated.

III. EXPLOITING THE JACOBIAN

Given a robot arm configuration q ∈ Q and a desired
end-effector goal xg ∈ X , where X is the space of end-
effector positions R3 (or poses SE(3)), we are interested
in computing an extension in configuration space from q
towards xg . Unfortunately, the mapping from Q to X is
usually nonlinear and very expensive to compute. However,
its derivative, called the Jacobian, is a linear map from the
tangent space of Q to that of X , is expressed as Jq̇ = ẋ, where
x ∈ X is the end-effector position (or pose) corresponding to
q, and can be computed quickly.

Ideally, to drive the end-effector to a desired configuration
xg , we could compute the error e = (xg − x) and run a
controller of the form q̇ = kJ−1e, where k is a positive gain.
In the absence of any obstacles, internal collisions, or joint
limits, this simple controller is guaranteed to reach the goal.
Unfortunately, in the absence of a closed form solution, the
computation of the inverse of the Jacobian must be done nu-
merically at each time step. There have been several numerical
methods suggested for computing the inverse, ranging from
efficient coordinate descent techniques[11], [12], [13], [14],
to function approximators which learn an approximation of
the inverse mapping[15], [16]. These techniques are, however,
orders of magnitude slower than just computing the Jacobian.

An alternate approach, first presented in [17], is to use the
transpose of the Jacobian instead of the inverse. This results in
a control law of the form q̇ = kJT e. The controller eliminates



Fig. 4. The WAM hitting 6 of the 7 joint limits reaching for a mug. The
joint limits cause the Jacobian Transpose controller to get stuck in a local
minimum.

the large overhead of computing the inverse by using the
easy-to-compute Jacobian instead. It is easy to show that,
under the same obstacle-free requirements as the Jacobian
inverse controller, the Jacobian transpose (JT) controller is
also guaranteed to reach the goal. A rigorous proof is given
in [17], but the intuition is as follows. The instantaneous
motion of the end effector is given by ẋ = Jq̇ = J(kJT e).
The inner product of this instantaneous motion with the error
vector is given by eT ẋ = keT JJT e ≥ 0. Since this is always
positive, under our assumptions about obstacles, the controller
is guaranteed to make forward progress towards the goal.

The JT controller makes the crucial assumption that any
commanded joint velocity direction is achievable. This as-
sumption is broken in the presence of configuration space
obstacles1. These obstacles can be in the form of workspace
obstacles, self-collisions, or joint limits. Figure 4 provides an
example where the Jacobian transpose is trying to direct a
manipulator towards a goal and the arm is unable to follow
this direction because of its joint limits. These constraints
reduce the effectiveness of the approach as a standalone
solution for generating trajectories for redundant manipulators.
However, the JT control loop is very fast to compute and will
provide a direct action for leading the end effector towards its
goal. These properties make it an ideal candidate for a local
extension operation within a planning algorithm such as RRTs.

IV. EXPLORING IN CONFIGURATION SPACE AND
FOCUSING IN WORKSPACE

We can use the Jacobian transpose controller to provide a
powerful goal directed action within a sampling-based planner
such as RRTs. The idea is to replace the configuration space
goal bias used in the original RRT algorithm with the Jacobian
transpose-based workspace goal bias. To do this, instead of
selecting with probability pg the node closest in configuration
space to the configuration space goal ggoal and then extending

1Non-integrable velocity constraints (nonholonomic constraints) will also
break the assumption, but they are less frequently encountered in robot arms.

GrowRRT()

2 Qnew = {qstart};

3 while (DistanceToGoal(Qnew) > distanceThreshold)

4 p = RandomReal([0.0, 1.0]);

5 if (p < pg)

6 Qnew = ExtendTowardsGoal();

7 else

8 Qnew = ExtendRandomly();

9 if (Qnew 6= ∅)

10 AddNodes(Qnew)

ExtendTowardsGoal()
11 qold =ClosestNodeToGoal();

12 repeat

13 JT =JacobianTranspose(qold);

14 δx =WorkspaceDelta(qold, xgoal);

15 δq = JT · δx;

16 qnew = qold + δq ;

17 if (CollisionFree(qold, qnew))

18 Qnew = Qnew ∪ qnew ;

19 else

20 return Qnew ;

21 qold = qnew ;

22 while (DistanceToGoal(qnew) > distanceTrheshold)

23 return Qnew ;

Fig. 5. The JT-RRT Algorithm.

from this node towards qgoal using configuration space met-
rics, we select the node closest in workspace to the workspace
goal xgoal and then extend from this node towards xgoal using
the Jacobian transpose construction.

This allows us to bias the search towards the desired
workspace goal while also exploring efficiently through con-
figuration space. The resulting approach shares all of the ad-
vantages of Bertram et al.’s approach over previous techniques.
Namely, no explicit inverse kinematics is required for planning
(nor is the approach limited by a restricted sample set of
the IK solutions), all solutions computed are feasible, and its
workspace goal bias results in much faster convergence than
with standard sampling-based algorithms. However, its ability
to use the Jacobian transpose to compute extensions that lead
directly towards the goal results in much more efficient goal
biasing than the algorithm of Bertram et al., which computes
random extensions from the closest nodes. This important
difference provides a significant improvement in performance,
as shown in the following section.

The Jacobian-transpose directed RRT algorithm is provided
in Figure 5. In this pseudocode, the RRT is grown until one
of the new nodes added to the tree (i.e. in the set Qnew)
is within the desired distance threshold of the goal. During
the extension stage of the algorithm, with probability pg the
tree is grown towards the goal and with probability 1 − pg

it is grown randomly in configuration space (exactly as in
the goal-directed RRT algorithm). When growing towards the
goal (the ExtendTowardsGoal function), the node qold in the
tree with the shortest workspace distance to the goal xgoal is



Fig. 6. The example planning problems used in our results. In each case, the manipulator was tasked with planning a path to get its end effector to a
desired (x, y, z) location in space. The leftmost image shows the initial arm configuration, the other images show sample arm configurations that satisfied
each respective scenario.

Approach Scenario Successful Time (s) Nodes Random Extensions Goal Extensions Collision Checks Joint Limits
Bertram et al. 1 50/50 1.542 8583 138 138 22560 N/A

JT-RRTs 1 50/50 0.450 861 28 26 5731 116
Bertram et al. 2 50/50 0.981 5663 90 89 14254 N/A

JT-RRTs 2 50/50 1.761 3189 130 131 23768 532
Bertram et al. 3 31/50 10.926 53074 991 990 140566 N/A

JT-RRTs 3 50/50 0.866 2800 118 120 8671 290
Bertram et al. 4 1/50 5.396 27198 421 416 75753 N/A

JT-RRTs 4 50/50 2.304 6856 322 324 23851 1497
Bertram et al. 5 50/50 1.810 9853 160 157 26133 N/A

JT-RRTs 5 47/50 1.840 7282 72 74 12979 5559
Bertram et al. 6 6/50 16.011 56313 2858 2832 129833 N/A

JT-RRTs 6 50/50 4.152 16854 989 979 36756 1912

TABLE I
RESULTS FROM 7 DOF MANIPULATOR PLANNING

selected and the Jacobian transpose is computed for this node.
The workspace vector from the end effector position at qold

to xgoal is used to calculate a workspace delta δx that the
Jacobian transpose is multiplied by. Because this gives (only)
the instantaneous direction of movement towards the goal it is
important that only a small step is taken along this direction
before the Jacobian transpose is re-evaluated. The resulting
configuration space delta δq is added to qold to compute a
new configuration qnew that resides towards the goal xgoal in
workspace. If this configuration is reachable from qold without
colliding with any configuration space obstacles or violating
joint constraints, it is put in the set of nodes Qnew to be added
to the tree.

Although left out of the pseudocode for clarity, a number of
extensions can be made to this basic version of the algorithm
for improved performance. In particular, because the Jacobian
transpose can cause the manipulator to come up against its
joint limits, when computing the new configuration qnew it is
usually much more efficient to bound the value of each joint by
its respective limits (line 16). If all the joints are at their limits
then we terminate the extension operation (since we can get
no further using the Jacobian transpose). Additionally, when
choosing nodes for goal extension (line 11) we avoid nodes
that have already been used in an extension step (since the
Jacobian transpose will produce the same extension, resulting
in duplicate nodes).

V. RESULTS

We compared the performance of the JT-RRT algorithm
against Bertram et al.’s RRT extension over a range of different
planning scenarios involving our 7 DOF manipulator. In each
scenario, the task was to reach a different end-effector (x, y, z)

position in space, while avoiding obstacles in the environment.
Figure 6 shows the initial configuration of the arm and a
sample goal configuration for each scenario. Because one of
the motivations of our current research is coordination between
a manipulator arm and a mobile robotic Segway, we included
a Segway as one of the environmental obstacles, along with
cups placed on top of it. The walls, floor, and base of the
manipulator are also included in the environment for collision-
checking purposes.

Both approaches were implemented in C++ using the Open-
RAVE simulator, originally developed at Carnegie Mellon Uni-
versity, and the runtime results are for a Centrino Core2Duo
2.3 GHz processor. For each scenario we ran 50 different
planning runs and recorded the number of successful runs
(Successful), the total time taken (Time (s)), the number of
nodes added to the tree (Nodes), the number of attempted
random extensions (Random Extensions), the number of at-
tempted extensions towards the goal (Goal Extensions), the
number of collision checks (Collision Checks), and the number
of times any of the joint limits were hit during the Jacobian
transpose extension operation (Joint Limits). All values are
with respect to the successful runs. Averages for all these
values are included in Table I. For both approaches we used a
goal bias pg of 0.5 which was shown to be most effective
for Bertram et al.’s approach [6]. We did not further tune
this value for the JT-RRT approach. Each end-effector goal
position needed to be reached within 0.15 meters for the goal
threshold to be satisfied.

A sample trajectory from the third results scenario is shown
in Figure 7, both in simulation and during execution on our
physical manipulator arm.

From the results the JT-RRT algorithm typically requires



Fig. 7. The JT-RRT algorithm used for manipulation planning for a 7 DOF robotic arm. The top images show the trajectory executed in the openRAVE
simulator; the bottom images show the trajectory executed on our robotic platform. This trajectory corresponded to the sixth problem from our set of results.

much less computation and adds many fewer nodes to the
search tree, particularly in the more challenging of the sce-
narios. It is also able to successfully generate solutions for
almost every run2. For the single scenario where it was not
able to produce solutions 100% of the time, it appears that
the Jacobian transpose extension operation was coming into
conflict with the joint limits of the manipulator (the number
of times a joint limit was reached during extension was 5559).
This is a side effect of using the Jacobian transpose: as noted
earlier, it is oblivious to configuration space obstacles and joint
limits. A simple extension to improve this would be to make
sure each new node generated during the goal extension step
brings the end-effector a non-trivial distance closer to the goal,
to make sure the joint limits are not restricting the movement
to be along useless directions. An even more promising
improvement would be to use the Jacobian transpose as a guide
for a more informed local search during goal extension so that
these constraints can be taken into account and overcome.

However, in general the performance of the JT-RRT algo-
rithm is very good in terms of both computation time and
memory required. The reason that it is typically much more
efficient than Bertram et al.’s approach is because it is better
able to compute an extension operation that leads towards the
desired goal. Rather than selecting the closest node to the goal
and then just extending in a random direction, it is able to
select this node and then extend directly towards the goal.
This greatly improves the goal-directed portion of its search
and enables it to satisfy very precise goal thresholds that would
otherwise be untenable given random extensions.

VI. CONCLUSION

We have presented an extension to the RRT algorithm that
is able to overcome the problem of inverse kinematics by
exploiting the nature of the Jacobian as a transformation from

2Each approach was limited to adding 100000 nodes to the search tree.

configuration space to workspace. The resulting algorithm is
able to harness the power of the RRT algorithm for exploring
very high-dimensional configuration spaces while also being
able to focus its search towards a desired goal in workspace.
We have found it to be very effective for redundant manip-
ulator path planning and have presented results from both
simulation and a 7 DOF robotic arm.

We are presently working on a number of extensions to
our current framework. Firstly, we are investigating using
the Jacobian transpose as a guide for a more informed local
search during goal extension operations. We are also looking
at using heuristics to create better/faster solutions (as used in
the Anytime RRT algorithm [5]) as the quality of standard
RRT solutions can vary substantially. Finally, we are combin-
ing our arm-level planning with a grasp planner to perform
complete manipulation and grasping tasks involving known
and unknown objects.
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