Path Planning: A* Algorithm Pagelof 5

A*
Drexel Algorithm

Home i Research | Tutorials / Resume

Simulation and Sour ce Files

Introduction

Navigating a terrain and finding the shortest path to a Goal location is one of the fundamental
problems in path planning. While there are many approaches to this problem, one of the most common
and widely known isthe A Star search.

We will try to arrive at the A star algorithm intuitively. Consider the problem of traversing the
terrain shown below (diagonal movement is allowed).

3 4

|

1

N
"o ® @

The robot (Blue Rectangle) has to traverse the terrain and reach the goal (the red Oval). A brute
force approach would be to start of with a square and identify all the squares that surround it. Move to
one of the successor square and repeat this process until the goal square is found.

However this method is computationally intensive and does not always guarantee the best path to
the target.

The key lies in identifying the appropriate successor square. Given some information regarding
the location of the target we can try to make an educated guess. For example if you know your target lies
to the east, explore squares to the east of your current location. If you know the heading of the target you

file://C:\Documents and Settings\ai\Path Planning A Algorithm.htm 2/18/2009

Path Planning: A* Algorithm Page 2 of 5

could always try to move to the square in that direction.

Can you come up with of a better way of determining which sguare needs to be selected?

A* uses the distance between the current location and the target and moves to the square that has
the smallest distance. It evaluates squares (henceforth called a !! nodeql) by combining h(n), the distance
(cost) to that node and g(n), the distance(cost) to get from that node to the goal node. The total cost f (n)
=g (n) +h (n) is calculated for each successor node and the node with the smallest cost f (n) is selected
as a suUCccessor.

Determining the Cost The distance between two nodes is simply determined by calculating the straight
distance between the two nodes. Though this might not the true distance (given the fact that there are
obstacles that need to be circumnavigated), it never overestimates the actual distance.

It can be shown that as long as cost is never overestimated, the algorithm is admissible i.e. it generates
the optimal path.

Let us consider the case for asimple 4X4 Matrix

@)
3 / \\

L

N
" @ ®

The start position is (1, 1). The successive node (only one in this case is (1, 2). There is no ambiguity,
until the Robot reaches node (2, 4). Here there are two nodes (3, 4) and (3, 3). The successor node can
be determined by evaluating the cost to the target from both the nodes.

f(n) for node (3, 3)
h(2,1) = 1+ 1+ sgrt(2) {Distancefrom N(1, 1) -> N(1,2) -> N(1,3)->N(2,1)}

file://C:\Documents and Settings\ai\Path Planning A Algorithm.htm 2/18/2009

Path Planning: A* Algorithm Page 3 of 5

f(n) = h(2, 1) + 1.414 (assuming each square is 1X1 units)
gin)=sgrt((41 3) "2+ (1-3)"2) =2.23
f(n)= 3.44+H(2,1)

f(n) for node (3,4)

h(n)=h(2,1) +1

g(n)=sgrt((4-3)"2 + (1-4)"2) =4.16

f(n) =4.16 + h(2,1).

Now f(n) for (3,3) has been found to be the smallest of the two, hence the successor node is f(n).

The robot can now move to the node (3, 3) and continue expanding the successor nodes as above, until
the goa node is reached.

Dead End

What happens if the robot runs into a dead end? Consider the terrain

4 @

From what we have learnt so far Node (2, 1) will be chosen as the successor node instead of Node (1, 2).
The robot will continue to traverse the route until it ends up at the block at Node (4, 1).

We need to add a mechanism by which the robot:
a) Exploresalternate routes once it lands up at a dead end.
b) Avoidstraversing pathsthat it knows leads to a dead end.

This is done by maintaining two lists OPEN and CLOSED. The list OPEN stores al successive paths

file://C:\Documents and Settings\ai\Path Planning A Algorithm.htm 2/18/2009

Path Planning: A* Algorithm Page 4 of 5

that are yet to be explored while list CLOSED stores all paths that have been explored.

Thelist OPEN also stores the parent node of each node. Thisis used at the end to trace the path from the
Goal to the Start position, thus generating the optimal route.

Consider the figure below. The start node has 2 successors (2, 1) and (1, 2). From the initial calculation
(2, 1) is chosen and the robot travels along that node, however ones it reaches the dead end, it discards
the node (2, 1) and takes the second successor (1, 2) and explores that route.

Once the goal node is reached the parent nodes are found and tracked back to the start node to get the
complete path.

In the above example N(4,3) -> N(3,4)->N(2,3)->N(1,2)->N(1,1) gives the optimal path.
From the above conditions the following algorithm can be obtained.

The A* Algorithm

1) Put the start node on the list OPEN and calculate the cost function f (n). {h (n) = 0; g(n) =
distance between the goal and the start position, f(n) = g(n).}

2) Remove from the List OPEN the node with the smallest cost function and put it on CLOSED.
This is the node n. (Incase two or more nodes have the cost function, arbitrarily resolve ties. If
one of the nodes is the goal node, then select the goa node)

3) If nisthe goal node then terminate the algorithm and use the pointers to obtain the solution path.
Otherwise, continue

4) Determine al the successor nodes of n and compute the cost function for each successor not on
list CLOSED.

file://C:\Documents and Settings\ai\Path Planning A Algorithm.htm 2/18/2009

Path Planning: A* Algorithm Page5of 5

5) Associate with each successor not on list OPEN or CLOSED the cost calculated and put these
on the list OPEN, placing pointersto n (nis the parent node).

6) Associate with any successors already on OPEN the smaller of the cost values just calculated
and the previous cost value. (min(new f(n), old f(n)))

7) Goto step 2.

Matlab Program

The Matlab Program consists of the following files

a) A_starl.m: Thisisthe main file that contains the algorithm. This needs to be executed to run the
program.

b) distancem: Thisisafunction that calculates the distance between 2 nodes.

¢) Expan_array.m: This function takes a hode and returns the expanded list of successors, with the
calculated fn values. One of the criterial s being none of the successors are on the CLOSED list.

d) insert_open.m: This function populates the list OPEN with values that have been passed to it.
The arguments are xval,yval ,parent_xval,parent_yval,hn,gn,fn .

e) min_fn.m: This function takes the list OPEN as one of its arguments and returns the node with
the smallest cost function.

f) Node_index.m: This function returns the index of the location of anode in the list OPEN.

Exercises

1) Consider that the robot has certain physical constraints (Ex. Can only take paths that are wide
enough for it to travel). If the optimal path leads it through a narrow region, then it is not
feasible. Alter the program to then generate an optimal path which is physicaly feasible with
respect to a certain constraint.

2) The above program handles 2D terrains. Modify the program to generate pathsin 3 Dimensions.

file://C:\Documents and Settings\ai\Path Planning A Algorithm.htm 2/18/2009

