A,

ST

Q
%

lirmm-00269482, version 1 - 3 Apr 2008

=
2

o

Author manuscript, published in "IROS'03: IEEE International Conference on Intelligent Robots and Systems, Las Vegas, Nevada
(USA) : "

L ear ning Reactive Neur ocontrollersusing Simulated Annealing for Mobile
Robots

Philippe Lucidarme, Alain Liégeois

LIRMM , University Montpellier I, France, lucidarm@lirmm.fr

Abstract

This paper presents a method based on simulated
annealing to learn reactive behaviors. This work is
related with multi-agent systems. It is a first step
towards automatic generation of sensorimotor control
architectures for completing complex cooperative tasks
with simple reactive mobile robots. The controller of the
agents is a neural network and we use a simulated
annealing techniques to learn the synaptic weights.
We'll first present the results obtained with a classical
simulated annealing procedure, and secondly an
improved version that is able to adapt the controller to
failures or changes in the environment. All the results
have been experimented under simulation and with a
real robot.

1. Introduction

Cooperation of multiple mobile "autonomous' robots is
agrowing field of interest for many applications; mainly
in industry and in hostile environments such as planet
exploration and sample return missions. Theoretical
studies, simulations and laboratory experiments have
demonstrated that intelligent, robust and fault-tolerant
collective behaviors can emerge from colonies of simple
automata. This tendency is an alternative to the all-
programmed and supervised learning techniques used so
far. The "animats' concept thus joins the pioneering
works on "Cybernetics' published in the middle of the
previous century [1], for example, the reactive
"Tortoise" robot proposed by Grey in 1953.
Although human supervision would obviously remain
necessary for complex missions, long and tedious
programming tasks would be cut out with robots
capable of self-learning, self-organization and
adaptation to unexpected environmental changes.
Previous works have shown many advantages for self-
learning robots:
1. at the lowest level, complex legged robots can learn
how to stand up and walk [2],
2. amobile robot can learn how to avoid obstacles [3]
and plan a safe route towards a given goal [4 and 5],
3. a pair of heterogeneous mobile robots can learn to
cooperate in a box-pushing task [6],
4. efficient global behaviors can emerge in groups of
robots [7].

The bottom-up approach for building architectures of
robotic multi-agent systems automatically acquiring
distributed intelligence appears to be simple and
efficient. However, even if we do not ignore the needs,
for some applications, for communicating indirectly
information (by letting the robots deposit beacons for
example) direct modes are of prime interest. It has been
demonstrated that even very simple information sharing
induces a significant enhancement of both the individual
and group performance[7,8 and 9].

The aim of this paper is to use simulated annealing to
learn areactive controller. Previous works applied to the
robotics deals with the optimization of a dedicated
controller. This optimization is generally simulated or
done off-line. We'll focus on the on-line learning of a
generic controller.

This paper will focus on the learning of reactive
controllers. Complex representations of the environment
or of the agents are not considered here. A library of
learned behaviors will be used to perform more complex
tasks with heterogeneous team of robots. The agents
have different capabilities; justifying that each one must
learn its own controller. In the first part of the paper we
will show now, the agent can automatically learn the
synaptic weights of a neural network using a classical
simulated annealing procedure. In the second part, welll
propose an improved version of the method that allows
the agent to adapt its controller to changes or failures.

2. Experimental setup and task description

2.1 Hypotheses

The considered task is a safe and robust reactive
navigation in a clustered environment for exploration
purposes. The robots are programmed a priori neither
for obstacle avoidance nor for extending the explored
area, and nor for executing more complex actions like

« finding asample,

e picking up asample,

e returning to the home base,

e dropping the sample into an analyzer.
On the contrary, the agents have to find by themselves
an efficient policy for performing the complex tasks.
The idea is to quickly find an acceptable strategy that
maximizes the reward rather than the optimality. Our
goal is to build agents that are able to reconfigure and

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00269482/fr/
http://hal.archives-ouvertes.fr

lirmm-00269482, version 1 - 3 Apr 2008

adapt their own controller to hardware failures or
changes in the environment.

2.2 Robot Hardware

All the experiments described in this paper have been
implemented on the so-called Type 1 mobile robot
developed at LIRMM [10]; the previous prototype is
described in [11]. Type 1 has many of the characteristics
required by the multi-agent systems. It has a 10 cm-
height and 13 cm-diameter cylindrical shape (Figure 1).
It is actuated by two wheels. Two small passive ball-in-
socket units ensure the stability in place of usual castor-
wheels. DC motors equipped with incremental encoders
(352 pulses per wheel revolution) control the wheels.
The encoders are used for both speed control and
odometry (measurement of the performance index). 16
infrared emitters and 8 receivers are mounted on the
robot for collision avoidance as shown on Figure 2. The
sensors use a carrier frequency of 40 kHz for a good
noise rejection. These sensors are also used to
communicate between agents. The communication
module will not be used here. An embedded PC (80486
DX with 66 MHz clock) operates the robot. Control to
sensors and actuators is transmitted by the PC104 bus.

Figure 2: Location of the sensors and actuators

2.3 The Controller

Our purpose is to optimize the parameters of a generic
controller. Many controllers for mobiles robots have
been proposed, but our specifications are the following :

the controller will be use for reactive task, its
computation time must be small and the same controller
must be applicable to different tasks. The latter
specification is probably the more restrictive. It as been
show that neural networks can be use to approximate
many function (R,- R.,) and are not time consuming.
This is why the controller used is a neura network
without hidden layer. The inputs of the network are the
returned values of the 8 infrared sensors (C, to C; on the
Figure 2). The last input of the system is a constant
equal to 1. The two outputs of the system are the
commands applied to the left and right motors (M, and
M,). The neural network is shown on Figure 3. It has
been chosen for the following reason: the strategy will
be learnt in the continuous space state, meaning that
reactions of the agent will be proportional to its
perception. In this network, there are 18 weights to
learn. Each weight links an input of the network to a
perceptron. As the transfer function of each perceptron
is linear (Figure 4), analyzing the learned parameters
will be easy. To protect the hardware during
experiments the maximum speed of the robot is limited
to Vix=0.3 m.s®. Well use a simulated annealing
technique to learn the 18 synaptic weights of the
network. Each weight isranging from -1 to +1.

Figure 3: The neural controller of our agent

Vmax T

————1-Vmax

Figure 4: The transfer function of the perceptron

2.4 Thefitness

In our application, the agent must be able to estimate its
own performance also call fitness (in evolutionist
algorithms) or reward (in reinforcement learning).
During each elementary time step, the new average
value of the fitness is computed as follow:

lirmm-00269482, version 1 - 3 Apr 2008

RN(i) (I) = (1_a(|))RN(|)_1(|) +a(i)FN(i) (I)

Where

a0 = 1+ N(i)

N(i) is the number of time steps since the beginning
of the estimation by agent i

Raa(i) isthe estimated fitness at time N(i)
Fne(i) istheinstantaneous fitness at time N(i)

The instantaneous fitness is the average rotation speed
of the two wheels. An incremental encoder equips each
motor of the robot. The returned value of each encoder
is used to compute the fitness. It was important for this
experiment to choose a non-restrictive reward. In
previous works [12], the reward used to train a genetic
algorithm has 3 components:

* Maximizing the speed of the robot,

e Minimizing the rotation speed of the robot,

e Minimizing the number of collisions.
Such reward proved to be too restrictive because the
second term is aready included in the first one. The
robot can't turn and maximize its average speed at the
same time. A great advantage of learning is that the
agent finds good strategies, which could not be straight
forward for the operator. Then the chosen fitness in our
application is only the average speed of the robot.

3. First experiments. simulated annealing
procedure

3.1 Description

compute a new value centered on
Wrrax(i) with a distribution
proportional to T°.

3

Initialization

Initialize each weight (w) to a small
val ue.

T° « F(0)

Mai n | oop
While (T° > small value) do
{

Apply the current strategy, and
compute the Fitness Ry,
IT (Rax<Rui))
{
Rrax=Rn(i)
For each weight : Wmpy) <

¥
T° < F(cycle)
For each weight (w;), randomly

Table 1. The algorithm used to train the neural network

First, our agent learns the weights of the neural network
using a classical simulated annealing algorithm. The
algorithm is described in Table 1. To avoid having the
robot jammed every time it hits an obstacle, an "unjam
behavior" have been implemented. If the returned value
on each encoder is equal to zero during a pre-defined
time, the program will considered that the robot is
jammed, and will execute a small procedure to unjam it.
During this procedure, the fitness is always computed.
As the robot moves back, the execution of the procedure
penalizes the agent, such that being jammed is never
profitable.

The learning process is divided into cycles. One cycle
lasts 23 seconds and is aso called evaluation of the
strategy. One cycle is composed of 2000 elementary
time steps, which represent the duration of a sensori-
motor update.

3.2 The parameters

A main drawback in the use of a simulated annealing
procedure is the setting up of the parameters. In this
section, each parameter will be described in details. To
implement the neural network, each value ranges from
-1 to +1. Each sensor returns a value between 0 and 1
depending on whether no obstacle is detected or is very
close respectively. The applied command on the motors
also ranges from -1 to +1. We arbitrary chose a linear
decreasing function Fy(cycle) for the temperature as
indicated on Figure 5. Another functions will be tested.

Te

Ti Fi(cycle)=a.cycle+T;

Ft(CyCIe)= Tmin

| > Cycles

Figure 5: Evolution of the temperature versus the
number of cycles

The function is linear until a very small value of the
minimal temperature T = 5.10°. This enables the
algorithm to converge into the maxima when the
learning process is over. The initial temperature (T;) is
equal to 1. We first simulated the learning process with
Matlab. We voluntary chose a very small negative value
for a = -5.10°. Decreasing slowly the temperature
guarantees that the state space will be explored and the
optimal solution will be found. For real experiments, the
autonomy of the robot is about 90 minutes. We

lirmm-00269482, version 1 - 3 Apr 2008

decomposed this time in two parts. about 1 hour of
learning and 30 minutes with the temperature equal to
Tmin- The evaluation of a policy requires 23 seconds. To
reachsTmin in one hour, the parameter a must be equal to
-6.107.

3.3 Resaults

Simulation results. we realized many experiments with
the simulator, mainly to study the influence of the
parameters. Our first analyze is that the algorithm
aways converges to the optimal srategy if the
temperature decreases dlowly and if the evaluation
period is long enough. The evolution of the strategy is
always the same. Figure 6 shows the average speed and
the rotation speed of the robot versus the number of
cycles. We can see that the first strategy learned is to
turn dowly at the same place. This is a local maxima
because turning on place ensures that no collision
occurs. Then the rotation speed increases quickly as
well as the average speed of the robot. During the last
part of the learning process, the radius of the circles
described by the robot increases sowly until that the
trajectory can be considered as a straight line. At the
end of the learning process the agent avoids obstacles
with the best strategy:

e turning on the left if an obstacle is detected on the

right,
e turning on the right if an obstacle is detected on the
left,

e going straight otherwise.

The only difference between experiments is the priority
when a front obstacle is detected. Our robot is equipped
with a central distance sensor (C, on Figure 2). When
this sensor detects an obstacle, the network gives
arbitrary the priority to the left or to the right. There are
two global maxima in the state space, witch both
represent the optimal strategy.

Rotation speed

Average speed

Figure 6: Evolution of the best known strategy during
learning

Experimental results: Figure 7.a. shows the evolution
of the weights. Convergence is ensured, and the reward
is maximized as shown on Figure 7.b. even though the
global solution is not always found. There are two
differences between simulations and real experiments:

the parameter a and the noise. 10 simulations have been
performed with the same value of a and the
convergence to the global minima is always reached.
Analyzing the results demonstrates that the same
behavior may return different fitness with an important
distribution, depending of many parameters like the
initial position of the robot. During the experiments,
one of the first evaluations can give a better reward than
the average expected for this strategy, and this best
fitness enables another strategy to overwrite this one.
Let's take a critical situation for example: the agent
performs the following strategy: "always going
straight”. If the initial position of agent allows him to
perform a straight trajectory without meeting obstacles,
the reward will be high and yet the strategy is not so
good. A solution to this problem is to increase the
duration of an experiment in order to decrease the
standard deviation of the fitness witch is at the expense
of the learning time.

i N
“o 20 40 60 80 100 120 140 160

b. Temperature and fitness (dotted)
T T T T T T

Figure 7: results of an experiment

4. Improved simulated annealing procedure

4.1 Description

With the previous method, when the temperature
reaches a very small value, the strategy of the agent is
frozen. If a failure or a change in the environment
occurs the agent will not be able to adapt its controller
to the changes. The only way to detect such event,
without using complex representation of the agent
structure or environment map, is to exploit the
information returned by the fitness. If a change occurs,
the reward will decrease, otherwise this change has not
affect the performance of the agent and adaptation is
unnecessary. The main idea of this adaptive method is
to alow the growth of the temperature when the fithess
is small as in the real simulated annealing process. To
generalize; the temperature is a decreasing function of
the best known fitness as shown on Figure 9.

The drawback is that the system will probably be
trapped into local maximas. Our philosophy is the
following: if the fitness function has been well chosen,

lirmm-00269482, version 1 - 3 Apr 2008

we don't care if the learned strategy is a local or global
maxima while the agent maximizes its reward. The best
known fitness (R« is decreased during each cycle of
the main loop. If the learned strategy is enough
efficient, Ry iS currently updated and the controller
stays stable. Otherwise, if the fithess is small, Ry will
decrease, alowing the growth of the temperature. The
algorithm is described on the Table 2.

Initialization

Initialize each weight (w) to a small
val ue.

T° « F(0)

Mai n | oop
While (true) do
{

Apply the current strategy, and
compute the Fitness Ry,

IT (Rax<Rui))

{
Rrax=Rni)
For each weight wi. W)
— W
}
T° < Ft(Rnax)

Decrease Ry

For each weight (w;), randomly
compute a new value centered on
Wrax(i) with a distribution
proportional to T°.

3

Table 2: The adaptive algorithm used to train the
neural network

4.2 The parameters

The network parameters are the same as previously. The
new function of the temperature is also linear. The
purpose is to get a very small temperature for high
fitness values and on the contrary a temperature close to
1 when the fitness is small. As the best expected reward
is close to 1, we simply choose the function shown on
Figure 9.

Te
A
Fi(Rmax)=a.cycle+1

V'

Ft(Rmax)= Tmin

0 1 > Rmax

Figure 9: Evolution of the temperature versus the best
known fitness

Tmin=5.10" as with the previous algorithm and a=-1 to
linearly reach T, when R iscloseto 1. A decreasing
step of Rya is equal to 7.10% This value has been
arbitrary chosen to ensure that the system will keep the
same behavior if its fitness is high. This parameter
represents the adaptive faculty of the system. A high
value alows the system to quickly jump into a new
strategy. However, the drawback is that in some cases
the current strategy, which is promising, will not be
completely explored.

4.3 Results

Simulation results: since the simulation and
experimental results proved to be very close, well
mainly present the second ones with areal robot.

Experimental results: first of all, the convergence is
quickly obtained. The system is quickly trapped into a
local maxima. Figure 10.a. shows the evolution of the
weights. After a few minutes (about 15 cycles) an
acceptable strategy is found. The temperature suddenly
decreases and traps the controller around this strategy.
As the temperature is never equal to O, it alows the
weights to dowly dlide into the best local solution.
Figure 11. represents the influence of each sensor. Both
values on each diagram represent the right and left
command applied to the motors. There is no hidden
layer in the network, and then the global behavior is a
linear combination of each diagram. For example, the
Figure 11.a. shows the current direction of the robot
when no obstacle is detected: the robot is going straight.
This figure shows that the reached strategy is not the
global optimal one: on Figure 11.f. when an obstacle is
detected on Cg (see on Figure 2 the location of the
sensors), the robot is going straight instead of turning on
the right. In spite of this, the agent is able to avoid the
obstacles, and to maximize its reward. The influence of
C; (Figure 11.e.) compensates the lack of reactivity on
Ce.

a. evolution of the weights

TS ==

0 . 10 20 3‘0 - 40 50 60 70 ﬁBO 90
b. Temperature and fitness (dotted) Cycles
T T T T

T
| | | | | |
R T e E I
| v |

!

Figure 10: results of an experiment

At the 25" cycle (the average of all experiments is about
10 seconds), the controller is locked. 37 cycles after the

lirmm-00269482, version 1 - 3 Apr 2008

beginning of the experiment, we disabled the sensor C,
by obstructing the receptor, to test the adaptability.
Figure 10.b. represents the fitness and the temperature
(dotted line), we discern the fitness peak. The new
solution is very close from the previous one: the
algorithm reinforces the influence of the closer sensors
(Co and C,) to compensate the lack of C; and the system
quickly becomes stable again. More serious failures (a
failure was simulated on many sensors) have been
tested, and the system reenters in a new exploration of
the state space as in the first cycles of the experiment. If
the failure is too much important, the agent will not
receive a sufficient reward. The temperature will not
decrease, and the convergence will never be reached.

v

5-0.15

¥
v :
0.04 - 04 -0.25 0.2
R
A... =
0.4 < -0.15 04 - 0.4

Figure 11: Influence of each sensor on the global
behavior. Black arrows indicates obstacles.

5. Conclusion

Sections 3 and 4 have presented results of experiments
using simulated annealing techniques to learn reactive
behaviors. We have first experimented an agorithm to
find the parameters of the neurocontroller. In safe
circumstances, the method alows the agent to find the
optimal solution, but the learning time is very long (one
hour). Moreover disturbances on sensors and actuators,
as well as the initial configuration of the robot, may
prevent from finding the best parameters. This first
algorithm is not well suited for our application; witch
motivated the implementation of a second one able to
adapt the controller to changes or failures. This
algorithm does not guarantee to reach the optimal
solution and may fail to adapt the controller if serious
failures occurs, but it can quickly find an acceptable
solution (10 minutes) and cope with some failures by
adapting its own controller. We are currently working
on the learning of new behaviors. target tracking,
picking an object with an arm, docking a robot to a
working station, etc. Once these neurocontrollers will be
learned, we'll combine these behaviors to perform more

complex tasks as foraging, or cooperative box pushing
for example.

4. References

[1] N. Wiener, 1948, "Cybernetics, or control and
communication in animals and machines', Wiley, New
York.

[2] R. A. Brooks, ”A robust layered control system for a
mobile robot”, IEEE Trans. on Robotics and Automation,
volume 2, 1986, pp. 14-23.

[3] D. Floreano, and F. Mondada, “Evolution of plastic
neurocontrollers for situated agents”, Smulation of
Adaptive Behaviors 4, Brighton, 1996, Cambridge, MA,
MIT Press.

[4] H-S Lin, J. Xiao, and Z. Michalewicz, “Evolutionary
navigator for a mobile robot”, proc ICRA’94, San Diego
1994, volume 3, pp. 2199-2204.

[5] J. Xieo, Z. Michaewicz, and L. Zhang, “Adaptive
evolutionary planner/navigator for mobile robots”, |IEEE
Transactions on Evolutionary Computation, volume 1,
No. 1, 1997, pp.18-28.

[6] L. E. Parker, “Alliance: an architecture for fault tolerant
multirobot cooperation”, |EEE Trans. on Robotics and
Automation, volume 14, No. 2, 1998, pp. 220-240.

[71 T. Balch, and R. Arkin, “Communication in reactive
multiagent robotic systems”, Autonomous Robots,
volume 1, No. 1, 1994, pp. 27-52.

[8] O. Simonin, A. Liégeois, and P. Rongier, “An
architecture for reactive cooperation of mobile distributed
robots”, proc DARS-4, Knoxville 2000, pp. 35-44.

[9] E. Yoshida, T. Arai, M. Yamamoto, and J. Ota, “Local
communication of multiple mobile robots: design of
optimal communication area for cooperative tasks”,
Journal of Roboatic Systems, 15(7), 1998, pp. 407-419.

[10] P. Lucidarme, O. Simonin, and A. Liégeois,
"Implementation and evaluation of a
satisfaction/altruism-based architecture for multi-robot
systems", Proc Int. Conf. On Robotics and Automation
2002, Washington D.C., pp. 1007-1012.

[11] P. Lucidarme, P. Rongier and A. Liégeois,
“Implementation and evaluation of a reactive multi-robot
system”, Proc. AIM’01, Como 2001, pp. 165-170.

[12] D. Floreano, and F. Mondada, “Automatic creation of an
autonomous agent: genetic evolution of a neural-network
driven robot”, Smulation of Adaptive Behavior 3,
Brighton, 1994, pp. 421-430.

