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Abstract 
 

This paper presents a method based on simulated 
annealing to learn reactive behaviors. This work is 
related with multi-agent systems. It is a first step 
towards automatic generation of sensorimotor control 
architectures for completing complex cooperative tasks 
with simple reactive mobile robots. The controller of the 
agents is a neural network and we use a simulated 
annealing techniques to learn the synaptic weights. 
We’ll first present the results obtained with a classical 
simulated annealing procedure, and secondly an 
improved version that is able to adapt the controller to 
failures or changes in the environment. All the results 
have been experimented under simulation and with a 
real robot. 

1. Introduction 

Cooperation of multiple mobile "autonomous" robots is 
a growing field of interest for many applications; mainly 
in industry and in hostile environments such as planet 
exploration and sample return missions. Theoretical 
studies, simulations and laboratory experiments have 
demonstrated that intelligent, robust and fault-tolerant 
collective behaviors can emerge from colonies of simple 
automata. This tendency is an alternative to the all-
programmed and supervised learning techniques used so 
far. The "animats" concept thus joins the pioneering 
works on "Cybernetics" published in the middle of the 
previous century [1], for example, the reactive 
"Tortoise" robot proposed by Grey in 1953. 
Although human supervision would obviously remain 
necessary for complex missions, long and tedious 
programming tasks would be cut out with robots 
capable of self-learning, self-organization and 
adaptation to unexpected environmental changes. 
Previous works have shown many advantages for self-
learning robots: 
1.   at the lowest level, complex legged robots can learn 

how to stand up and walk [2], 
2. a mobile robot can learn how to avoid obstacles [3] 

and plan a safe route towards a given goal [4 and 5], 
3. a pair of heterogeneous mobile robots can learn to 

cooperate in a box-pushing task [6], 
4. efficient global behaviors can emerge in groups of 

robots [7]. 

The bottom-up approach for building architectures of 
robotic multi-agent systems automatically acquiring 
distributed intelligence appears to be simple and 
efficient. However, even if we do not ignore the needs, 
for some applications, for communicating indirectly 
information (by letting the robots deposit beacons for 
example) direct modes are of prime interest. It has been 
demonstrated that even very simple information sharing 
induces a significant enhancement of both the individual 
and group performance [7,8 and 9]. 
The aim of this paper is to use simulated annealing to 
learn a reactive controller. Previous works applied to the 
robotics deals with the optimization of a dedicated 
controller. This optimization is generally simulated or 
done off-line. We’ll focus on the on-line learning of a 
generic controller. 
This paper will focus on the learning of reactive 
controllers. Complex representations of the environment 
or of the agents are not considered here. A library of 
learned behaviors will be used to perform more complex 
tasks with heterogeneous team of robots. The agents 
have different capabilities; justifying that each one must 
learn its own controller. In the first part of the paper we 
will show now, the agent can automatically learn the 
synaptic weights of a neural network using a classical 
simulated annealing procedure. In the second part, we’ll 
propose an improved version of the method that allows 
the agent to adapt its controller to changes or failures.  

2. Experimental setup and task description 

2.1 Hypotheses 

The considered task is a safe and robust reactive 
navigation in a clustered environment for exploration 
purposes. The robots are programmed a priori neither 
for obstacle avoidance nor for extending the explored 
area, and nor for executing more complex actions like 

• finding a sample, 
• picking up a sample, 
• returning to the home base, 
• dropping the sample into an analyzer. 

On the contrary, the agents have to find by themselves 
an efficient policy for performing the complex tasks. 
The idea is to quickly find an acceptable strategy that 
maximizes the reward rather than the optimality. Our 
goal is to build agents that are able to reconfigure and 
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adapt their own controller to hardware failures or 
changes in the environment.  

2.2 Robot Hardware 

All the experiments described in this paper have been 
implemented on the so-called Type 1 mobile robot 
developed at LIRMM [10]; the previous prototype is 
described in [11]. Type 1 has many of the characteristics 
required by the multi-agent systems. It has a 10 cm-
height and 13 cm-diameter cylindrical shape (Figure 1). 
It is actuated by two wheels. Two small passive ball-in-
socket units ensure the stability in place of usual castor-
wheels. DC motors equipped with incremental encoders 
(352 pulses per wheel revolution) control the wheels. 
The encoders are used for both speed control and 
odometry (measurement of the performance index). 16 
infrared emitters and 8 receivers are mounted on the 
robot for collision avoidance as shown on Figure 2. The 
sensors use a carrier frequency of 40 kHz for a good 
noise rejection. These sensors are also used to 
communicate between agents. The communication 
module will not be used here. An embedded PC (80486 
DX with 66 MHz clock) operates the robot. Control to 
sensors and actuators is transmitted by the PC104 bus. 
 

 
Figure 1: The mobile robot Type 1 

 
 
 
 
 
 
 

 

 

Figure 2: Location of the sensors and actuators  

2.3 The Controller  

Our purpose is to optimize the parameters of a generic 
controller. Many controllers for mobiles robots have 
been proposed, but our specifications are the following : 

the controller will be use for reactive task, its 
computation time must be small and the same controller 
must be applicable to different tasks. The latter 
specification is probably the more restrictive. It as been 
show that neural networks can be use to approximate 
many function (5n→5m) and are not time consuming. 
This is why the controller used is a neural network 
without hidden layer. The inputs of the network are the 
returned values of the 8 infrared sensors (C0 to C7 on the 
Figure 2). The last input of the system is a constant 
equal to 1. The two outputs of the system are the 
commands applied to the left and right motors (Ml and 
Mr). The neural network is shown on Figure 3. It has 
been chosen for the following reason: the strategy will 
be learnt in the continuous space state, meaning that 
reactions of the agent will be proportional to its 
perception. In this network, there are 18 weights to 
learn. Each weight links an input of the network to a 
perceptron. As the transfer function of each perceptron 
is linear (Figure 4), analyzing the learned parameters 
will be easy. To protect the hardware during 
experiments the maximum speed of the robot is limited 
to Vmax=0.3 m.s-1. We’ll use a simulated annealing 
technique to learn the 18 synaptic weights of the 
network. Each weight is ranging from –1 to +1. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The neural controller of our agent 
 
 
 

 
 
 
 
 
 
 

Figure 4: The transfer function of the perceptron 

2.4 The fitness 

In our application, the agent must be able to estimate its 
own performance also call fitness (in evolutionist 
algorithms) or reward (in reinforcement learning). 
During each elementary time step, the new average 
value of the fitness is computed as follow: 
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N(i) is the number of time steps since the beginning 

of the estimation by agent i 
RN(i)(i) is the estimated fitness at time N(i) 
FN(i)(i) is the instantaneous fitness at time N(i) 
 
The instantaneous fitness is the average rotation speed 
of the two wheels. An incremental encoder equips each 
motor of the robot. The returned value of each encoder 
is used to compute the fitness. It was important for this 
experiment to choose a non-restrictive reward. In 
previous works [12], the reward used to train a genetic 
algorithm has 3 components: 

• Maximizing the speed of the robot, 
• Minimizing the rotation speed of the robot, 
• Minimizing the number of collisions. 

Such reward proved to be too restrictive because the 
second term is already included in the first one. The 
robot can’t turn and maximize its average speed at the 
same time. A great advantage of learning is that the 
agent finds good strategies, which could not be straight 
forward for the operator. Then the chosen fitness in our 
application is only the average speed of the robot.  

3. First experiments: simulated annealing 
procedure 

3.1 Description 

 
Initialization 

Rmax ← 0 
Initialize each weight (wj) to a small 
value. 
T° ← Ft(0) 
 

Main loop 
While (T° > small value) do 
{ 

Apply the current strategy, and 
compute the fitness RN(i) 
If (Rmax<RN(i)) 
{ 

  Rmax=RN(i) 
 For each weight : Wmax(j) ← 

wj 
 } 
 T° ← Ft(cycle) 

For each weight (wi), randomly 

compute a new value centered on 
Wmax(i) with a distribution 
proportional to T°. 

} 
 

Table 1: The algorithm used to train the neural network 
 
First, our agent learns the weights of the neural network 
using a classical simulated annealing algorithm. The 
algorithm is described in Table 1. To avoid having the 
robot jammed every time it hits an obstacle, an "unjam 
behavior" have been implemented. If the returned value 
on each encoder is equal to zero during a pre-defined 
time, the program will considered that the robot is 
jammed, and will execute a small procedure to unjam it. 
During this procedure, the fitness is always computed. 
As the robot moves back, the execution of the procedure 
penalizes the agent, such that being jammed is never 
profitable.  
The learning process is divided into cycles. One cycle 
lasts 23 seconds and is also called evaluation of the 
strategy. One cycle is composed of 2000 elementary 
time steps, which represent the duration of a sensori-
motor update. 

3.2 The parameters 

A main drawback in the use of a simulated annealing 
procedure is the setting up of the parameters. In this 
section, each parameter will be described in details. To 
implement the neural network, each value ranges from  
–1 to +1. Each sensor returns a value between 0 and 1 
depending on whether no obstacle is detected or is very 
close respectively. The applied command on the motors 
also ranges from -1 to +1. We arbitrary chose a linear 
decreasing function Ft(cycle) for the temperature as 
indicated on Figure 5. Another functions will be tested. 
 
 
 
 
 
 
 
 
 

Figure 5: Evolution of the temperature versus the 
number of cycles 

 
The function is linear until a very small value of the 
minimal temperature Tmin = 5.10-3. This enables the 
algorithm to converge into the maxima when the 
learning process is over. The initial temperature (Ti) is 
equal to 1. We first simulated the learning process with 
Matlab. We voluntary chose a very small negative value 
for a = -5.10-3. Decreasing slowly the temperature 
guarantees that the state space will be explored and the 
optimal solution will be found. For real experiments, the 
autonomy of the robot is about 90 minutes. We 

Ft(cycle)=a.cycle+Ti Ti 

Ft(cycle)= Tmin 

T° 

Cycles 
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decomposed this time in two parts: about 1 hour of 
learning and 30 minutes with the temperature equal to 
Tmin. The evaluation of a policy requires 23 seconds. To 
reach Tmin in one hour, the parameter a must be equal to 
-6.10-3.  

3.3 Results 

Simulation results: we realized many experiments with 
the simulator, mainly to study the influence of the 
parameters. Our first analyze is that the algorithm 
always converges to the optimal strategy if the 
temperature decreases slowly and if the evaluation 
period is long enough. The evolution of the strategy is 
always the same. Figure 6 shows the average speed and 
the rotation speed of the robot versus the number of 
cycles. We can see that the first strategy learned is to 
turn slowly at the same place. This is a local maxima 
because turning on place ensures that no collision 
occurs. Then the rotation speed increases quickly as 
well as the average speed of the robot. During the last 
part of the learning process, the radius of the circles 
described by the robot increases slowly until that the 
trajectory can be considered as a straight line. At the 
end of the learning process the agent avoids obstacles 
with the best strategy:  
• turning on the left if an obstacle is detected on the 

right,  
• turning on the right if an obstacle is detected on the 

left, 
• going straight otherwise. 
The only difference between experiments is the priority 
when a front obstacle is detected. Our robot is equipped 
with a central distance sensor (C0 on Figure 2). When 
this sensor detects an obstacle, the network gives 
arbitrary the priority to the left or to the right. There are 
two global maxima in the state space, witch both 
represent the optimal strategy. 
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Figure 6: Evolution of the best known strategy during 

learning 
 

Experimental results: Figure 7.a. shows the evolution 
of the weights. Convergence is ensured, and the reward 
is maximized as shown on Figure 7.b. even though the 
global solution is not always found. There are two 
differences between simulations and real experiments: 

the parameter a and the noise. 10 simulations have been 
performed with the same value of a, and the 
convergence to the global minima is always reached. 
Analyzing the results demonstrates that the same 
behavior may return different fitness with an important 
distribution, depending of many parameters like the 
initial position of the robot.  During the experiments, 
one of the first evaluations can give a better reward than 
the average expected for this strategy, and this best 
fitness enables another strategy to overwrite this one. 
Let’s take a critical situation for example: the agent 
performs the following strategy: "always going 
straight". If the initial position of agent allows him to 
perform a straight trajectory without meeting obstacles, 
the reward will be high and yet the strategy is not so 
good. A solution to this problem is to increase the 
duration of an experiment in order to decrease the 
standard deviation of the fitness witch is at the expense 
of the learning time. 
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Figure 7: results of an experiment 

4. Improved simulated annealing procedure 

4.1 Description 

With the previous method, when the temperature 
reaches a very small value, the strategy of the agent is 
frozen. If a failure or a change in the environment 
occurs the agent will not be able to adapt its controller 
to the changes. The only way to detect such event, 
without using complex representation of the agent 
structure or environment map, is to exploit the 
information returned by the fitness. If a change occurs, 
the reward will decrease, otherwise this change has not 
affect the performance of the agent and adaptation is 
unnecessary. The main idea of this adaptive method is 
to allow the growth of the temperature when the fitness 
is small as in the real simulated annealing process. To 
generalize; the temperature is a decreasing function of 
the best known fitness as shown on Figure 9. 
The drawback is that the system will probably be 
trapped into local maximas. Our philosophy is the 
following: if the fitness function has been well chosen, 

a. Evolution of the weights 

b. Temperature and fitness (dotted) 

Cycles 

Cycles 
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we don’t care if the learned strategy is a local or global 
maxima while the agent maximizes its reward. The best 
known fitness (Rmax) is decreased during each cycle of 
the main loop. If the learned strategy is enough 
efficient, Rmax is currently updated and the controller 
stays stable. Otherwise, if the fitness is small, Rmax will 
decrease, allowing the growth of the temperature. The 
algorithm is described on the Table 2. 
 

Initialization 

Rmax ← 0 
Initialize each weight (wj) to a small 
value. 
T° ← Ft(0) 
 

Main loop 
While (true) do 
{ 

Apply the current strategy, and 
compute the fitness RN(i) 
If (Rmax<RN(i)) 
{ 

  Rmax=RN(i) 
 For each weight wi: Wmax(i) 

← wi 
 } 
 T° ← Ft(Rmax) 
 Decrease Rmax 

For each weight (wi), randomly 
compute a new value centered on 
Wmax(i) with a distribution 
proportional to T°. 

} 
Table 2: The adaptive algorithm used to train the 

neural network 
 
4.2 The parameters 
 
The network parameters are the same as previously. The 
new function of the temperature is also linear.  The 
purpose is to get a very small temperature for high 
fitness values and on the contrary a temperature close to 
1 when the fitness is small. As the best expected reward 
is close to 1, we simply choose the function shown on 
Figure 9. 
 
 
 
 
 
 
 
 

Figure 9: Evolution of the temperature versus the best 
known fitness 

 

Tmin=5.10-3 as with the previous algorithm and a=-1 to 
linearly reach Tmin when Rmax is close to 1. A decreasing 
step of Rmax is equal to 7.10-2. This value has been 
arbitrary chosen to ensure that the system will keep the 
same behavior if its fitness is high. This parameter 
represents the adaptive faculty of the system. A high 
value allows the system to quickly jump into a new 
strategy. However, the drawback is that in some cases 
the current strategy, which is promising, will not be 
completely explored. 

4.3 Results 

Simulation results: since the simulation and 
experimental results proved to be very close, we’ll 
mainly present the second ones with a real robot. 
 
Experimental results: first of all, the convergence is 
quickly obtained. The system is quickly trapped into a 
local maxima. Figure 10.a. shows the evolution of the 
weights. After a few minutes (about 15 cycles) an 
acceptable strategy is found. The temperature suddenly 
decreases and traps the controller around this strategy. 
As the temperature is never equal to 0, it allows the 
weights to slowly slide into the best local solution. 
Figure 11. represents the influence of each sensor. Both 
values on each diagram represent the right and left 
command applied to the motors. There is no hidden 
layer in the network, and then the global behavior is a 
linear combination of each diagram. For example, the 
Figure 11.a. shows the current direction of the robot 
when no obstacle is detected: the robot is going straight. 
This figure shows that the reached strategy is not the 
global optimal one: on Figure 11.f. when an obstacle is 
detected on C6 (see on Figure 2 the location of the 
sensors), the robot is going straight instead of turning on 
the right. In spite of this, the agent is able to avoid the 
obstacles, and to maximize its reward. The influence of 
C7 (Figure 11.e.) compensates the lack of reactivity on 
C6. 
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Figure 10: results of an experiment 

 
At the 25th cycle (the average of all experiments is about 
10 seconds), the controller is locked. 37 cycles after the 

a. evolution of the weights 

b. Temperature and fitness (dotted) 
Ft(Rmax)=a.cycle+1 1 

Ft(Rmax)= Tmin 

T° 
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beginning of the experiment, we disabled the sensor C1 
by obstructing the receptor, to test the adaptability. 
Figure 10.b. represents the fitness and the temperature 
(dotted line), we discern the fitness peak. The new 
solution is very close from the previous one: the 
algorithm reinforces the influence of the closer sensors 
(C0 and C2) to compensate the lack of C1, and the system 
quickly becomes stable again. More serious failures (a 
failure was simulated on many sensors) have been 
tested, and the system reenters in a new exploration of 
the state space as in the first cycles of the experiment. If 
the failure is too much important, the agent will not 
receive a sufficient reward. The temperature will not 
decrease, and the convergence will never be reached. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Influence of each sensor on the global 
behavior. Black arrows indicates obstacles. 

5. Conclusion 

Sections 3 and 4 have presented results of experiments 
using simulated annealing techniques to learn reactive 
behaviors. We have first experimented an algorithm to 
find the parameters of the neurocontroller. In safe 
circumstances, the method allows the agent to find the 
optimal solution, but the learning time is very long (one 
hour). Moreover disturbances on sensors and actuators, 
as well as the initial configuration of the robot, may 
prevent from finding the best parameters. This first 
algorithm is not well suited for our application; witch 
motivated the implementation of a second one able to 
adapt the controller to changes or failures. This 
algorithm does not guarantee to reach the optimal 
solution and may fail to adapt the controller if serious 
failures occurs, but it can quickly find an acceptable 
solution (10 minutes) and cope with some failures by 
adapting its own controller. We are currently working 
on the learning of new behaviors: target tracking, 
picking an object with an arm, docking a robot to a 
working station, etc. Once these neurocontrollers will be 
learned, we’ll combine these behaviors to perform more 

complex tasks as foraging, or cooperative box pushing 
for example.  
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