BBJIITAPCKA AKAIEMMA HA HAYKUTE . BULGARIAN ACADEMY OF SCIENCES

[IPOBJIEMMA HA TEXHMYECKATA KMBEPHETUKA " POBOTUKATA, 48
PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48

Copmsa . 1999 . Sofia

Application of Recurrent Neural Networks for Systems
Identification and Control*

leroham Baruch, Alexander Mitev, Bojka Nenkova

Institute of Information Technologies, 1113, Sofia

1. Introduction

The Neural Network (NN) modelling starts with the pioneeringworkof McCulloch and
Pitts,cited in[1]. The main difference between NN and the computer consists of the massive
parallelism and the automatic context information processing [1]. Different authors postulate
differentapplicationsoftheartificial NN, generalized as[1, 2, 3, 4]:

— Approximation of functions;

— Association used by the associative (context-addressable) memory, accessed by the
context;

— Pattern recognition (classification, clustering and categorization). Well-known
applications of pattern classification include character recognition, speech recognition, EEG
waveform classification, blood cell classification and printed circuit board inspection. Well-
known clustering applications include data base, data compression and data analysis;

—Process (time series) prediction;

— Identification and control, [1]. More advanced forms of neurocontrol are discussed in
[1].

The diversity of these tasks prove the universality of NNs as an information-processing
system. All these tasks are problems of learning and mapping from possibly noisy examples.
Without the imposition of prior knowledge, each of the tasks is ill-posed in the sense of
nonuniqueness of possible solution mappings. In practice NNs need to be integrated into a
consistent system engineering approach. Specifically, a complex problem of interest would be
decomposed into a number of relatively simple tasks that NNs are assigned to perform.

Thereare sourceswhich showthe relations between thearchitecture of the NNsand other
features like training paradigms, learningrules, learning algorithms andthe performedtasks, [2].
The NNarchitecture can be examined from different points of view, the most important of them
being as it follows:

— Type of the input: binary or continuous,[3];

— Feedback presence or absence, [1, 2]. According to it NNs can be divided into

* This paper is partially supported byNational Science Foundation, grant No 611/ 96.

53

feedforward and recurrent (feedback) RNNs;

— Types of the connectionist network [1]. According to it the NNs can be: feedforward
networkswith asingle layer and feedforward multilayer networks with partial or total connectivity
between the neurones. The neurones that do not communicate with the environmentare known
as hidden neurones.; NNs with delay units and with or without hidden neurones; lattices. A
lattice network isa feedforward network with the output neurones arranged in rowsand columns
of different dimensions.

Other important characteristics of NNs are topology and learning. Classification of the
NNs according to this characteristics, is given in Appendix 1, [2].

The aim of this paper is to familiarize the readers with some of the works done in the
department of Parallel Information Systems (P1S) from the Institute of Information Technologies
(IIT), Bulgarian Academy of Sciences (BAS), in the field of NN theory and applications.

1. RNN for systems identification and process prediction

A newtwo-layered RNN architecture, named Recurrent Trainable NN (RTNN), appropriate for
nonlinear dynamic systems identification, was developed , [5, 6]. A state space representation
of both continuous and discrete time mathematical models of RTNN s given in two layer Jordan
Canonical Architecture (JCA),and anew improved BP type learning method, isproposed. Some
topology improvementsaimed to preserve RTNN stabilityand toenhance RTNNarchitecture
using the saturation instead of a sigmoid function, are suggested. The proposed RTNN model
islinear insmalland nonlinear in large, which permitstoapplyall well known state- and output
linear systems design methods like pole assignment and quadratic cost optimal control.
Simulation results of nonlinear systems identification by RTNNand an improved BP learning,
are given.

The main problem ofthe NN systems identification and the neural control systems design
is the lack of universality, because different authors used different types of NN according to
its application. The duality of the problem of systems identification and one step process
prediction, on one side and the optimal quadratic cost control - on the other side, shows that
both problems could be solved usingthe RTNN approach, defined by Baruch etall. [5, 6]. Thus,
the design of RTNN, as an universal tool for systemsidentification and control, isanewtrend
in the adaptive control systems design.

1.1. Description of the RTNN-JCA

Baruch et al. [5, 6], for the first timedescribe RNN in an universal way, using the state-space
approach. They defined a global linearized RNN model (the RTNN) model and studied its
stability by means of the first stability law of Liapunov. The first improvement is dedicated to
preserve RNN model stability during learning. Theimproved RTNN model is aimed to identify
nonlinear dynamic processes. Two types of processes are suggested: processes, honlinear on
their output and processes, nonlinear on their state (bilinear). The RTNN architecture easily
solves also the problem of the one-step ahead process prediction.

Let us consider the mathematical state-space description of both the Jordan continuous
and discrete-time two-layer RTNN models, given in [5] in the form:

Yy v=Jv+Bu,w=S(v),y=Cw,z=5(y)
V(k+1) = JIV(k)+BU(k), W(k)=S[V(K)],
(12 Y(k) = CW(k), Z(k)=S[Y(K)]

where:w, z, u, (W, Z, U) arerespectivelyn-, |-, m - vectors, considered as RTNN continuous and
discrete-time modelsstate, output and input; y, v, (Y, V)arel-, m-vectors, respectively; J=block-

54

diag (J), B, C are constant matrices with compatible dimensions, considered as the weight
matrices ofthe RTNN continuousand discrete-timemodels; k is adiscrete-timeinteger variable;
S (x) isa vector valued sigmoid function, i.e.:

(13) S'(x) = [s(x), s(x,), ..., s(xj)],
(14 s(inp) = /[1+exp(=inp)], inp=S(d x+d.)

where: inp istheinput ofthe sigmoid function; d,, d. aretrainableconstant weightsofthe RTNN;
S'(x) significates a vector transpose of S(x).

The continuousand discrete-time version of the RTNN mathematical model is sufficient
from dynamical point of view, because if the linearized model is stable —as the function s(x.), given
by (1.4), isasingle decreasing and bounded — thenthe nonlinear models (1.1) and (1.2) will also
be stable according to the first stability law of Liapunov.

The main advantages of the proposed two layer RTNN-JCA, defined by (1.1), (1.2) are:

a) It is described in state-space form (SISO or MIMO) and could serve as an one-step
ahead state predictor/estimator.

b) The RTNN modelisnonlinear in largeand linear in small, sothe matrices J, B, Cobtained
asaresult of learning could be used for analytical design of linear state/output control laws. By
means of asimilar transformation the JCF could be transformed into Luenberger’s Canonical
Formwhich is easyto use for pole assignment design of control systems. The matrices J, B could
be used for an optimal control systems design with quadratic performance index. The matrices
J, B, Calsocould be used for an optimal P, P1, PID control systems design. Finally, the matrices
J, B, C could be used in an adaptive iterative square-root algorithm for optimal control with
quadratic cost criterion.

¢) The RTNN could solve the optimal control problem itself by means of NN mapping.

The RTNN two-layer architecture contains hidden and output layers. The output layer
isaBPNN andthe hidden layer isarecurrent JCA NN. It was assumed that each Jordan block
of ithasonly (1x1) or (2x2) dimension. The continuous RTNN model will be stable iff the system
eigenvalues have negative real parts. The discrete-time NN model will be stable iff system
eigenvalues are inside the unit circle. Then the analysis of the RTNN model controllability,
observability and identifiability becomes easy. The last concept, taken from systems theory,
gives us the possibility to check if the obtained global RNN model could be learned or not, [5].
From the block structure of B and C', corresponding to the block structure of J, it is possible
to concludethat iffthe input matrix B haszero blocks — the RTNN model isuncontrollable and
iff thetranspose of the output matrix C has zeroblocks — then the RTNN model isunobservable.
If one of both occurs the RTNN model isunidentifiable, which meansthat the RTNN model is
untrainable. To preservethe RTNN stability during the training, it is necessarytoimpose some
restrictions on the model feedback, introducing a sigmoid vector function in it, which changes
theegns. (1.1)and (1.2) inthe forms:

(15 v=q+Bu, gq=S(v), w=S(v),y =Cw, z=5(y),
V(k+1) = Q(k)+BU(k), Q(K) = S[IV(K)], W(k)=S[V(K)],
(1.6) Y (k) = CW(K), Z(K)=S[Y (K)].

Another improvementofthe RTNNarchitecture istofacilitateits realisation, approximating
the sigmoid function s(inp) with a saturation:

+1, inp>+1
(W) sat(inp) = inp, O<inp<+1
0, inp<O.

55

Both improvements of the RTNN architecture are tested by simulation examples during
thelearning.

1.2.RTNN learning

Simultaneously with the RNN topology improvements, some advanced researches have been
done on the methods of RNN learning, which naturally depends on the RNN topology. Baruch
etall. [5] in their previous works, defined anewJordan RTNN architecture with both exponential
and oscillatory dynamics, which feedback weights are trainable. Some work has been done to
improvethislearningalgorithm introducing modern refinementtechniques like momentum rule,
weight fixing and pruning. The most common used BP updating rule, applied for the two layer
RTNN-JCA, [5], isthe following:

(L8) D, (k+1)=D(k) +1n A D,(K),

where: D, isthe ij-th weight element of each weight matrix in the RTNN model to be updated;
ADU. is theweight correction of D, ; n is the learning rate parameter. The RTNN model weight
matrices here are denoted by D for the sake of generality. The weight corrections of the updated
matrices in the discrete-time RTNN model, described by eqn. (1.6), are given as follows:

— For the output layer:

19 AC,(0= [T, - Z K1 ZK [- Z (T W,

where:AC, is the weight correction of the ij-th elements of the (Ixn) learned matrix C; T isa
j-th element of the target vector; Z isa j-th element of the output vector; W is an i-th element
of the input vector of the output layer, i.e. the hidden layer output.

—For the hidden layer:

(1.10) AB,(K) =R U (K),
(L11) AJ(K) =R V(k-1),
(112) R=C,(k) [T(k)—Z(k)TW,(K) [1-W,(K)],

where: AB;; is the weight correction of the ij-th elements of the (mxn) learned matrix B; C/isa
row vector of dimension (1xI), taken fromthetransposed matrix C'; [T-Z]isa (le) output error
vector, through which the error is backpropagated to the hidden Iayer U, is an i-th element of
the input vector U; V, is an i-th element of the vector V; AJ, is the weight correction of the
ij-th elementsofthe | (nxn) block-diagonal matrix J under learning; R isan auxiliar matrix with
compatible dimensions. The matrix elements of 0 and 1 values will not be updated. The same
equation for RTNN learning may be applied for the continuous-time case, eqn. (1.5).

An improvement of the BP updating algorithm (1.8) is to introduce a momentum term,
proportional to the past (k—1)-th weight correction, asit is:

(113) D, (k+1)=D,(K) +1 AD,(K) +a. AD,(k-1),

where: o isamomentum learning rate parameter.

This correction is appropriate to perform in the case when significant error-function
oscillations occur. A lot of experiments of learning with different rates of learning h and a has
been done. The experiments show that the optimal combination ofthese learning parameters is
obtained when the following inequality condition yields:

(1.14) r.S<sqrt(n*+a?) <1;r

where 1, is the maximum eigenvalue of the object.

Another improvement ofthe RTNN learning algorithm, successfullyapplied for the BP
learning of discrete-time RTNNSs consider unimportant units pruning and non-useful connections
removing [8]. Both methods remove the units or the weights, whose outputs or values tend to

=max|]

max

56

be zero. Simultaneously with the nodes pruning, a weight fixing could be applied. During the
intensive experiments done, it was observed that some of the hidden neurones change their
weights rather slow with respect to the others, i.e. their weights tend to reach constant values.
Ifthe correspondingweight correction tends tozero during one epoch of learning, the learning
algorithm fixes the corresponding weight or node and interrupts the process of learning. This
operation reduces the total learning time almost twice. Both learning algorithms, performing
weights pruning and fixing lead to exclusion of weights or nodes from the process of learning.
Thereare twopossibilities: tofix someweights or tofix the wholenode. Thefirst ismore efficient
then the second because in this case we do not need to compute the node error.

1.3. Simulation experiments

Theimproved learning algorithm for RTNN was tested with several linear and nonlinear dynamic
objects. The topologyimprovements arealso carefullystudied. The chosen epoch size isof 1000
cycles. The learning process is finished when both the error of learning and the error of testing
arereduced toan error threshold of about 1.5%. The number of epochs to reach this prescribed
error is called time of learning. The input learning signal of the object and the RTNN consists
of mixed random series of sinusoidal and rectangular patterns with a random frequency and a
randomamplitude, which ensures that the RTNN will be learnt bya wide-band variable-spectrum
input signal. The quality of the RTNN is verified also by a test signal of an one-epoch length,
givenintheform:

(115) u(k) =sin(rk/25), 0< k<251,
1.0, 250 <k <501,
1.0 500 < k<751,

0.3 sin(nk/25) +0.1sin(nk/32),
+0.6sin(nk/10), k<1001.

The state-space equations of both examples are given below:
(1.16) h(k)=0.3u (k)[1 + x, (k) —x,2(K)],

X, (k+1) =x,(K),
X,(k+1)=-0.15x, (k) + 0.8x,(k) + h(k),
y(k+1) =x (k+1)—0.2x *(k+1) + 0.1x *(k+1)+0.5.

Two SISO nonlinear discrete-time simulation examplesare considered. Thefirstoneisa
bilinear object with a sigmoid. The second one isa nonlinear object with a saturation.

Object 1: SISO bhilinear object (sigmoid):

The simulation results are shown in the figures. Each figure has the following common
items:

(a) Output of RTNN (dashed line) and Object (solid line) during training

(b) RTNN error of testing phase (dashed line) and training (solid line) at each epoch

(c¢) Output of RTNN (dashed line) and Object (solid line) during last testing phase

Two different cases of n=0.7; a=0and n=0.5; a=0.5 are considered for each object. As it
can beseen fromtheresultsof Fig. 1, 2, 3, 4the introduction of momentumterm inthe BP learning
algorithm smoothenstheerror (LER isthe learning error and TER isthetesting error).

The case of changing the sigmoid function with a saturation for both objects augments
theerror of learning in the beginning but the error decreased to the same value in the final phase.
The oscillations of the error of learning also augmented. The weight fixing decreases the time
of learning with 30%. The learning timeis 20 epochs.

Object 2: SISO bilinear object (saturation)
Thetimeoflearningis10 epochs. Theerror of learning reached for both objectsis below
1.5%.

57

o 8 T T T T o 8 T T T T
0.6 0.6
(a) OBIN (a) OBYNN
0.4 0.4
0 200 400 600 800 1000 0 200 400 600 800 1000
0.1 0.1
®) Er\/\/\/\ ®) Er\/g/\
,\—_-/—\
0 | | T T 0 | L T T
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
0.8 ‘ ‘ ‘ ‘ 0.8 ‘ ‘
0.6 ’WW\W M fv 0.6
(c) Obj/ (c) Obj/ .
0.4 0.4

0 200 400 600 800 1000 0 200 400 600 800 1000
Fig.1. h=0.7, a=0.,sigm., Fig.2. h=0.5, a=0.5, sigm.,
LER=1%,TER=1,5% LER=1.5%, TER=1%

0.8 08
0.6 0.6 N
(a) ObjiN (a) Obj
04 : ‘ ’ ‘ 0.4 \ ‘ ‘ ‘
0 200 400 600 800 u 0 200 400 600 800 1000
0.1 : 0.1
() Err ® Errv—\/
0 I L L | | 0 . ! ; ; ;
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14
0.8 ‘ ‘ \ 0.8
0.6 oefwwwww [
(c) Obj (c) Obj all
0.4 ‘ ‘ ‘ 0.4 ‘ ‘ ‘ ‘
0 200 400 600 800 1« 0 200 400 600 800 1000

Fig.3. h=0.7, =0, sat.,
LER=1,5%, TER=1,5%

58

Fig. 4. h=0.5, a=0.5, sat.,
LER=1.5%, TER=1.25%

2. NN for approximationof functionsand kimematic robot control

Akinematic control system architecturefor redundant robots-manipulators, avoiding obstavles,
based on context sensitive hierarchical NN approach, is proposed. The NN control system
structure contains two NN's. the first one is a Functional RNN, transforming the vector of the
variation of Cartesian position into the vector of variation of the joint position, by means of the
Jacobean pseudoinverse function (JPF). Thesecond oneisa Context three-layer BPNN, trained
toapproximatethe JPF bymeans ofthe BP learning. The BP learning isrealised tooptimise robot
path resolving two main problems: singular configurations and existence of multiple solutions.
Method efficiency and NN kinematic control possibilities are demonstrated by appropriate
example. Thiswork isacollaborative work ofthe CINVESTAV, IPN, MEXICO, IIT, BAS, PIS
dept.[7].

2.1. Robotkinematics description

During the last decade many works were carried out on the solution of the Inverse Kinematic
Problem (1KP) for Robot Manipulators (RM), citedin [7]. The methods proposed for the general
case can be classified into two main groups: particular and general. These methods are based
on two models: geometric and kinematic , based on the equations:

21) x = F(x), Geometric Model,
22 x=J(q)q , Kinematic Model,

where x is a 6-dimensional vector of the Cartesian position; q is a n-dimensional join position
vector; F(x) isanonlinear vector function; J(q) is a (n x n) Jacobian matrix.

The particular method for kinematic control isbased on the direct solution of the nonlinear
trigonometric vector equation (4.1). This method is applied for particular cases of robots-
manipulators and gives explicit analytical solution, which is its principle disadvantage. The
general methods for kinematic control based on the kinematic equation of motion (4.2) give
solution for everytype of robot (redundant or not). These methodsare independent of geometric
and kinematics structure of manipulatorsand perform a desired optimisation criterion with null
space solutions. The general approach has been used for obtaining q'.

2.3) q=J%x +(1-J%)y,

where J* s the pseudoinverse matrix of the Jacobean J; y is an arbitrary nonzeroed
n-dimensional vector.

This method of kinematic control has the following disadvantages: computationally
expensive; numerically unstable due toerror accumulation; not free from arm singularities (the
inverse become discontinued). From thisreason it isimportant to applythe NN architecture to
provide highly parallel computations to obtain the solution of (2.3). There exists a variety of
problems, concerningthe NN (2.3) AF, as follows:

a) this function describes discontinuous - singular configuration; b) it gives an infinite
number of solutions, because ofthe robot redundancy. Theapproach [7] proposes acontinuous
min error solution of the egn. (2.3), overcoming the mentioned above problems. Itis:

2 2 _
@4) o x=d@al * e gl = min. |
Then the joint velocity vector, obtained from the continuous solution of the IKP has the
form:
(2-5) q:J*X +(|—J*J)y,
(26) 3=vsrU

59

7 §'=diag(c,/(c%+ 0?), c,/(c*,+?), K, 5, /(c* +a?), 0, K, 0),

where: J* isan IKR solution, obtained by means of the Singular Value Decomposition; V, Uare
left and right eigenvector matrices; S is a singular value’s matrix; y is an arbitrary nonzero
n-dimensional vector. All matrices have compatible dimensions. The second term in the right-
hand sideof equation. (2.5) is the projection of the arbitrary vector y ontothe null space of J, since
it does not result in an end effector velocity. The discretization of (2.5) give us the following
sampled-data equation:

(28) 9, = JI*(a,) (x,,—x) +[1=3*%@) I()]y +q.

The equation (2.8) is basic for the Kinematic Control Algorithm (KC). It represents the
relation between the one-step-predicted joint position vector, the variation of the desired
Cartesian position vector and the actual joint position vector. The proposed KC method does
not require the specification of Cartesian velocities, so it can be applied for predictive control of
redundant arm joint positions. This method provide solution with function continued for every
space of manipulation and performs given optimisation criteria with a null space solution. The
solution of the differential equation (2.5) contains two components: the firsttermis a particular
solution and the second term isa homogeneous solution. The term of the homogeneous solution
is frequently used to optimise some secondary criterion under the constraint of the specified end
effector velocityby choosingy tobe gradient of some prescribed function H(q). The homogeneous
solution can also be used to optimise secondary criteria defined in Cartesian space to avoid
obstacles. Similar to the collision free path planning algorithm, based on a potential field H(q),
we can define a potential field over a task space, such that obstacles can be represented as high
potentialsregions. Collision-free path planning of aredundant arm can be done by searching for
apath of minimal potentials under constraints of arm kinematics as well asin compromise with
other performance indices. We assume that an obstacle is a hipper-sphere of radius r with its
centre located at obstacle coordinates x. Then a potential field H(q), can bedefined for collision-
free path planning of the end-effector under a single obstacle, as follows:

1
(29) H (@) =
1 + eX/T
where T is a positive constant and X(q) is a quadratic function:
2
(2.10) X(@) = 11x(@) = X I =12

In the case where many obstacles occur in the task space, and/or many arm-body-points
are subjecttocollision avoidance, H . should beformed asasum ofallthe potential fields defined
for individual obstacles and/or for individual arm-bodypoints.

2.2. NN for kinematic control

The NN approximation of the nonlinear functions in the equation (2.8) requires the actual joint
position gj and the desired Cartesian position X;, 1 asinputs to calculate the one step prediction
of the joint configuration. This mapping is highly nonlinear, since the transformation depends
on robot configuration and its kinematic structure.

The context-sensitive NN (Fig. 5), contains two NNs, named Context and Function. The
Context NN consists of nonlinear units and a BP learning process, whose outputs are used to
set up the weights of the Function NN. The first NN has many outputs as there are weights of
the second NN. Since the number of outputs could be very large, the Function NN ought to be
simpleandrecurrent.

The proposed solution of the KC problem by means of neural networks uses a context-
sensitive NN with Cartesian feedback. That control scheme takes the advantage of the functional

60

decomposition of robot kinematics, as it reflected on the structure of the equation (2.8). The
functional part of the context-sensitive NN realises the product between the desired Cartesian
position and the JPF, which is robust of singularities. The Context NN is a three layered
feedforward NN witha BP learning. The hidden layer ofthis NN isbased on Gaussian Activation
Function. The output layer adjusts the corresponding weights of the Functional RNN. The
structure of the KC system and some simulation results of six-link planar robot-manipulator
avoiding obstacle, are given in [7] and shown on Fig. 5.

b2
7

Fig. 5. Simulation of obstacle avoidance

3. Conclusion

The paper describes the last achievements of the scientists from the PIS dept., 1T, BAS in the
field of NN theoryand applications. All theoretical approaches are illustrated by experimental
resultsand appropriate examples.

61

APPENDIX [2]

Table. A1.1. NN architectures

Feedforward Nns Feedback NNs (RNN)
Single layer Multilayer Radial Basis Competitive Kohonen’s Hopfield ART
perceptron peceptron Function net network SOM network models
Table A1.2. NN learning algorithms
Paradigm Learning rule | Architecture Learning algorithm Task
Supervised Error-correction | Single- or multilayer | Perceptron LA PR, classification, AF,PP
perceptron BP 1&C, (Adaline&Madaline)
Boltzmann Recurrent Boltzmann learning PR,classification
Hebbian Multilayer Linear discriminant Data analysis(DA)
feedforward (FF) analysis PR,classification
Competitive Competitive Learning vector Within-class categorizatior
(WCC)
Data compression (DC)
RT network ART map PR, classification , WCC
Unsupervised | Error-correction | Multilayer FF Sammon’s projection DA
Hebbian Feedforward Principal component DA
or competitive analysig DC
Hopfield Associative memory Associative memory
Competitive Competitive Vector quantization Categorization, DC
Kohonen’s Kohonen’s SOM Categorization, DA
ART networks ART1, ART2, ART3 Categorization
Hybrid Error-correction | RBF network RBF learning PR, classification
& competitive algorithm AF, PP, 1&C

Legend: AF — Approximation of functions; PR
prediction; 1&C — ldentification and control.

— Pattern recognition; PP — Process (time series)

References

.S imon H. Neural Networks. Macmillan Publ. Company,1994.
..J ain, AK Atrtificial neural networks: a tutorial, computer. — In: IEEE, March 1996, 31-44.
.Zeidenberg M. NNs Models in Artificial Intelligence. USA, Ellis Horwood, 1990.
.Lippmann, R P. An Introduction to Computing with NN. — In: |EEE ASSP Mag., April, 1987, 4-5.
.Baruch,I, .Stojanov, E.Gortc heva. Recurrent trainable neural networks: topology and learning.
— In: Proc. of the 5 Int. Symp. TAINN’96, 27-28 June 1996, Istanbul, Turkey, 40-49.
6.Baruch I, .Stojanov, E.Gortc heva. Neural Network Models of Dynamic Processes: Stability
and Learning. — In: Proc. of the 3th Int. Symp. MMAR’96, Sept.10-13,1996, Miedzyzdroje, Poland,
vol.3, 1169-1174.
7.Gortcheva, E, JJM.Ibarra-Zannatha, I.Baruch, I.Stoyanov. Kinematic neural control
of redundant robots, avoiding obstacles. — In: Proc. of the UNESCO Int. Conf. ICRAM’95, 14-16
Aug. 1995, Istanbul, Turkey, vol. Il, 906-910.
8.Stojanov, I An Improved Backpropagation NN Learning.
PR, TU, 25-29 Aug. 1995, Vienna, Austria.
586-588.

g~ W N =

— In: Proc. of the 13th Intern. Conf. on
IEEE Computer Soc., vol.ll, Track B, PR and SP,

6 2

[IpUIoXeHVE PEKYPPEHTHEIX HEMPOHHEIX CETEN B CUCTEMax
VOSHTUOUKALV U YTIPaBJIEHU S

IZepoxaM Bapyx, AnekcaHnp MuresB, Borika HeHKOBa

UHCTUTYT MHYOPMALIMOHHEIX TexHosoTmni, 1113 Copus

(PeswomMme)

Hpe,HC‘I‘aBJ'IeHbI HEIIPEPRIBHEBIE VI OVMICKPETHBIE MaTeEMaATVHYECKME MOOEeJIM PEKYPPEHTHBIX
HeﬁpOHHbIX cerer. OnmMcaHa ux ,JIByXCJ'IOIZHa,CI APXUTEKTYPA U ee IIPVIMEHEHNME [1PU
M,HeH‘I‘M(i)MKaLU/H/I JIVHEMHBIX U HEJIMHEWHBIX IMHAM/AYUECKMX IIPOLIECCOB .

[ToxkasaHE PeE3yJIBETATEL SKCIIEPVMMEHTOB I[IPU allllIoOKCMalV @yHKLU/HZ " I1pn
KMHE TUUYECKOM OOyUeHUM pO6OTOB . B TIPMIJIOXEHMM ITPEICTaBJICHA KJ'IaCCT/I(i)MKaLU/IFI
HeﬁpOHHbIX ceTen Mo OTHOIMEHMY TOMNOJIOTVI U ITOIXOI obyueHus .

6 3

