
15

Neural Networks in Mobile Robot Motion

Danica Janglová
Institute of Informatics SAS, danica.janglova@savba.sk

Abstract: This paper deals with a path planning and intelligent control of an autonomous robot which should move
safely in partially structured environment. This environment may involve any number of obstacles of arbitrary shape
and size; some of them are allowed to move. We describe our approach to solving the motion-planning problem in
mobile robot control using neural networks-based technique. Our method of the construction of a collision-free path for
moving robot among obstacles is based on two neural networks. The first neural network is used to determine the
“free” space using ultrasound range finder data. The second neural network “finds” a safe direction for the next robot
section of the path in the workspace while avoiding the nearest obstacles. Simulation examples of generated path with
proposed techniques will be presented.
Keywords: Mobile Robot, Neural Network, Ultrasound Range Finder, Path Planning, Navigation

1. Introduction

Over the last few years, a number of studies were
reported concerning a machine learning, and how it has
been applied to help mobile robots to improve their
operational capabilities. One of the most important issues
in the design and development of intelligent mobile
system is the navigation problem. This consists of the
ability of a mobile robot to plan and execute collision-
free motions within its environment. However, this
environment may be imprecise, vast, dynamical and
either partially or non-structured. Robots must be able to
understand the structure of this environment. To reach
their targets without collisions, the robots must be
endowed with perception, data processing, recognition,
learning, reasoning, interpreting, decision-making and
action capacities. The ability to acquire these faculties to
treat and transmit knowledge constitutes the key of a
certain kind of artificial intelligence. Reproduce this kind
of intelligence is, up to now, a human ambition in the
construction and development of intelligent machines,
and particularly autonomous mobile robots. To reach a
reasonable degree of autonomy two basic requirements
are sensing and reasoning. The former is provided by on-
board sensory system that gathers information about
robot with respect to the surrounding scene. The later is
accomplished by devising algorithms that exploit this
information in order to generate appropriate commands
for robot. And with this algorithm we will deal in this
paper.
We report on the objective of the motion planning
problem well known in robotics. Given an object with an

initial location and orientation, a goal location and
orientation, and a set of obstacles located in workspace,
the problem is to find a continuous path from the initial
position to the goal position, which avoids collisions with
obstacles along the way. In other words, the motion
planning problem is divided into two sub-problems,
called ‘Findspace’ and ‘Findpath’ problem. For related
approaches to the motion planning problem see reference
(Latombe, J.C. 1991). The findspace problem is
construction the configuration space of a given object
and some obstacles. The findpath problem is in
determining a collision-free path from a given start
location to a goal location for a robot. Various methods
for representing the configuration space have been
proposed to solve the findpath problem (Brady, M. & all
1982), (Latombe, J.C. 1991), (Vörös, J. 2002). The
major difficulties in the configuration space approach
are: expensive computation is required to create the
configuration space from the robot shape and the
obstacles and the number of searching steps increases
exponentially with the number of nodes. Thus, there is a
motivation to investigate the use of parallel algorithms
for solving these problems, which has the potential for
much increased speed of calculations. A neural network
is a massive system of parallel distributed processing
elements connected in a graph topology. Several
researchers have tried to use neural networks techniques
for solving the find
path problem (Bekey, G.A. & Goldberg, K.Y., 1993).
In this paper we introduce a neural networks-based
approach for planning collision-free paths among known
stationary obstacles in structured environment for a robot

Janglová, D. / Neural Networks in Mobile Robot Motion, pp. 15-22, Inernational Journal of Advanced Robotic Systems,
Volume 1 Number 1 (2004), ISSN 1729-8806

16

with translational and rotational motion. Our approach
basically consists of two neural networks to solve the
findspace and findpath problems respectively. The first
neural network is a modified principal component
analysis network, which is used to determine the “free
space” from ultrasound range finder data. Moving robot
is modeled as a two-dimensional object in this
workspace. The second one is a multilayer perceptron,
which is used to find a safe direction for the next robot
step on the collision-free path in the workspace from start
configuration to a goal configuration while avoiding the
obstacles.
The organization of the paper is as follows: section 2
brings out the briefly description of neural network
applications in robotics. Our approach to solving the
robot motion problem is given in section 3. Our method
of motion planning strategy, which depends in using two
neural networks for solving the findspace problem and
the findpath problem respectively will be described in
section 4. Simulation results will be included in section
5. Section 6 will summarize our conclusions and gives
the notes for our further research in this area.

2. Neural networks in robotics

The interest in neural network stems from the wish of
understanding principles leading in some manner to the
comprehension of the basic human brain functions, and
to building the machines that are able to perform
complex tasks. Essentially, neural network deal with
cognitive tasks such as learning, adaptation,
generalization and optimization. Indeed, recognition,
learning, decision-making and action constitute the
principal navigation problems. To solve these problems
fuzzy logic and neural networks are used. They improve
the learning and adaptation capabilities related to
variations in the environment where information is
qualitative, inaccurate, uncertain or incomplete. The
processing of imprecise or noisy data by the neural
networks is more efficient than classical techniques
because neural networks are highly tolerant to noises.
A neural network is a massive system of parallel
distributed processing elements (neurons) connected in a
graph topology. Learning in the neural network can be
supervised or unsupervised. Supervised learning uses
classified pattern information, while unsupervised
learning uses only minimum information without
preclassification. Unsupervised learning algorithms offer
less computational complexity and less accuracy than
supervised learning algorithms. Then former learn
rapidly, often on a single pass of noisy data. The neural
network could express the knowledge implicitly in the
weights, after learning. A mathematical expression of a
widely accepted approximation of the Hebbian learning
rule is

)()()()1(tytxtwtw jiijij η+=+ (1)

where xi and yj are the output values of neurons i and j,
respectively, which are connected by the synapse wij and

η is the learning rate (note that xi is the input to the
synapse).
Survey of types, architectures, basic algorithms and
problems that may be solved using some type of neural
networks is presented in (Jain, A.K. & Mao, J. &
Mohiuddin, K.M. 1996). The applications of neural
networks for classification and pattern recognition are
good known. Some interesting solutions to problems of
classification in the robot navigation domain were
succesfully solved by means of competitive type of
neural networks (Bekey, G.A. & Goldberg, K. Y. 1993).
Using of competitive neural networks in control and
trajectory generation for robots we may find in the book
as well as using of neural network for sensor data
processing in map updating and learning of the robot
trajectories. For the obstacle avoidance purposes
recurrent type of neural network was used with the
gradient back-propagation technique for training the
network (Domany, E. & Hemmen, J.L. & Schulten, K.
1991). The using of supervised neural network for robot
navigation in partially known environment is presented
in (Chochra 1997). An interesant solution with using of
Jordan architecture of neural network is described in
(Tani, J. 1996). Here the robot learns internal model of
the environment by recurrent neural network, it predicts
succession of sensors inputs and on the base of the model
it generates navigation steps as a motor commands. The
solution of the minimum path problem with two recurent
neural networks is given in (Wang 1998). Solutions that
use the learning ability of the neural network with fuzzy
logic for representation of the human knowledge applied
to robot navigation also exists see (Kim 1998). The
complex view for solution of the navigation problem of
the autonomous vehicles gives (Hebert, Thorpe, Ch. &
Stentz, A. 1997). Team of researches CMU here presents
results from designing of autonomous terrain vehicle. For
learning the path from vision system data and for
obstacle avoidances algorithms using laser range finder
data and different types of neural networks.
Our first work concerned the using neural networks for
object classification in the map of the robot environment
was using the cluster analysis with range finder data
(Uher, L. & Považan I. 1998). This acquiring knowledge
we extend for using neural network in the algorithm of
the robot motion planning.

3. The proposed approach

3.1. The basic motion planning problem

Let A be a rigid object, a robot, moving in a workspace
W, represented as a subspace of RN, with N=2 or 3. Let
O1 ,...,Om

 be fixed rigid objects distributed in W, called
obstacles. Assume that both the geometry and the
location of A, O1,...,Om, in W is known.
The problem is: Given an initial position and orientation
of A in W, generate a path specifying a contiguous
sequence of positions and orientations of A avoiding
collision with Oi's, starting at the initial position and
orientation, and terminating at the goal position and

17

orientation. Report the failure if no such path exists.

3.2. Environment representation

In general, we consider the case when A is a two-
dimensional object that translates and rotates in W=R2. A
grid map will represent the environment. The grid map is
an M x N matrix with each element representing the
status Si,j of an individual grid; Si,j = 1, if its interior
intersects with the obstacle region and Si,j = 0, if its
interior does not intersect the obstacle region.
A configuration of an arbitrary object is a specification of
the position of every point in this object relative to a
fixed reference frame. In addition, let FA and FW be
Cartesian frame embedded in A and W, respectively.
Therefore, a configuration of A is a specification of the
position (x,y) and orientation θ of FA with respect to FW .
Throughout the paper we make use of the localization
system (Považan, I.; Janglova, D. & Uher, L. 1995)
providing the robot with its absolute position with
respect to a fixed inertial frame. The configuration space
of A is the space of all the configurations of A. Let the
resolution in x-axis, y-axis and orientation is M, N, and
K respectively. A rectangloid ri,j,k is model of the object
A located by (xi, yj, θk) and it represents the region [xi –
wx/2, xi + wx/2] . [yj – wy/2, yj + wy/2] . [θk– ∆θ/2, [θk +
∆θ/2], where wx is the width, wy is the height and ∆θ =
π/K.

3.3. Motion planning algorithm

Philosophy of our algorithm appear from motion of
human in the environment when he is moving between
obstacles on the base of his eyes view and he make
already the next step to the goal in the free space.
Analogically, our robot will move safely in environment
on the base of the data “visible” with scanning ultrasound
range finder (Uher, L. & Kello, I. 1999). First must
“mapping” the workspace from measured data and find
the free space for robot motion and then determines the
next robot azimuth for the safe step to the goal. For the
solution of this problems we use neural networks
technique. We use the measured range finder data in the
learning workspace for mapping the front robot
workspace by the first neural network finding the free
space segment. This segment is used as an input to the
second neural network both with the goal location, which
is used to determine the direction of the proposed next
navigation step for moving the robot.
The algorithm is of an iterative type. In each iteration,
the last orientation of the moving robot is stored and the
neural network selects the direction of the next
navigation step. To determine the direction, the status in
the partial configuration space is required; the map from
range finder is proposed to give this status. Moreover, a
control unit is used to provide information required by
neural networks to control the operating sequence and to
check the reachability of the goal configuration from the
start configuration. Our motion planning algorithm can
be summarized as follows:

1. Specify the object, environment information and the
start and goal configurations.

2. Set the current object orientation equal to the goal
orientation.

3. Activate range finder via control unit to determine the
local part of the map of the workspace.

4. Initialize the first neural network, which will use the
measured data from range finder. The neural network is
iterated until the weights and the outputs converged to
the returned one free space segment.

5. Activate the second neural network. It returns the
direction θk of next robot motion step.

6. Generate the robot motion path in the direction θk and
go to the step 3.

4. Principles of proposed algorithm

4.1. The findspace problem using neural network

Therefore we use the sensor data from the environment
and the classical findspace problem in our strategy was
transform to the procedure ‘learning your environment’.
The robot has in any position in workspace information
about its distances to the all objects in this workspace.
We use this information in first neural network that
learns these situations and in any position gives the free
segment of space for safe path as output. The neural
network using for the findspace problem is principal
component analysis network (PCA).
Principal component analysis networks combine
unsupervised and supervised learning in the same
topology (see Fig. 1).

input
layer PCA

layer
hidden
layer

output
layer

di Vi

Fig. 1. PCA neural network topology
This neural network uses as inputs the data measured by
the range finder. The output is free segment of the robot
workspace.

18

Principal component analysis is an unsupervised linear
procedure that finds a set of uncorrelated features from
the input. A feed-forward network is used to perform the
nonlinear classification from these components. PCA is a
data reduction method, which condenses the input data
down to a few principal components.

y
 0

y
 1

y
 m-1

w ij
x
 1

x
 p-1

Σ

Σ

Σ
x
 2

x
 p-2

x
 0

Fig. 2. Detail in PCA network

The number of principal components selected will be a
compromise between training efficiency and accurate
results. It is not possible to provide a general formula for
selecting an appropriate number of principal components
for a given application. Both learning rule choices are
normalized implementations of the Hebbian learning
rule. Straight Hebbian learning must be utilized with
care, since it may become unstable if the inputs are not
properly normalized. The network has four layers - input,
PCA, hidden and output layer. The learning is realized in
two phases.
In the first place an unsupervised linear procedure gets a
set of uncorrelated features from the inputs and selects a
few principal components. These components in hidden
layer feed-forward supervised part gives the output. The
PCA neural network learns by generalized Hebbian rule.
First updated the synapse weights wij (see Fig. 2) to a
small random number and learning parameter η to a
positive small number. Then for n=1 are calculating
outputs yj and the changes of the weights.

The outputs yj from PCA network are given by (2)

1,,1,0)()()(
1

0
−== ∑

−

=

mjnxnwny
p

i
iijj … (2)

The changes of the weights during the learning are
calculated by modification of Hebbian rule (3)

1,,1,0
1,,1,0

)()()()()()(
0

−=
−=

⎥
⎦

⎤
⎢
⎣

⎡
−=∆ ∑

=

mj
pi

nynwnynxnynw
j

k
kkijijji

…
…

η
(3)

The calculations iterate up to the weights wij are stable.
At second phase the learning of the network are realised
by back-propagation algorithm. Here updated the
synaptic weights and treshold neuron coefficients. The
back-propagation learning algorithm is based on the
error-correction principle, i.e. it is necessary to know the
network response to the input pattern. The learning
process is as follows: On the input are given the input
data and then are calculating the response of the network
(feed-forward calculation). The error ei between an actual
and an desired output is acquiring by formula (4)

)()()(nyndne iii −= (4)

where di is desired output and yi is the actual output.
During the back-propagation are compute the local
gradient δi for the preceeding layers by propagating the
errors backwards. Update the weights using formula (5)

)()()()1(nxnnwnw jiijij δη+=+ (5)

where wij is the weight between ith neuron from last
layer and jth neuron of the next layer, η is the learning
rate. This process is repeated for the next input-ouput
pattern until the error in the output layer is below a
prespecified threshold or a maximum number of
iterations are reached. We used the minimization of the
average squared error cost function Eavg given by (6)

∑ ∑
= =

−=
N

n

V

j
jjavg nynd

N
E

1 1

2))()((
2
11

 (6)

where N is number of the input-output patterns and V is
the number of output neurons.

The neural network in that case uses the normalized data
from ultrasound range finder as inputs. There are
distances di, ranging from 20 to 250 cm, to the all objects
in the front robot space from 0° to 180°. From input layer
of the network we obtained information about free
segments Vi. Each of the output neurons “represent”
particular segment of the workspace as is depicted on the
Fig. 3.

19

V9

V7

V8

V6 V5
V4

V3

V2

V1

Fig. 3. The workspace segments

4.2. Solving the findpath problem

For the solving of the findpath problem we use neural
network, too. Here we used as a neural network a
multilayer perceptron (MLP). Multilayer perceptrons are
layered feed-forward networks typically trained with
static back-propagation. These networks have found their
way into countless applications requiring static pattern
classification. Their main advantage is that they are easy
to use, and that they can approximate any input/output
map. The key disadvantages are that they train slowly,
and require lots of training data.
Aim of this network is determining of the robot azimuth
θk for the next robot motion step from the output of first
network and from the goal coordinates. The topology of
this network is depicted on the Fig. 4. The network
contains a three layer – input, hidden and output. This is
a layered feed-forward network typically trained with
static back-propagation. Here are updating the synapse
weights between neurons and threshold. The process is
similar to above described for the second phase of the
learning process for findspace problem.
On the input of this neural network in our case we give
the known free space segment Vi as the output of the first
neural network and the goal segments Si in which the
coordinates of the robot goal position should be situated.
The choice of the goal segments is the same as is
depicted on the Fig. 3. From output layer of this neural
network we obtained information Oj about robot motion
direction (azimuth) in the next step.
This information is given to the control unit. It manages
this information into the robot command for the robot
motor control.

4.3. Realization of the proposed algorithm

The proposed algorithm was prepared as a program
Neuro in Microsoft Visual C++ with operating system
Windows. For the learning and testing of the network we
used the programs from NeuroSolutions packages
(Neurodimension 2000). The program Neuro will secure
the workspace visualization and robot motion simulation.

input
layer

hidden
layer output

layer

Vi

Oi

Si

Fig. 4. Topology of MLP network

The learning of all neural networks was realized off-line
with scanning data in the work environment. We use a
more type of the learning environment. As a basic
environment for “learning your environment” was used
environment that is depicted in Fig. 5.

Fig. 5. The learning environment

This environment was chosen so that it contains various
situations, which can occur during the robot motion.
As a testing environment was used the bit map of the
laboratory environment as is depicted at the Fig. 6. These
environments were scanning with ultrasound range
finder. The model of the range finder and sensing of its
data was implemented as follows: virtual environment
with obstacles was represented as a bit map. The range
finder scanned this environment by emitting beams (see
Fig. 6). If the beam in competent direction collided with
obstacles (the bit value 0 – black color) we calculate this
distance di. The calculated and normalized distances di
was used as inputs to the neural networks.
Scanning of the environment was in 29 directions. This
number was obtaining from many experiments and
simulations. At these 29 directions obtained distances di
create input patterns to the PCA network.

20

Fig. 6. The scanning range finder

The outputs from this network are free environment
segments as are depicted on Fig. 3.
For the learning of the free segments was create the safe
sensor map. It is the set of minimal distances from
obstacles for actual state of the scanning scene using the
really dimensions of the robot. At the robot motion (and
scanning) in learning environment we compare values di
with the safe sensor map at the each step and we
determine the free segments. The obtained information di
(29 values) and information about free segments Vi (9
values) was in each step saved to the file. This file forms
the training set of pattern for PCA network in second
phase.
The second neural network - a feed-forward network - is
typically trained with static back-propagation algorithm.
For the learning of this supervised MLP network was
using the combination status table. This table contains all
potential combinations of the space segments Vi and the
goal segments Sj. The parameters Vi and Sj have two
values in the table. If Vi =1 then space segment Vi not
containing the obstacle meaning the motion in this
segment is possible. If its value is 0 the segment is
occupied and the motion within it is not possible. The
value Sj=1 says that in this goal segment the goal
coordinates take place and the value 0 signalises the
absence of the goal coordinates. The supervisor attaches
the required output (as the robot’s reaction) to any
combination of Vi and Sj, and the network learns these
situations. The robot reaction (azimuth) the supervisor
chooses from free Vi and Sj so as the robot motion was
realized in the safe direction to the goal. Our network had
18 input neurons (9 value Vi and 9 value Sj), 20 hidden
neurons and 9 output neurons (azimuth Oj).
Output Oj of this second network is given to the control
unit. It manages this information into the robot command
for the robot motor control. In our case experimental
robot distinguish five motion commands: forward, turn
left, left, turn right, right. The commands turn left (right)
means turning about 45° in left (right) direction.

The commands left (right) means turning about 90° in
left (right) direction.
When we testing the functionality of proposed algorithm
we find out the critical location in which the robot do not
know continue in correctly direction. There was a door in
the laboratory room or the narrow location in corridor.
Therefore we add two neural networks (network H and
network D) the multilayer perceptron type. The aim of
the network H is recognize when the robot is situated in
“hazard” – it stay in narrow location. When this situation
is finding the network D execute the safe motion through
this narrow location (see Fig. 7).

Fig 7. Motion by the door

The network H operates as a switch, which decides about
the using the outputs from network MLP (described in
section 4. 2.) or from network D for robot motion.

5. Simulation results

In our laboratory we have experimental mobile robot
AURO, see Fig. 8. It is built up as a prism platform with
three-wheeled configuration, which has a length of
850 mm, a width of 500 mm, and a height of 750 mm. It
consists of single steerable drive wheel at the front and
two passive rear wheels. Two stepper motors are used for
driving and steering the front wheel. It has a capability of
motion in longitudinal directions and rotation around the
robot's reference point and it can reach a maximum speed
of 0.1 m/sec. The drive wheel as well as the passive
wheels is equipped with shaft encoders used for
odometry measurement. For sensing the environment it
has ultrasonic scanning range finder, rotating from 0° to
360° and three tactile sensors on the bumper. The robot
should travel from its initial position to a final desired
position across a two-dimensional structured
environment. The robot obtains range images by an
ultrasound scanning range finder. The ranges for desired
angular sector are obtained in N steps, covering up to
180° arcs in front of the robot, are measured by scanning
every 200 ms by time-of-flight principle (Uher, L. &
Kello, I. 1999). The ultrasound scanning range finder is
disposed on the robot to get the distance measure di in the
vicinity of the robot where 20 cm < di < 250 cm. The
main navigation level computation is performed on a
host PC via RS 232 communication. The robot

21

manoeuvres are controlled by delivering information of
rotation velocity and heading angle of the front wheel.

Fig. 8. Experimental mobile robot

We have implemented the algorithm described in the
above sections in a path planner program Neuro written
down in the language C++ on PC Intel Pentium 350
MHz. For the learning and testing of the network we
used the programs from NeuroSolutions packages
(Neurodimension 2000). The programs were
interconnected with help of the dynamic data change
(DDE) in order to enable using the data from program
packages NeuroSolutions in the program Neuro.
Several examples were used to test our algorithm at first
for a point robot. These first results were presented in
(Janglova, 2000).
The functionality of the proposed algorithm was tested in
a few type of the workspace. First tests were in the
learning environment. Here the robot avoids to all
obstacles and it executes each path from the giving start
point to the goal point safely. Next testing examples were
doing in the environment that was not use for learning of
network, i.e. the unknown environment for the robot.

Fig. 9. Robot path in unknown environment

At the Fig. 9 is shown this situation – the execute path is
collision-free.
Then we use this algorithm for simulation of the motion
for our experimental mobile platform in the laboratory
environment.

Fig. 10. Simulation of robot motion

Fig. 11. Robot motion from corridor to the room

The obtained results are in the Fig. 10. and Fig. 11. In
these figures are given the bit map of indoor environment
and the paths, which was generated by the above
designed algorithm.
The Fig. 10. shows simulation of the robot path when
robot task had moving from the left corner of corridor to
the goal marked by cross at the laboratory room. The
robot does not reach the goal position – it was not pass
through the door.
This same simulation example with using the adding
neural network D and H is shown on the Fig. 11. It is
seen that the robot path is collision-free and safe from the
start to t he goal position. From the shown examples we
conclude that this strategy is usable in general for motion
of the robot in arbitrary environment.

22

6. Conclusion

The paper presents our first results that we obtained
making use of the proposed path planning algorithm
working with the neural network and sensor data. The
simulation examples of the generation of the collision-
free path for point robot and for two-dimensional robot
show that designed strategy are acceptable for solution of
this problem. We played the role of the supervisor to
learn the robot to make it’s way intelligently toward its
target and to avoid obstacles.
In future we will implement this technique for safe
motion of our experimental mobile vehicle in indoor
conditions. We suppose to use this algorithm not only for
the robot motion in known environment but for unknown
one, as well. It is necessary to test different parameters in
neural network with the aim of reaching the optimal time
for finding the (shortest possible) safe path. As the robot
collects environment data currently along its path it can
avoid not only the static obstacles but also the dynamic
ones. We feel that this technique will be suitable also for
the motion of mobile devices in complex environment
comprising also mobile obstacles.

ACKNOWLEDGEMENT

This work was supported VEGA MŠ SR a SAV grant
No. 2/3129/23.

7. References

Bekey, G. A. & Goldberg, K.Y. (1993). Neural Networks

in Robotics. Kluwer Academic Publishers, ISBN 0-
7923-9268-X, Boston

Brady, M. & at all. (1982). Robot Motion: Planning and
Control. The MIT Press, ISBN 0-262-02182-X,
Cambridge

Domany, E.; Hemmen, J.L. & Schulten, K. (1991).
Models of Neural Networks. Springer Verlag , ISBN
3-540-51109-1, Berlin

Chohra, A.; Sif, F. & Talaoubrid, S. (1995). Neural
Navigation Approach of an Autonomous Mobile
Robot in a Partially Structured Environment.

Proceedings of IAV'95, pp. 238-243, Espoo, June
12-14, Finland

Hebert, M.H.; Thorpe, Ch. & Stentz, A. (1997).
Intelligent Unamnned Grou nd Vehicles. Kluwer
Academic Publishers, ISBN 0-7923-9833-5, Boston

Jain, A.K.; Mao, K. & Mohiuddin, K.M. (1996).
Artificial Neural Networks: A Tutorial. Computer29,
No. 3, pp. 31-44, ISSN 0018-9162

Janglova, D. (2000). Collision-free Motion Using Neural
Networks Approach. Proceedings of RAAD 2000,
ISBN 86-435-0324-X, pp. 29-34, Maribor, June 1-3,
Slovenia

Kim, C.N & Trivedi, M.M. (1998). A Neuro-Fuzzy
Controller for Mobile Robot Navigation and
Multirobot Convoying. IEEE Trans.on Systems,
Man and Cybernetics-Part B: Cybernetics, Vol. 28,
No. 6, pp. 829-840, ISSN 1083-4419

Latombe, J.C. (1991). Robot Motion Planning. Kluwer,
ISBN 0-7923-9129-2, Boston

NeuroDimension (2000) Inc. Copyright (c) 1994-1997 in
www.nd.com

Tani.J (1996). Model-based Learning for Mobile Robot
Navigation from the Dynamical Systems
Perspective. IEEE Trans. on Syst., Man and Cyb.,
Vol. 26, No.3, pp. 421-436, ISSN 1083-4419

Považan, I.; Janglová, D. & Uher, L. (1995). Odometry
in Determination of the Position of an
Autonomous Mobile Vehicle. Proceedings of
ISMCR'95, pp. 425-429, ISBN 80-227-0760-0,
Smolenice, June 12-16, Slovak Republic

Uher, L. & Kello, I. (1999). Ultrasound Scanning Range
Finder. Proceedings of the 2nd Int. Conference.
Measurement’99, pp. 232-235, ISBN 80-967402-4-5,
Smolenice, April 26-29, Slovak Republic

Vörös, J. (2001). Low-cost implementation of distance
maps for path planning using matrix guadtrees and
octrees. Robotics and Computer Integrated
Manufacturing Vol. 17, No. , pp. 447-459, ISSN

Wang, J. (1998). Primal and Dual Neural Networks for
Shortest-Path Planning. IEEE Trans. on Systems,
Man and Cybernetics-Part A: Systems and Humans,
Vol. 28, No. 6, pp. 864-869, ISSN 1083-441

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

