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Vimin, Dy becomes forward biased and closes the feedback
loop. Y will stay at SIT Ey, —Vpr, where Vpr is the forward
drop of Di. As a result Vipin = ming(SITE}). With SW1
open, the CE output V,., is given by the initialization voltage
‘Vv”, it

When switch SW1 closes, similar argument applies, and
Vout = Viin = ming (SITEy, Vinat).

3) The Network: With the circuit for the sites and units defined, a
network is constructed according to Fig. 1. Since the minimum
spanning tree problem is defined on undirected graphs, the
number of required CE’s is N (N —1)/2 for an V-node graph.

Fig. 5 shows the simulated response of the network, which corre-
sponds to the problem defined on the graph in Fig. 4.

With START driven active, the output of CE’s that represent arcs
in A are initialized to the corresponding values. Output of the other
CE’s, which represent initially disconnected arcs, are initialized to an
arbitrary value (1.7 V in Fig. 5) that is larger than all the known
values. After initialization, the network begins converging to the
solution by driving START inactive at ¢ = 1 ps. When the network
settles at ¢ ~ 6.5 ps, CE’s having output values the same as the
initial value indicate that the corresponding arcs are in the minimum
spanning tree. If there are more than one minimum spanning tree in
the graph, all CE’s corresponding to arcs in the minimum spanning
trees will have the output value the same as the initial value. The
settling time of the network is determined by the large signal behavior
of the op-amps. The op-amps in the maximizer circuit should not be
allowed to go into saturation, otherwise erratic behavior may occur.
A faster op-amp is often needed in the maximizer circuit. Fig. 6
shows a correct network response when a fast op-amp is used in the
maximizer circuits.

V. CONCLUSION

The closed semiring structure provides a systematic way in for-
mulating a problem to be solved on the binary relation inference
network. The extension operator @ in a closed semiring corresponds
to the site function while the summary operator = corresponds to the
unit function. As an example and a further application of the binary
relation inference network, the minimum spanning tree problem is
solved with a closed semiring structure on the inference network
architecture.

A specific implementation of the inference network using basic
max/min analog circuit blocks is described, and simulation results
show that the convergence time of the network is in the range of
microseconds.
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A Recurrent Neural Network for
Solving the Shortest Path Problem

Jun Wang

Abstract—The shortest path problem is the classical combinatorial op-
timization problem arising in numerous planning and designing contexts.
In this paper, a recurrent neural network for solving the shortest path
problem is presented. The recurrent neural network is able to generate
optimal solutions to the shortest path problem. The performance of the
recurrent neural network is demonstrated by means of three illustrative
examples. The recurrent neural network is shown to be capable of
generating the shortest path and suitable for electronic implementation.

1. INTRODUCTION

The shortest path problem is concerned with finding the shortest
path from a specified starting node (origin) to a specified ending
node (destination) in a given network while minimizing the total cost
associated with the path. The shortest path problem is a classical
combinatorial optimization problem having widespread applications
in a variety of settings. The applications of the shortest path problem
include vehicle routing in transportation systems [1], traffic routing
in communication networks [2]-[4], and path planning in robotic
systems [5].

The shortest path problem has been investigated extensively. The
well-known algorithms for solving the shortest path problem include
the O(n”) Bellman’s dynamic programming algorithm for directed
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acycle networks, the O(n?) Dijkstra-like labeling algorithm for
networks with only nonnegative cost coefficients, and the O(n®)
Bellman-Ford successive approximation algorithm for networks with-
out negative cost coefficients, where n denotes the number of nodes in
the network. For large-scale and real-time applications such as traffic
routing and path planning, the existing series algorithms may not be
effective and efficient due to the limitation of sequential processing
in computational time. Therefore, parallel solution methods are more
desirable.

Since Hopfield and Tank’s pioneering work [6], [7], neural net-
works for solving optimization and combinatorics problems have
been a major topic in neural network research. Although there
have been a very few direct attacks of the shortest path problem
using neural network [8], [9], neural network models for solving
the related problems such as the traveling salesman problem have
been investigated extensively in recent literature. These investigations
have shed light on the neural network approach to the shortest path
problem.

In the present brief, a recurrent neural network for solving the
shortest path problem is proposed. The recurrent neural network is
demonstrated capable of generating the shortest path for a network
with mixed positive and negative cost coefficients. The neural net-
work possesses many regularity properties and is suitable for circuit
implementation.

II. PROBLEM FORMULATION

Given a direct graph G = (N, A) where N is a set of n nodes
(vertices) and A is an ordered set of m arcs (edges), m < n? A
fixed cost c;; is associated with each arc a;; in the graph G. In
transportation and robotic systems, for example, the physical meaning
of the cost can be the distance between the nodes, the time or energy
needed for travel from one node to another. In telecommunication
systems, the cost can be determined according to the transmission
time and the link capacity from one node to another. In general, the
cost coefficient matrix [c;;] is not necessarily symmetric; i.e., the cost
from node i to node j; may not be equal to the cost from node j to
nede 4. Furthermore, the arcs between some nodes may not exist. The
values of cost coefficients for the n2 —m nonexistent arcs are defined
as infinity. More generally, a cost coefficient can be either positive
or negative. A positive cost coefficient represents a loss, whereas a
negative one represents a gain. It is admittedly more difficult to find
the shortest path for a network with mixed positive and negative cost
coefficients.

An edge path representation uses an n X n binary matrix to
represent the edges (segments) in a path. Specifically, the binary
matrix of edge path representation V' = [v;;] also contains only “0”
and “1” elements, and v;; can be defined as

1 if the arc from node i to node j is in the path;
v = {0 otherwise. M
Each row and each column in the edge representation can contain
no more than one “1” element, if each node can be visited at
most once. Since the cost coefficients of loops are assumed to be
nonnegative (i.e., ¢;; > 0 for¢ = 1,2, -+ n), the elements in the main
diagonal line of the edge path representation are always zero. Since
the diagonal elements are always zero, the edge path representation
can be simplified by excluding the diagonal elements vi; (i =
1,2,---,n). Consequently, the simplified edge representation has
only n(n — 1) binary elements. Because the edge path representation
can represent the shortest path with more than » nodes in a general
network with mixed positive and negative cost coefficients, it is
desirable.
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Fig. 1. Network topology and the shortest path in Example 1.

Based on the edge path representation, the shortest path prob-
lem can be formulated as a linear integer programming problem
minimizing the sum of the costs on the arcs in the path [10]

n
. —
minimize Z E CijVij 2)

=1 j#i
n n 1, ifi=s
subjectto Y wvik— » wi=g 0, ifiFs&iFte (3)
k=1,k#i I=1,1#i -1, ifi=e;
vij €{0,1}, i#j,i,j=12,--,n )

where s and e denote the starting and ending node, respectively.

In this shortest path problem formulation, the number of decision
variables is n(n — 1). The arc from node ¢ to node j is in the shortest
path if decision variable v;; = 1. The equality constraint coefficients
and the right-hand sides (RHS’s) are —1, 0, or 1. The first constraint,
(3), ensures that a continuous path starts from a specified origin and
ends at a specified destination. The second constraint, (4), is the
integrality constraint.

Because of the total unimodulity property of the constraint co-
efficient matrix defined in (3) [10], the integrality constraint in the
shortest path problem formulation can be equivalently replaced with
the nonnegativity constraint, if the shortest path is unique. In other
words, the optimal solutions of the equivalent linear programming
problem are composed of zero and one integers if a unique optimum
exists [10]. The integrality constraint of (4) can be equivalently
replaced by
If each arc can be visited no more than once, then the assumption
of the absence of negative cycles and negative loops can be relaxed
without incurring unbounded total costs. In this case, an upper bound
of 1 for each decision variable v;; can be added to prevent v;;
increases to infinity. Namely, (4) can be changed to

0<wv; £1, i#j;6,5=12,n ©
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Fig. 2. Transient states of the simulated recurrent neural network in Example 1.

1. DYNAMICAL EQUATION

Because the formulated shortest path problem is a linear program-
ming problem, the shortest path problem can be solved by the neural
networks for linear programming. In [11] and [12], a recurrent neural
network called deterministic annealing neural network is presented
and demonstrated to be capable of solving linear programming
problems. The proposed recurrent neural network for solving the
shortest path problem is tailored from the deterministic annealing
neural network [11}, [12].

Let the decision variables of the shortest path problem be rep-
resented by the activation states, the neural network for solving the
shortest path problem consists of n(n — 1) neurons arranged spatially
in an n X n array without diagonal elements. An energy function can
be defined as follows:

Elt,v(t)] =8> cij exp(~t/T)vi;(t)

i=1 i
n 2
w
+ 5 ; kz;&bik(t) — l;ézivu(t) — bis + bie (7)

where 3, w and 7 are positive scaling constants, &, is the Kronecker
delta function. The role of exp(—t/7) in (7) is explained in [11] and
[12].

Let du,;(t)/dt = —OE[t,v(¢)]/dvi;, the state dynamics of the
recurrent neural network can be described as follows: For i # j;

du;;(t
UTJZ(U = —wZvik(t)-l-wZvu(t)

kst I#i
+w Z vjp(t) —w Z vg;(t)
PFEJ 977
+ w(bis — bic — 80 + 6jc) — PBeijexp(—t/7); (8)
vii(6) = fijluis (1] )]

where f;;(-) is a nonnegative and monotone increasing activation
function.

The first four terms in the RHS of (8) define the connectivity of the
recurrent neural network. The fifth and sixth terms in the RHS of (8)
define the constant. and decaying thresholds (biases), respectively.
Let the neuron in the jth row and ith column be termed as the
mirror neuron of the neuron in the ith row and jth column. Equation
(8) shows that i) inhibitory connections exist between neuron v;; (¢)
and every neuron in the present row and column including itself,
vir(t) (kK # i) and v,;(t) (¢ # j); ii) excitatory connections exist
between neuron v;;(¢) and every neuron in the same row and column
of its mirror neuron v;i(t), vjp(t) and vii(t) (p # 4,1 # i)
iii) all self-feedback connection weights are equal to —2w; iv) all
connection weights between mirror neurons are 2w; and v) the
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Fig. 3. Transient states of the simulated recurrent neural network in Example 2.

absolute values of all other connection weights are w. That is, among
the nn(n — 1)(2n — 3) connection links, there are n(n —1)(2n—3)/2
inhibitory connections and n(n—1)(2n—3)/2 excitatory connections
for a nontrivial case (n > 2). Equation (8) also shows that i) the
constant biasing thresholds unrelated to starting or ending nodes are
zero, ii) the constant biases in the sth row and eth column are positive,
and iii) the constant biases in the eth row and sth column are negative.
Specifically, the constant bias of neuron v.(t) is 2w, the constant
bias of neuron v.s(t) is —2w, the constant biases of neurons vs;(t)
and v;.(t)(j # e,i # s) are w, and the constant biases of neurons
vs;(t) and vis(j # s,¢ # e) are —w.

One salient advantage of the recurrent neural network is the in-
dependency of the connection weight matrix upon specific problems.
Specifically, only the constant biases are different for different origins
and/or destinations of the same network, and only the initial values
of the decaying biases are different for different networks with the
same number of nodes, and the same origin and destination. By
biasing different nodes, the recurrent neural network can be used
to generate all-pair shortest paths. Furthermore, the recurrent neural
network can be modulized with a large number of neurons. In specific
applications, the unused neurons can be disabled by assigning very
large cost coefficients to penalize the selection of the arcs. These
desirable features facilitate the VLSI implementation of the recurrent
neural network.

IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider a shortest path problem with n being 10.
Without loss of generality, let’s assume that the starting and ending
nodes are nodes 1 and 10, respectively. Fig. 1 depicts the network
topology which is generated randomly in the unit square, where the
solid lines indicate the shortest path and the dashed lines indicate the
existing arcs. Buclidean distances are used as the cost coefficients.

The shortest path of this problem is {ni,n2,ns,n10}; ie.,
{a12. a23,a3,10}. The total cost of the shortest path is 1.149896.
Note that the second shortest path, {n1, n2, n4,m10}, has a very close
total cost of 1.172729. The optimal shortest path of this problem is
given by the following binary matrix of edge representation.

-~ 1.0 0 0 0 0 0 0 0
0 — 1.0 0 0 0 0 0 0
00 — 0000 0 01
00 0 — 00 0 0 0 0
{00 0 0 — 00 0 00
=lo 0o 0o 0 0 - 00 00
00 0000 -0 0 0
0000 000 0 — 0 0
00 000000 — 0
0000 0O0O0O0 0 -
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Fig. 4. Network size versus average convergence time in Example 3.

Fig. 2 depicts the transient behavior of the activation states of
the recurrent neural network simulated using PSpice, where V (i)
denotes v;; (i,5 = 1,2,---,n), and ¢, j are in two digits. Obviously,
the neural network solution to the problem represents the shortest
path as shown in V*. The simulated recurrent neural network takes
about 10 ps to converge. The simulation result in this example also
indicates that the recurrent neural network can distinguish the shortest
path and the very close the second shortest path.

Unlike the popular Dijksdra’s labeling algorithm which can solve
the shortest path problem with nonnegative cost coefficients only,
the recurrent neural network is capable of solving the shortest path
problem with mixed positive and negative cost coefficients as will be
shown in the following example.

Example 2: Consider a 10-node directed network with mixed
positive and negative cost coefficients. The cost coefficient ma-
trix is asymmetric and there are no loops or negative cycles in
this network. The starting and ending nodes are assumed again as
nodes 1 and 10, respectively. The shortest path of this problem
is {1117 ng, N2, N5, N7, 77,10}; ie., {alg, age, a5, A57, 047)10}, with the
total cost of 0.360952. The optimal shortest path of this problem is
given by the following binary matrix of edge representation.

- 0 0 0 0 0 0 0 1 0

0 - 0 0 1 0 0 0 0 O

0 0 - 0 0 0 0 0 0 0

6 00 — 0 0 0 0 0 0

V= ol = 00 0 0 - 01 0 0 0
I 6 0 0 0 0 - 0 0 0 O

0o 0 0 0 0 0 - 0 0 1

0o 0 0 0 0 0 0 — 0 O

6 1.0 0 0 0 0 0 — 0

6 6 0606 060 0 0 0 -

Fig. 3 depicts the transient behavior of the activation states of
the recurrent neural network simulated using PSpice based on the
same design parameters in Example 1. Evidently, the neural network
solution to the problem represents the shortest path as shown in V™*.
It takes less than 10 ps for the simulated recurrent neural network
to converge.

The average convergence rate of the recurrent neural network with
the same design parameters normally does not decrease as the network
size increases. The following example demonstrates this feature.

Example 3: Consider solving different sizes of shortest path prob-
lems. One hundred random cost coefficient matrices of each size are

generated uniformly on [0, 1]. Let w = 8 = 10° and 7 = 0.1 ms.
Using a C' simulator based on second-order Runge-Kutta method, the
simulation results show that the steady states of the simulated neural
network always give rise to correct solutions. Fig. 4 illustrates the
network size n versus the average convergence time of the recurrent
neural network 7, in ps, where the solid line connects the data, the
dashed line represents a polynomially fitted curve based on the data.
T. is determined using the average time interval from the beginning
to all the activation states entering and staying within & 1 4V range
of the steady-state 7. It shows clearly that the average convergence
time does not increase as the network size increases statistically
speaking.

The simulation results have shown that large-scale problems make
the spatial complexity of the recurrent neural network increase,
but not the temporal complexity from a statistical point of view.
Therefore, it suffices to demonstrate the performance of the neural
network using these small-scale examples.

V. CONCLUSION

In this brief, a recurrent neural network for solving the shortest
path problem has been presented. It has also been shown that
the recurrent neural network is capable of determining the shortest
paths of a given directed network with positive and/or negative cost
coefficients. Since the solution process is inherently parallel and
distributed, the convergence rate is nondecreasing with respect to
the size of the shortest path problem. Furthermore, the convergence
rate of the neural network can be expedited by properly selecting
design parameters. These features make the recurrent neural network
suitable for solving large-scale shortest path problems in real-time
applications. The recurrent neural network implemented in a VLSI
circuit can serve as a co-processor for onboard planning in dynamic
decision environments.
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