
 - 1 -
2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006 Miami, Florida, May 25-26, 2006

Koolio: Path planning using reinforcement learning on a
real robot platform

Lavi M. Zamstein
University of Florida

dino-man@ieee.org

Dr. A. Antonio Arroyo,
Dr. Eric M. Schwartz

University of Florida

Machine Intelligence Laboratory (MIL)

MAEB 325, Building 720
University of Florida

Gainesville, FL 32611-6300
00-352-392-2541

Sara Keen,
Blake C. Sutton,
Gorang Gandhi

University of Florida

ABSTRACT
In this paper, we describe the learning process of an autonomous
delivery robot. We will discuss reinforcement learning and which
method is used to reach an optimal policy of actions using only
the current sensor inputs.

Keywords
Q-learning, reinforcement learning

1. Introduction
Koolio is part butler, part vending machine, and part delivery
service. He stays in the Machine Intelligence Laboratory at the
University of Florida, located on the third floor of the Mechanical
Engineering Building A. Professors with offices on that floor can
access Koolio via the internet and place an order for a drink or
snack. Koolio finds his way to their office, identifying it by the
number sign outside the door.
Koolio learns his behavior through the reinforcement learning
method Q-learning.

2. Koolio
Koolio is controlled by an integrated system consisting of a single
board computer along with a pair of smaller processors, used to
organize sensor data and to drive the motors [1].

The platform itself consists of a small refrigerator mounted on a
circular base. The sonar and bump sensors are located on the
base, with a digital compass on top of the refrigerator. Also
mounted on the base are a pair of tall poles, which hold up the
side-facing cameras, side sonar sensors, and the LCD screen.

3. Reinforcement Learning
Reinforcement learning is a method of learning by way of
rewards and punishments. The learning agent will seek those
choices that result in high rewards and avoid those actions that
result in low rewards or punishments (negative rewards). In this
way, an agent will learn to follow the decision path that results in
the best possible reward.
Many reinforcement learning processes will only work properly if
a Markov process is assumed. A Markov process is any process
that uses only current values of inputs to determine the output.
All past input values are ignored in Markov processes. This

makes Markov processes very useful in the realm of robots, since
the output and all calculations will rely only on the current input
of the sensors, rather than memory of any past input. Not only
does this remove the necessity of memory for past sensor values,
but it also reduces the calculations greatly, as there are fewer
variables to deal with – only the current sensor values instead of
the current and many past sensor values.
One of the fundamental balances in reinforcement learning is that
between exploration and exploitation. Since the agent wants to
maximize its reward, it will often make the choice that offers the
highest reward. However, if this best choice is always made, then
many other possible choices are never looked at. It is possible
that some choices which yield smaller rewards will, in the end,
give higher returns, due to better states following a single sub-
optimal choice now. To avoid the skipping of such cases, there
must be some exploration of non-optimal states, in addition to
exploitation by picking the current best choice.

3.1 Application example
One application of reinforcement learning is the behavior of
robots. As an example, the following explanations of
reinforcement learning methods will use a robot that is learning to
wall-follow while avoiding obstacles and not touching the wall
itself, using simple infrared (IR) and bump sensors.

3.2 Reinforcement Learning Algorithms
The primary algorithm chosen in solving this is known as ε-
greedy. In this algorithm, ε is some small percentage, with a
larger ε (such as 10%) being used for a more exploration-oriented
design and a smaller ε (such as 1%) used for a more exploitation-
oriented design. Most designs use an ε of 5% by default. The
current best choice is chosen 1-ε of the time (exploitation), but
during the other ε of choices, a random selection is made
(exploration) [2]. This allows for choices which are not currently
the best, but which may lead to policies that prove optimal.
There are three major groups of methods in reinforcement
learning, though each of the methods may be further divided into
more specific methods. These three main methods are
differentiated from one another by two main factors: models of
the environment and bootstrapping. Bootstrapping is the method
of updating estimates based on other estimates. In the realm of

 - 2 -
2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006 Miami, Florida, May 25-26, 2006

reinforcement learning, bootstrapping is used to update the
estimates of state values and action values based on the estimates
of the state values and action values of later states.

• Dynamic Programming (DP) methods use
bootstrapping and require a complete and accurate
model of the environment.

• Monte Carlo (MC) methods do not require a model of
the environment and do not bootstrap.

• Temporal Difference (TD) methods do not require a
model of the environment but do bootstrap.

3.2.1 Dynamic Programming methods
Because DP methods require an accurate model of the
environment, they are not suitable for reinforcement learning with
robots. This is because the environment is the real world around
the robot, and therefore is very difficult, if not impossible, to
model perfectly. In addition, if the environment were to change,
the entire model must be changed, which will severely hamper the
learning process.
On the other hand, since MC and TD methods do not require an
accurate model, but only a general idea of the environment,
changing that environment has much less impact on their methods
of learning.
Because DP methods are not efficient for use in reinforcement
learning for robots, we will favor MC and TD methods over them.
Using the wall-following example, assume the agent has a perfect
model of its environment. If the robot is moved to another
environment, either by changing the current one or placing it in a
different room, the model is no longer valid and the learning
process will not work until a new model is made. If the robot
were to learn to perform the desired following action in any given
room, the policy created from that learning would not work in any
other room because of the different environment. Any change in
sensor readings will also read as a different state, thus altering the
environment. For this reason alone, DP is not suitable for use in
real robots, since sensors are not perfect and the values can vary.

3.2.2 Monte Carlo methods
Because MC methods do not require a complex model of the
environment, they are much more fit than DP methods for use in
robot learning. The environment model for MC need only
generate sample state transitions. In other words, the model only
needs to define the states and their possible actions, and how the
agent can move from one state to another.
This in itself makes MC methods usable for robot learning, as
well as minimizing the effects of a changing environment. In the
example of wall following and obstacle avoidance, for example,
the model must have states defined for the various possible
conditions the agent may find itself in. Some of these are nothing
(where neither the IR nor the bump sensors are activated, showing
the robot is in a clear area), wall (where the IR sensors detect
some obstacle on one side), and contact (where the bump sensors
indicate the robot has touched an object). For a more complicated
model, one could add states for corners, dead ends, and tight
spaces. Using the basic states of nothing, wall, and contact,
however, a robot can successfully learn to follow walls without
bumping into them.

Unlike DP methods, MC and TD methods do not require a model
of the environment, and are therefore much more flexible [3]. If a
robot were to learn the “following and not bumping” behavior,
and was then moved into another room with similar makeup
(walls and solid objects), either in the middle of the learning
process or after the learning is complete, it would be able to
perform with the same policy or with only slight adjustments
needed. This also allows for small fluctuations in sensor readouts
without altering the decisions made by the learned policy.
However, if the substance of the environment were changed, there
would be a problem. For example, if an obstacle was introduced
that could be seen with IR sensors but was light enough to be
pushed by the robot without triggering the bump sensors, that
would represent a fundamental change in the state makeup. Since
the “normal” wall/object definition is something that is solid and
causes the bump sensors to activate when hit, this new object is
completely alien to the agent’s knowledge and will serve to make
the learning process more difficult, if not impossible. The only
way to allow for a change such as this is to add new states, which
will then require additional learning to be done to alter the policy
to account for the new states.
Because MC methods do not bootstrap and use average sample
returns, they are defined only for episodic tasks, since the value
estimates and policy are updated only at the termination of each
episode. Thus non-episodic tasks must use TD methods for
learning.
MC methods use a cycle of evaluation and improvement to
implement policy iteration. For each instance of this cycle, the
state-action functions are evaluated for the current policy. The
best of these actions for each state are selected to make the new
policy. This new policy can then be evaluated during the next
episode to repeat the cycle. The greedy method is often used in
the policy improvement, resulting in a new policy that is either of
equal or greater value than the previous policy. Given an infinite
number of episodes and an assumption of exploring starts, this
method is guaranteed to converge to an optimal policy.
Realistically, however, there can never be an infinite number of
episodes. Therefore, the evaluation step of each evaluation and
improvement cycle may be changed so the value function
approaches the state-action value function. In other words, the
policy need not immediately jump to the new better value, but
may simply proceed toward it. If the next policy is better and has
the same state-action pair, then the improvement will approach it
further. If not, there is much less backtracking needed to move
toward a new choice.
Since a good model of the environment is never assumed for MC
methods, state-action values become more important than state
values, since they are possible to estimate without values of future
events, whereas state values require knowledge of the following
states in order to estimate them. However, it is therefore possible
for direct policy evaluation to miss some actions in a state. In
order to avoid this, exploration must be maintained in a method
called exploring starts. Exploring starts gives every state-action
pair a non-zero probability of being the first step in each iteration.
In order to use exploring starts in our robot example, the robot
must be placed in a random location in the environment at the
start of each episode. This also means that it must sometimes be
placed near a wall to fulfill the state of sensing a wall nearby, as
well as touching a wall, to explore the state of bumping into a

 - 3 -
2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006 Miami, Florida, May 25-26, 2006

wall. From these random starting positions, an action must be
chosen randomly from the possible actions available in that state.
All this will ensure that exploration is maintained and no state-
action pairs are skipped.
This method of ensuring exploring starts, however, is tedious and
not likely to fully explore all the possible states and actions as
initial steps. There are two other methods used to ensure full
exploration: on-policy MC and off-policy MC.

On-policy MC methods use first-visit methods (methods which
use the average of returns after the first instance of a given state to
determine the state-action pair’s value function) to estimate the
current policy’s state-action value functions. Because a full
greedy algorithm for improving the policy would miss some state-
action pairs without the assumption of exploring starts, ε-greedy
is used instead. This ε ensures that policy improvement
approaches an optimal policy while still maintaining exploration.
With the robot example, this means that at any state, the robot has
a ε chance to select some random action rather than the current
best action.

Off-policy MC methods separate the functions of control and
policy evaluation into two separate functions: the behavior policy
to govern the decisions of the current policy and the estimation
policy to be evaluated and improved. Because the policy
functions are separated in this way, ε-greedy is not needed, and
greedy is sufficient for exploring all possible state-action pairs,
since the estimation policy may continue to explore while the
behavior policy acts. The tradeoff for not needing ε-greedy,
however, is that these methods learn faster for selecting non-
greedy actions than for selecting greedy actions, resulting in slow
learning for some states, especially early states in long episodes.
With our wall-following robot example, off-policy MC would
remove the random aspect of on-policy; however, it would see a
decrease in learning speed, especially for longer episodes.

3.2.3 Temporal Difference methods
Like MC methods, TD methods also do not need a model of the
environment, and make predictions in the same way, using sample
state transitions. Unlike MC methods, TD bootstraps, using
estimate to update other estimates. Because of this, TD methods
update values after each time step, rather than after each episode.
Bootstrapping allows for TD methods to learn faster than MC
methods during exploration, since the policy update each time
step means the method does not need to wait until the end of an
episode to determine if that choice was better or worse than the
choice indicated by the previous policy. TD methods can then
know whether an explored choice is good or bad right away,
rather than waiting until the end of the episode.
The use of bootstrapping is the major difference between TD and
MC methods. Many other parts are the same, such as the use of
on-policy and off-policy methods, though the results may be
different because of the quicker learning under exploration with
TD.
TD learning also has several special types of methods, both on
and off policy, which are useful in certain cases.

Sarsa, an on-policy TD method, updates after each transition
from a non-terminal state. Because of this, sarsa methods always
converge to optimal policies so long as all the state-action pairs

are visited an infinite number of times and the policy is able to
converge to the greedy function.
Unlike MC methods, sarsa and other TD methods are able to
determine during an episode whether the policy is good or bad,
and change policies if the current one is determined to be bad.
This proves very useful in episodes where the current policy may
never finish, from an inability to reach the goal.
In the robot example, if the goal was to spend more time along a
wall than in the open, some policies may never reach that goal.
For example, a policy that turns away from a wall as soon as it is
spotted will always spend more time away from the wall than
against it, resulting in a never-ending episode. Using sarsa or
other TD methods avoid this by determining in the middle of the
episode that the choices defined by the policy are not able to
reach the goal.

Q-learning, an off-policy TD method, uses learned action value
functions to approximate the optimal action value function
independent of the current policy. This simplifies policy
evaluation and updating while only making the assumption that
all state-action pairs continue to be updated. Unlike sarsa, Q-
learning does not need to assume state-action pairs are visited an
infinite number of times, making it more likely to reach the
optimal policy than sarsa given a finite number of episodes [4].
Under the robot example, Q-learning is more likely to be
adventurous than other learning methods, since it uses ε-greedy to
explore. Because of this, it is likely to quickly go to the wall, but
will also bump into the wall more than other methods during the
process of learning, as exploration will be more likely to push it in
a random direction.

Actor-critic, a group of on-policy TD methods, separates the
policy and the value function into independent memory structures.
The policy structure, or actor, is used to decide which action to
pick in each state. The estimate value function, or critic,
determines whether the actions of the actor are good or bad, and
whether they should be encouraged or discouraged. These
methods are useful because they do not require much computation
to select actions, due to the policy and value functions being
stored and operated independently. Because of the division
between decision making and decision critiquing, actor-critic
methods are also useful in modeling psychological or biological
behavior, as such behavior functions under the same general
separation structure.

R-learning, an off-policy TD method, does not discount past
experiences, unlike most other learning methods. R-learning also
does not divide experiences into episodes, instead learning from a
single, extended task. This shifts the priority for the optimal
policy to optimizing each time step, rather than optimizing each
episode. R-learning methods use relative values, state-action
functions that determine their value based on the average of all
other state-action values for the current policy. With relative
values, the value of each action chosen is compared to the overall
average of all other values in the policy. If the chosen action is
better than the average, it is considered good and is incorporated
into the policy. If the action returns a value worse than average, it
is considered bad and discarded from the policy.

4. Reinforcement Learning Method
Q-Learning was the reinforcement learning method chosen for use
in Koolio. This was done for several reasons. Temporal

 - 4 -
2006 Florida Conference on Recent Advances in Robotics, FCRAR 2006 Miami, Florida, May 25-26, 2006

Difference learning methods are very useful for mobile robots
since they allow for a possible change in the environment and
they bootstrap. The bootstrapping involves a tradeoff.
Bootstrapping methods require more complicated code, but are
more efficient in the learning process. Therefore it was decided
to use a TD method to allow for optimal learning efficiency.
Among TD methods, Q-learning was chosen for ease of use and
availability of reference materials. Although Q-learning is not the
most efficient learning method for a single robot process, it is a
very popular learning method, so there exists lots of
documentation to refer to when setting up the code.

5. Learning Process
5.1 Step 1: States and Actions
For a mobile robot, the states are simply the set of all sensor
input. Because most of the sensors used on Koolio have analog
outputs, there is the potential for a very large number of possible
states. Therefore, states must be defined using ranges of sensor
values.
Aside from basic informational output such as the LCD screen,
the only actions are movement of the wheels. Since the motor
drivers operate independently from the learning process, it does
not need to put into consideration the specifics of operating the
motors directly. The only actions then are the basic movements
of forward, backward, turn left, turn right, rotate left, and rotate
right.

5.2 Step 2: Simulation
Reinforcement learning in episodic tasks requires a very large
number of repetitions to learn. Along with this, many repetitions
on the platform can result in wear of parts, and the testing area of
a hallway may not always be available since it is used on a daily
basis. Because of these factors, the initial parts of learning must
be done in simulation.
Learning in simulation has other advantages as well. Data can be
easily stored from simulation runs and referred to later [5]. Using
simulation data, a graph can be constructed showing the growth of
the return as the policy approaches optimal. If data is recorded on
the actual robot, graphs can also be constructed. Simulations can
also run much faster than a real robot, so many simulations can be
run in the time of a single real robot episode.
There are some drawbacks to simulation, however. No matter
how good a model of the environment for running test episodes is,
it can never be perfect. A learned policy from a simulation may
not operate correctly in a real environment because of any number
of imperfections in the model.
However, simulation is still an important tool in the learning
process. By developing an optimal policy in the simulated
environment, much of the time of real robot learning can be done
before involving the actual robot. The policy can then be
exported to the robot and the learning process can continue.

5.3 Step 3: Real Robot Learning
Once the simulation has reached an optimal policy, it can be
brought to the robot to continue the learning. Because a good
deal of learning has already taken place, this phase of the learning
process is much faster than it would have been if the simulation
was skipped and the learning was done solely in the real

environment. By the time the policy is ready to be used on the
platform, it will have been changed to avoid many time-
consuming mistakes such as random wandering.
Despite the shortcuts of using a simulator for the initial learning
process, this phase of real robot learning is still the most time-
intensive, as episode runs of the robot can take several minutes
instead of the accelerated time used in simulation. Because the
policy is already refined, however, only a relatively smaller
number of episodes is required for reaching a new real
environment optimal policy.

6. Future Work
With reinforcement learning, Koolio can be transferred into
another environment with similar makeup and learn fairly quickly
how to operate optimally in the new environment. For instance, if
Koolio was moved into another hallway with the same physical
characteristics (such as wall color and room number signs), it
could learn to find a room in much less time than it took to
initially learn how to navigate a hallway.
Because reinforcement learning develops a policy of action, it is a
trivial matter to transfer Koolio’s learned policy into another
robot. So long as the new robot has the same sensors and motor
drivers, it should be able to perform the same operations with
little to no additional learning required.

7. Acknowledgements
Our thanks to the University of Florida Machine Intelligence
Laboratory for use of resources and to my committee chair Dr.
Arroyo. We also thank the rest of the Koolio team for their work
on the platform. We would like to recognize Brian Pietrodangelo,
Kevin Phillipson, and Dr. E. Schwartz, the original designers of
Koolio who made this project possible, as well as Halim Aljibury,
who provided the simulation program.

8. References
[1] Sara Keen, Lavi Zamstein, Wenxing Ye, Blake Sutton Gene

Shokes, Gorang Gandhi, Eric M. Schwartz, A. Antonio
Arroyo. Koolio: An Autonomous Refrigerator Robot.
Proceedings of the 2006 Florida Conference on Recent
Advances in Robotics, May 25-26, 2006, FIU, Miami,
Florida.

[2] Sutton, R. and Barto, A. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, MA, 1998.

[3] Malmstrom, K., Munday, L., and Sitte, J. Reinforcement
Learning of a Path-Finding Behaviour by a Mobile Robot.
Australian New Zealand Conference on Intelligent
Information Systems, Adelaide, Australia, 1996.

[4] Smart, W. and Kaelbling, L. Effective Reinforcement
Learning for Mobile Robots. Proceedings of the 2002 IEEE
International Conference on Robotics & Automatons,
Washington, DC, 2002.

[5] Su, M., Huang, D., Chou, C., and Hsieh, C. A Reinforcement
Learning Approach to Robot Navigation. Proceedings of the
2004 IEEE International Conference on Networking, Sensing
& Control, Taipei, Taiwan, 2004.

