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ABSTRACT 
In this paper, we describe the learning process of an autonomous 
delivery robot.  We will discuss reinforcement learning and which 
method is used to reach an optimal policy of actions using only 
the current sensor inputs. 
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1. Introduction 
Koolio is part butler, part vending machine, and part delivery 
service.  He stays in the Machine Intelligence Laboratory at the 
University of Florida, located on the third floor of the Mechanical 
Engineering Building A.  Professors with offices on that floor can 
access Koolio via the internet and place an order for a drink or 
snack.  Koolio finds his way to their office, identifying it by the 
number sign outside the door. 
Koolio learns his behavior through the reinforcement learning 
method Q-learning.   

2. Koolio 
Koolio is controlled by an integrated system consisting of a single 
board computer along with a pair of smaller processors, used to 
organize sensor data and to drive the motors [1]. 

The platform itself consists of a small refrigerator mounted on a 
circular base.  The sonar and bump sensors are located on the 
base, with a digital compass on top of the refrigerator.  Also 
mounted on the base are a pair of tall poles, which hold up the 
side-facing cameras, side sonar sensors, and the LCD screen. 

3. Reinforcement Learning 
Reinforcement learning is a method of learning by way of 
rewards and punishments.  The learning agent will seek those 
choices that result in high rewards and avoid those actions that 
result in low rewards or punishments (negative rewards).  In this 
way, an agent will learn to follow the decision path that results in 
the best possible reward. 
Many reinforcement learning processes will only work properly if 
a Markov process is assumed.  A Markov process is any process 
that uses only current values of inputs to determine the output.  
All past input values are ignored in Markov processes.  This 

makes Markov processes very useful in the realm of robots, since 
the output and all calculations will rely only on the current input 
of the sensors, rather than memory of any past input.  Not only 
does this remove the necessity of memory for past sensor values, 
but it also reduces the calculations greatly, as there are fewer 
variables to deal with – only the current sensor values instead of 
the current and many past sensor values. 
One of the fundamental balances in reinforcement learning is that 
between exploration and exploitation.  Since the agent wants to 
maximize its reward, it will often make the choice that offers the 
highest reward.  However, if this best choice is always made, then 
many other possible choices are never looked at.  It is possible 
that some choices which yield smaller rewards will, in the end, 
give higher returns, due to better states following a single sub-
optimal choice now.  To avoid the skipping of such cases, there 
must be some exploration of non-optimal states, in addition to 
exploitation by picking the current best choice. 
 

3.1 Application example 
One application of reinforcement learning is the behavior of 
robots.  As an example, the following explanations of 
reinforcement learning methods will use a robot that is learning to 
wall-follow while avoiding obstacles and not touching the wall 
itself, using simple infrared (IR) and bump sensors. 

3.2 Reinforcement Learning Algorithms 
The primary algorithm chosen in solving this is known as ε-
greedy.  In this algorithm, ε is some small percentage, with a 
larger ε (such as 10%) being used for a more exploration-oriented 
design and a smaller ε (such as 1%) used for a more exploitation-
oriented design.  Most designs use an ε of 5% by default.  The 
current best choice is chosen 1-ε of the time (exploitation), but 
during the other ε of choices, a random selection is made 
(exploration) [2].  This allows for choices which are not currently 
the best, but which may lead to policies that prove optimal. 
There are three major groups of methods in reinforcement 
learning, though each of the methods may be further divided into 
more specific methods.  These three main methods are 
differentiated from one another by two main factors: models of 
the environment and bootstrapping.  Bootstrapping is the method 
of updating estimates based on other estimates.  In the realm of 
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reinforcement learning, bootstrapping is used to update the 
estimates of state values and action values based on the estimates 
of the state values and action values of later states. 

• Dynamic Programming (DP) methods use 
bootstrapping and require a complete and accurate 
model of the environment. 

• Monte Carlo (MC) methods do not require a model of 
the environment and do not bootstrap.  

• Temporal Difference (TD) methods do not require a 
model of the environment but do bootstrap.  

3.2.1 Dynamic Programming methods 
Because DP methods require an accurate model of the 
environment, they are not suitable for reinforcement learning with 
robots.  This is because the environment is the real world around 
the robot, and therefore is very difficult, if not impossible, to 
model perfectly.  In addition, if the environment were to change, 
the entire model must be changed, which will severely hamper the 
learning process. 
On the other hand, since MC and TD methods do not require an 
accurate model, but only a general idea of the environment, 
changing that environment has much less impact on their methods 
of learning. 
Because DP methods are not efficient for use in reinforcement 
learning for robots, we will favor MC and TD methods over them. 
Using the wall-following example, assume the agent has a perfect 
model of its environment.  If the robot is moved to another 
environment, either by changing the current one or placing it in a 
different room, the model is no longer valid and the learning 
process will not work until a new model is made.  If the robot 
were to learn to perform the desired following action in any given 
room, the policy created from that learning would not work in any 
other room because of the different environment.  Any change in 
sensor readings will also read as a different state, thus altering the 
environment.  For this reason alone, DP is not suitable for use in 
real robots, since sensors are not perfect and the values can vary. 

3.2.2 Monte Carlo methods 
Because MC methods do not require a complex model of the 
environment, they are much more fit than DP methods for use in 
robot learning.  The environment model for MC need only 
generate sample state transitions.  In other words, the model only 
needs to define the states and their possible actions, and how the 
agent can move from one state to another. 
This in itself makes MC methods usable for robot learning, as 
well as minimizing the effects of a changing environment.  In the 
example of wall following and obstacle avoidance, for example, 
the model must have states defined for the various possible 
conditions the agent may find itself in.  Some of these are nothing 
(where neither the IR nor the bump sensors are activated, showing 
the robot is in a clear area), wall (where the IR sensors detect 
some obstacle on one side), and contact (where the bump sensors 
indicate the robot has touched an object).  For a more complicated 
model, one could add states for corners, dead ends, and tight 
spaces.  Using the basic states of nothing, wall, and contact, 
however, a robot can successfully learn to follow walls without 
bumping into them. 

Unlike DP methods, MC and TD methods do not require a model 
of the environment, and are therefore much more flexible [3].  If a 
robot were to learn the “following and not bumping” behavior, 
and was then moved into another room with similar makeup 
(walls and solid objects), either in the middle of the learning 
process or after the learning is complete, it would be able to 
perform with the same policy or with only slight adjustments 
needed.  This also allows for small fluctuations in sensor readouts 
without altering the decisions made by the learned policy. 
However, if the substance of the environment were changed, there 
would be a problem.  For example, if an obstacle was introduced 
that could be seen with IR sensors but was light enough to be 
pushed by the robot without triggering the bump sensors, that 
would represent a fundamental change in the state makeup.  Since 
the “normal” wall/object definition is something that is solid and 
causes the bump sensors to activate when hit, this new object is 
completely alien to the agent’s knowledge and will serve to make 
the learning process more difficult, if not impossible.  The only 
way to allow for a change such as this is to add new states, which 
will then require additional learning to be done to alter the policy 
to account for the new states. 
Because MC methods do not bootstrap and use average sample 
returns, they are defined only for episodic tasks, since the value 
estimates and policy are updated only at the termination of each 
episode.  Thus non-episodic tasks must use TD methods for 
learning. 
MC methods use a cycle of evaluation and improvement to 
implement policy iteration.  For each instance of this cycle, the 
state-action functions are evaluated for the current policy.  The 
best of these actions for each state are selected to make the new 
policy.  This new policy can then be evaluated during the next 
episode to repeat the cycle.  The greedy method is often used in 
the policy improvement, resulting in a new policy that is either of 
equal or greater value than the previous policy.  Given an infinite 
number of episodes and an assumption of exploring starts, this 
method is guaranteed to converge to an optimal policy.  
Realistically, however, there can never be an infinite number of 
episodes.  Therefore, the evaluation step of each evaluation and 
improvement cycle may be changed so the value function 
approaches the state-action value function.  In other words, the 
policy need not immediately jump to the new better value, but 
may simply proceed toward it.  If the next policy is better and has 
the same state-action pair, then the improvement will approach it 
further.  If not, there is much less backtracking needed to move 
toward a new choice.  
Since a good model of the environment is never assumed for MC 
methods, state-action values become more important than state 
values, since they are possible to estimate without values of future 
events, whereas state values require knowledge of the following 
states in order to estimate them.  However, it is therefore possible 
for direct policy evaluation to miss some actions in a state.  In 
order to avoid this, exploration must be maintained in a method 
called exploring starts.  Exploring starts gives every state-action 
pair a non-zero probability of being the first step in each iteration. 
In order to use exploring starts in our robot example, the robot 
must be placed in a random location in the environment at the 
start of each episode.  This also means that it must sometimes be 
placed near a wall to fulfill the state of sensing a wall nearby, as 
well as touching a wall, to explore the state of bumping into a 
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wall.  From these random starting positions, an action must be 
chosen randomly from the possible actions available in that state.  
All this will ensure that exploration is maintained and no state-
action pairs are skipped. 
This method of ensuring exploring starts, however, is tedious and 
not likely to fully explore all the possible states and actions as 
initial steps.  There are two other methods used to ensure full 
exploration:  on-policy MC and off-policy MC. 

On-policy MC methods use first-visit methods (methods which 
use the average of returns after the first instance of a given state to 
determine the state-action pair’s value function) to estimate the 
current policy’s state-action value functions.  Because a full 
greedy algorithm for improving the policy would miss some state-
action pairs without the assumption of exploring starts, ε-greedy 
is used instead.  This ε ensures that policy improvement 
approaches an optimal policy while still maintaining exploration. 
With the robot example, this means that at any state, the robot has 
a ε chance to select some random action rather than the current 
best action. 

Off-policy MC methods separate the functions of control and 
policy evaluation into two separate functions: the behavior policy 
to govern the decisions of the current policy and the estimation 
policy to be evaluated and improved.  Because the policy 
functions are separated in this way, ε-greedy is not needed, and 
greedy is sufficient for exploring all possible state-action pairs, 
since the estimation policy may continue to explore while the 
behavior policy acts.  The tradeoff for not needing ε-greedy, 
however, is that these methods learn faster for selecting non-
greedy actions than for selecting greedy actions, resulting in slow 
learning for some states, especially early states in long episodes. 
With our wall-following robot example, off-policy MC would 
remove the random aspect of on-policy; however, it would see a 
decrease in learning speed, especially for longer episodes. 

3.2.3 Temporal Difference methods 
Like MC methods, TD methods also do not need a model of the 
environment, and make predictions in the same way, using sample 
state transitions.  Unlike MC methods, TD bootstraps, using 
estimate to update other estimates.  Because of this, TD methods 
update values after each time step, rather than after each episode.  
Bootstrapping allows for TD methods to learn faster than MC 
methods during exploration, since the policy update each time 
step means the method does not need to wait until the end of an 
episode to determine if that choice was better or worse than the 
choice indicated by the previous policy.  TD methods can then 
know whether an explored choice is good or bad right away, 
rather than waiting until the end of the episode. 
The use of bootstrapping is the major difference between TD and 
MC methods.  Many other parts are the same, such as the use of 
on-policy and off-policy methods, though the results may be 
different because of the quicker learning under exploration with 
TD. 
TD learning also has several special types of methods, both on 
and off policy, which are useful in certain cases. 

Sarsa, an on-policy TD method, updates after each transition 
from a non-terminal state.  Because of this, sarsa methods always 
converge to optimal policies so long as all the state-action pairs 

are visited an infinite number of times and the policy is able to 
converge to the greedy function. 
Unlike MC methods, sarsa and other TD methods are able to 
determine during an episode whether the policy is good or bad, 
and change policies if the current one is determined to be bad.  
This proves very useful in episodes where the current policy may 
never finish, from an inability to reach the goal. 
In the robot example, if the goal was to spend more time along a 
wall than in the open, some policies may never reach that goal.  
For example, a policy that turns away from a wall as soon as it is 
spotted will always spend more time away from the wall than 
against it, resulting in a never-ending episode.  Using sarsa or 
other TD methods avoid this by determining in the middle of the 
episode that the choices defined by the policy are not able to 
reach the goal. 

Q-learning, an off-policy TD method, uses learned action value 
functions to approximate the optimal action value function 
independent of the current policy.  This simplifies policy 
evaluation and updating while only making the assumption that 
all state-action pairs continue to be updated.  Unlike sarsa, Q-
learning does not need to assume state-action pairs are visited an 
infinite number of times, making it more likely to reach the 
optimal policy than sarsa given a finite number of episodes [4]. 
Under the robot example, Q-learning is more likely to be 
adventurous than other learning methods, since it uses ε-greedy to 
explore.  Because of this, it is likely to quickly go to the wall, but 
will also bump into the wall more than other methods during the 
process of learning, as exploration will be more likely to push it in 
a random direction. 

Actor-critic, a group of on-policy TD methods, separates the 
policy and the value function into independent memory structures.  
The policy structure, or actor, is used to decide which action to 
pick in each state.  The estimate value function, or critic, 
determines whether the actions of the actor are good or bad, and 
whether they should be encouraged or discouraged.  These 
methods are useful because they do not require much computation 
to select actions, due to the policy and value functions being 
stored and operated independently.  Because of the division 
between decision making and decision critiquing, actor-critic 
methods are also useful in modeling psychological or biological 
behavior, as such behavior functions under the same general 
separation structure. 

R-learning, an off-policy TD method, does not discount past 
experiences, unlike most other learning methods.  R-learning also 
does not divide experiences into episodes, instead learning from a 
single, extended task.  This shifts the priority for the optimal 
policy to optimizing each time step, rather than optimizing each 
episode.  R-learning methods use relative values, state-action 
functions that determine their value based on the average of all 
other state-action values for the current policy.  With relative 
values, the value of each action chosen is compared to the overall 
average of all other values in the policy.  If the chosen action is 
better than the average, it is considered good and is incorporated 
into the policy.  If the action returns a value worse than average, it 
is considered bad and discarded from the policy. 

4. Reinforcement Learning Method 
Q-Learning was the reinforcement learning method chosen for use 
in Koolio.  This was done for several reasons.  Temporal 
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Difference learning methods are very useful for mobile robots 
since they allow for a possible change in the environment and 
they bootstrap.  The bootstrapping involves a tradeoff.  
Bootstrapping methods require more complicated code, but are 
more efficient in the learning process.  Therefore it was decided 
to use a TD method to allow for optimal learning efficiency.  
Among TD methods, Q-learning was chosen for ease of use and 
availability of reference materials.  Although Q-learning is not the 
most efficient learning method for a single robot process, it is a 
very popular learning method, so there exists lots of 
documentation to refer to when setting up the code.  

5. Learning Process 
5.1 Step 1: States and Actions 
For a mobile robot, the states are simply the set of all sensor 
input.  Because most of the sensors used on Koolio have analog 
outputs, there is the potential for a very large number of possible 
states.  Therefore, states must be defined using ranges of sensor 
values. 
Aside from basic informational output such as the LCD screen, 
the only actions are movement of the wheels.  Since the motor 
drivers operate independently from the learning process, it does 
not need to put into consideration the specifics of operating the 
motors directly.  The only actions then are the basic movements 
of forward, backward, turn left, turn right, rotate left, and rotate 
right. 

5.2 Step 2: Simulation 
Reinforcement learning in episodic tasks requires a very large 
number of repetitions to learn.  Along with this, many repetitions 
on the platform can result in wear of parts, and the testing area of 
a hallway may not always be available since it is used on a daily 
basis.  Because of these factors, the initial parts of learning must 
be done in simulation. 
Learning in simulation has other advantages as well.  Data can be 
easily stored from simulation runs and referred to later [5].  Using 
simulation data, a graph can be constructed showing the growth of 
the return as the policy approaches optimal.  If data is recorded on 
the actual robot, graphs can also be constructed.  Simulations can 
also run much faster than a real robot, so many simulations can be 
run in the time of a single real robot episode. 
There are some drawbacks to simulation, however.  No matter 
how good a model of the environment for running test episodes is, 
it can never be perfect.  A learned policy from a simulation may 
not operate correctly in a real environment because of any number 
of imperfections in the model. 
However, simulation is still an important tool in the learning 
process.  By developing an optimal policy in the simulated 
environment, much of the time of real robot learning can be done 
before involving the actual robot.  The policy can then be 
exported to the robot and the learning process can continue. 

5.3 Step 3: Real Robot Learning 
Once the simulation has reached an optimal policy, it can be 
brought to the robot to continue the learning.  Because a good 
deal of learning has already taken place, this phase of the learning 
process is much faster than it would have been if the simulation 
was skipped and the learning was done solely in the real 

environment.  By the time the policy is ready to be used on the 
platform, it will have been changed to avoid many time-
consuming mistakes such as random wandering. 
Despite the shortcuts of using a simulator for the initial learning 
process, this phase of real robot learning is still the most time-
intensive, as episode runs of the robot can take several minutes 
instead of the accelerated time used in simulation.  Because the 
policy is already refined, however, only a relatively smaller 
number of episodes is required for reaching a new real 
environment optimal policy. 

6. Future Work 
With reinforcement learning, Koolio can be transferred into 
another environment with similar makeup and learn fairly quickly 
how to operate optimally in the new environment.  For instance, if 
Koolio was moved into another hallway with the same physical 
characteristics (such as wall color and room number signs), it 
could learn to find a room in much less time than it took to 
initially learn how to navigate a hallway. 
Because reinforcement learning develops a policy of action, it is a 
trivial matter to transfer Koolio’s learned policy into another 
robot.  So long as the new robot has the same sensors and motor 
drivers, it should be able to perform the same operations with 
little to no additional learning required. 
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