
A reinforcement learning approach to obstacle avoidance of mobile robots

Kristijan Maček
University of Zagreb

Faculty of Electrical Engineering
and Computing

Department of Control and
Computer Engineering in

Automation
kristijan.macek@fer.hr

Ivan Petrović
University of Zagreb

Faculty of Electrical Engineering
and Computing

Department of Control and
Computer Engineering in

Automation
ivan.petrovic@fer.hr

Nedjeljko Perić
University of Zagreb

Faculty of Electrical Engineering
and Computing

Department of Control and
Computer Engineering in

Automation
nedjeljko.peric@fer.hr

Abstract: One of the basic issues in navigation of
autonomous mobile robots is the obstacle avoidance task
that is commonly achieved using reactive control paradigm
where a local mapping from perceived states to actions is
acquired. A control strategy with learning capabilities in
an unknown environment can be obtained using
reinforcement learning where the learning agent is given
only sparse reward information. This credit assignment
problem includes both temporal and structural aspects.
While the temporal credit assignment problem is solved
using core elements of reinforcement learning agent,
solution of the structural credit assignment problem
requires an appropriate internal state space representation
of the environment. In this paper a discrete coding of the
input space using a neural network structure is presented
as opposed to the commonly used continuous internal
representation. This enables a faster and more efficient
convergence of the reinforcement learning process.

1 Introduction

One of the basic issues in navigation of autonomous
mobile robots is the obstacle avoidance capability, which
fits into the path planning problem. When a complete
knowledge of the environment is assumed global path
planning techniques can be applied [1], [2]. However,
efficiency of such techniques decreases rapidly in more
complex and unstructured environments since considerable
modeling is needed. Therefore, local path planning
techniques, which rely on on-line sensory information of
the mobile robots, may prove more adequate in achieving
the task of obstacle avoidance.
 Among these, the reactive control paradigm is
commonly used, where a mapping from perceived states to
actions is made. Acquiring the state-action pairs is
especially interesting using approaches where learning
capabilities apply, such as fuzzy logic and neural networks.
Nevertheless, learning the fuzzy logic rule base or
providing the necessary target patterns in the supervised
neural network learning may be a tedious and difficult
task.
 A plausible solution is the reinforcement learning
approach, where only sparse information is given to the
learning agent in form of a scalar reward signal beside the
current sensory information [3]. A continuous internal state

representation of the input space may be based on fuzzy
logic rules [4], [5], [6] or neural network structures such as
MLP neural networks [7]. Since the agent must develop
an appropriate state-action strategy for itself, a laborious
learning phase may occur. Therefore, special attention
must be paid to the convergence rate of a particular
reinforcement learning approach.

In this paper, convergence rate increase is obtained by
reduction of the continuous internal state representation to
a set of discrete states thereby extracting the relevant
features of the input state space. Moreover, by allowing
only a single discrete state to represent the input space at
any given time, the discrete states are contrasted which
results in individual credit assignment and more precise
computation. Similar approaches can be found in [8] and
[9], but our approach provides generally more
advantageous reinforcement learning scheme.

2 Reinforcement learning

The basic reinforcement learning framework consists
of a learning agent that observes the current state of the
environment tx and aims to find an appropriate action ta
pertaining to a policy π that is being developed. As a
measure of success of agent’s interaction with the
environment the agent is given an external reward
(penalty) tr r= in time instance t which is defined by the
designer and describes the overall goal of the agent. For
obstacle avoidance purposes 1r = − upon collision with an
object and 0r = otherwise. In order to develop a
consistent policy, the reward function must be fixed.

The aim of the intelligent agent is to maximize the
expected sum of discounted external rewards r for all
future instances:

()t

t

E rτ

τ
γ τ

∞
−

=

 
 
 
∑ , 0 1γ< < , (1)

where coefficient γ determines how “far-sighted” the
agent should be.
 Moreover, each state x of the system can be
associated with a measure of desirability ()V xπ which

represents the expected sum of discounted rewards r for

future instances when system is found in state tx at time t
and follows a fixed policy π thereafter:

() ()t
t

t

V x E r x xτ
π

τ
γ τ

∞
−

=

 = = 
 
∑ , 0 1γ< < . (2)

A higher state desirability ()V xπ implies a greater

expected total reward sum.
Since the external reward signal r is not informative

enough and can be delayed for a long time [10], the
internal reinforcement signal r ∗ is derived that represents
the immediate reward given to the system in terms of
correctness of the actions executed so far. It also
represents the prediction error of the total reward sum
between two successive steps:

() () () ()1t tr t r t V x V xγ∗
−= + − . (3)

If () 0r t∗ > , the system performed better than expected in

the last time step, if () 0r t∗ < , the system performed
worse than expected. Therefore, the internal reinforcement
signal ()r t∗ gives a measure of quality of the last action

1ta − taken and may be used as a learning signal for
parameter update of the learning system.
 A generic expression for updating of the k-th
parameter kp of the learning system can be formulated as:

() ()() (1) 1k k kp t p t r t e tα ∗= − + − , (4)

where α is the learning rate and ke eligibility measure of
how a certain parameter kp influenced the evaluation of
state desirability and the action choice in previous time
steps. Since prediction error r ∗ is only known in time step
t, eligibility measure of parameter kp is taken from time
step t-1 since parameter kp influenced the current

prediction of total discounted reward sum () ()tr t V xγ+ .
When considering the credit given to the learning

agent for its actions, eligibility measures involve both
structural and temporal credit assignment problems. The
structural credit assignment depends on structure of the
learning agent and the temporal credit assignment involves
measuring credit (or blame) of a certain sequence of
actions to the overall performance of the learning system.
Depending on structure of the learning agent and specific
reinforcement learning scheme used, the eligibility
measure ke may acquire different forms.

 Basically, the current state of the system is due not
only to last action taken but also due to other actions taken
in past. If a certain parameter kp of the learning system is
involved in current state evaluation and consequentially in
action selection, its eligibility measure ke is updated
according to structural credit. Thereafter, if not involved in

further state-action assessments in the future its eligibility
measure ke typically decays exponentially:

() ()1k ke t e tλ= − , 0 1λ≤ ≤ . (5)

If 0λ = , only the last state-action assessment is
considered relevant to the current state of the system,
however if 1λ = , all past assessments are considered
equally relevant.

If the desirability of a state is associated with a certain
action (),t tQ x a , expression (3) for the prediction error

becomes:

() () () ()1 1, ,t tt tr t r t Q x a Q x aγ∗
− −= + − . (6)

Based on theory of dynamic programming one can

distinguish between two basic reinforcement learning
approaches where: 1.) state evaluations ()tV x or 2.)

state-action evaluations (),t tQ x a are calculated [11]. In

1.) policy is derived indirectly through state evaluations

()tV x so that if ()V x for all possible states x are

maximized the optimal policy is achieved. In 2.) separate
state-action evaluations (),t tQ x a are updated basically

when a certain action ta is taken at time t, thus when all

(),Q x a are maximized, the optimal policy is to choose

actions with maximal (),Q x a values.

3 Controller design

3.1 Input state-space discretisation

As outlined briefly in the previous section, two aspects
are particularly important to an autonomous agent using
reinforcement learning, namely, the temporal and the
structural credit assignment problem. The temporal credit
assignment problem is related to rewarding a particular
action sequence in time and is solved using core elements
of any reinforcement learning agent such as state
desirability estimates, the internal reinforcement signal and
eligibility measures.

However, the structural credit assignment problem
that is related to the internal representation of environment
of the learning agent is yet a difficult task. Since
reinforcement learning methods are iterative procedures,
an inadequate internal representation of the input space
(the environment) may result in a very slow convergence
rate of the learning process because the credit or blame for
certain sequence of actions may be distributed among
many internal regions of state space.

Approaches such as fuzzy logic controllers or multi-
layer perception neural networks involve a continuous
internal representation of the input state space. This may

result in a large number of fuzzy rules to be adjusted
simultaneously or in an on-line back-propagation learning
of neural networks with a slow convergence rate.

To enhance individual structural credit assignment,
the continuous internal representation of the input space
may be replaced by a set of discrete states. A possible
approach is to use Kohonen neural network structure with
the winner-take-all unsupervised learning rule [12].

Learning is based on clustering of input data in order
to group similar inputs and separate dissimilar ones. It is
given that the number of clusters is N, input state vector is

[]1 2 ... Lx x x x ′= and the set of weight vectors is

{ }1 2, ,..., ,...,j Nw w w w , where jw connects input vector x

to cluster j. Then the winning neuron k, representing the
discrete state k, is selected by similarity matching:

: k jk x w x w− ≤ − , j∀ . (7)

The update rule for the winning vector kw is:

(1) () (() ())k k kw t w t x t w tη+ = + − . (8)

Since the weight vector kw closest to input vector x is
determined only by the angle spanned between these two
vectors, both input vector x and the weight vector kw
must be normalized, the former before feedforward pass
and the later after updating. Thus, all weight vectors jw are
spread along the unit circle.

Activation function of the neurons representing
clusters is not important since the output of the j-th neuron
equals 0,jy j k= ∀ ≠ and 1,jy j k= = .

3.2 Action (policy) learning

 In addition to discrete internal state representation, a
discrete set of M actions { }1 2, , ..., Ma a a was chosen where
each state-action (cluster-action) pair in time t is associated
with a desirability measure (),t tQ x a . For environment

state tx , k-th neuron is the winning one and desirability
measures for each action are ()1 1,t kQ x a µ= ,

()2 2,t kQ x a µ= ,..., (),t M kMQ x a µ= . The action chosen

at time t is the one with maximum desirability measure

(),t tQ x a , which leads to the “greedy” policy. The

internal reinforcement signal r ∗ (prediction error) is
according to (6):

() () () ()1 1max , ,
t

t tt ta
r t r t Q x a Q x aγ∗

− −= + − . (9)

The eligibility measure jie for all weight vectors

1 2...j j jMjµ µ µ µ ′ =   is as follows:

1 ,
()

(1)
t i

ji
ji

j k a a
e t

e t elseλ
= =

=  −
 ,

1
1

j N
i M

≤ ≤
≤ ≤

. (10)

Thus, only the eligibility measure kie of the k-th winning
neuron where action ia is chosen at time t is set to 1,
whereas all other eligibility measures jie are decayed
according to their impact in the past.
 The update rule for the state-action estimates jiµ is
according to (4) derived as:

() ()() (1) 1ji ji jit t r t e tµ µ α ∗= − + − ,
1
1

j N
i M

≤ ≤
≤ ≤

. (11)

Initially, all eligibility measures are set to zero.

Similar controller architecture and the input state
space discrete coding was elaborated in [6]. But there
reinforcement learning was based on state evaluations

()tV x and we based it on state-action evaluations

(),t tQ x a , which is generally a preferable solution in

terms of convergence rate [13]. The controller structure is
depicted in Fig.1.

input layer
x1

x2

x3

xL

y1

yk

yN

wk1
wk2

wk3

wkL

action selection layer
cluster selection layer

k-th winning
neuron

i-th action
selected

µk1

µki

µkM

w - similarity matching
weights

 - desirability evaluation
weights

µ

ai

a1

aM

Fig.1: The neural network controller structure.

4 Simulation results

 The experiments were carried out in the Saphira
Pioneer simulation environment for the Pioneer DX2
mobile robot platform with front array of 8 sonars oriented
at 90 , 50 , 30 , 10± ± ± ± relative to the longitudinal
vehicle axes. Sonar measurements id (1 8i≤ ≤) were
coarse coded as:

_1.0 2.0
_ _

i
i

d RANGE MINx
RANGE MAX RANGE MIN

−= −
−

. (12)

where RANGE_MAX, RANGE_MIN denote maximal and
minimal range of sonars, respectively, giving a nominal
[]1, 1− sonar range. RANGE_MAX, RANGE_MIN may be
chosen arbitrarily (yet taking into account the physical
sonar constraints) and define the active sensor region, in
our case also the active learning region. It is chosen in our
case for RANGE_MIN=15cm and RANGE_MAX=250cm.
The coarse coded sonar measurement vector

[]1 2 8...x x x x ′= is normalized and given as input vector to
the controller as described in the previous section (see
Figure 1).

The action set chosen was {“move forward a distance
d”, “turn left a heading θ and move forward a distance d”,
“turn right a heading θ and move forward a distance d”},
where 10d cm= and 30θ = (action set number M=3). It
can be seen from the action set that the robot is on constant
forward move. There are two main reasons for this: firstly,
by random exploration and obstacle avoidance the mobile
agent can build a map of initially unknown environment
(thus potentially fulfilling other important tasks of mobile
robot navigation), secondly, the mobile agent is prevented
from being stuck in a local minimum, such as turning on
the same spot. Moreover, instead of choosing a constant
forward velocity a constant forward distance action was
chosen which enables deriving direct mapping from states
to actions regardless of the vehicle dynamics.

The simulated experiment is performed in the
following manner: when in active sonar region, depending
on the current sonar readings and state-action evaluations,
an appropriate action is chosen. Controller parameters are
updated thereafter. As stated earlier, the external reward
signal r is 0 for all states in the active region. Upon
collision with an object (as detected by additional bumper
sensors) or upon entering the “dangerous zone” of 15cm to
the closest object (as read by sonars) the mobile agent
receives a negative external penalty 1r = − . Robot agent is
than considered to be in failure state and a trial restart must
be performed. The robot is moved back to the “save zone”
using very simple if-then logic (i.e. if obstacle is in front
then move backward). Therefore, no external trial restart
is required which is advantageous to some previous
approaches. Upon trial restart all eligibility traces of the
action selection layer of the controller are reset to zero.

Initial positions of weight vectors

{ }1 2, ,..., ,...,j Nw w w w of the controller are uniformly

random distributed along the unit circle, whereas weight
vectors jµ are initialised randomly in interval []0.1, 0.1− .
The corresponding learning rates are set to 0.01η = and

0.05α = , respectively. Discount factor for future
predictions is 0.99γ = and the decay rate is 0.05λ = .
 The learning algorithm was verified in corridor-like
environments designed in the Saphira world simulator. The
mobile robot was allowed to randomly explore the
environment and thus acquired robot paths are depicted in
Figures 2 to 5.

0
0 100 200 300 400 500 600 700

(in cm)

100

200

300

400

500

600

700

(in
 c

m
)

Fig.2: A robot path with 20 clusters internal representation.

0

200

400

600

800

1000

(in
 c

m
)

0 200 400 600 800 1000
(in cm)

Fig.3: A robot path with 30 clusters internal representation.

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

(in cm)

(in
 c

m
)

Fig.4: A robot path with 30 clusters internal representation.

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

(in cm)

(in
 c

m
)

Fig.5: A robot path with 30 clusters internal representation.

To verify the learning algorithm the greedy policy
was applied, as stated earlier. Essentially, the learning
agent chooses the action with maximum desirability, which
is considered satisfactory thereafter. This may result in sub
optimal solutions (a pending motion in case when a
straightforward motion is optimal). Since the primary task
of obstacle avoidance is satisfied, a further improvement of
optimality of solution should include a form of stochastic
action exploration and a longer action sequence history.
These aspects are to be included in further elaboration.
 Moreover, to achieve the global path planning
navigation a goal seeking behavior must be included and
coordinated with the local obstacle avoidance task. If the
action set is chosen in such a way that robot is on a
constant forward move a map building, path tracking
functionality may be included, converting an initially
unknown environment into a known one, where global
path planning techniques may be applied thereafter.
However, these aspects are beyond the scope of this paper.

5 Conclusions

 A reinforcement learning approach for the obstacle
avoidance task of navigation of mobile robots was
developed. In general, reinforcement learning methods
present a suitable solution to developing control strategies
in an unknown environment. The learning agent may
receive only sparse reward signals or credits for the actions
taken, therefore internal state and action evaluation is
required. In terms of credit assignment problem internal
representation of the input state space is particularly
important.

A clustered discrete coding of the input state space
was developed using Kohonen neural network structure as
opposed to continuous internal state representation. This
enabled individual state-action credit assignment, giving a
more precise evaluation computation and a faster
convergence rate.

The learning algorithm was verified in simulation
environment where the mobile robot performed obstacle
avoidance capability, which was developed by using
initially unknown control strategy.

In perspective, optimality of the solution obtained
should be taken into account as well as an adaptive neural
network structure which could reduce the size of relevant

feature representation to a minimum required to fulfill a
given task such as obstacle avoidance.

6 References

[1] J.T. Schwartz, M.Shirir: “A survey of motion

planning and related geometric algorithm”, Artif.
Intell. J., vol. 37, pp. 157-169, 1988.

[2] O. Khatib: “Real-time obstacle avoidance for
manipulators and mobile robots”, Int. J. Robot.
Res., vol.5. no. 1., pp. 90-98, 1986.

[3] A.G. Barto, R.S. Sutton, and C.W. Anderson:
“Neuronlike adaptive elements that can solve
difficult learning control problems”, IEEE Trans.
Syst. Man. Cybern., vol. SMC-13, no. 5, pp. 834-
847, 1983.

[4] C.T. Lee, C.S.G. Lee: “Reinforcement
structure/parameter learning for neural-network-
based fuzzy logic control system”, IEEE Trans. on
Fuzzy Systems, vol. 2, no. 1, pp. 46-63, 1994.

[5] H. Beom, H. Cho: “A sensor-based navigation for a
mobile robot using fuzzy logic and reinforcement
learning”, IEEE Trans. Syst. Man. Cybern., vol.
SMC-25, no. 3, pp. 464-477, 1995.

[6] N.H.C. Yung, C. Ye: “An intelligent mobile vehicle
navigator based on fuzzy logic and reinforcement
learning”, IEEE Trans. Syst. Man. Cybern., vol.
SMC-29, no. 2, pp. 314-321, 1999.

[7] G.A. Rummery: Problem solving with
reinforcement learning, PhD Thesis, Cambridge
University Engineering department, University of
Cambridge, 1995.

[8] B.J.A. Krose, J.W.M van Dam: “Learning to avoid
collisions: a reinforcement learning paradigm for
mobile robot navigation”, Proceedings of
IFAC/IFIP/IMACS Symposium on Artificial
Intelligence in Real-Time Control, pp. 295-30,
1992.

[9] A.H. Fagg, D. Lotspeich, and G.A. Bekey: “A
Reinforcement-Learning Approach to Reactive
Control Policy Design for Autonomous Robots”,
Proc. of the 1994 IEEE International Conference
on Robotics and Automation, vol. 1, pp. 39-44, San
Diego, CA, May 8-13, 1994.

[10] R.S. Sutton: “Learning to predict by the methods of
temporal differences”, Machine Learning 3, pp. 9-
44, 1988.

[11] R.S. Sutton: “Integrated architectures for learning,
planning, and reacting based on approximating
dynamic programming”, in Seventh International
Conference on Machine Learning, pp. 216-226,
1990.

[12] T. Kohonen: Self-organization and associative
memory, Springer Verlag, 1984.

[13] C.J.C.H. Watkins, P. Dayan: “Technical Note: Q-
learning”, Machine Learning, vol. 8, pp. 279-292,
1989.

