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Abstract: One of the basic issues in navigation of 
autonomous mobile robots is the obstacle avoidance task 
that is commonly achieved using reactive control paradigm 
where a local mapping from perceived states to actions is 
acquired. A control strategy with learning capabilities in 
an unknown environment can be obtained using 
reinforcement learning where the learning agent is given 
only sparse reward information. This credit assignment 
problem includes both temporal and structural aspects. 
While the temporal credit assignment problem is solved 
using core elements of reinforcement learning agent, 
solution of the structural credit assignment problem 
requires an appropriate internal state space representation 
of the environment. In this paper a discrete coding of the 
input space using a neural network structure is presented 
as opposed to the commonly used continuous internal 
representation. This enables a faster and more efficient 
convergence of the reinforcement learning process. 
 
 
1 Introduction 
 

One of the basic issues in navigation of autonomous 
mobile robots is the obstacle avoidance capability, which 
fits into the path planning problem. When a complete 
knowledge of the environment is assumed global path 
planning techniques can be applied [1], [2]. However, 
efficiency of such techniques decreases rapidly in more 
complex and unstructured environments since considerable 
modeling is needed. Therefore, local path planning 
techniques, which rely on on-line sensory information of 
the mobile robots, may prove more adequate in achieving 
the task of obstacle avoidance. 
 Among these, the reactive control paradigm is 
commonly used, where a mapping from perceived states to 
actions is made. Acquiring the state-action pairs is 
especially interesting using approaches where learning 
capabilities apply, such as fuzzy logic and neural networks. 
Nevertheless, learning the fuzzy logic rule base or 
providing the necessary target patterns in the supervised 
neural network learning may be a tedious and difficult 
task. 
 A plausible solution is the reinforcement learning 
approach, where only sparse information is given to the 
learning agent in form of a scalar reward signal beside the 
current sensory information [3]. A continuous internal state  

 
 
representation of the input space may be based on fuzzy 
logic rules [4], [5], [6] or neural network structures such as 
MLP neural  networks [7]. Since  the  agent  must  develop 
an appropriate state-action strategy for itself, a laborious 
learning phase may occur. Therefore, special attention 
must be paid to the convergence rate of a particular 
reinforcement learning approach.  

In this paper, convergence rate increase is obtained by 
reduction of the continuous internal state representation to 
a set of discrete states thereby extracting the relevant 
features of the input state space. Moreover, by allowing 
only a single discrete state to represent the input space at 
any given time, the discrete states are contrasted which 
results in individual credit assignment and more precise 
computation. Similar approaches can be found in [8] and 
[9], but our approach provides generally more 
advantageous reinforcement learning scheme. 
 
2 Reinforcement learning 
 

The basic reinforcement learning framework consists 
of a learning agent that observes the current state of the 
environment tx  and aims to find an appropriate action ta  
pertaining to a policy π  that is being developed. As a 
measure of success of agent’s interaction with the 
environment the agent is given an external reward 
(penalty) tr r=  in time instance t which is defined by the 
designer and describes the overall goal of the agent. For 
obstacle avoidance purposes 1r = −  upon collision with an 
object and 0r =  otherwise.  In order  to develop a 
consistent policy, the reward function must be fixed. 

The aim of the intelligent agent is to maximize the 
expected sum of discounted external rewards  r   for all 
future instances: 
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where coefficient  γ  determines how “far-sighted” the 
agent should be. 
 Moreover, each state x  of the system can be 
associated with a measure of desirability ( )V xπ  which 

represents the expected sum of discounted rewards r  for 



future instances when system is found in state tx  at time t 
and follows a fixed policy π  thereafter:  
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A higher state desirability ( )V xπ  implies a greater 

expected total reward sum.  
Since the external reward signal r is not informative 

enough and can be delayed for a long time [10], the 
internal reinforcement signal r ∗  is derived that represents 
the immediate reward given to the system in terms of 
correctness of  the actions executed so far. It  also 
represents the prediction error of the total reward sum  
between two successive steps: 
 

( ) ( ) ( ) ( )1t tr t r t V x V xγ∗
−= + − . (3) 

 
If  ( ) 0r t∗ > , the system performed better than expected in 

the last time step, if ( ) 0r t∗ < , the system performed 
worse than expected. Therefore, the internal reinforcement 
signal ( )r t∗  gives a measure of quality of the last action 

1ta −  taken and may be used as a learning signal for 
parameter update of the learning system.  
 A generic expression for updating of the k-th 
parameter kp  of the learning system can be formulated as: 
 

( ) ( )( ) ( 1) 1k k kp t p t r t e tα ∗= − + − , (4) 
 

where α  is the learning rate and ke eligibility measure of 
how a certain parameter kp  influenced the evaluation of 
state desirability and the action choice in previous time 
steps. Since prediction error r ∗  is only known in time step 
t, eligibility measure of parameter kp  is taken from time 
step t-1 since parameter kp  influenced the current 

prediction of total discounted reward sum ( ) ( )tr t V xγ+ . 
When considering the credit given to the learning 

agent for its actions, eligibility measures involve both 
structural and temporal credit assignment problems. The 
structural credit assignment depends on structure of the 
learning agent and the temporal credit assignment involves 
measuring  credit (or blame) of a certain sequence of 
actions to the overall performance of the learning system. 
Depending on structure of the learning agent and   specific 
reinforcement learning scheme used, the eligibility 
measure ke  may acquire different forms. 

 Basically, the current state of the system is due not 
only to last action taken but also due to other actions taken 
in past. If a certain parameter kp  of the learning system is 
involved in current state evaluation and consequentially in 
action selection, its eligibility measure ke  is updated 
according to structural credit. Thereafter, if not involved in  

further state-action assessments in the future  its eligibility 
measure ke typically decays exponentially: 

 
( ) ( )1k ke t e tλ= − , 0 1λ≤ ≤ . (5) 

 
If 0λ = , only the last state-action assessment is 
considered relevant to the current state of the system, 
however if 1λ = , all past assessments are considered 
equally relevant. 

If the desirability of a state is associated with a certain 
action ( ),t tQ x a , expression (3)  for the prediction error 

becomes: 
 

( ) ( ) ( ) ( )1 1, ,t tt tr t r t Q x a Q x aγ∗
− −= + − . (6) 

 
Based on theory of dynamic programming one can 

distinguish between two basic reinforcement learning 
approaches where: 1.) state evaluations ( )tV x   or 2.) 

state-action evaluations ( ),t tQ x a  are calculated [11]. In 

1.) policy is derived indirectly through state evaluations 

( )tV x  so that if ( )V x  for all possible states x  are 

maximized the optimal policy is achieved. In 2.) separate 
state-action evaluations ( ),t tQ x a  are updated basically 

when a certain action ta  is taken at time t, thus when all 

( ),Q x a  are maximized, the optimal policy is to choose 

actions with maximal ( ),Q x a  values. 

 
3 Controller design 
 
3.1 Input state-space discretisation 
 

As outlined briefly in the previous section, two aspects 
are particularly important to an autonomous agent  using 
reinforcement learning, namely, the temporal and the 
structural credit assignment problem. The temporal credit 
assignment problem is related to rewarding a particular 
action sequence in time and is solved using core elements 
of any reinforcement learning agent such as state 
desirability estimates, the internal reinforcement signal and 
eligibility measures. 

However, the structural credit assignment problem 
that is related to the internal representation of environment 
of the learning agent is yet a difficult task. Since 
reinforcement learning methods are iterative procedures, 
an inadequate internal representation of the input space 
(the environment) may result in a very slow convergence 
rate of the learning process because the credit or blame for 
certain sequence of actions may be distributed among 
many internal regions of state space. 

Approaches such as fuzzy logic controllers or multi-
layer perception neural networks involve a continuous 
internal representation of the input state space. This may 



result in a large number of fuzzy rules to be adjusted 
simultaneously or in an on-line back-propagation learning 
of neural networks with a slow convergence rate. 

To enhance individual structural credit assignment, 
the continuous internal representation of the input space 
may be replaced by a set of discrete states. A possible 
approach  is to use Kohonen neural network structure with 
the winner-take-all unsupervised learning rule [12].  

Learning is based on clustering of input data in order 
to group similar inputs and separate dissimilar ones. It is 
given that the number of clusters is N, input state vector is 

[ ]1 2 ... Lx x x x ′=  and the set of weight vectors is 

{ }1 2, ,..., ,...,j Nw w w w , where jw  connects input vector x  

to cluster j. Then the winning neuron k, representing the 
discrete state k, is selected by similarity matching: 

 
: k jk x w x w− ≤ −   , j∀ . (7) 

 
The update rule for the winning  vector kw   is: 
 

( 1) ( ) ( ( ) ( ))k k kw t w t x t w tη+ = + − .    (8) 
 

Since the weight vector kw  closest to input vector x  is 
determined only by the angle spanned between these two 
vectors, both input vector x  and the weight vector kw  
must be normalized, the former before feedforward pass 
and the later after updating. Thus, all weight vectors jw are 
spread along the unit circle.  

Activation function of the neurons representing 
clusters is not important since the output of the j-th neuron 
equals 0,jy j k= ∀ ≠ and 1,jy j k= = .  

 
3.2 Action (policy) learning 
 
 In addition to discrete internal state representation, a 
discrete set of M actions { }1 2, , ..., Ma a a was chosen where 
each state-action (cluster-action) pair in time t is associated 
with a desirability measure ( ),t tQ x a . For environment 

state tx , k-th neuron is the winning one and desirability 
measures for each action are ( )1 1,t kQ x a µ= , 

( )2 2,t kQ x a µ= ,..., ( ),t M kMQ x a µ= . The action chosen 

at time t is the one with maximum desirability measure 

( ),t tQ x a , which leads to the “greedy” policy. The 

internal reinforcement signal r ∗  (prediction error) is 
according to (6): 
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The eligibility measure jie  for all weight vectors 

1 2...j j jMjµ µ µ µ ′ =   is as follows: 
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Thus, only the eligibility measure kie  of the k-th winning 
neuron where action ia  is chosen at time t is set to 1, 
whereas all other eligibility  measures jie  are decayed 
according to their impact in the past. 
 The update rule for the state-action estimates jiµ is 
according to (4) derived as: 
 

( ) ( )( ) ( 1) 1ji ji jit t r t e tµ µ α ∗= − + −  ,     
1
1

j N
i M

≤ ≤
≤ ≤

. (11) 

 
Initially, all eligibility measures are set to zero. 

Similar controller architecture and the input state 
space discrete coding was elaborated in [6]. But there 
reinforcement learning was based on state evaluations 

( )tV x  and we based it on state-action evaluations 

( ),t tQ x a , which is generally a preferable solution in 

terms of convergence rate [13]. The controller structure is 
depicted in Fig.1.  
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Fig.1: The neural network controller structure. 
 
 
 
 
 
 
 
 
 
 



4 Simulation results 
 
 The experiments were carried out in the Saphira 
Pioneer simulation environment for the Pioneer DX2 
mobile robot platform with front array of 8 sonars oriented 
at 90 , 50 , 30 , 10± ± ± ±  relative to the longitudinal 
vehicle axes. Sonar measurements id  (1 8i≤ ≤ ) were 
coarse coded as: 
 

_1.0 2.0
_ _

i
i

d RANGE MINx
RANGE MAX RANGE MIN

−= −
−

.   (12) 

 
where RANGE_MAX, RANGE_MIN denote maximal and 
minimal range of sonars, respectively, giving a nominal 
[ ]1, 1−  sonar range. RANGE_MAX, RANGE_MIN  may be 
chosen arbitrarily (yet taking into account the physical 
sonar constraints) and define the active sensor region, in 
our case also the active learning region. It is chosen in our 
case for RANGE_MIN=15cm and RANGE_MAX=250cm. 
The coarse coded sonar measurement vector 

[ ]1 2 8...x x x x ′=  is normalized and given as input vector to 
the controller as described in the previous section (see 
Figure 1). 

The action set chosen was {“move forward a distance 
d”, “turn left a heading θ  and move forward a distance d”, 
“turn right a heading θ  and move forward a distance d”}, 
where 10d cm= and 30θ =  (action set number M=3). It 
can be seen from the action set that the robot is on constant 
forward move. There are two main reasons for this: firstly, 
by random exploration and obstacle avoidance the mobile 
agent can build a map of initially unknown environment 
(thus potentially fulfilling other important tasks of mobile 
robot navigation), secondly, the mobile agent is prevented 
from being stuck in a local minimum, such as turning on 
the same spot. Moreover, instead of choosing a constant 
forward velocity a constant forward distance action was 
chosen which enables deriving direct mapping from states 
to actions regardless of the vehicle dynamics.  

The simulated experiment is performed in the 
following manner: when in active sonar region, depending 
on the current sonar readings and state-action evaluations, 
an appropriate action is chosen. Controller parameters are 
updated thereafter. As stated earlier, the external reward 
signal r  is 0 for all states in the active region. Upon 
collision with an object (as detected by additional bumper 
sensors) or upon entering the “dangerous zone” of 15cm  to 
the closest object (as read by sonars) the mobile agent 
receives a negative external penalty 1r = − . Robot agent is 
than considered to be in failure state and a trial restart must 
be performed. The robot is moved back to the “save zone” 
using very simple if-then logic (i.e. if obstacle is in front 
then move backward).  Therefore, no external trial restart 
is required which is advantageous to some previous 
approaches. Upon trial restart all eligibility traces of the 
action selection layer of the controller are reset to zero.  

Initial positions of weight vectors 

{ }1 2, ,..., ,...,j Nw w w w  of the controller are uniformly 

random distributed along the unit circle, whereas  weight 
vectors jµ are initialised randomly in interval [ ]0.1, 0.1− . 
The corresponding learning rates are set to 0.01η =  and 

0.05α = , respectively. Discount factor for future 
predictions is 0.99γ =  and the decay rate is 0.05λ = . 
 The learning algorithm was verified in corridor-like 
environments designed in the Saphira world simulator. The 
mobile robot was allowed to randomly explore the 
environment and thus acquired robot paths are depicted in 
Figures 2 to 5. 
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Fig.2: A robot path with 20 clusters internal representation. 
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Fig.3: A robot path with 30 clusters internal representation. 
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Fig.4: A robot path with 30 clusters internal representation. 
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Fig.5: A robot path with 30 clusters internal representation. 
  

To verify the learning algorithm the greedy policy 
was applied, as stated earlier. Essentially, the learning 
agent chooses the action with maximum desirability, which 
is considered satisfactory thereafter. This may result in sub 
optimal solutions (a pending motion in case when a 
straightforward motion is optimal). Since the primary task 
of obstacle avoidance is satisfied, a further improvement of 
optimality of solution should include a form of stochastic 
action exploration and a longer action sequence history. 
These aspects are to be included in further elaboration. 
 Moreover, to achieve the global path planning 
navigation a goal seeking behavior must be included and 
coordinated with the local obstacle avoidance task. If the 
action set is chosen in such a way that robot is on a 
constant forward move a map building, path tracking 
functionality may be included, converting an initially 
unknown environment into a known one, where global 
path planning techniques may be applied thereafter. 
However, these aspects are beyond the scope of this paper. 
 
5 Conclusions 
 
 A reinforcement learning approach for the obstacle 
avoidance task of navigation of mobile robots was 
developed. In general, reinforcement learning methods 
present a suitable solution to developing control strategies 
in an unknown environment. The learning agent may 
receive only sparse reward signals or credits for the actions 
taken, therefore internal state and action evaluation is 
required. In terms of credit assignment problem internal 
representation of the input state space is particularly 
important. 

A clustered discrete coding of the input state space 
was developed using Kohonen neural network structure as 
opposed to continuous internal state representation. This 
enabled individual state-action credit assignment, giving a 
more precise evaluation computation and a faster 
convergence rate.  

The learning algorithm was verified in simulation 
environment where the mobile robot performed obstacle 
avoidance capability, which was developed by using   
initially unknown control strategy.  

In perspective, optimality of the solution obtained 
should be taken into account as well as  an adaptive neural 
network structure which could reduce the size of relevant 

feature representation to a minimum required to fulfill a 
given task such as obstacle avoidance.  
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