
Hybrid Coordination of Reinforcement Learning-
based Behaviors for AUV Control

M. Carreras, J. Batlle, P. Ridao and J. Pagès

Informatics and Applications Institute. University of Girona
{marcc, jbatlle, pere }@eia.udg.es

Abstract

This paper proposes a Hybrid Coordination method
for Behavior-based Control Architectures. The hybrid
method takes in advantages of the robustness and
modularity in competitive approaches as well as
optimized trajectories in cooperative ones. This paper
will demonstrate the feasibility of this hybrid method
with a 3D-navigation application to an Autonomous
Underwater Vehicle (AUV). The behaviors were learnt
online by means of Reinforcement Learning. Q(λ)-
learning was used extending the one-step learning of
the popular Q-learning to n-steps. Realistic simulations
were carried out. Results showed the good
performance of the hybrid method on behavior
coordination as well as on increasing and improving
behavior learning.

Keywords: Behavior-based Robotics, Reinforcement
Learning, Autonomous Underwater Vehicles.

1 Introduction

Since the appearance of Behavior-based Robotics
[1], in the middle of 1980s, a huge amount of robotic
applications have used this methodology. An endless
quantity of methods have been proposed to solve the
common characteristics of a Behavior-based system:
behavior expression, design, encoding and
coordination. Behavior coordination is the phase in
which a coordinator module receives the responses of
all the behaviors and generates a single output to be
applied to the robot. If the output is the selection of a
single behavior, the coordinator is classified as
competitive. On the other hand, if the output is the
superposition of several behavior responses, the
coordinator is called cooperative.

After programming an Autonomous Underwater
Vehicle (AUV) for a 3D-navigation mission using
these methodologies some disadvantages (section 2)
were found [4,5]. In this paper we propose a hybrid
approach between competitive and cooperative
coordination systems with the aim of taking advantage
of both. To test the feasibility of the hybrid
coordination method a behavior-based control

architecture was designed and tested. Making use of
the high capability of Reinforcement Learning [9] for
robot learning, behaviors were implemented using this
technique. Specifically, the Q(λ)-learning [13]
algorithm was applied, which is an extension of the
popular one-step Q-learning [23] to n-steps. As a
second purpose, this paper explores the influence of
the hybrid coordination method on the learning
algorithm, considering that reinforcements must be
distributed proportionally to behavior influences.

As stated above, the field of application is
underwater robotics. The work presented in this paper
corresponds to a research project on Behavior-based
Robotics and Reinforcement Learning experimenting
with AUVs. In this paper, the theoretical assumptions
are presented together with results based on realistic
simulations of our AUV URIS. We use the term
“realistic” due to the use of an accurate hydrodynamic
model of the vehicle, the simulation of sensor noise
and the use of onboard control software. Further work
will be based on real experiments.

The structure of this paper is as follows. Section 2
introduces the basics of Behavior-based Robotics.
Section 3 describes the proposed hybrid method.
Section 4 summarizes the fundamentals of
Reinforcement Learning and its relation with
Behavior-based Robotics. Section 5 describes Q(λ)-
learning. In section 6, the application to test the hybrid
coordination method is detailed. In section 7,
simulation results are given. And finally, conclusions
and future work are presented in section 8.

2 Coordination in Behavior-based
Robotics

Behavior-based [1] control architectures are a
bottom-up approach inspired by biology where a
collection of behaviors act in parallel, achieving goals.
There are a few basic principles which provide the
keys to success with this methodology [14]:
parallelism, modularity, agent situatedness/embedded-
ness and behavior emergence. Behaviors are
implemented as a control law using inputs and outputs.

The basic structure consists of all behaviors taking
inputs from the robot’s sensors and sending outputs to
the robot’s actuators, see figure 1. A coordinator is
needed in order to send only one command at a time to
the motors. There are two primary coordination
mechanisms to assemble behaviors:
• Competitive methods. The output is the selection of
a single behavior. The coordinator chooses only one
behavior to control the robot. Principal methods are
suppression networks such as Subsumption
architecture, action-selection and voting-based
coordination .
• Cooperative methods. The output is the
superposition of the force gradients given by all the
behaviors. Behaviors which generate a stronger output
will impose a greater influence on the final behavior of
the robot. Principal methods are vector summation
(potential fields) and behavioral blending.

After experimentation with several architectures
[4,5], it has been noted that, depending on the
coordination methodology, some advantages and
disadvantages appear in the control performance of an
autonomous vehicle. Competitive methods showed
good robustness and modularity when adding new
behaviors. However, an bad trajectory is found when
there is a continuous change of the active behavior. As
far as cooperative methods are concerned, they have
an optimal trajectory when parameters are properly
tuned. However, they lack of robustness. A small
change on the parameters can lead to control failures.
In some circumstances, a set of behaviors can cancel
the action of behaviors with a higher priority (i.e.
obstacle avoidance behavior).

3 Hybrid Coordination for a Behavior-
based Control Architecture

Due to the disadvantages of both methodologies and
with the aim of making use of their advantages, a
hybrid coordination method is proposed. In the
proposed method, the coordination of the responses is
done through a hybrid approach that keeps the
robustness and modularity of competitive approaches
as well as the good performance of the cooperative
ones.

The coordinator is based on normalized behavior
outputs. The outputs contain a three-dimensional
vector “vi” which represents the velocity proposed by
the behavior. Associated with this vector is an
activation level “ai” which indicates how important it
is for the behavior to take control of the robot. This

value is between 0 and 1, see figure 2. This
codification sharply defines the control action from the
activation of the behavior.

The proposed coordination system is composed of a
set of hierarchical hybrid nodes. The nodes have two
inputs and generate a merged normalized control
response. The nodes compose a hierarchical and
cooperative coordination system. The idea is to use the
good performance of cooperation when the
predominant behavior is not completely active. The
nodes have a dominant behavior which suppresses the
responses of the non-dominant behavior when the first
one is completely activated (ai=1). However, when the
dominant behavior is partially activated (0<ai<1), the

Actuators

Behavior 1

Behavior 2

Behavior n

S
T
I

M
U
L
U
S

C
O
O
R
D
I
N
A
T
O
R

Sensors

Figure 1. Structure of a Behavior-based architecture.

bi
S

ri

vi=(xi, yi, zi);

XL

YL

ZL

yixi

zi

vi

ai=[0 1]

ri

Figure 2. Normalized output of a behavior.

rd

rnd

riDominant

Non-dominant

ni

ai ad + and ·(1 - ad)
2

if (ai>1) ai=1

vi vd· ad/ai +vnd · (1 - ad)2

if (|vi|>1) vi= v i /|vi|

Figure 3. Hierarchical hybrid node.

Behavior 1

Behavior 2

Behavior 4S
T
I
M
U
L
U
S

Behavior 3Sen. Act.

COORDINATOR

n21

D

ND

n34

D

ND

n2’1’

D

ND

Figure 4. Hybrid coordination system.

final response will be a combination of both inputs.
Non-dominant behaviors can slightly modify the
responses of dominant behaviors when they aren’t
completely activated. For example, if the dominant
behavior is “obstacle avoidance” and the non-
dominant is “go to point”, when “obstacle avoidance”
is only slightly activated (the obstacles are still far), a
mixed response will be obtained. When non-decisive
situations occur, cooperation between behaviors is
allowed. Nevertheless, robustness is present when
dealing with critical situations. The proposed node to
coordinate behaviors can be seen in figure 3.

The node “ni” has the ability to generate a
normalized response like the one generated by
behaviors. The effect of the non-dominant behavior
depends on the squared activation of the dominant to
assure that in a critical situation between both, the
dominant will always take control. Using these nodes
all behaviors can be coordinated. Depending on the
situation, the control response could be produced by
all the behaviors or by only one.

The hybrid nodes do not need a tuning phase. The
coordination of a set of behaviors is defined by
hierarchically classifying each behavior depending on
its priority. A disposition of the whole coordination
system using hierarchical hybrid nodes can be seen in
figure 4.

The coordination method can be classified as a
hybrid approach because the response is the one
generated by the dominant behavior affected by non-
dominant behaviors according to the level of activation
of the first. Although to the authors best knowledge
there is not any sort of hybrid coordination system
presented in the literature, this method offers good
properties and can be successfully implemented in an
autonomous robot. The proposed method has been
implemented in simulation [4] showing its good path
performance, robustness and modularity controlling an
AUV in a 3D-navigation mission. The method has
been compared with 4 well-known behavior-based
architectures: Subsumption [3], Action Selection
Dynamics [10], Schema-based approach [2] and
Process Description Language [20].

4 Reinforcement Learning and Behavior-
based control architectures

When programming a Behavior-based system, there
are some unknown parameters which cannot be
identified without experimentation. This requires a

great number of experiments until the architecture can
work autonomously. To solve this difficulty, many
robotic systems have included learning techniques.
Adaptation is also needed in order to be able to
perform in different and changing environments. There
isn’t yet an established methodology to develop
adaptive behavior-based systems. A commonly used
approach is Reinforcement Learning [24].

Reinforcement Learning (RL) [9,19] is a class of
learning algorithm in which an agent tries to maximize
a scalar evaluation (reward or punishment) of its
interaction with the environment. The evaluation is
generated by the critic using an utility function. A RL
system tries to map the states of the environment to
actions (policy) in order to obtain the maximum
reward. RL does not use any knowledge database as in
most forms of machine learning. For this reason, this
class of learning is suitable for robotics when online
learning without information about the environment is
required. Aspects such as delayed rewards and the
trade-off between exploration and exploitation
characterize RL. Most of the techniques are based on
Markov Decision Processes (MDPs).

The most popular RL technique applied in robotics
for its simplicity as well as effectiveness is Q-learning
[23]. This technique is model-free (transitions between
states and reinforcements are not learned) and an off-
policy method (the optimal policy is learned in the
long run independently of the policy followed). Q-
learning, as well as most RL techniques, is based on
finite MDP. This requires that state and action spaces
be finite. The algorithm uses the states perceived (s),
the actions taken (a) and the reinforcements received
(r) to update the values of a table, denoted as Q(s,a).
Under appropriate conditions, the Q values converge
to a greedy policy, in which the maximum Q value for
a given state points to the optimal action. Q-learning is
a one-step learning algorithm, so that reinforcements
are only applied to the last state-action pair. Due to its
use of finite spaces, Q-learning has a considerably
large learning time and memory requirement. More
sophisticated methods [8,21] implement a
parameterized Q-function which enables
generalization between states and actions.

Reinforcement learning has been applied to various
Behavior-based systems, most of them using Q-
learning. In some cases, the RL algorithm was used to
adapt the coordination system [7, 11]. On the other
hand, some researchers have used RL to learn the
internal structure of a behavior, mapping the perceived
states to robot actions [12, 17, 22]. The work presented

by Mahadevan [12] demonstrated that the
decomposition of the whole agent learning policy in a
set of behaviors, as Behavior-based robotics proposes,
simplified and increased the learning speed.

5 Reinforcement Learning-based
Behaviors

For its feasibility in online adaptation of robotic
systems, a Reinforcement Learning algorithm was
adopted to learn the independent behaviors of our
control architecture. In the work presented in this
paper, our main goal was to test the viability of the use
of RL-based behaviors with the proposed hybrid
coordination system. Unlike the works of [12,17,22],
in which a competitive coordination system was used,
our coordination method uses the hybrid proposal.
This means that a proportional learning rate must be
taken depending on the activation level of each
behavior.

The RL algorithm taken was Q(λ)-learning,
proposed by Peng and Williams [13]. The algorithm is
an incremental multi-step Q-learning which extends
the original one-step learning, allowing the spreading
of reinforcements not only in the last state-action pair
but also in the precedent pairs. This is very important
in a real robot application, where the dynamics of the
robot is slow and the time-response history define the
whole behavior. Hence, the reinforcements must be
applied to a set of past actions. Figure 5 summarizes
the Q(λ)-learning algorithm.

The algorithm repeatedly updates the table Q(x,a),
which in the long run will contain the optimal action
for a given state. There is also the table Tr(x,a), which
is the “activity” trace of the state-action pair (x,a) used
to spread reinforcements to precedent actions. The
inputs of the algorithms are rt (reinforcement of action
at) and xt+1 (state t+1). The output is the action at+1 to
be taken in t+1. There are several parameters which
define the learning evolution:

• λ: eligibility trace [0 1]. Used to determine the
credit assignment distribution. A Q(0)-learning acts
as Q-learning. A Q(1)-learning spreads credit to all
past actions.

• γ: discount rate [0 1]. Concerning the
maximization of future rewards. If γ=0, the agent is
“myopic” in being concerned only with
maximizing immediate rewards.

• α: learning rate [0 1].

In order to adapt our hybrid coordination system to

1. and for all and
2. Do forever:
 (a) the current state

ˆ (b) choose an action that maximizes
 over all
 (c) carry out action in the world. Let t

ˆ

t

t t

t

(x,a) = 0 Tr(x,a) = 0 x a

x
a Q(x ,a)

a
a

Q

←

he
 short term reward be , and the new state
 be

ˆˆ (d)
ˆˆ

ˆ ˆ (e)
 (f) for each state-action pair

t

t+1

t t t t+1 t t t

a

t t t t+1 t t

r
x

e' = r + V (x) - Q (x ,a)
V(x) = argmax Q(x,a)
e = r + V (x) - V (x)

(x,a

γ

γ

1

 do

ˆ ˆ
ˆ ˆ (g) '

 (h)

t+1 t t

t+1 t t t t t t

t t t t

)
Tr(x,a) = Tr(x,a)
Q (x,a) = Q (x,a)+ Tr(x,a)e

Q (x ,a) = Q (x ,a)+ e
Tr(x ,a) = Tr(x ,a)+1

γλ
α
α

+

•
•

Figure 5. The Q(λ)-learning algorithm

the Q(λ)-learning algorithm, the learning rate α was
modified depending on the influence of each behavior
on the robot. This influence was summarized by a
control level parameter cit [0 1]. Therefore, the
learning rate of behavior i at the time t was α cit.
Summarizing, each behavior is represented as a
function that improves actions in the course of time:

at+1 = Q(λ)-learning(xt+1,rt,cit,λi,γi,αi)
where,

at+1 : proposed robot action
xt+1 : current state (from the sensors)
rt : past state-action pair reward
cit : control level of behavior i
λi,γi,αi : learning evolution of behavior i

6 Experimentation with an AUV

An application to test the proposed Behavior-based
architecture with Reinforcement Learning techniques
was designed. The kind of robot which we are working
on is an Autonomous Underwater Vehicle (AUV)
called URIS (Underwater Robotic Intelligent System).
The design of the experimentation task considered the
difficulties found in underwater environments, such as
positioning. The proposed application consists of
following a target by means of a camera and avoiding
obstacles using a set of sonar sensors. The AUV must
act as an autonomous camera recording all the
movements of the target without colliding or losing the
target. This application was designed to be carried out
in a swimming pool where light absorption does not
apply. In this paper, the application is fulfilled using
realistic simulations. Further work will be based on
real experiments.

6.1 The URIS vehicle

URIS is a small-sized non-holonomic AUV
designed and built at the University of Girona. It was
conceived as a low-cost underwater vehicle for
research experimentation in control architectures and
underwater computer vision. The hull is composed of a
∅350mm stainless steel sphere, designed to withstand
pressures of 4 atmospheres (40 meters depth), see
figure 6. The spherical shape simplifies the
construction of a dynamic model of the vehicle which
is very useful for simulation of missions in the
laboratory. On the outside of the sphere there are 7
sonar sensors, a video camera and 4 thrusters (2 in X
direction and 2 in Z direction). Due to the stability of
the vehicle in pitch and roll, there are four degrees of
freedom; X, Y, Z and Yaw. The vehicle has an
onboard Pentium PC-104 with the real-time operative
system VxWorks.

Figure 6. The underwater vehicle URIS.

HYBRID COORDINATOR

SENSORS
LOW-LEVEL
CONTROL

URIS

(, ,)Yaw X Z& & &

ca
m

er
a

so
na

r
se

ns
or

s n12’3’

D

ND

n23

D

ND

Target Recovery

Target Following
at+1 = Q(λ)-learning(xt+1,r2t,c2t,λ2,γ2,α2)

Critic r2t

Critic r1t Obstacle Avoidance
at+1 = Q(λ)-learning(xt+1,rt,c1t,λ1,γ1,α1)

c1t ,c2t

Figure 7. Schema of the architecture

β

d

β=10º
d=10 [m]
αH= 30º
αV= 22.5º

SF

SFR

SR

SB

SFL

SL

SD

x

y
x

αV

αH

camera view

sonar parameters

camera parameters

sonar beams

Figure 8. Sonar transducer and video camera layout.

6.2 The Behavior-based architecture

To accomplish this mission a Behavior-based
architecture with three behaviors was designed. Each
behavior has its own input from sensors and generates
a 3D-speed vector defined by (u, w, r). These
velocities are relative to the on-board coordinate
system (+X: prow and +Z: down). To fulfill the
mission an absolute position is not necessary. In
association with this response, the behavior generates
the activation level which determines the final robot
movement. Figure 7 shows the schema of the
architecture. The three behaviors are:

• Obstacle avoidance. The goal is to avoid any
obstacles perceived by means of 7 sonar sensors,
see figure 8. The behavior is learnt using Q(λ)-
learning. A reinforcement function gives negative
rewards depending on the distance at which
obstacles are detected. The activation level is also
proportional to the proximity of obstacles.

• Target following. The behavior follows the target
using a video camera pointed towards X-axis, see
figure 8. A tracking algorithm based on chromatic
characteristics gives the relative position of the
target. The behavior is learnt using Q(λ)-learning.
The reinforcement function gives negative rewards
when the target moves away from the position
X=4, Y=0 and Z=0, relative to the on-board
coordinate system. The activation level is 1 when
the target is detected, alternatively, it is 0.

• Target recovery. The goal of this behavior is to
recover the target when it disappears from the
camera view. Considering that the dynamics of the
vehicle are relatively slow, we have adopted a very
simple policy. When the tracking system loses the
target, the behavior spins and moves the vehicle
vertically in the direction last seen. This behavior is
not learned but preprogrammed. The activation
level is contrary to that of target following
behavior.

7 Simulated Results

The proposed hybrid coordination method with
reinforcement learning-based behavior was simulated
to test its feasibility. This section presents the realistic
simulation platform used and the obtained results.

7.1 Realistic simulation platform
An environment called DEVRE [15] (Distributed

Environment for Virtual and/or Real Experimentation)
was developed to control, design and implement
missions. DEVRE is an integrated software platform
composed of three modules:

• Object Oriented Control Architecture for
Autonomy (OOCAA) [16]. Software in charge of
controlling the vehicle at high and low levels. It
runs on the on-board PC.

• Human Machine Interface (HMI). This is an
interface with a human operator executed on an
external PC. It allows vehicle monitoring as well
as tele-operation and is used for testing. An
umbilical cable must be plugged into the robot.

• Mathematical Model of the Vehicle and Virtual
Environment (MMVVE). This module simulates
the vehicle according to the actions sent by the
OOCAA module, see figure 9. It simulates sensors
(sonar transducers, video camera, etc.) according
to the position of the vehicle in the environment.
Gaussian sensor noise is taken into account. It
uses a hydrodynamic model of an AUV [6] with
the identified parameters of URIS.

Figure 9, MMVVE running a simulation

7.2 Results

The architecture proposed above was implemented
in the OOCAA. A structured 3-dimensional
environment was designed and used by the MMVVE,
see figure 9. A moving target was introduced carrying
out a 3D closed path repeatedly. The velocity of the
target changed between 0 and 0.2 m/s (40% of the
maximum velocity of URIS).

Many simulation episodes were done in order to
adjust the state and action dimensions of the two
behaviors that were learnt. Due to the enormous
quantity of entries of each learning table (more that a
million for the target tracking behavior), a
simplification was made. Each behavior was split in its
horizontal and vertical movements, and two Q(λ)-
learning algorithms were applied independently. Using
this strategy, the behaviors slowly converged carrying
out the mission. The definitions of the obstacle
avoidance and target following behaviors can be found
in tables 1 and 2 respectively.

In table 3 the parameters λ, γ and α, are showed as
well as some indexes about the performance of the
learning. Each simulation episode consisted of 100.000
iterations of 1second, in which behaviors converged.
The indexes shown in table 3 are based on the
averaged results of 4 episodes. The average reward
index indicates the average of the reinforcements that
receives the behavior when the algorithm converged.
This is used to evaluate the performance of the
learning algorithm. Figures 10 and 11 show the
average reward of the last 500 iterations in the course
of an episode for the two behaviors.

The Null Q value percentage indicates the entries of
the learning table that were not updated. Figure 12,
shows the averaged learned table for the obstacle
avoidance behavior. In this figure, the null state-action
pairs can be seen (Q=0). Finally, the number of
iterations percentage measures the activity that had the
behavior during an episode. Using the proposed hybrid
coordinator, this activity increases and consequently,
the learned speed. For this reason, using the hybrid
coordination method a behavior learns more
continuously and faster than using a competitive
learning method [12,17,22]. We would like also to
emphasize the good performance showed by the
hybrid coordinator in assembling behaviors, providing
robustness as well as behavior fusion.

OBSTACLE AVOIDANCE BEHAVIOR
Horizontal movements

Input variables 6 horizontal sonar transducers
Codification X and Y of the perceived obstacles
Critic function If 2 2X Y+ > 4m : rt = 0

else if 2 2X Y+ > 2.5 m : rt = -1
else rt = -3

Behavior activation act=(6- 2 2X Y+)/3; act:=[0 1]
Input states 13 states for X, range [-6 6]m

11 states for Y, range [-5 5]m
Total = 143 states

Output variable u and r normalized set-points
Output states 5 states for u, [-1 –0.5 0 0.5 1]

5 states for r, [-1 –0.5 0 0.5 1]
Total = 25 states

Learning table dim. 143·25 = 3575 entries
Vertical movement

Input variables 1 vertical sonar transducers
Codification Z position of the perceived obstacle
Critic function If Z> 4m : rt = 0

else if Z> 2.5 m : rt = -1; else rt = -3
Behavior activation act=Z/3; act:=[0 1]
Input states 13 states, range [0 6]m
Output variable w speed normalized set-point
Output states 7 states, [-1 –0.6 -0.3 0 0.3 0.6 1]
Learning table dim. 13·7 = 91 entries

Table 1. Obstacle avoidance behavior definition.

TARGET FOLLOWING BEHAVIOR
Horizontal movements

Input variables X, Y target positions from tracking board
respect the target desired location (4,0,0)m

Critic function If 2 2X Y+ > 9m : rt = -7

else if 2 2X Y+ > 5m : rt = -5

else if 2 2X Y+ > 1m : rt = -3
else rt = 0

Behavior activation act=1 if the target is visible, alternatively 0.
Input states 20 states for X, range [0 20]m

11 states for yaw=atan2(Y,X), range ±30º
Total = 220 states

Output variable u and r normalized set-points
Output states 5 states for u, [-1 –0.5 0 0.5 1]

9 states for r, from [-1 1]
Total = 45 states

Learning table dim. 220·45 = 9900 entries
Vertical movement

Input variables X, Z target positions from tracking board
respect the target desired location (4,0,0)m

Critic function If Z> 9m : rt = -7
else if Z> 5m : rt = -5
else if Z> 1m : rt = -3; else rt = 0

Behavior activation act=1 if the target is visible, alternatively 0.
Input states 11 states for pitch=atan2(Z,X), range [-22.5

22.5]º
Output variable w speed normalized set-point
Output states 11 states, [-1 1]
Learning table dim. 11·11 = 121 entries

Table 2. Target following behavior definition

Obstacle Avoidance Target Following
Horizon. Vertical Horizon. Vertical

λ 0.8 0.8 0.4 0.4

γ 0.7 0.7 0.3 0.3

α 0.2 0.2 0.1 0.1
Average Reward -0.35 -0.06 -3.43 -0.97
Null Q values 32% 17% 27% 22%
Number of iter. 42% 36% 31% 31%

Table 3. Q(λ)-learning parameters and performance
indexes averaged from 4 episodes of 100.000
iterations.

Figure 10. Obstacle avoidance behavior. Average
reward of the last 500 iterations during an episode of
100.000 iterations. The horizontal and vertical learning
modules are showed.

Figure 11. Target Following behavior. Average reward
of the last 500 iterations during an episode of 100.000
iterations. The horizontal and vertical learning
modules are showed.

Figure 12. Learned table for the horizontal obstacle
avoidance behavior.

Concluding this section, it has to be noted that the
use of a finite MDP Reinforcement Learning, such as
Q(λ)-learning, caused a very slow learning speed
(more than a day) demonstrating its impracticability in
a real experiment.

8 Conclusions and Future Work

This paper has proposed a hybrid coordination
method for Behavior-based control architectures. The
method has been tested in a simulated experiment. The
architecture has been implemented using Q(λ)-
learning, a Reinforcement Learning algorithm.

The simulated results showed the feasibility of the
hybrid approach, as well as the convergence of the
learning algorithm to optimal behaviors. The proposed
hybrid coordination demonstrated as behaving with the
robustness of competitive coordinators and with the
optimized paths of cooperative ones. Another
interesting advantage is the increase of the learning
speed of each behavior. The proportional influence of

each behavior on the robot caused a proportional
learning which doesn’t appear in competitive
architectures. Finally, the non-practical convergence
time of Q(λ)-learning for real experiments should be
noted. As stated in the literature [19], generalization
between states and actions, as well as faster algorithms
are needed. The use of continuous spaces and
parameterized learning functions together with real
experimentation in a swimming pool constitutes our
current and future work.

References

[1] Arkin, R. C. Behavior-based Robotics. MIT Press,
1998.

[2] Arkin, R. C. Motor schema-based mobile robot
navigation. International Journal of Robotica
Research, vol. 8, is. 4, pp. 92-112, 1989.

[3] Brooks, R. A Robust Layered Control System for
a Mobile Robot. IEEE Journal of Robotics and
Automation, vol. RA-2, is.1, pp.14-23. 1986.

[4] Carreras, M.. An Overview of Behaviour-based
Robotics with simulated implementations on an
Underwater Vehicle. Informatics and Applications
Institute. Research report: IIiA 00-14-RR.
October, 2000.

[5] Carreras, M., Batlle, J., Ridao, P. and Roberts,
G.N.. An overview on behaviour-based methods
for AUV control. MCMC2000, 5th IFAC
Conference on Manoeuvring and Control of
Marine Crafts. Aalborg, Denmark, August 2000.

[6] Fossen, T. I. Guidance and Control of Ocean
vehicles. John Wiley & Sons, 1995.

[7] Gachet, D., Salichs, M., Moreno, L. and Pimental,
J. Learning Emergent tasks for an Autonomous
Mobile Robot, Proceedings of the International
Conference on Intelligent Robots and Systems
(IROS ‘94), Munich, Germany, September, pp.
290-97, 1994.

[8] Gaskett, C., Wettergreen, D. and Zelinsky, A. Q-
learning in continuous state and action spaces. In
Proc. of the 12th Australian Joint Conference on
Artificial Intelligence, Sydney, Australia, 1999.

[9] Kaelbling, L. P. Reinforcement Learning A
Survey. Journal of Artificial Intelligence
Research, vol. 4, pp. 237-285, 1996.

[10] Maes, P. Situated Agents Can Have Goals.
Robotics and Automation Systems, vol. 6, pp. 49-
70, 1990.

[11] Maes, P. and Brooks, R. Learning to coordinate
behaviors. In Proceedings of the Eighth AAAI,
pages 796-802. Morgan Kaufmann, 1990.

[12] Mahadevan, S. and Connell, J. Automatic
programming of behavior-based robots using
reinforcement learning. Artificial Intelligence,
55:311-365, 1992.

[13] Peng, J. and Williams, R.J. Incremental multi-step
Q-learning. Machine Learning, 22:283-290, 1996.

[14] Pfeifer, R. and Scheier, C. Understanding
Intelligence. MIT Press, 1999.

[15] Ridao, P., Batlle, J., Amat, J. and Carreras, M. A
distributed environment for virtual and/or Real
Experiments for Underwater Robots. International
Conference on Robotics and Automation ICRA
2001, Seoul, Korea, 2001.

[16] Ridao, P., Carreras, M., Batlle,, J. and Amat, J.
O2CA2: A New Hybrid Control Architecture for
A Low Cost AUV. To be published in the Proc. of
the Control Application in Marine Systems,
Scotland, 2001.

[17] Shackleton, J. and Gini, M. Measuring the
Effectiveness of Reinforcement Learning for
Behavior-based Robots. Adaptive Behavior, 1997.

[18] Sutton, R. S. Reinforcement Learning. The MIT
encyclopedia of the cognitive sciences, pp. 715-
717. MIT Press, 1999.

[19] Sutton, R. and Barto, A. Reinforcement Learning,
an introduction. MIT Press, 1998.

[20] Steels, L. Building agents with autonomous
behaviour systems. The artificial route to artificial
intelligence. Building situated embodied agents.
Lawrence Erlbaum Associates, New Haven, 1993.

[21] Takahashi, Y., Takada, M. and Asada, M.
Continuous Valued Q-learning for Vision-Guided
Behavior Acquisition. In International Conference
on Multisenso Fusion and Integration for
Intelligent Systems, pages 716-721, 1999.

[22] Touzet, C. Neural reinforcement learning for
behaviou synthesis. In: Robotics and Autonomous
Systems, 22, 251-281, 1997.

[23] Watkins, C.J.C.H., and Dayan, P. Q-learning.
Machine Learning, 8:279-292, 1992.

[24] Ziemke, T. Adaptive Behavior in Autonomous
Agents. Presence, vol. 7, is. 6, pp. 564-587, 1998.

