
In Machine Learning for Systems Problems (NIPS-07 Workshop),
Whistler, British Columbia, Canada, December 2007.

Policy Search Optimization for Spatial Path Planning

Matthew E. Taylor, Katherine E. Coons, Behnam Robatmili,
Doug Burger, and Kathryn S. McKinley

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-0233
{mtaylor,coonske,beroy,mckinley,dburger}@cs.utexas.edu

1 EDGE ISAs

Chip designers have traditionally relied reduced feature sizes and increased the clock rates to improve performance in
computer chips. More recently, to better exploit parallelism and achieve faster speeds, more processors and functional
units have been placed on a single chip. RISC and CISC architectures require significant programming efforts in order
to use these resources efficiently. Explicit Data Graph Execution (EDGE) Instruction Set Architectures (ISAs) have
recently been developed to support out of order execution, with low power consumption, by passing dataflow informa-
tion through the instruction set to the multiple functional units, allowing the compiler and processors to better exploit
concurrency. TRIPS [2] is an implementation that supports the EDGE ISA, which can schedule eight hyperblocks,
each one containing a total of 128 instructions, on a 4 × 4 grid of execution units. The placement of instructions on
the units has a direct effect on the execution speed of the a hyperblock. One of the primary challenges for a compiler
targeting the TRIPS architecture is mapping a dataflow graph, with up to 128 instructions, onto functional units such
that the communication overhead is minimized.

2 Problem Formulation

One approach to this problem is to use Spatial Path Scheduling [1], which calculates a placement cost for each instruc-
tion in each possible location. A heuristic is used for this calculation to allow the scheduler to quickly evaluate every
instruction, at every possible location, and then greedily place each instruction. If the heuristic can be improved, the
speed of programs which are compiled with such a scheduler will likely be improved.

We choose to formulate this problem using the reinforcement learning [4] (RL) framework because there are no
correct or incorrect labels available to train on, but we can measure the quality of any given schedule. We consider the
placement cost as a type of value function, which estimates the expected longterm return received when an instruction
is placed at a location (the return will be related to the execution count for the compiled program). Given some value
function, we can evaluate each instruction and determine the costs for placing them at different locations. After the
scheduler deterministically places the instructions we execute the program (either in hardware or in a simulator) and
record the number of cycles used during program execution. The goal is to minimize the cycle count of the compiled
program. We define the RL agent’s reward to the inverse of the cycles used to execute the program.

To learn an appropriate placement cost function, we first must define features that adequately describe instructions and
their relative placement. Beginning with features chosen previously [1], we select a set of 11 features which should
allow approximation of an accurate value function. Our features include booleans (i.e., “Is this instruction a load?”)
and integers (i.e., “What is the critical path length through this instruction if it is placed at this location?”).

3 Neural Evolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [3] is a type of genetic algorithm that can be used for many differ-
ent kinds of optimization problems, including RL. NEAT is able to train neural networks to approximate functions of
different complexities. Most neuroevolutionary systems require the network topology, such as the number of hidden
nodes and their connections, to be fixed. In contrast, NEAT automatically evolves the topology by combining the
search for network weights with evolution of the network structure.

In NEAT, a population of genomes, each of which describes a single neural network, is evolved over time: each genome
is evaluated and the fittest individuals reproduce through crossover and mutation. NEAT begins with a population of
simple networks with no hidden nodes and inputs connected directly to outputs. Two special mutation operators,

1

add hidden node and add link, introduce new structure incrementally, but only structural mutations that improve
performance tend to survive evolution. Thus NEAT can find an appropriate level of complexity for a given problem.

When we apply NEAT to scheduling for TRIPS, each neural network represents a different function for calculating the
relative placement cost for an instruction at a location, given a set of input features. In each generation, the scheduler
uses each neural network to compile a given program, each generated executable is run, and the executable’s cycle
count is used to evaluate every network in the population. We then evolve the population so that, over time, the
performance of the scheduler improves.

4 Preliminary Results and Future Work

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 20 40 60 80 100

S
p

e
e

d
u

p

Generation

Learned Policy Speedup vs. Hand-Tuned Scheduler

gzip_1
cmm

bzip2_1
bzip2_2

Figure 1: We use NEAT to learn scheduling policies for individual bench-
marks. Over time, the policies improve to significantly outperform the hand-
tuned scheduler.

To test the RL formulation described above
we first selected a set of 47 microbenchmarks
from a collection of standard programs that
have behavior representative of much larger
executables. We then trained NEAT on each
of the 47 different benchmarks and compared
their performance with the hand-coded sched-
uler. Figure 1 shows the successful results
of training on four of these benchmarks. Al-
though these results are very encouraging,
when these individual policies are tested on the
remaining 46 benchmarks, the speedup gains
are more moderate (in the range of 1–2%).

We have also tried using NEAT to learn a pol-
icy for the entire set of 47 benchmarks, rather
than for each benchmark individually. Such a
method may allow us to avoid overtraining and
discover a general scheduling policy that can
outperform the handcoded policy. To date, this
method has only produced modest speedups
(up to 3%).

One potential enhancement is to attempt
to cluster hyperblocks by properties of the
dataflow graph. If we can determine clusters of similar hyperblocks, we may be able to train different policies for
each cluster of hyperblocks. Then, after training, we can classify novel individual dataflow graphs into one of the
existing clusters, and use a policy appropriate to the type of program currently being be compiled. Such a method
may allow us to significantly speed up the hyperblocks within each cluster, as well as be able to successfully schedule
novel programs.

A second possible enhancement would be to try using temporal difference methods, another popular RL solution
technique, as they have been shown to outperform genetic algorithms in some circumstances [5]. Lastly, we could
change the problem formulation so that rather than learning a value function, we could learn a full action selector. In
such a system the entire scheduler could be replaced by a RL module that learned which instructions to place on which
tiles, instead of greedily exploiting a learned (or hand-coded) placement cost function.

References

[1] K. Coons, X. Chen, S. Kushwaha, D. Burger, , and K. S. McKinley. A spatial path scheduling algorithm for edge architectures.
In The Twelth International Conference on Architectural Support for Programming Languages and Operating Systems, 2006.

[2] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia, M. S. Govindan, P. Gratz, D. Gulati, H. Hanson,
C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Keckler, and D. Burger. Distributed
microarchitectural protocols in the trips prototype processor. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 480–491, Washington, DC, USA, 2006. IEEE Computer Society.

[3] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evolutionary Computation,
10(2):99–127, 2002.

[4] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

[5] M. E. Taylor, S. Whiteson, and P. Stone. Comparing evolutionary and temporal difference methods in a reinforcement learning
domain. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 1321–28, July 2006.

2

