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Abstract – We present a model of spatial navigation 
based on the KIII dynamical model of perception 
developed by Walter Freeman in the 70’s. We use a KIII 
model of the hippocampus that learns global orientation 
based on pre-defined landmarks and a KIII model of the 
sensory cortex that provides local sensory information 
about obstacles. We test the model using a task that 
requires the exploration of a previously unknown 
environment and the navigation towards a goal location. 
Computer simulations show that the simulated agent 
learns the position of the goal. The model provides a 
novel description of how navigation and way finding in 
the style of  the brain. 

Keywords: Chaotic neural network, navigation, Hebbian 
learning, reinforcement. 

1 Introduction 
K sets represent a family of models of increasing 
complexity that describe various aspects of functioning in 
vertebrate brains [3]. A remarkable feature of the K 
models is that they allow a biologically plausible 
simulation of chaotic spatio-temporal neural processes at 
the mesoscopic and macroscopic scales. KO is an 
elementary building block that describes the dynamics of 
neural populations. Whereas KI is a layer of excitatory or 
inhibitory KO units, KII is a double layer of excitatory 
and inhibitory units. KIII is a set of 2 or more KII units 
connected by feed-forward and delayed feedback 
connections [4]. Due to the massive recurrent and delayed 
feedback connections, KIII exhibits aperiodic (chaotic) 
oscillations similar to those find in the brain (citation).  

The K sets are modeled using 2nd order ordinary 
differential equations (ODEs). In a typical implementation 
of the KIII model, 64 2nd order units are found in a single 
layer, and the total number of ODE’s in KIII is over 360. 
To solve the system of ODEs, a numerical solver is 
applied using the Runge-Kutta method with a discrete 

time step. Details of the mathematical equations, the 
solution algorithm, and the applied parameters of the 
model are given in [2, 5]. The existing K set of highest 
complexity is represented by the KIV model, which 
includes several KIII units. The KIV model incorporates 
the multi-modality of sensory processing in vertebrates 
[6].  

In this work we study in detail two KIII components of 
the KIV model, which correspond to the hippocampal 
formation and the sensory cortex of the mammalian brain. 
As we discuss our new model and the simulated 
paradigms, we mention the similarities and differences 
between our approach and other models of navigation. 
For example, Mataric [9] presented a model that builds a 
cognitive map while the agent explores the environment 
and stores encountered landmarks. Planning a path to a 
goal is managed by spreading the activation from the goal 
landmark, a process that is equivalent to a graph search. 

 In the next section we outline the basics of the K sets, 
with special emphasis on the KIII components of KIV.  
Then, we describe the experimental setup used to test the 
model. We present computer simulations and discuss the 
results.  We conclude with related work and perspectives 
of future research toward an integrated multi-sensory KIV 
model. 

2 Modeling Navigation Using 
Hippocampal and Cortical KIII 
Sets 

The operation of the KIII model can be described as 
follows. In the absence of stimuli the system is in a high 
dimensional state of spatially coherent basal activity, 
which is described by an aperiodic (chaotic) global 
attractor. In response to external stimuli, the system can 
be kicked-off the basal state into a local memory wing. 
This wing is usually of much smaller dimension than the 



basal state. It shows coherent and spatially patterned 
amplitude-modulated (AM) fluctuations. The system 
resides in the localized wing for the duration of the stimuli 
then it returns to the basal state. This is a temporal burst 
process that lasts for a few hundred milliseconds [4].  The 
system is able to store information in the sequence of AM 
patterns during a burst. When used to classify linearly 
non-separable patterns the system performs as good as 
multi-layer feed-forward neural network-based classifiers. 
KIII compares favorably with these methods especially 
regarding robustness and noise-tolerance of the pattern 
recognition. 

 
Figure 1. Components of the KIV model based on Kozma, 

Freeman, and Erdi (2003).  

 

The highest level of the K sets is the KIV model (see 
Figure 1). As in the case of all other K sets, KIV’s 
architecture and functionality is biologically motivated. In 
this work we extend the KIII model into KIV that models 
only the interaction in the cortical-hippocampal system 
and the sensory cortex (see Figure 2). 

In the model, several types of learning rules have been 
used simultaneously, including habituation, Hebbian 
learning, and global stability control [5]. All these 
learning methods exist in a subtle balance and their 
relative importance changes at various stages of the 
memory process.  

In our model, Hebbian learning is applied to modify the 
lateral connections between the excitatory nodes of the 
cortical and CA1 KII layers. We design the following 
learning cycle. Show a given pattern to the system for a 
duration of 100 ms, which corresponds to the drive period 
in animals, when sensory inputs are perceived. This is 
followed by a period of 100 ms without input pattern, 

corresponding to a resting part of the sensory cycle. After 
the 100 ms resting period, a new pattern is shown, and the 
whole cycle is repeated. We use Hebbian learning in 
combination with reinforcement. Namely, learning 
happens if the system receives a positive or negative 
reinforcement. This approach corresponds to rewarding or 
penalizing the animal depending on its response to the 
environmental information. 

 

Figure 2. Schematic view of the simplified KIV model 
with the interacting hippocampal and cortical KIII units.  

3 Description of the Navigation 
Problem 

As a test bed we use a simple 2D grid. At any point in 
time, the robot can chose the next move from one of the 4 
direct neighbors of the current grid position. 

We consider two types of senses: (1) a long-range global 
orientation with respect to given landmarks, (2) sensing 
based on limited horizon (localized) in the neighborhood 
of the robot. 

Consider an environment with given reference 
points/landmarks provided by orientation beacons. In a 
simple example we will consider 3 orientation beacons. 
These could be three point odor sources; three radio 
frequencies; three colors: red, green, blue; or three sound 
transmitters. One of these reference points is the base 
(home) location, the starting point for exploratory 
behavior.  The others are learned environmental support 
cues. There is continuous sampling of the direction and 
range of the simulated animal to each of these 3 
landmarks. As shown in Figure 3 we consider the past 9 
time steps as inputs, in addition to the present time frame. 

In the case of limited horizon the robot can perceive only 
a limited area that has the current position as its center. 



Again, as shown in Figure 4 we consider the past 9 time 
steps as inputs, in addition to the present time frame. 

 

Figure 3. Outline of collecting orientation information 
with respects to 3 given landmarks located in the 

environment.  

 

 

Figure 4. Outline of collecting sensory information using 
limited viewing range  

The navigation problem is described as follows. First, we 
let the robot walk randomly in the environment and record 
the 6 sensory readings continuously. During the learning 
phase, we apply the input orientation vectors continuously 
to the KIII set for several hundred steps and perform 
reinforcement learning. If the system goes toward the 
specified goal location, we reward it by conducting a 
reinforcement learning loop. On the other hand, no 
learning takes place, if the randomly selected step was 
incorrect, i.e., it stepped away from the goal location, 
which is the central position in these experiments. In the 
case of the local sensing experiment , the reinforcement 
signal is negative. The robot is penalized if it goes to a 
corner location (see Figure 4) which simulates 
entrapment. 

4 Navigation Results 
4.1 Landmark-Based Navigation 

Figure 5 shows the trajectory of the simulated robot when 
it performs random walk. The goal location is not reached 
after 70 steps. Figure 6 shows the trajectory when the 
robot uses its internal representation of space. 
 
Once the exploration phase has been conducted 
extensively, we can test how well the robot has learned the 
environment. We restart it from home and give a goal 
location. If the robot has properly learned the environment 
with respect to the 3 environmental clues, it will navigate 
efficiently and find a reasonably optimal path to the goal. 
The model builds an internal representation of the 
environment by using the classification landscape of KIII. 
Figure 6 shows the trajectory of the robot after it has 
learned the position of the goal. The average length of the 
trajectory from start to goal is significantly reduced. 
Considering a path of length 20 steps from the origin, the 
leaned KIII hippocampal model produces a path with 
average distance of about 7 grid points from the goal. At 
the same time, the random walk results in an average 
distance of 14 grid points from the goal. As shown in 
Figure 7 landmark based navigation generates a trajectory 
that is always closer to the goal location than the trajectory 
produced by random walk. 
 
It should be noted that based just on the orientation 
information, it is very difficult to learn the goal location 
precisely. Therefore, even a well-trained robot is unlikely 
to stop at the goal location. Rather, it will wander around 
in the neighborhood of the goal. Clearly, the robot should 
change its sensory modality to local sensing, once it 
reaches in the neighborhood of the goal. 
 

 
Figure 5. Random exploration of the environment in the 

hippocampal navigation model.  

 



 
Figure 6. Goal oriented navigation using the hippocampal 

KIII model.  

 

 
Figure 7. Distance to the goal for random walk and 

landmark based navigation.  

 
4.2 Navigation Using Limited Sensory Horizon 

Unlike the landmark-based navigation where the 
simulated robot explores an open environment, the 
navigation using a limited sensory horizon takes place in 
an environment that contains obstacles.  As shown in 
Figure 9 , during random exploration the simulated robot 
does not reach the goal location. However, as shown in 
Figure 10, when the robot is trained to reach the goal it 
does so in an efficient manner by avoiding the obstacles 
in between the start and the goal location. 

We measured the optimality of the trajectories generated 
during navigation by calculating the ratio of good and bad 
moves. Whereas a good move is defined as a step towards 
the goal, a bad move is defined as a step away from the 
goal. The good and bad moves are measured at two levels 
as shown in Figure 8. Table 1 presents the results for 
different sizes of the sensory horizon. As the size of the 

sensory horizon increases the ratio of good and bad moves 
also increases. This shows that the simulated animal is 
able to learn obstacle avoidance and reach the goal 
location. 

 
Figure 8. Two levels where good and bad moves are 
counted. Level 1: black squares, Level 2: black circles. 
Thin lines represent the grid and thick lines represent the 
obstacle.  
 

 
 

Figure 9. Random exploration of obstacles in the 
environment.  

 
Figure 10. Trajectories after learning in cortical KIII of 

avoidance of being trapped in a corner position.  

 
 



Table 1. Ratio of good and bad moves for different sizes 
of the sensory horizon.  

Good Moves
Bad Moves

 Random 
Walk 

1 Grid 
Memory 

2 Grids 
Memory 

3 Grids 
Memory

Level 1: 2 2.56 3.09 3.50 

Level 2: 1.5 1.56 1.58 1.63 

 
5 Discussion 
The paper presents a model of navigation based on  
chaotic spatio-temporal neural processes at the 
mesoscopic and macroscopic scales. The simulated robot 
is able to learn the position of goal location and to avoid 
obstacles. Other models of navigation that differ from our 
approach have been developed. 

The model proposed by Samsonovich and McNaughton 
[8] uses CA3 as a memory capable of storing multiple 
charts. The concept of chart is equivalent to that of an 
attractor map. The activation of a certain map is 
determined by the initial sensory cues. The model of 
Samsonovich and McNaughton contains the following 
components: (1)  a set of place units representing an 
attractor map identified as CA1, CA3 and the Dentate 
Gyrus, (2)  an external sensory input array identified as 
sensory association cortex which provides high level 
representation of the sensory information to the 
hippocampus via entorhinal cortex and the perforant path.  
(3) an array of head direction units identified as cells in 
dorsal presubiculum, (4) an array encoding the angular 
velocity of the head, (5) an array representing the speed of 
motion, and (6) an array of integrator cells which are 
identified with some cells in the subiculum, the 
presubiculum and the parasubiculum which show spatial 
and orientation selectivity. The model was implemented 
using integrate and fire neurons and was simulated 
numerically using a simple Euler scheme. Unlike other 
models the simulated path integrator is able to show: 
doubling, stretching and vanishing of places. 

An alternative representation to the multi-charts used by 
Samsonovich and McNaughton are the reference frames 
proposed by Redish and Touretzky [11]. In contrast to the 
assumption that the maps in the hippocampus emerge 
from the internal dynamics of the network, the reference 
frame hypothesis suggests that the hippocampal place 
cells are modulated by external information, such as path 
integration. In order to function well the multi-chart 
theory has to assume that there are prewired connections 
within the hippocampus. Taking into account the high 
level of brain plasticity such an assumption has a low 
likelihood of being valid. Redish and Touretzky offer an 
alternative explanation based on how an attractor network 

reacts to a slightly changed input. On one hand, if the 
current state of the attractor is stable and the input is not 
significantly changed then the same reference frame is 
used. On the other hand, if the input is offset by a large 
amount, the current position is encoded by a different cell. 

One of the few hippocampal models that have been 
implemented on a mobile robot is presented by Burgess, 
Donnett, Jeffrey, and O'Keefe [10]. This model has an 
emphasis on the details of neural implementation and it 
takes into account part of the architecture found in the 
brain (see Figure 1.2).  The first layer is the sensory 
information module, which contains an array of 60 
neurons. Every neuron is tuned to fire whenever the 
animal is within a certain distance from a certain wall (the 
distance and the wall are specific for every sensory 
neuron). The next layer is the entorhinal cortex in which 
every neuron receives input from only two sensory cells 
associated with orthogonal walls. The next layer is formed 
by the place cells, which learn to discriminate regions of 
the environment by using competitive learning. At each 
time step the connections between the first 50 place cells 
that have the highest firing rate and the first 4 most active 
entorhinal cortex cells are validated. The fourth layer 
contains the goal cells. By moving away from a goal its 
corresponding place cell is activated less and less. By 
using this approach the animal is able to build for each 
goal a proximity gradient that can be used for approaching 
the location of the goal. In order to allow the animal to 
select short cuts towards the goal a more complex scheme 
must be utilized. A vector towards the goal is calculated 
by taking into account the information learned whenever 
the animal perceives the right goal location.  

This model has been tested on a khepera robot with an on-
board video camera and a ring of short-range detectors. 
The distance to the walls has been estimated by filtering 
the image received by the camera for horizontal lines and 
by providing information (e.g. the north wall can be 
identified by its dark upper half) that facilitates the 
processing of sensory information. 

In sum, this model uses a very close architecture of the 
hippocampus. It takes into account most of the functional 
modules of the related brain regions. However, it makes 
several assumptions about the functions performed by the 
different layers of the system that could be different from 
reality and it does not consider the recurrent connections 
of CA3. One major drawback of the model is the fact that 
when the environment is contracted by a large enough 
factor, locations of peak firing of opposing cells cross 
over and the robot searches only at the edges of the 
environment. 

Another model that uses an attractor network to simulate 
the hippocampus is proposed by Tsodyks [7].  It is 
assumed that the strength of the synapse between two 



places decreases with the distance between their fields. 
Particularly, the function used in the simulation is 
decreasing exponentially with distance. This assumption 
seems not to be realistic because while connections 
between adjacent places or even neighboring places can 
be driven by Hebbian learning the connections between 
distant places are very hard to form. Therefore, the 
proximity between places is not stored directly at the 
synapse level but can be inferred by using the recurrent 
connections in CA3.  

6 Conclusions 
We use the KIV model to help to understand how can the 
hippocampal neural circuitry and the whole cortical-
hippocampal loop, supplemented with specific subcortical 
inputs implement  different  types  of  dynamic activity, 
and how these activity  patterns  contribute to the 
emergence of spatial encoding to aid orientation function 
of the animal. Our results describe the mechanisms, which 
facilitate the generation of cognitive maps in the 
hippocampus based on the sensory input-based 
destabilization of cortical spatio-temporal patterns. 

In this work, we have introduced a novel method of 
navigation using the KIII hippocampal model. We have 
demonstrated the feasibility of the proposed methodology, 
and showed that K models are promising dynamic chaos 
neural networks to address navigation tasks. Our results 
clearly demonstrate that the applied Hebbian 
reinforcement learning algorithm in KIII produces 
significant learning gains. This efficient learning is 
converted into improved navigation control of the 
simulated robot through the environment. Future studies 
are directed toward integrating the present global 
navigation method into a multi-sensory KIV control 
system, in which global orientation information is 
combined with local sensory data, e.g. infra sensors and 
camera images. 
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