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Abstract — We present a model of spatial navigation
based on the KIII dynamical model of perception
developed by Walter Freeman in the 70’s. We use a KIII
model of the hippocampus that learns global orientation
based on pre-defined landmarks and a KIII model of the
sensory cortex that provides local sensory information
about obstacles. We test the model using a task that
requires the exploration of a previously unknown
environment and the navigation towards a goal location.
Computer simulations show that the simulated agent
learns the position of the goal. The model provides a
novel description of how navigation and way finding in
the style of the brain.

Keywords: Chaotic neural network, navigation, Hebbian
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1 Introduction

K sets represent a family of models of increasing
complexity that describe various aspects of functioning in
vertebrate brains [3]. A remarkable feature of the K
models is that they allow a biologically plausible
simulation of chaotic spatio-temporal neural processes at
the mesoscopic and macroscopic scales. KO is an
elementary building block that describes the dynamics of
neural populations. Whereas KI is a layer of excitatory or
inhibitory KO units, KII is a double layer of excitatory
and inhibitory units. KIII is a set of 2 or more KII units
connected by feed-forward and delayed feedback
connections [4]. Due to the massive recurrent and delayed
feedback connections, KIII exhibits aperiodic (chaotic)
oscillations similar to those find in the brain (citation).

The K sets are modeled using 2™ order ordinary
differential equations (ODEs). In a typical implementation
of the KIII model, 64 2™ order units are found in a single
layer, and the total number of ODE’s in KIII is over 360.
To solve the system of ODEs, a numerical solver is
applied using the Runge-Kutta method with a discrete
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time step. Details of the mathematical equations, the
solution algorithm, and the applied parameters of the
model are given in [2, 5]. The existing K set of highest
complexity is represented by the KIV model, which
includes several KIII units. The KIV model incorporates
the multi-modality of sensory processing in vertebrates

[6].

In this work we study in detail two KIII components of
the KIV model, which correspond to the hippocampal
formation and the sensory cortex of the mammalian brain.
As we discuss our new model and the simulated
paradigms, we mention the similarities and differences
between our approach and other models of navigation.
For example, Mataric [9] presented a model that builds a
cognitive map while the agent explores the environment
and stores encountered landmarks. Planning a path to a
goal is managed by spreading the activation from the goal
landmark, a process that is equivalent to a graph search.

In the next section we outline the basics of the K sets,
with special emphasis on the KIII components of KIV.
Then, we describe the experimental setup used to test the
model. We present computer simulations and discuss the
results. We conclude with related work and perspectives
of future research toward an integrated multi-sensory KIV
model.

2 Modeling Navigation Using
Hippocampal and Cortical KIII
Sets

The operation of the KIII model can be described as
follows. In the absence of stimuli the system is in a high
dimensional state of spatially coherent basal activity,
which is described by an aperiodic (chaotic) global
attractor. In response to external stimuli, the system can
be kicked-off the basal state into a local memory wing.
This wing is usually of much smaller dimension than the



basal state. It shows coherent and spatially patterned
amplitude-modulated (AM) fluctuations. The system
resides in the localized wing for the duration of the stimuli
then it returns to the basal state. This is a temporal burst
process that lasts for a few hundred milliseconds [4]. The
system is able to store information in the sequence of AM
patterns during a burst. When used to classify linearly
non-separable patterns the system performs as good as
multi-layer feed-forward neural network-based classifiers.
KIII compares favorably with these methods especially
regarding robustness and noise-tolerance of the pattern
recognition.
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Figure 1. Components of the KIV model based on Kozma,
Freeman, and Erdi (2003).

The highest level of the K sets is the KIV model (see
Figure 1). As in the case of all other K sets, KIV’s
architecture and functionality is biologically motivated. In
this work we extend the KIII model into KIV that models
only the interaction in the cortical-hippocampal system
and the sensory cortex (see Figure 2).

In the model, several types of learning rules have been
used simultaneously, including habituation, Hebbian
learning, and global stability control [5]. All these
learning methods exist in a subtle balance and their
relative importance changes at various stages of the
Memory process.

In our model, Hebbian learning is applied to modify the
lateral connections between the excitatory nodes of the
cortical and CA1 KII layers. We design the following
learning cycle. Show a given pattern to the system for a
duration of 100 ms, which corresponds to the drive period
in animals, when sensory inputs are perceived. This is
followed by a period of 100 ms without input pattern,

corresponding to a resting part of the sensory cycle. After
the 100 ms resting period, a new pattern is shown, and the
whole cycle is repeated. We use Hebbian learning in
combination with reinforcement. Namely, learning
happens if the system receives a positive or negative
reinforcement. This approach corresponds to rewarding or
penalizing the animal depending on its response to the
environmental information.
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Figure 2. Schematic view of the simplified KIV model
with the interacting hippocampal and cortical KIII units.

3 Description of the
Problem

Navigation

As a test bed we use a simple 2D grid. At any point in
time, the robot can chose the next move from one of the 4
direct neighbors of the current grid position.

We consider two types of senses: (1) a long-range global
orientation with respect to given landmarks, (2) sensing
based on limited horizon (localized) in the neighborhood
of the robot.

Consider an environment with given reference
points/landmarks provided by orientation beacons. In a
simple example we will consider 3 orientation beacons.
These could be three point odor sources; three radio
frequencies; three colors: red, green, blue; or three sound
transmitters. One of these reference points is the base
(home) location, the starting point for exploratory
behavior. The others are learned environmental support
cues. There is continuous sampling of the direction and
range of the simulated animal to each of these 3
landmarks. As shown in Figure 3 we consider the past 9
time steps as inputs, in addition to the present time frame.

In the case of limited horizon the robot can perceive only
a limited area that has the current position as its center.



Again, as shown in Figure 4 we consider the past 9 time
steps as inputs, in addition to the present time frame.
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Figure 3. Outline of collecting orientation information
with respects to 3 given landmarks located in the
environment.
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Figure 4. Outline of collecting sensory information using
limited viewing range

The navigation problem is described as follows. First, we
let the robot walk randomly in the environment and record
the 6 sensory readings continuously. During the learning
phase, we apply the input orientation vectors continuously
to the KIII set for several hundred steps and perform
reinforcement learning. If the system goes toward the
specified goal location, we reward it by conducting a
reinforcement learning loop. On the other hand, no
learning takes place, if the randomly selected step was
incorrect, i.e., it stepped away from the goal location,
which is the central position in these experiments. In the
case of the local sensing experiment , the reinforcement
signal is negative. The robot is penalized if it goes to a
corner location (see Figure 4) which simulates
entrapment.

4 Navigation Results

4.1 Landmark-Based Navigation

Figure 5 shows the trajectory of the simulated robot when
it performs random walk. The goal location is not reached
after 70 steps. Figure 6 shows the trajectory when the
robot uses its internal representation of space.

Once the exploration phase has been conducted
extensively, we can test how well the robot has learned the
environment. We restart it from home and give a goal
location. If the robot has properly learned the environment
with respect to the 3 environmental clues, it will navigate
efficiently and find a reasonably optimal path to the goal.
The model builds an internal representation of the
environment by using the classification landscape of KIII.
Figure 6 shows the trajectory of the robot after it has
learned the position of the goal. The average length of the
trajectory from start to goal is significantly reduced.
Considering a path of length 20 steps from the origin, the
leaned KIII hippocampal model produces a path with
average distance of about 7 grid points from the goal. At
the same time, the random walk results in an average
distance of 14 grid points from the goal. As shown in
Figure 7 landmark based navigation generates a trajectory
that is always closer to the goal location than the trajectory
produced by random walk.

It should be noted that based just on the orientation
information, it is very difficult to learn the goal location
precisely. Therefore, even a well-trained robot is unlikely
to stop at the goal location. Rather, it will wander around
in the neighborhood of the goal. Clearly, the robot should
change its sensory modality to local sensing, once it
reaches in the neighborhood of the goal.
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Figure 5. Random exploration of the environment in the
hippocampal navigation model.



TESTING PHASE (70 STEPS)

Figure 6. Goal oriented navigation using the hippocampal
KIIT model.
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Figure 7. Distance to the goal for random walk and
landmark based navigation.

4.2  Navigation Using Limited Sensory Horizon

Unlike the landmark-based navigation where the
simulated robot explores an open environment, the
navigation using a limited sensory horizon takes place in
an environment that contains obstacles. As shown in
Figure 9 , during random exploration the simulated robot
does not reach the goal location. However, as shown in
Figure 10, when the robot is trained to reach the goal it
does so in an efficient manner by avoiding the obstacles
in between the start and the goal location.

We measured the optimality of the trajectories generated
during navigation by calculating the ratio of good and bad
moves. Whereas a good move is defined as a step towards
the goal, a bad move is defined as a step away from the
goal. The good and bad moves are measured at two levels
as shown in Figure 8. Table 1 presents the results for
different sizes of the sensory horizon. As the size of the

sensory horizon increases the ratio of good and bad moves
also increases. This shows that the simulated animal is
able to learn obstacle avoidance and reach the goal
location.
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Figure 8. Two levels where good and bad moves are
counted. Level 1: black squares, Level 2: black circles.
Thin lines represent the grid and thick lines represent the
obstacle.

Figure 9. Random exploration of obstacles in the
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Figure 10. Trajectories after learning in cortical KIII of
avoidance of being trapped in a corner position.



Table 1. Ratio of good and bad moves for different sizes
of the sensory horizon.

Good Moves [Random| 1 Grid |2 Grids| 3 Grids
Bad Moves | Walk | Memory [Memory] Memory

Level 1: 2 2.56 3.09 3.50

Level 2: 1.5 1.56 1.58 1.63

5 Discussion

The paper presents a model of navigation based on
chaotic  spatio-temporal neural processes at the
mesoscopic and macroscopic scales. The simulated robot
is able to learn the position of goal location and to avoid
obstacles. Other models of navigation that differ from our
approach have been developed.

The model proposed by Samsonovich and McNaughton
[8] uses CA3 as a memory capable of storing multiple
charts. The concept of chart is equivalent to that of an
attractor map. The activation of a certain map is
determined by the initial sensory cues. The model of
Samsonovich and McNaughton contains the following
components: (1) a set of place units representing an
attractor map identified as CAl, CA3 and the Dentate
Gyrus, (2) an external sensory input array identified as
sensory association cortex which provides high level
representation of the sensory information to the
hippocampus via entorhinal cortex and the perforant path.
(3) an array of head direction units identified as cells in
dorsal presubiculum, (4) an array encoding the angular
velocity of the head, (5) an array representing the speed of
motion, and (6) an array of integrator cells which are
identified with some cells in the subiculum, the
presubiculum and the parasubiculum which show spatial
and orientation selectivity. The model was implemented
using integrate and fire neurons and was simulated
numerically using a simple Euler scheme. Unlike other
models the simulated path integrator is able to show:
doubling, stretching and vanishing of places.

An alternative representation to the multi-charts used by
Samsonovich and McNaughton are the reference frames
proposed by Redish and Touretzky [11]. In contrast to the
assumption that the maps in the hippocampus emerge
from the internal dynamics of the network, the reference
frame hypothesis suggests that the hippocampal place
cells are modulated by external information, such as path
integration. In order to function well the multi-chart
theory has to assume that there are prewired connections
within the hippocampus. Taking into account the high
level of brain plasticity such an assumption has a low
likelihood of being valid. Redish and Touretzky offer an
alternative explanation based on how an attractor network

reacts to a slightly changed input. On one hand, if the
current state of the attractor is stable and the input is not
significantly changed then the same reference frame is
used. On the other hand, if the input is offset by a large
amount, the current position is encoded by a different cell.

One of the few hippocampal models that have been
implemented on a mobile robot is presented by Burgess,
Donnett, Jeffrey, and O'Keefe [10]. This model has an
emphasis on the details of neural implementation and it
takes into account part of the architecture found in the
brain (see Figure 1.2). The first layer is the sensory
information module, which contains an array of 60
neurons. Every neuron is tuned to fire whenever the
animal is within a certain distance from a certain wall (the
distance and the wall are specific for every sensory
neuron). The next layer is the entorhinal cortex in which
every neuron receives input from only two sensory cells
associated with orthogonal walls. The next layer is formed
by the place cells, which learn to discriminate regions of
the environment by using competitive learning. At each
time step the connections between the first 50 place cells
that have the highest firing rate and the first 4 most active
entorhinal cortex cells are validated. The fourth layer
contains the goal cells. By moving away from a goal its
corresponding place cell is activated less and less. By
using this approach the animal is able to build for each
goal a proximity gradient that can be used for approaching
the location of the goal. In order to allow the animal to
select short cuts towards the goal a more complex scheme
must be utilized. A vector towards the goal is calculated
by taking into account the information learned whenever
the animal perceives the right goal location.

This model has been tested on a khepera robot with an on-
board video camera and a ring of short-range detectors.
The distance to the walls has been estimated by filtering
the image received by the camera for horizontal lines and
by providing information (e.g. the north wall can be
identified by its dark upper half) that facilitates the
processing of sensory information.

In sum, this model uses a very close architecture of the
hippocampus. It takes into account most of the functional
modules of the related brain regions. However, it makes
several assumptions about the functions performed by the
different layers of the system that could be different from
reality and it does not consider the recurrent connections
of CA3. One major drawback of the model is the fact that
when the environment is contracted by a large enough
factor, locations of peak firing of opposing cells cross
over and the robot searches only at the edges of the
environment.

Another model that uses an attractor network to simulate
the hippocampus is proposed by Tsodyks [7]. It is
assumed that the strength of the synapse between two



places decreases with the distance between their fields.
Particularly, the function used in the simulation is
decreasing exponentially with distance. This assumption
seems not to be realistic because while connections
between adjacent places or even neighboring places can
be driven by Hebbian learning the connections between
distant places are very hard to form. Therefore, the
proximity between places is not stored directly at the
synapse level but can be inferred by using the recurrent
connections in CA3.

6 Conclusions

We use the KIV model to help to understand how can the
hippocampal neural circuitry and the whole cortical-
hippocampal loop, supplemented with specific subcortical
inputs implement different types of dynamic activity,
and how these activity patterns contribute to the
emergence of spatial encoding to aid orientation function
of the animal. Our results describe the mechanisms, which
facilitate the generation of cognitive maps in the
hippocampus based on the sensory input-based
destabilization of cortical spatio-temporal patterns.

In this work, we have introduced a novel method of
navigation using the KIII hippocampal model. We have
demonstrated the feasibility of the proposed methodology,
and showed that K models are promising dynamic chaos
neural networks to address navigation tasks. Our results
clearly demonstrate that the applied Hebbian
reinforcement learning algorithm in KIII produces
significant learning gains. This efficient learning is
converted into improved navigation control of the
simulated robot through the environment. Future studies
are directed toward integrating the present global
navigation method into a multi-sensory KIV control
system, in which global orientation information is
combined with local sensory data, e.g. infra sensors and
camera images.
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