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Part 1; Introduction

A fast, effective path planning algorithm is essential for autonomous mobile robots. Terrestrial vehicles,
spacecraft, and even robotic manipulators must be able to navigate through a known or unknown
environment without colliding with obstacles, getting stuck, or sustaining damage.

The figure below shows a reasonabl e path through a set of obstacles.

A typical path planning problem with a reasonable solution

There are several path planning algorithms that can be applied to our problem. Oneiscalled aVisibility
Graph method: first, al of the objects are expanded by a distance equal to the largest radius of the robot.



This creates a buffer around all of the obstacles. Next a set of straight lines are drawn between al the
corners of the expanded obstacles and the start and goal positions. A search is performed to find the
shortest distance from the start to the goal; informed search methods such as A* or Branch and Bound
may be used. The resulting path is piecewise linear between the corners of the expanded obstacles.
Unfortunately this algorithm creates paths that pass very close to obstacles (by design). A hallway-
navigating robot using this algorithm would hug the walls and always aim for the corners.

Another agorithm, the Voronoi Graph method, finds paths that are equidistant from at least two points
on the nearest obstacles. These paths are not easy to develop, but they stay as far away from obstacles
aspossible. Asbefore asearchisperformed to find the one path that most directly links the start to the
goal. A hallway-navigating robot using this algorithm would always stay in the middle of the hallway
and never cut corners.

Ideally we would like our path to stay reasonably far from obstacles, but not necessarily exactly in
between their boundaries. We would like it to approach corners when necessary but not otherwise, and
never get too closeto them. All of these goals are satisfied by athird path planning algorithm: the
Numerical Potential Field method.

In the third algorithm, an artificial potential field is set up in the space; that is, each point in the spaceis
assigned ascalar value. The value at the goal point is set to be 0 and the value of the potential at all
other pointsis positive. The potentia at each point has two contributions; a goal force that causes the
potential to increase with path distance from the goal, and an obstacle force that increases in inverse
proportion to the distance to the nearest obstacle boundary. In other words, the potential islowest at the
godl, large at points far from the goal, and large at points next to obstacles. If the potential is suitably
defined, then if arobot starts at any point in the space and always moves in the direction of the steepest
negative potential slope, then the robot will move towards the goal while avoiding obstacles. The
Potential Field algorithm is described in greater detail in the next two sections; in practice it produces
paths that are a compromise between the Visibility Graph and Voronoi Graph methods.

While it takes some computational effort to compute the potential for the space, once the potentia is
known paths can be created on-the-fly from any point to the goal. If arobot is operating in a known
environment then the potential needs to be computed only once for each goal and the robot will find the
optimal path to the goal from any initial location without any extra computation. This has important
implications for robustness: if the robot is pushed off the path due to disturbances or failures then the
robot can continue to follow the steepest negative potential slope to reach the goal.

The numerical potential field path planner is guaranteed to produce a path even if the start or goal is
placed in an obstacle. If thereis no possible way to get from the start to the goal without passing
through an obstacle then the path planner will generate a path through the obstacle, although if thereis
any alternative then the path will do that instead. For thisreason it isimportant to make sure that there
IS some possible path, athough there are ways around this restriction such as returning an error if the
potential at the start point is too high.

The next section describes formally the problem inputs and outputs.
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Part 2: Problem Description

To formulate the path planning problem let us make afew assumptions. First we assume that the
locations of the start position and goal position of the robot are known. Next we assume that the
boundaries of the objects are known aswell. We are not restricted to two or even three dimensions.
Finally, assume that we can discretize the space and that our robot can follow a smoothed version of the
resulting discrete trajectory.

I nputs and Outputs

Aswith any path planning problem, the input to the potential field path planner is a representation of the
physical space in which the robot is to operate (a2D Cartesian plane, for example), start and goal
locations within that space, and the boundaries of all obstacles within the space that the robot must
avoid. If therobot is operating in a closed environment then the enclosing boundaries can be treated as
obstacles aswell. The output of the planner is a path that connects the start location with the goal
location. The output path is“valid” if it does not intersect with any obstacles.



Space

The input to the path planner: a space with obstacles, a start position, and a stop position.
The path returned by the planner is a set of points such as the following that connect the start to the goal.

Path Returned:
[2 2]
[3 2]
[3 3]
[3,4]
[3 5]
[ 4, 5]
[5 5]
[ 6 5]
[7,9]
[8 5]
[9 5]
[ 10, 5]
[ 11, 5]
[ 11, 6]

This particular path is drawn below.



Path

W

Discretizing the Problem

For these potentials to be useful we must discretize the space. While the objects themselves have
continuous boundaries and we would like to have a smooth path, it is not possible to evaluate the
potential at an infinite number of points. A rectangular grid is a simple discretization that places points
at the corners of squares (in 2D) or cubes (in 3D). The resolution of the potential and the resulting path
Increases as the size of the squares decreases. Aswith al numerical methods there is a tradeoff between
computation time (square size) and output accuracy and resolution.

The next section describes the path planning agorithm.

M ethod Description
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Part 3: Method Description

Potentials, Force, and Work
A potential isthe path integral of aforce. If the forceis conservative, like gravity or the electrostatic
force, then the potential is path-independent. If the forceis not conservative, like friction, then the
potential at every point depends on the path used to get there. A potential is defined relative to some
reference point; we choose the reference point to be the goal point, where the potential is zero. Another
way to look at the potential is the work required to move from the goal to any point in the space.
Because there are many paths from the goal to any point, we define the potential to be the smallest
possible potential, meaning the potential corresponding to the path with the least work. If the potential
Is computed for the entire space then the optimal path, the one that requires the least amount of work, is
found simply by descending the steepest slope of the potential until the goal is reached.

In general forces are vectors, we can express friction-type forces as scalars because the force resists
motion regardless of the direction of motion. In a discrete setting the scalar force is the force required to
move to a point from any neighboring point. Forces are linear, meaning that the total force is simply the
sum of forces from different sources. However, potentials are not linear because they are defined as the
minimum over all paths to the point.

Goal Force and Potential
Because forces are linear we can break them up into their various components. First let us focus on the
goal force. We want to generate a path from the start to the goal, so we create a potential that is
minimum at the goal and grows with distance from the goal. There are many forces that could meet this
requirement. The ssimplest is aconstant (flat) goal force like pure friction: the force at every point is 1.
The potential for this goal force is simply the distance to the goal. An alternative goal forceis conical:
the force at every point is the distance to the goal, and the potential is bowl-shaped. The conical goal
force punishes paths that are farther from the goal. For consistency in maze conditions aflat goal force
IS more appropriate.


http://stellar.mit.edu/S/course/16/fa05/16.410/courseMaterial/topics/topic29/project/Greytak/Greytak/applet.html

Obstacle Force

We now know how to make aforce and potential that will get us from the start to the goal. However,
path planning is never so trivial. The real world has obstacles that the robot must avoid while il
getting to the goal as quickly as possible. Just as we created a goal force to bring the robot towards the
goal, we can a'so create obstacle forces to keep the robot away from obstacles. If the force around
obstacles is high then the path planner will avoid approaching them because that would mean increasing
potential energy. If the potential goesto infinity at the object’ s boundary then the path will never go too
close. A suitable function istheinverse of the distance to the closest boundary of the obstacle. In
practice it makes sense to limit the influence of the obstacle to a certain distance. The details of how this
is done are explained in the Java implementation description.

Combining the For ces

The goal and obstacle forces are linear, which means that we can simply add them to get atotal force at
each location. Thetotal force at a point represents the amount of effort it takes to move to that point
from any neighboring point. Far from any obstacles the constant goal force causes all local movements
to use the same effort. Therefore the most direct path to the goal is the path that requires the least work
(that is, the path that passes through the fewest points). Near obstacles, movements towards the obstacle
require more effort than movements away from the obstacle because the force is higher at points closer
to the obstacle. Given the choice between a path near an obstacle (passing through points of high force)
and a path that avoids the obstacle (passing through points of lower force), the best path is the one that
avoids the obstacle because the total work required will be lower.

As stated above, while the forces can be combined linearly, the potentials cannot. Thisis because the
potential at each point depends on the path taken to get there. The potential is not linear, and to evaluate
it we must use the total force (goa plus obstacle).

Evaluating the Potential

Now we know how to compute avalue for the force at every point in the space. Our next task isto
construct the potential in a manner that avoids local minimain which the path could get stuck. We do
this by working backwards from the goal, expanding outwards (in space) and upwards (in potential).
From each point the neighboring points are examined. The potential at the neighboring point is
compared with the sum of the potential at the current point and the force required to get to the new
point. If the second value is smaller than the first, then the potential at the neighboring point is replaced
with the second value. In this manner the potential at each point becomes the integral of the force along
the shortest path from that point to the goal. Such aformulation automatically avoids local minima
because the potential always grows along paths away from the goal.
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If the potential of the lower-left square is 6, then the new potential for the square above it will be 7= 6
+ 1, and the new potential for the squaretoitsright will be8 = 6 + 2. The potential can also be
computed along diagonals. In the example on the right the new potential for the upper-right square will
be7.414 = 6 + 1*1.414, where 1.414 isthe diagonal distance to the new square. Note that thisisa
smaller value than if we had to go through the lower-right square, in which case the potential would be
8=6+1+ 1

Constructing the Path

At this point we have a potential function for the entire. The path is constructed by starting at the start
position and, in each step, moving to the neighboring position with the lowest potential. If two
neighboring points have the same lowest potential then it means that either point will get to the goal with
the same total work. Ties can be broken randomly or with a convention such as (in 2D) the point
farthest to the right and the point farthest down. The path can be constructed with diagonalsif all eight
surrounding points are examined instead of just the four above, below, to the left, and to the right.
However, the diagonal paths may get closer to obstacle corners than desired.

Pseudocode and Example
Suppose that we are trying to find a path from the red sguare to the green square in the world below.
There are two obstacles and awall surrounding the world.

Space

S

Left: The input to the path planner: a space with obstacles, a start position, and a stop position.
Right: A 3D representation of the space.



Thefirst step isto create the goal force. If we use aflat goal force then the force at every point except
thegoal is 1, and the force at the goal is 0.

For al points x in the space, FG(x) = 1
FG(xgoa) =0

This creates a goal force as shown below:

Goal Force
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A simple goal forceis 1 everywhere but the goal. Thisislike afriction force; it takes one unit of force to
move from any square to any neighboring square.

Next we make the obstacle force. For ssimplicity we will make the obstacle force equal to 1 in the
surrounding grid points and O everywhere else. Remember that obstacle forces add, so if apoint is
within one grid point of two obstacles then itsforceis 2.

For al points x in the space, FO(x) =0
For all obstaclesK,

For all points x surrounding obstacle k, FO(x) = FO(x) + 1
end obstacle loop

This creates the obstacl e force as shown below:



Obstacle Force
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A simple obstacle force is 1 within one unit of an obstacle (and infinite inside an obstacle). Notice that
the walls are treated as obstacles, and obstacle forces add in points that are within one unit of multiple
obstacles.

Next sum the goal force and the obstacle force to get the total force.
For al points x in the space, F(x) = FG(x) + FO(x)

The result is shown below:

Total Force
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The total force is simply the sum of the goal force and the obstacle force.

Now it istime to evaluate the potential at every point. We start by assuming that the potential at every
point isinfinity (or avery large number). Then, starting with the goal, we find the points that have the
lowest potential and look at their neighbors to update their potentialsif necessary. We use a queue to



keep track of the points that must be examined.

For al points x in the space, U(x) = 10,000
U(xgoa) =0
Add xgoal to the queue Q
While Q is not empty,
Remove the point xi with the minimum U from Q
For all points xj that surround xi,
If U(xj) > U(xi) + F(xj)
U(xj) = U(xi) + F(x])
Add xjtoQ
end if
end neighbor for loop
end while loop

Now all points have a potential value assigned to them, and it looks like this:
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The potential at any point is the minimum amount of force that is picked up by taking any path to the
goal. Itiscomputed by starting at the goal and working outwards until every point has the minimum
possible potential. Note that the vertical axis of the 3D plot is scaled down.

Thefina step isto make the path from a point xstart.

Xi = xstart
While xi # xgoal,

x(i+1) = argmin(for xj neighbors of xi) of U(x])
end while loop

Thefina path is shown in orange below.



Straight Path
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The path is found by moving to the neighboring square with the lowest potential, starting at any point in

the space and stopping when the goal isreached. There are multiple optimal paths, each of which will
require the same amount of work; for example, we could start by moving down instead of to the right.
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The next section describes how this algorithm isimplemented in Java.

Java | mplementation
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Part 4. Java lmplementation

The Numerical Potential Fields path planning algorithm described in the Method Description section has
been implemented in a Java class NPFpathplanner.java. It can be run using the JUnit test architecture;
the test program used to run the example is NPFpathplannerTest.java. The required files can be
downloaded here as a.zip archive. The NPFpathplanner class has the following structure:

public class NPFpathplanner {
void setspace(width, height);
void drawspace();
void addobstacle(obstacle);
void setgoal (goal point);
Path findpath(startpoint);
int closestobstacle();
doubl e closestdistanceobs(obstacle);
double getpathlength();

}

To start a problem using this code you first define arectangular space using the setspace method. The
width and height are integers that define the discretization of the problem. All squaresin the space have
an edge length of 1. The space starts with walls along is boundaries, implemented as obstacles. More
obstacles can be added to the space using the addobstacle method. In thisimplemenation an obstacleis
a Rectangle2D.Double object. The obstacle force is updated each time an obstacleis added. The
position of the goal is set with the setgoal method, where goalpoint is a PotPoint object (described
below). The findpath method computes the potential for the entire space and, starting at the startpoint,
constructs a path to the goal. The path is returned as a Path object (described below). Three other
methods are used to evaluate the final path: closestobstacle returns the obstacle number that the path
comes closest to (user-defined obstacles only, the first is number 1), closestdistanceobs finds the closest


http://www.junit.org/

distance that the path comes to a particular user-defined obstacle, and getpathlength returns the total
length of the path. Finally, the drawspace method makes a plot of the space, the obstacles, the forces,
the potential, and the path.

Two custom classes are used by NPFpathplanner: PotPoint.java and Path.java.

PotPoint is an extension of Point2D.Double, forced to accept only integer values for the postion.
The class also contains a constant value to store the potential associated with the point.

Path is an extension of LinkedList with a constant value to store the path length. The path length
Is actually computed by the findpath method.

There are several options that can be set in the NPFpathplanner class; most are self-explanatory.

boolean drawgoalforce - draw the goal force in each square; blue intensity is proportional to force
boolean drawobsforce - draw the obstacle force in each square; red intensity is proportional to
force

boolean drawpotential - draw the potential as circles in each square; gray intensity is proportional
to potential

boolean drawpath - draw the path as a yellow line from the start to the goal

boolean forceflat - use aflat goal force; if false, use a conical goal force

boolean usediagonals - use diagonals when computing the potential and the path; if false, only
look above, below, left, and right

int obsinfluence - set the radius of influence of the obstacles

Asareminder we are trying to find the path from the red square to the green square in the space below:

Space

S

Problem to solve: find a path from the red sgquare to the green square while avoiding the obstacles.

The following Java commands are found in the NPFpathplannerTest.java JUnit test file. To run the
program you can type the following at the command line (in Mac OS X; may vary dlightly for other




operating systems):
javajunit.swingui.TestRunner NPFpathplanner Test
To start our example problem we instantiate the class:
NPFpathplanner pp = new NPFpathplanner();
Next we set the options to match our problem.

pp.usediagonals = falsg;
pp.forceflat = true;
pp.obsinfluence = 1,

We use the setspace method to define the problem space.
pp.setspace(13, 10);

The setspace method creates alist of points corresponding to every discrete location in the space. It also
calls the addobstacle method four times to build the four walls.

We then call the addobstacle method twice ourselves to put the square obstacles in the interior of the
space. The obstacles are Rectangle2D.Doubl e objects which are specifed by a horizonal position, a
vertical position, awidth and a height. The corners of the obstacles are located in the center of the
squares, so if an obstacle occupies a single square then its width and height are 0. The obstaclesin our
example occupy two squares vertically and horizontally, so the width and height are 1.

pp.addobstacle(new Rectangle2D.Double(5, 2, 1, 1));
pp.addobstacle(new Rectangle2D.Double(6, 7, 1, 1));

Right now the space looks like the following:



Soace defined by the setspace and addobstacle methods.

The addobstacle method creates the obstacle force by expanding the obstacles by one point at atime up
to the size of the obstacle influence. Every time the obstacle is expanded the force of the interior points
isincreased. The amount of the force increase is larger when the obstacle influence distance islarger.
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The obstacle influenceis 1 on the left, 2 in the middle, and 3 on the right. When the obstacle influenceis
1, the obstacle is expanded once and the force isincreased by 1 at all interior points. When the obstacle
influenceis 2, the obstacle is expanded twice; the first time the force isincreased by 2 and the second
timeitisincreased by 1. When the obstacle influenceis 3, the obstacle is expanded three times; the
forceisincreased by 3, then 2, then 1. There are no wallsin this example.

The obstacle force for an obstacle influence of 1 is plotted below.
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Obstacle force with an influence distance of 1.
The setgoal method defines the goal location and creates the goal force.
pp.setgoal (new PotPoint(10,6));

By default aflat goal force is used, which looks like the following:

Flat goal force and the goal position.

If we used a conical goal force instead (goal force equals direct distance to the goal), it would look like:



Conical goal force and the goal position.

The total force using aflat goal force is plotted below.

Total force with an obstacle influence of 1 and a flat goal force.

The potential is computed in the same step as the path construction, so next we call the findpath method
using our start point.

Path final path = pp.findpath(new PotPoint(2,2));

This method creates the potential by expanding outward from the goal until all points have the lowest
possible potential. Graphically the potentia is represented as circles whose brightnessis proportional to
potential value. As seen below the potentia is highest inside the obstacles and lowest at the goal.



Potential at every point; it is highest in the obstacles and lowest at the goal. Elsewhereit isgenerally
higher farther from the goal and near obstacles.

The path is computed by always moving to the neighbor with the lowest potential, beginning with the
start point and ending (necessarily) at the goal point. No potential islower than the potential at the goal
point and all paths lead to the goal so a path is guaranteed to be found.
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Path returned by the planner. It moves down the steegpest gradient of potential from the start to the goal.

If we use the conical goal force and we use diagonals when evaluating the potential and constructing the
path then the result looks like the following.



Result if a conical goal forceis used and diagonals are allowed.

The JUnit test program prints the path and path information to the command line. With aflat goal force
and no diagonals the output is as follows:

Path Returned:
[2 2]
[32]
[3 3]
[3,4]
[3 5]
4, 5]

Path Length:

13.0

Closest Obstacle:

1

Closest Distance to Obstacle:
2.0

The next section describes the performance of the algorithm.



Performance
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Part 5: Performance

To study the performance of the algorithm it was tested on an empty space with aflat goal force and no obstacle
influence. The space size wasincreased from 10 x 10 (100 points total) to 100 x 100 (10,000 points total). The
algorithm was run to find the path from the upper left corner to the lower right corner, using diagonals. The timeto
run the algorithm for each space size is plotted below. It is approximately O(n"2): the queue is accessed n times
and, for an unstructured queue, the time to find the point with the lowest potential is O(n).
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The algorithm is linear in the number of obstacles because the algorithm looks at each point in the space whenever
anew obstacle is added.



Time vs Obstacles
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Thereisasdlight savings if neighbors are not examined: 15.8 seconds for the 100 x 100 space, compared with 17.6
seconds if diagonals are used.

Using a conical goal force does not significantly change the computation time: 18.1 seconds, compared with 17.6
secondsif aflat goal forceis used.

Obstacle size does not affect computation time because each point in the space is examined when computing the
obstacle force regardless.

In general aflat goal forceis best for maze-type obstacles as shown below.



The next section includes a Java applet to interactively solve a path planning problem.

Java Applet
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