A RECURSIVE APPROACH TO ROADMAP-BASED PATH PLANNING

David W. Dougall
Electrical and Computer Engineering
Brigham Young University
Provo, Utah, USA
ddougall@ee.byu.edu

ABSTRACT

Many techniques have been developed to plan paths
for mobile robots. The need to provide reasonable paths
for mobile robots is critical in the development of use-
ful robots. Many researchers have dismissed roadmap ap-
proaches to path planning because of computational in-
efficiencies and scalability challenges; it is assumed that
crude paths result if the problem must be solved in rea-
sonable time. This paper proposes a new approach to path
planning that uses recursion to overcome the limitations of
other roadmap methods. The JARB algorithm is highly op-
timized for speed in sparse environments while also provid-
ing smooth paths in densely populated environments. By
joining recursive branching with the ability to ignore ire
evant obstacles, high quality paths can be produced with
reduced computation. We describe the algorithm in detail
and present experimental results.

KEY WORDS
Path planning, mobile robots, obstacle avoidance.

1 Introduction

One of the major challenges in mobile robotics is deter-
mining an appropriate and efficient path by which a robot
can reach its desired goal. The operating environment may
range from a simple two-dimensional world with static ob-
stacles to a complex three-dimensional dynamic world with
moving obstacles. Because of environment and vehicle
complexity, a variety of approaches have been developed
over the years to solve the path planning problem. In this
paper we propose a hew roadmap-based approach suitable
for two dimensional environments with sparse obstacles.

Most roadmap based planners such as that discussed
by Ibarra-Zannatha and colleagues [1] execute in an itera-
tive fashion, enumerating all possible paths from each edge
of an obstacle to all other edges and the destination. From
this entire set, a final list of feasible or desirable pathieis
termined. This method is inefficient in two notable ways.
First, the algorithm does not produce a complete path until
all possible links have been enumerated. Secondly, the final
step of optimization to determine the best path must deal
with a significant number of duplicate or near-duplicate
links.

James K. Archibald
Electrical and Computer Engineering
Brigham Young University
Provo, Utah, USA
jka@ee.byu.edu

JARB, the algorithm we present in this paper, is based
on a recursive method for path planning. Intended for
application in the relatively sparse world of low-altitude
UAVs (uninhabited aerial vehicles), the JARB algorithm
begins by charting the straight-line path from start to goal
If the straight-line path intersects an obstacle, the dtlgor
adds new edges around the obstacle. In our initial imple-
mentation, obstacles are assumed to be circular. Circular
obstacles provide advantages of computational efficiency
while providing sufficient spatial accuracy as discussed by
Martinez-Salvador and Pobil [2].

By solving the problem recursively, the algorithm
produces a path that can be simplified or augmented even
after the original solution is complete without solving the
entire problem again. Additionally, because of the roadmap
approach, there may be multiple possible solutions from
which an optimization may be performed.

The remainder of this paper is organized as follows.
Section 2 discusses previous work relating to path plan-
ning. The path planning algorithm is presented in Sec-
tion 3. Section 4 details the major advantages of JARB,
while Section 5 discusses boundary conditions or special
cases that must be addressed in applying JARB. Section 6
summarizes results of experimental simulations evalgatin
the path planning algorithm, and Section 7 presents conclu-
sions and directions for future work.

2 PreviousWork

Path planning has been studied from many perspectives
and a variety of different approaches have been suggested.
Latombe [3] provides a thorough overview of many of the
approaches to path planning such as roadmap, potential
field, and cell decomposition.

The roadmap path planning method involves tracing
distinct links throughout the configuration space that be-
come the potential paths. These links are defined differ-
ently based on the specific implementation, but they may
link obstacle edges, follow a Voronoi Diagram, or use a
more sophisticated method such as the silhouette method
discussed by Canny [4].

Many roadmap planners create excessive numbers of
links. In general, it is difficult to extend the approach be-
yond two dimensions because of the exponential increase
in the number of links. The silhouette method was critical



in this regard because it reduces three dimensional roadmap
searches to a two dimensional problem.

More recently, randomized and probability based
planners have received much research attention. Both PRM
(probabilistic road maps) [5] and RRT (rapidly-exploring
random trees) [6] algorithms plan paths using randomiza-
tion techniques. This can lead more quickly to a solution,
but the solution is not necessarily optimal nor can solgion
be generated in arbitrary environments. It can be argued
that path planning is an NP hard problem that cannot be
solved in a scalable fashion without randomization tech-
nigques, but there are many heuristics that can be applied
to significantly reduce the complexity and result in more
practical solutions.

The novelty of the algorithm presented in this paper
is primarily in its recursive structure. Goel et al [7] dissu
a path planner which employs recursive searching, but this
is a minor part of their overall algorithm. With JARB, the
entire procedure is recursive allowing the complexity &f th
problem to be adjusted depending on the exactness of the
solution desired. A solution can be detailed and precise as
the recursion depth increases.

3 Algorithm Analysis

Given full knowledge of the location of obstacles including
initial and goal locations, the procedure commences in a
recursive fashion. First, a line is created from the injiad
sition to the goal. The algorithm determines if this line in-
tersects any obstacles. If an obstacle is crossed by the line
JARB finds two points just outside the obstacle on either
side that are the closest to the original line. New links are
then created from the initial point to both new points. These
two lines will be referred to as tHest legsof their respec-
tive sides of the obstacle. Two additional links are then
created from both new points to the goal point. These two
lines will be referred to asecond legs The algorithm re-
cursively checks each of the four legs for intersection with
obstacles.

Thus, each line that crosses an obstacle will create
two new potential paths and each of those have two legs as
defined above. If, during a recursive function call, the link
does not cross or intersect any obstacles, an obstacle-free
link has been found and the function call simply returns.

A limit to the recursion is essential, since at some
point there will be little to gain by continuing down a diffi-
cult path. There may also be situations where a solution is
not possible, where no obstacle-free path around the right
side of an obstacle can be constructed, for example. (Ad-
ditional cases are discussed in Section 5.) In our experi-
ments, the recursion level was limited to 20 levels. No ben-
efit was observed by allowing the recursion past this point.
This number may be adjusted depending on the number of
obstacles and the size of the search space. It may be nec-
essary to increase the recursion if the number of obstacles
increases significantly.

jarb_mai n(init, goal)
{
obstacl e = Findl ntersectingOostacle();
if (obstacle)
{
/* find pt on side 1 of obstacle */
newertex = CetC osestVertex(1l);
resultl = jarb_main(init, newertex);
result2 = jarb_mai n(newertex, goal ) ;
if ((resultl & result?2) SUCCESS)

return_lists=resultl + result2;
}
/* find pt on side 2 of obstacle */
newertex = CetC osestVertex(-1);
resultl = jarb_main(init, newertex);
result2 = jarb_mai n(newertex, goal);
if ((resultl && result2) == SUCCESS)
{

}

return_lists+=resultl + result2;

}

el se

/* no obstacles: valid path */
return (init,goal);

}

return return_lists;

}

Figure 1. Basic JARB Algorithm

Since each call to the planner completes when an un-
obstructed path is found, each level of recursion corre-
sponds to a new leg in a potential path. If the algorithm
fails to find a free path within the permitted number of re-
cursions, the complementary leg (second if it was first, and
vice versa) is discarded.

The current implementation is restricted to using cir-
cular obstacles and the method to determine intersections
with an obstacle is done with a simple geometric calcula-
tion as illustrated in Figure 2. The line segment termirgatin
at points P1 and P2 is being checked to see if it intersects
the obstacle centered at point P3. The first step is to locate
the point on the line segment that is closest to the center of
the obstacle. This is represented as point P4. Using simple
line equations, this point can be found as follows. Assume
(z,,y;) are the coordinates for point.P

In two-point form, the equation of the original line is
given by

S (1)
T2 — T1

The equation of the line perpendicular to the original

and going through point P3 is therefore:

(x — 1) + y1.

rK —x
y="—"(x—x3) +ys
Y2 =N
Solving Equation 1 for: and substituting into Equa-
tion 2 yields

)

2

m xs —mys +my1 + 21

1+ m?

®3)

Ty =



P6

Figure 2. Geometric Layout of Intersection Testing and
New Point Determination

wherem is the slope of perpendicular line, given by

Ty — T2

. 4)
Y2 — U1

Equation 3 provides the value of the x-coordinate of
the point P4 where the two lines intersect. The valug,of
can be calculated by substituting the value:pinto either
of the two line equations. Obviously vertical lines must
receive special treatment since they have infinite slope.

Once the coordinates for P4 are determined, it is a
simple matter to compute the distance from P4 to the cen-
ter of the obtacle. If the distance is greater than the radius
of the circle then the line falls outside of the obstacle and
there is no intersection with this obstacle. If the distaisce
smaller than the obstacle radius, then the original line in-
tersected the obstacle. This function is relatively straig
forward to execute, but it must be called for each obstacle
as each new edge is tested for obstacle intersection. We
note that it is possible to reduce the number of function
calls by representing obstacles in a data structure that cor
responds to spatial layout. (This allows distant obstacles
be ruled out without first computing the distance to each.)
The results presented in this paper do not assume this opti-
mization: every obstacle is tested for intersection witthea
possible new leg.

The most important aspect of this algorithm is deter-
mining what to choose for the "new points.” Our approach
is to simply follow the line orthogonal to the intersecting
line and to select points that are on this line and just out-
side the obstacle. From the center of the obstacle, thegpoint
would be radius +A. The value of this delta specifies how
far from the obstacle edge the new points are located. The
smaller the value, the less detour is required around the

obstacle. If the value is allowed to be larger, there will
be fewer intersections with the same obstacle and hence
less recursive steps to perform. Our implementation used a
delta value of 1. These new points are depicted as P5 and
P6 in Figure 2. These points create something close to the
least amount of detour for the original line. Figures 3 and
4 show examples of the point that is chosen to one side of
the obstacle. It is the point that is close to the center of the
obstacle while lying just outside of its boundary.

4 Strengths of JARB

Because each recursive step creates two new potential
paths, this algorithm may create an entire tree of possible
paths from initial to goal. An optimizing algorithm such
as Dijkstra’s [8] may be executed as a post-processing step
to determine the optimal solution from all of these paths.
There may be situations, however, where it is desirable to
produce multiple possible paths. Our approach can be used
to create several possible paths before a task is to be per-
formed. Then, during execution, if a certain path becomes
unusable the robot could select an alternative path in real-
time without recalculating the entire tree.

Another benefit of JARB is that on large problems that
are too intense for a single processor, this algorithm can be
easily computed in a parallel fashion on a cluster of pro-
cessors. Since each new level of recursion creates two or
four new threads which are completely independent of any
other threads, multiple processors could be computing in-
dependent paths at the same time.

The recursive nature of this algorithm allows for a so-
lution to be returned at any level required. If a more gen-
eral solution is desired, less important obstacles can be ab
stracted out of the solution to produce a faster result. If a
more detailed solution is needed in certain areas at a later
point in time, the recursion can continue in that area with-
out requiring the entire search space to be explored again.
This later problem is reduced to solving a path between two
already determined vertices. Because each new recursive
step is essentially an entirely seperate problem to sdive, i
is also possible to change the obstacle definition with each
step. This could be for abstraction reasons as discussed
above, or it could be the result of moving obstacles, or it
could be because a different set of requirements is needed
in certain areas.

Finally, this algorithm is tremendously efficient at
sparse search spaces. If obstacles do not intersect each
other, the algorithm is even simpler. An issue relating to
intersecting obstacles is the order in which obstacles are
searched. Given the same obstacles, the JARB algorithm
may find slightly different paths depending on the order in
which the obstacles are searched to find an intersection. In
the current implementation, if a line intersects two obsta-
cles, the resulting "new points” will depend on which in-
tersecting obstacle is detected first. In practice, we did no
find this issue to be a concern because the resulting paths
were so similar. We ran several tests to ascertain the im-



pact of searching obstacles in different orders when multi-
ple obstacles intersected a line. Alternatives included se
lecting the largest obstacle or selecting the closest olesta
Test results did not provide any conclusive evidence that a
particular search order of obstacles consistently prodiace
better result.

5 Boundary Cases

Certain boundary conditions need to be dealt with to pro-
vide a robust solution. The search space is assumed to be
bound by some finite size. Paths must not overlap these
boundaries. If an obstacle overlaps the boundary or if a
new point chosen would be outside of the defined search
space, the links that would be terminated on the outside of
that obstacle will fail as unpassable. This would return a
failure condition to previous recursion levels.

A detall that arises from our specific implementation
is dealing with intersecting obstacles. With polygonal ob-
stacles, multiple intersecting obstacles can be dealtasgth
a single obstacle, however, the current implementation of
the algorithm deals only with circular obstacles. As dis-
cussed previously, the algorithm chooses a new point that
lies outside the obstacle as close to the original line as pos
sible. If this point falls within another obstacle, the abst
cles are either intersecting or are close enough to be con-
sidered so. This will begin an iterative process to find the
next best location for the new point. The process follows
the line orthogonal to the original line until it no longezdi
within any obstacles. This is represented in Figure 3 by the
bold black line inside the smaller obstacle. After detegtin
the intersection with the larger obstacle, a new point was
chosen. This new point, however, fell within the second
smaller obstacle. The algorithm moved outward away from
the original obstacle’s center by small iterations in thesa
direction until it was free from any more obstacles. The re-
cursion then continues using this point as the new vertex
for the new legs.

Lastly, a more complicated boundary condition oc-
curs when the angle from the initial point to its new point
is steep enough to cause the new leg to intersect the same
obstacle again. If this occurs, we do not want to continue
the recursion on both sides of the same obstacle. We only
recurse to the side for which this line was initially created
If this check is not performed, it can create a cascading ef-
fect of useless recursions producing duplicate paths aroun
and around the obstacle. Figure 4 shows a situation where
this would occur. After the new pointis chosen and the two
new legs are assigned on that side, the leg on the upper side
is still intersecting the same obstacle. The desired result
is merely to "bend” this leg so that it avoids the obstacle.
By executing this single-sided recursion, it has the effect
of bending the path so it moves smoothly around obsta-
cle without attempting to create an unnecessary path on the
other side that is already being searched by another thread.

Figure 3. New Point Lies Within Another Obstacle

Figure 4. New Line Intersects Same Obstacle

6 Experimental Results

We constructed a suite of 64 separate world scenarios, each
with 10 randomly sized and randomly placed obstacles in a
400x400 configuration space. For each run, the initial point
and goal were (10,250) and (300,10) respectively. Of the 64
trials, two correctly found that no solution was possibld an
the remaining 62 correctly found a valid path.

Figure 5 shows a simple yet interesting solution to one
of the trials. The process to find this solution included de-
termining that only one side of the first obstacle was pass-
able. All paths to the left of the obstacle (from the reader’s
perspective) are blocked by additional overlapping obsta-
cles. The algorithm would have either iterated to the edge
of the configuration space or recursed too deeply without
finding a solution and returned a failure condition for that
leg.

Figure 6 shows another path even simpler than the



-_—

-

@ |

Figure 5. One Sided Solution

1

first. Of note in this figure is the smooth trajectory that is
found. In the open areas, the algorithm produces a straight
line, but closer to the obstacles it will make a smooth path.
Since JARB takes the smallest possible turn to avoid an ob-
stacle, it will have to take many iterations to get around a
large obstacle. This may increase the computation time,
but creates a path that is more realistic for a nonholonomic
robot to follow.

Figure 7 shows one of the more complicated scenarios
from the 64 trials. As can be seen, there is only a small pas-
sage available for the robot to pass from start to goal. JARB
successfully determines this path and provides an optimal
path. Unfortunately, there were several stray paths tleat th
algorithm also included. These extra paths were techni-
cally correct, but unfortunately completely redundantisTh

is analogous to creating detours around distant obstacles.

Those distant paths are legitimate, but would never be used.
In the case of this scenario, all of the extra paths eventuall
lead back to the small opening and will be ignored by an
optimizing algorithm.

7 Conclusions and Future Work

We have presented a new roadmap path planning algorithm
that employs recursion to avoid the computational overhead
typically associated with other roadmap approaches. Paths
generated by this approach typically have a smoother tra-
jectory than previous roadmap planners. We feel that the
basic algorithm can be extended in many ways.

By allowing recursion to arbitrary depths, we believe
the algorithm will find a valid path in any solveable two-
dimensional configuration space. We do not believe, how-
ever, that this property would hold for a three-dimensional

E

Figure 6. Simple Solution

extension of the basic algorithm. Proving these properties
as well as an implementation in three dimensions, are im-
portant areas of focus of our future work.

Circular obstacles reduce the complexity of the prob-
lem, but certain environments are better modeled by polyg-
onal representation. We intend to extend the algorithm
to allow polygonal obstacles. This increases the required
computation significantly—each edge of a polygon re-
quires roughly the same computation as a single circular
obstacle.

So far in experiments, this algorithm has only been
used to plan paths prior to robot execution. However, if we
expand the implementation to allow the addition, removal,
or motion of obstacles, we believe this algorithm is well
suited for applications with severe real-time constraints

References

[1] J. M. Ibarra-Zannatha, J. H. Sossa-Azuela, and
H. Gonzalez-Hernandez, “A new roadmap approach
to automatic path planning for mobile robot naviga-
tion,” 1994 IEEE International Conference on Sys-
tems, Man, and Cybernetics, 1994. 'Humans, Informa-
tion and Technology'vol. 3, pp. 2803-2808, October,
1994.

[2] B. Martinez-Salvador and A. P. del Pobil, “A hierarchy
of detail for general object representation,Aractical
Motion Planning in Robotics: Current Approaches and
Future Challengesk. Gupta and A. P. del Pobil, Eds.
John Wiley and Sons, 1998, pp. 225-242.

[3] J.-C. Latombe,Robot Motion Planning
Kluwer Academic Publishers, 1991.

Boston:



Figure 7. Difficult Solution With Redundant Links

[4] J. F. CannyThe Complexity of Robot Motion Planning
Cambridge, MA: The MIT Press, 1998.

[5] L. Kavraki and J. Latombe, “Probabilistic roadmaps
for robot path planning,” 1998. [Online]. Available:
citeseer.ist.psu.edu/article/kavraki98probabilistil

[6] S. LaValle, “Rapidly-exploring random trees: A new
tool for path planning,” 1998. [Online]. Available:
citeseer.ist.psu.edu/lavalle98rapidlyexploring.html

[7] A. K. Goel, K. S. Ali, M. W. Donnellan, A. G.
de Silva Garza, and T. J. Callantino, “Multistrategy
adaptive path planninglEEE Expertvol. 9, no. 6, pp.
57-65, December, 1994.

[8] E. W. Dijkstra, “A note on two problems in connexion
with graphs, Numerische Mathematikol. 1, pp. 269—
271, 1959.



