Physical Path Planning Using the GNATsSs

Keith J. O’Hara, Victor L. Bigio, Eric R. Dodson, Arya J. Irani, Daniel B. Walker, and Tucker R. Balch
The BORG Lab
College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0250
Email: {kjohara, vbigio, edodson, arya, danielbw, tucker} @cc.gatech.edu

Abstract— We continue our investigation into the application
of pervasive, embedded networks to support multi-robot tasks.
In this work we use a new a hardware platform, the GNATsS,
to aid in path planning. We have implemented a physical
path planning algorithm on the GNATSs previously studied in
simulation. A distributed version of the wavefront path planning
algorithm is used to propagate paths throughout the network,
thereby planning a path in the real world. This creates a
graph of traversable paths that are nearly optimal in a dynamic
environment.

I. INTRODUCTION

We continue our investigation into the application of per-
vasive, embedded networks to support multi-robot tasks. We
envision a pervasive, embedded environment to be one in
which tens to thousands of inexpensive, low power, resource-
constrained communication devices have been introduced.
The nodes aid robots in completing their tasks, primarily by
providing communication and coordination services. We feel
this heterogeneous system of embedded devices and mobile
robots puts a natural constraint on the design space of multi-
robot systems. The embedded network serves as a pervasive
communication, computation, and coordination fabric, while
the mobile robots provide sensing and actuation.

O’Hara and Balch investigated in [9] the “use of embed-
ded networks to facilitate mobile robot activities.” We have
implemented a hardware platform to realize these types of
applications. The hardware devices, the GNATSs (Georgia Tech
Network for Autonomous Tasks) are low cost and highly con-
figurable. Two are pictured in Figure 1(a). The devices consist
of four infrared (IR) emitters, four IR receivers, two visible
light LEDs, a button, a Microchip PIC16F87 microcontroller,
and a 3V battery. The device costs about $30 to build.

In this paper we show that these highly affordable nodes,
in sufficient quantities, can be placed in an environment
and are able to display navigation information that can aid
robots traversing to a goal location, such as a food cache
in a foraging problem. Traditional path planning algorithms
for dynamic environments typically require a single mobile
robot to build a map, locate itself in that map, update the
map as the environment changes, and then finally plan over
the map. Instead, we use an embedded network distributed
throughout the environment to approximate the path-planning
space and use the network to compute the path in a distributed
fashion. The network can plan paths for multiple robots going

to the same or different destinations without the network
nodes having global knowledge or localization capabilities.
We show that network can plan paths in a distributed manner
and reconfigure (replan) in dynamic environments.

II. PREVIOUS WORK

In previous work [8] we developed and analyzed two
different techniques for distributed path planning when the
environment is dynamic and paths are destroyed and created.
The algorithm essentially works as a distributed variant of
the popular wave-front path planning algorithm, or a breadth-
first search from the goal, propagating paths from the goal
location. The embedded nodes make up the vertices of the
path planning graph, and the network connections between
them are the edges of the graph. Mobile robots can then use
reactive navigation to traverse the graph by visiting the vertices
(i.e. the embedded nodes) to the goal. In order to respond to
changes in the environment this graph is maintained as edges
are added and removed.

Additionally, in previous simulation studies [9] we showed
how the embedded network could support effective cooperative
foraging by coordinating coverage patterns and by providing
nearly optimal path planning without the network nodes having
global knowledge or localization capabilities. Quantitative
results illustrated the sensitivity of the approach to different
network sizes, environmental complexities, and deployment
configuration.

Payton et al. [10] present an approach for large scale multi-
robot control referred to as ‘“Pheromone Robotics” inspired
by biology. They use a system based on virtual pheromones,
by which a homogeneous team of mobile robots use short-
range communication to accomplish cooperative sensing and
navigation. In Payton’s work “virtual pheromones” are com-
municated over an ad hoc network to neighboring robots. In
contrast, in our approach information is distributed by the
relatively static, embedded, nodes scattered throughout the
environment.

Both Batalin et al. [3] and Li et al. [7] have developed
similar approaches using heterogeneous teams composed of
mobile nodes and an embedded network. The network of
embedded nodes, creates a “Navigation field” [3], which
mobile nodes can use to find the their way around. They
differ in how they compute this navigation field. Batalin et
al. use Distributed Value Iteration [3]. In their approach,

the embedded nodes use estimated transition probabilities
between nodes to compute the best direction to suggest to a
mobile robot for moving between a start and goal node. These
transition probabilities are established during deployment and
both the robots and sensor nodes have synchronized direction
sensors (e.g. digital compass). Our approach does not require
the nodes to store transition probabilities, instead we rely on
the communication network to establish the navigation paths.
Also, in our approach the mobile robots only need a local sense
of direction in order to move toward the correct embedded
node. Neither the robots or the embedded nodes need any
shared sense of direction.

Li et al. are able to generate an artificial potential field
for navigation based on the obstacles and goals sensed by
the network. [7] This potential field is guaranteed to deliver
the mobile node to the goal location via an danger-free
(obstacle-free) path. The field is created by the embedded
nodes propagating goal-ness or danger to neighboring nodes.
In our approach the embedded nodes do not have sensors, this
capability is provided by the mobile nodes, and thus can not
sense obstacles directly. We assume the obstacles are sensed
indirectly by the resulting communication topology. These
three approaches, as well as ours, use distributed dynamic
programming [4] to create the navigation field.

Both Batalin et al. and Li et al. used the Motes hardware
platform for their physical experimentation. The Motes are a
popular platform for sensor networks research. In contrast to
the GNAT's, Motes have on the order of 32 times more program
memory, 10 times more RAM, and for the Berkeley and
Harvard implementations, the Atmel ATMEGA128L processor
is running at twice the frequency of the GNATs PIC processor.
A wide variety of sensor devices may also be connected to the
Mote hardware platform giving the Mote the ability to be very
aware of its surroundings, whereas our GNATSs are sensor-less
network devices. The greater processing power and sensing
ability gives the Motes a much higher price than the GNATs.
The simplicity of the GNATSs due to their specialization for
mobile robot applications allows us to build them for a price
an order of magnitude less than the Motes. This allows us to
experiment with very large-scale systems.

III. APPROACH

Our system is composed of mobile robots with sensors and
actuators supported by an embedded immobile network of
nodes without environmental sensors. We assume the embed-
ded network nodes (which we have implemented in the GNAT's
platform) have the following capabilities:

o Limited computation and memory, on the order of a
PIC microprocessor operating at 4 MHz with a 4096-
instruction program eeprom, 256 bytes of data eeprom,
and 368 bytes of RAM.

« Short range communication with adjacent nodes up to
4 meters away.

o Communication is blocked by navigation obstacles.

We assume the robots and embedded nodes communicate
using a short-range medium that is occluded by the same

objects that occlude navigation (e.g. walls). Line of sight
between nodes implies open space for navigation. The mobile
robots in our system are somewhat more capable than the
embedded nodes. We assume they support:

o Communication with embedded nodes;

« Relative bearing estimation to nearby embedded nodes;

o Local obstacle and attractor sensing;

Also, we assume that the mobile robots have at least the
same communication range as the embedded nodes. The robots
need to roughly estimate bearing to the embedded nodes in
order to move toward the desired node, but the robots do
not need to estimate range. Significantly, there are a few
assumptions we do not make. In particular, we do not assume
localization or mapping capabilities on the part of the robots
or the embedded nodes. No mobile robots or embedded nodes
are expected to perform localization or mapping. Furthermore
we do not assume the environment is static. Obstacles
to navigation can appear and disappear since we expect the
network to automatically adapt to dynamic conditions.

In this work we do not address the deployment of the
embedded nodes. We assume they have already been placed
in the environment, and sufficiently cover the space, but their
positions are unknown and the uniformity of their placement
can vary. Consider the following two scenarios. First, the net-
work is already part of an existing infrastructure—for example,
an embedded network in a building, or a sensor network in
a forest. Second, the network did not exist before the robots
began the mission, but the robots have already installed the
network as supporting infrastructure. Motivated by these two
scenarios we believe we can separate the deployment and
utilization of embedded networks into two different problems.
In this work we investigate the latter.

A. The Distributed Path Planning Algorithm

The embedded network creates a navigation network for
guiding, or routing, mobile robots in various tasks. We use
the network in this work strictly for path planning. In general,
several navigation networks can be present in the network
simultaneously—for instance, a coverage navigation network
may also be present. A mobile robot can then follow the
navigation network corresponding to its current goal. An
illustration of a simple navigation network is illustrated in
Figure 1(b). We are able to use navigation networks to
complete distributed path-planning in dynamic environments
without mapping or localization.

We follow Payton’s virtual pheromone technique [10] in as-
suming the communication paths are similar to the navigation
paths and use this to propagate navigation information. By
using a short-range communication medium that is occluded
by obstacles to navigation, the communication paths carve
out free-space. As pointed out by Payton [10] and Li [7],
this results in a kind of distributed physical path-planning. To
create a navigation network for a particular goal we use a
distributed dynamic programming approach; specifically, we
apply the distributed Bellman-Ford algorithm. The Bellman-
Ford equation [5] for finding the shortest path from ¢ to j

Infrared
Emitters

Infrared
Receivers

(a)

Fig. 1.

is:
D(i,j) = min
(’]) keneighbors

d(i, k) + D(k, j)

Where D(i,7) is the path cost from i to j, and d(i, k) is the
distance between ¢ and k. It can be used to find the shortest
path to a destination from all nodes. The distributed version of
Bellman-Ford was created for network routing protocols [6]. In
the distributed network routing version, neighbors share their
path costs and the distance between nodes is usually measured
in hops. We use distributed Bellman-Ford to effectively create
a directed graph of shortest paths from every node to the goal
— this directed graph is the navigation network. The embedded
network can be thought of as “routing” the mobile robots
to their destination. However, note that the embedded nodes
do not know the global, or local, position of their neighbors,
so they are not directing the robot in any direction. Instead,
the mobile robot greedily approaches the lowest-valued node
currently in its communication range. As it closes in on the
node it will come within communication range of that node’s
parent. The robot continues this until it comes within sensing
distance of the goal.

B. Simulation Results

We implemented this system in the TeamBots multi-robot
simulation environment. The control systems were encoded
in the Clay behavioral architecture [2] and used motor
schemas [1] for the local navigational tasks of moving to-
ward the embedded nodes and avoiding obstacles. In all the
experiments we used 2 mobile robots and a group of 16
attractors to represent the goal location. The first robot was
placed near the attractors in the center of the environment at
the start of the experiment. This robot’s purpose was to insert
the goal information into the network. This scenario mimics
a situation where a robot needs to recruit other robots to a
particular location. The second robot was placed in the corner
of the environment away from the goal and was responsible for
navigating to the goal location. We used 180 embedded nodes.
We placed the embedded nodes uniformly across the space,

Goal 4

4‘»
s 20NN

ur %
E Obstacle N

Mobile
Robot

(b)

(a) Two GNATs. (b) An illustration showing how the network guides a mobile robot to a goal location.

then added error to each node’s position by some random
amount, the average distance from original position was .5
meters. The robots and embedded nodes had limited sensing
and communication ranges of 4 meters that were occluded by
obstacles. The environment was 36236m2.

A sequence of screenshots of a simulation using the dis-
tributed path planning algorithm is shown in Figure 2. The
screenshots show a tree of shortest paths to the goal. The first
screenshot shows the initial plan, and the second shows the
plan after a door has closed and the network has reconfigured.

C. Hardware Description

We use a group of GNATS to create a navigation network for
a particular goal using a distributed dynamic programming ap-
proach; specifically, we use them to implement the distributed
Bellman-Ford algorithm as described above.

As seen in Figure 1(a), the GNATs are made up of these
key components:

e Microchip PIC16F87 microcontroller

e 4 IR emitters

e 4 IR receivers

o 2 visible light LEDs

« reset/input button

e programming port (not shown in figure)
o 3V battery

The PIC microcontroller has a programmable internal os-
cillator with a frequency range of 125kHz to 8MHz. It has
4K of programmable FLASH program memory and 368 bytes
of data RAM. There is also an additional 256 bytes of data
EEPROM. The IR emitters have a maximum rating of 100mA
and with this we have measured reliable communication over
ranges of up to 4m.

D. Physical Path Planning with Real Hardware

In meeting with our design criteria, the GNATS can only
communicate with each other via their 4 IR Emitters and 4 IR
Receivers. We have developed the capability to send a packet

of data and receive a packet of data, but since we are using a
single channel, they cannot transmit and receive at the same
time.

In order to implement the functions described above, we
established a network of GNATSs that can propagate a message
containing the distance-to-goal from a goal location to all
other GNATSs in the network. Each node greedily chooses
the lowest distance-to-goal from its neighboring GNATSs, and
retransmits an incremented value. For our experiments, one
gnat is assigned to be the goal (by a push of the button). The
goal is a node that transmits a message with a distance-to-goal
of 0. So that the network will dynamically react to changes
in the environment, the goal periodically transmits a message,
and each node then recalculates its distance-to-goal. This is
different than the approach in [8] where the nodes monitor
their neighbors using heartbeats to maintain the path-planning
graph in dynamic environments. The approach presented there
limited the amount of replanning needed when the environ-
ment changed. Instead, the approach presented here is less
efficient and results in globally replanning, but is simpler to
implement with the limited communication capability we have
on the real hardware.

Given the nature of the communication medium, and the
lack of hierarchy and coordination among GNATs, we faced
several communication and networking challenges. Since there
is only a single communication channel, all transmissions
are broadcasts, and any node within transmission range can
hear the message. A node can only receive one transmission
at a time, and there is no universal timing or coordination
to tell GNATs when to send a packet. If two neighboring
GNATs transmit simultaneously, then neither will receive
the message from the other. Finally, if two or more of a
given node’s neighbors transmit simultaneously, the node will
receive neither message.

As a simple first attempt to implement communication we
decided to use a random backoff scheme for delaying data
transmission. Each GNAT will listen for a packet for a random
time. If there has been no message received during the wait,
then the node broadcasts its message. Otherwise the node will
choose a new random backoff time and wait again.

Using random backoff we reduced the likelihood of col-
lisions but we also introduced the possibility that an older
message from the goal will arrive at the same time that a
current message does. In order to avoid the confusion this
creates, we have implemented a generation counter. Each time
the goal transmits, it increases the generation. The message
that is transported thus includes the generation and the hop-
count (distance-to-goal).

Even with the generation counter, the possibility still exists
that a node will receive a message with a higher hop-count
before it receives a message with a lower hop-count. Though
the node greedily chooses the lower hop-count, we want to
maintain a stable hop-count value unless the environment
actually changes. To this end we have programmed the GNAT's
to (greedily) accept a lower hop-count, but to only accept a
higher hop-count if this is the lowest value it receives in two

structure PATHMSG

int generation
int hopCount

on event MSGRECEIVED(PathMsg recv)

if recv.generation < curr.generation then
if recv.hopCount < curr.hopCount or
curr.hopCount = lastHopCount then
UPDATEHOPCOUNT(recv)
end if
curr.lastHopCount < recv.hopCount
else if recv.generation = generation and
recv.hopCount < curr.hopCount then
UPDATEHOPCOUNT(recv)
end if

procedure UPDATEHOPCOUNT(PathMsg recv)

curr.hopCount «— recv.hopCount + 1
curr.lastHopCount < recv.hopCount
TRANSMITMSG(curr.generation, curr.hopCount)

Fig. 3. GNATs path planning algorithm.

successive transmissions. Therefore, a node is quick to reduce
its hop-count, reflecting that it is closer to the goal, but slow
to increase its hop-count to avoid flip-flopping.

The goal transmits its existence, and regularly sends out
a packet with a hop-count of 0 and a new generation. The
algorithm is shown in Figure 3.

The communication path from the goal to all other reachable
GNATs forms a connected graph in which the GNATS corre-
spond to the vertices and the communication paths between
adjacent GNATs correspond to the edges. The hop-count
represents the minimum number of edges that need to be
traversed to reach the goal. A node, while still connected,
will dynamically alter its hop-count to reflect changes in
the environment. A component of the graph that becomes
disconnected will return to the wait state after a predefined
timeout period. When connectivity is restored, these nodes
will participate in the navigation network again. When goal
distances have been propagated to all the nodes, traversal is
a simple matter of using a hill-climbing search algorithm:
moving to a node, detecting its hop-count, and determining
which of its neighbors to travel to next. This step is repeated
until the goal is reached.

IV. EXPERIMENTS

We first used the GNATSs path planning algorithm to solve
the rat maze shown in Figure 4. 16 GNATs are deployed
in an artificial maze with one of the GNATSs acting as the
goal location. The goal location broadcasts the original goal
message once every two seconds. The network is able to
compute a nearly optimal path and also replan when paths
are obstructed. The paths the network computes are similar to
navigation paths, this fact agrees with our earlier assumptions.

The next experiment involved a real world environment
rather than the rat maze. As in the rat maze the GNATSs
were able to compute a navigation path and replan when the
environment changed. The environment changed when a door
closed in this experiment.

Fig. 4. The GNATS solve a “rat maze”.

TABLE I
PROPAGATION TIME FOR PLANNING AND RE-PLANNING IN A DYNAMIC

ENVIRONMENT.

Operation || Time

Initial planning for T1 3.5s

Initial planning for T2 5.3s
Re-planning for T1 after closing Door 1 6.8s
Re-planning for T2 after closing Door 1 7.8s
Re-planning for T1 after opening Door 1 4.8s
Re-planning for T2 after opening Door 1 5.6s

In this experiment we deployed 19 GNATs in an office
environment as shown in Figure 5. All the GNATs are placed
roughly 2-3.5 meters apart. The goal location is labeled with
a G and it broadcasts the goal message every 2 seconds. The
GNATs in their initial wait state are shown as white circles.
The nodes where measurement were taken will be referred to
as “target” nodes and are labeled as T/ and 72.

Figure 5(b) shows the goal distance propagation in the initial
environmental configuration. The optimal path is shown by
black GNATs and is directed through Door 1. The GNATS
not in the optimal path are represented by white circles. The
average time it took for the nodes, 7/ and 72 to become
part of the optimal path took 3.5 seconds, and 5.3 seconds
respectively.

To demonstrate the dynamic replanning aspects of the
approach we closed door 1, thus invalidating the original path.
The time measured from the closing the door to T1 changing
its path-cost was on average 6.8 seconds and 7.8 seconds for
T2. This is shown in Figure 5(c).

By re-opening Door 1, we force the optimal path back to
the configuration in Figure 5(b). The average replanning time
in this case is 4.8 seconds to T1 and 5.6 seconds to T2. The
replanning times were lower in this case because the algorithm
is quicker to take lower hop-counts than higher hop-counts to
prevent the flip-flopping described early.

Table I summarizes the the average times taken at T1 and
T2 under the previous conditions.

V. CONCLUSIONS AND FUTURE WORK

It has been shown that multiple, computationally limited
nodes can compute nearly optimal paths through an environ-
ment in a distributed manner. These highly affordable nodes,
in sufficient quantities, can be placed in an environment and
display navigation information to aid robots traversing to a
goal location. We’ve also shown that the nodes can reconfigure
to correct path costs in dynamic environments.

Future work will include using mobile robots to traverse
the navigation network [9] of GNATSs along optimal paths.
The GNATSs will also be used to coordinate coverage patterns,
such as in the foraging problem. The robots will communicate
with the GNATSs by hosting one on-board as a communication
device. Another option is having the GNATs convey informa-
tion to the robots by simply blinking their visible light or IR
LEDs.

In addition, we are investigating ways the network can be
used for other types of tasks rather than purely of the naviga-
tional variety. For instance, it can be used for complex multi-
robot coordination, task allocation, or distributed learning.

The approach also has some notable limitations. For one,
the system relies on the assumption that communication paths
closely approximate navigation paths. To reduce the error
in this approximation we can incorporate the robots’ real
navigation experiences in computing a path. We believe this
approach can be extended to include more capable embedded
nodes if the application demands it, but our goal was to show
how much can be accomplished with very limited embedded
nodes.

Acknowledgment. This work was supported by the Na-
tional Science Foundation under award #0326396.

REFERENCES

[1] Arkin, R., “Motor schema based mobile robot navigation,” International
Journal of Robotics Research, vol. 8, pp. 92-112, 1989.

[2] Balch, T., “Clay: Integrating motor schemas and reinforcement learning,”
Technical Report GITCC-97-11, Georgia Institute of Technology, 1997.

[3] M. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile Robot Navigation
using a Sensor Network,” In IEEE International Conference on Robotics
and Automation, pp. 636-642, New Orleans, Louisiana, April 2004.

[4] D. P. Bertsekas, “Distributed dynamic programming,” in /EEE Transac-
tions on Automatic Control, vol. 27, no. 3, pp. 610-616, 1982.

[5]1 Bellman, R.E., Dynamic Programming, Princeton University Press,
Princeton, NJ, 1957.

[6] Ford, L., Fulkerson, D., Flows in Networks, Princeton University Press,
Princeton, NJ, 1962.

[71 Q. Li, M. DeRosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” in 9th International Conference on
Mobile Computing and Networking, pp. 313-325, September 2003.

[8] K. O’Hara and T. Balch, “Distributed Path Planning for Robots in
Dynamic Environments Using a Pervasive Embedded Network,” In
3rd International Conference on Autonomous Agents and Multi-Agent
Systems, July 2004.

[9] K. O’Hara and T. Balch, “Pervasive Sensor-less Networks for Coopera-
tive Multi-Robot tasks”, in 7th International Symposium on Distributed
Autonomous Robotic Systems, June 2004.

[10] D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, “Pheromone
Robotics”, Autonomous Robots, vol. 11, pp. 319-324, 2001.

File Wiew Help File Wiewr Help

reset/reload | start/resume| pause| reset/reload | start/resume| pause|
o2 7 7 & 2] o 7 z 3 7 3
6 i ;- 2 6 z 8 .8 2
& T b 7
o [6 3 H 3 3 e s 3 6 6 8 9
7 & Z &
6 s PONE Ns kK 8 s g s NS sk AN

Fig. 2. A sequence of screenshots of a simulation using the distributed path planning algorithm. The screenshots show a tree of shortest
paths to the goal. The first screenshot shows the initial plan, and the second shows the plan after a door has closed and the network has
reconfigured. The numbers indicate the nodes’ distances to the goal, the lines between nodes indicate a parent-child relationship. The goal
location is represented by the pink circles in the center, the mobile robots by the green circles, their trails by the green lines, and obstacles
by the gray and yellow lines.

@] o) o
oG o o

Door 2
@] o o

[
4
(@]

oT1 o o o eT1 o e o
o ° 4 3 2 S 4 4
o o - . o

2 4 6 8 10 2 4 6 8 10

I TN TN W W | meters I TN W BN BN | meters

(a) Initial planning environment (b) Path planned with no obstacles (c) Dynamically, distributed replanned path

Fig. 5. 1In (a) all GNATSs are shown in the wait state as white circles. With (b) we see the initial goal distance propagation with no obstacles. The numbers
next to the GNATSs are hop counts. The black circles are GNAT's on the optimal path with the other GNATs shown as white circles. (c) shows the dynamically,
distributed replanned path after closing Door 1. Again, black circles are GNATSs on the optimal path.

