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Abstract

In this article we introduce a neural field approach
for local path planning of an autonomous mobile robot.
The robot’s heading direction is determined by the lo-
calized peak and its velocity by the maximum activation
in the field. We emphasize the neural field’s ability to
keep the path planning stable even in the case of noisy
sensor data or varying environments.

The theoretical framework is validated by an im-
plementation on our mobile service robot called
ARNOLD’. Since its only sensor is an active stereo
camera head, we highlight the importance of gaze con-
trol and low-level short-term memory for local path
planning, particularly in cluttered indoor environ-
ments.

1 Introduction

Autonomous mobile robots move in a partially
unknown and dynamically changing environment.
Hence, the path planning for a given target position
has to be reliable and stable even in situations where
the robot has only incomplete or noisy sensor data. In
addition, the robot should be able to autonomously
acquire more information in ambiguous situations to
make the path planning reliable.

Here, we present a model for autonomous path
planning based on the neural field, introduced by
Amari [1]. This model enables the robot to control
the active stereo camera head to acquire more infor-
mation if necessary. Thus, the robot can achieve a
reliable path planning even in cluttered indoor envi-
ronments.

Although Amari’s original intention was to model
the cortical neurophysiology, in the past years some
authors have shown that the neural field can be suc-
cessfully applied to the field of autonomous mobile
robots [8, 11, 4]. Our work is related to that of
Engles [8], who uses the neural field in the context

of memory representation for making path planning
more global. To decide in which direction the robot
moves, he uses an approximation of the neural field.
The latter one only holds under the assumption of
small stimuli. Moreover, it reduces the field dynamics
to a single instantiated dynamic equation. Accord-
ingly, some of the basic properties are lost, these in-
clude clustering of obstacles and selfstabilization un-
der sensor data noise. Since our work exploits these
properties, we have to use the original field equation.
In contrast to Engels [8], we do not introduce a sepa-
rate memory layer but endow the stimulus field with
an exponentially decaying dynamic.

Finally, we show that the neural field can not only
be used for path planning, but in addition the strength
of activation can be used as an important parameter
for controlling the robot’s overall behavior.

2 The neural field

The neural field used here was introduced by Amari
[1]. It can be described as a one-dimensional layer of
neurons with homogeneous connections and a negli-
gible time lag. Let u(¢,t) be the activation of the
neuron located at position ¢ at time ¢. In our case the
position encodes a direction. The output function of
each neuron is defined by the sigmoid function o(u):
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In equation (1) C fixes the slope of the transfer func-
tion. The maximum activation of the neural field, de-
termining the movement direction of the robot, has
to be unimodal. Hence, the neural field is of global
inhibition type. The excitatory connections dominate
for proximate neurons and the inhibitory connections
dominate at greater distance. Thus, we choose an in-
teraction function w(yp, ¢’) with a short-range excita-
tory term and a global inhibition constant Hy:
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Now, the activation of the neurons can be written as
an integro-differential equation:
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Here, h is a global constant fixing the threshold for
the localization interaction defined by o(u), s(p) rep-
resents the input with respect to u(y), and 7 deter-
mines the time scale of the dynamics.

It can be shown analytically that eq.(3) has three
basic types of solutions: (a) the homogeneous solution
u = h (¢-solution), (b) an unstable localized solution
(ai-solution) and (c) a stable localized solution (as-
solution). Further details can be found in [9].

The neural field is particularly appropriate for local
path planning, even in cluttered environments. The
localized peak can be interpreted as the desired move-
ment direction, the uniqueness of the activation peak
can be realized by choosing the global inhibiting in-
teraction function w(yp,¢’) and, if the peak is of an
az-type, the peak is self-stabilizing.

We are able to measure the quality of the de-
sired movement direction which is proportional to the
strength of the corresponding peak. This will be im-
portant in ambiguous situations where the stimulus
field is multi-modal. Thus, we can control the transla-
tory velocity of the robot depending on the quality of
the activation. If the quality is high, i.e., the strength
of the peak is high, the robot moves fast, otherwise it
slows down.

3 Autonomous mobile Robot
ARNOLD

Within the framework of NEUROS! (Neural robot
skills) we have developed an anthropomorphic mobile
robot called ’ARNOLD’.

The reason for building an anthropomorphic robot
is that, general-purpose autonomous service robots for
home or office environments have to deal with an envi-
ronment intensively adapted to human anatomy, sen-
sory and motor skills. Thus, we have designed Arnold
as anthropomorphic as possible in the limits of actu-
ally available hardware. The anthropomorphic design
concerns its sensor position, its arm and the shape of
its body. We have chosen a pyramidal shape of the
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body with the active stereo camera head on top of
it. Thus, Arnold can detect obstacles all around and
close to its base. Furthermore, grasping of objects
can be visually controlled from above like in humans.
The manipulator has 7 degrees of freedom (DoF), ar-
ranged as shoulder (3 DoF), elbow (1 DoF) and wrist
(3 DoF). This configuration allows Arnold to grasp
objects while avoiding obstacles and the inverse kine-
matics of the manipulator can be computed in closed
form [7]. A detailed description of Arnold can be found
in [2].

The control architec-
ture of Arnold is based
on the behavior robotics
paradigm introduced by
V. Braitenberg [5] and
R. Brooks [6]. Most of
Arnold’s behaviors are
based on nonlinear dy-
namical systems. A first
application, the track-
ing of a human hand
using all its degrees of
freedom, is described in
[3]-

The sensor module
for obstacle avoidance is
based on the 'Inverse perspective mapping’ (IPM) [10].
In IPM the image of the right camera is mapped onto
the image of the left camera under the assumption
that the robot moves on a horizontal plane and the
parameters of the cameras are known. A difference
image is calculated and the pixels exceeding a certain
threshold represent an obstacle in the field of view.

Arnold was used for testing the presented method
of path planning using neural fields.

Figure 1: Arnold

4 Local path planning

As described above, the trajectory is not planned
explicitly, but implicitly by controlling the rotatory
and translatory velocity. The heading of the robot
follows the activation peak in the neural field, rep-
resenting the best movement direction to reach the
target position. The neural field encodes the angular
direction from 0 to 27. Since we have chosen a periodic
field, the interaction kernel (eq.2) has to be periodic,
too. The robot’s heading to the target position is rep-
resented by a wide ranged, bell shaped function (),
which is greater than zero over the whole field (fig.2).
The smallest value of ¢(¢) has to be greater than |h| in



the neural field (eq.3) to evoke an activation. The tar-
get stimulus ¢(¢) has its maximum in target direction
and its minimum in the opposite one.
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Figure 2: Target stimulus

The obstacle information is provided by the ’inverse
perspective mapping’ module. It is used for blocking
movement directions. The corresponding stimuli o (¢)
are always negative and their absolute value reflects
the distance of the robot from the corresponding ob-
stacle:

o(p) = —A-e )’ (4)

The constant A denotes an amplitude and d(p) the
distance measured by the sensor. (We set d(¢) to
infinity if the corresponding direction ¢ represents a
free path). § fixes the shape of the range limiting
transfer function.

Since the robot has only a limited field of view and
the neural field needs continuous information from the
stimulus to reach a stable peak, we introduce a short-
term memory with respect to s(¢):
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where « is the current gaze direction and 3 the angle
of view. 0 is a step function:

oz lo-a)={ AT PTNZ0 ©

and 73 < 7. Thus, if ¢ lies within the current view
angle interval, s(¢) relaxes on a fast time scale to
t(¢)+o(p), i-e., to the current sensor input. Out of the

view angle interval, s(¢) relaxes on a much slower time
scale to the current target stimulus ¢(¢). Therefore,
eq.(5) enables the robot to store information about its
environment for a certain time that can be adjusted
by the choice of 7.

With respect to translatory movements the infor-
mation stored in the short-term memory is not up-
dated correctly. Here are several reasons why this is
not necessary: (a) the information is only used as a
coarse and temporarily limited description of the envi-
ronment and (b) the gaze direction of the active stereo
camera head is controlled by the maximum activation
of the neural field, too. Therefore, the most relevant
information, namely that corresponding to the current
movement direction, is updated almost immediately.

In order to keep the information stored in the stimu-
lus field and the activation in the neural field as contin-
uous as possible, we apply a coordinate system which
is robot centered, but globally fixed with respect to its
orientation.

As described above controlling the gaze direction
plays an important role in local path planning for
Arnold. The corresponding degree of freedom, the
gaze direction of the stereo camera head, follows the
field’s maximum activation on a fast time scale. This
way the current obstacle situation can be evaluated.
The strength of the peak is a measure for the quality
of the current path planning. In contrast to the gaze
direction, the rotatory and translatory velocity of the
robot has to be slowed down if the quality is not high
enough.

This can easily be achieved by setting the cor-
responding velocity components proportional to the
thresholded maximum activation of the field:

Vg = VR 0(Umax,tR)
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vg/T denotes the original velocity and v the slope of
the sigmoidal function o(umez). tr and tr are the
thresholds of activation necessary to evoke a rotatory
or translatory movement.

5 Experiments

The neural field for path planning has been applied
successfully in several experiments. In the following
we will describe only one example in more detail.



In this experiment Arnold has to reach a target
positioned 6 meters straight ahead. It has to pass a
gap, which is only slightly wider than the robot itself.
Figure 3 shows the experimental setup.

Figure 3: Experimental setup

While Arnold is approaching the gap (fig. 3) a per-
sons is blocking the way (fig. 4).

Figure 4: A person blocks Arnold’s way

Arnold performs the experiment in real time, it
moves at a maximum speed of 250 . Here the limit-
ing factor is the inverse perspective module which cal-
culates the obstacles. It needs about 300ms to evalu-
ate one image pair. In order to perform the given task
the robot needs about one and a half minute and the
data has been sampled every second.

The trajectory of the robot in measured odometry
coordinates is shown in figure 5. Arnold shows an
appropriate path planning during the experiment. It
chooses a straight path to the target position as long

as there are no obstacles. When the person blocks
the way, the robot stops, gathers new information and
the new path is planned to pass the person and the
obstacle on its left side. After the obstacle is passed,
Arnold changes to target direction and reaches the
required target position.

[T T gy e 1
r targetposition
6000 - B
L moving person|
| = I
g [ obstacle . obstacle |
£ 4000} :
c L = ~ 4
S | E ]
‘0
2 L
7 2000 :
L | robot trajectory (real data) |
or Arnold
I B R S | I | I | I |
—3000 —2000 —1000 0 1000

y—position [mm]
Figure 5: Robot trajectory
Figure 6 shows the orientation of the robot and the

camera head, as well as the peak’s strength in the neu-
ral field representing the quality of the path planning.
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Figure 6: Orientation and peak strength

The short increase of strength at about sample 18
is caused by the fact that the peak is self-stabilizing,
i.e., of as-type. Hence, being surrounded by obstacles
the peak’s height initially increases compensating its
decreasing width. However, due to the competition
the 'weakened’ peak breakes down, and a new peak
arises voting for another direction of movement.

Figures 7 and 9 show four steps of the short-term
memory (stimulus), figures 8 and 10 show the same



steps of the neural field.

As an example we have picked four situations of
the stimulus and the neural field to discuss the path
planning in different situations.

Figure 7 (a) shows the stimulus while the robot is
moving in target direction. In the field of view the
short-term memory is updated on a fast time scale,
outside the field of view it is updated on a slow time
scale. The peak in the neural field (fig. 8 (a)) relaxes
to target direction with large strength, so that the
robot moves at its fastest velocity. The path is planned
straight to the given target position.
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Figure 7: Short-term memory (stimulus) (1)
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Figure 7 (b) shows the stimulus when a person is
blocking the robot’s way. In the field of view it is up-
dated on a fast time scale to negative values. There-
fore, the peak in the neural field collapses (fig. 8 (b)).
Due to the decreased maximum activation the robot
stops.

After Arnold has estimated the obstacle’s position
on its right, a new peak arises in the neural field at
about —90° in our coordinate system. Therefore, it
changes its path and begins to move to its left along
the obstacle. At about step 35, Arnold’s short-term
memory has ’forgotten’ the obstacle and it begins to
move in target direction. Since the obstacle has not
been passed, the short-term memory is updated and
Arnold continues to move alongside the obstacle.

Figure 9 (a) shows the stimulus when the robot
is close to the end of the obstacle. The short-term

memory shows the memorized obstacle on its right and
the peak represents the current movement direction
(fig. 10 (a)) of the robot.

2.5 2.5
2.0F | 2.0F
1.5F | 1.5F

1.0F 1.0F El
05f — ] 05t E
0.0 0.0
-0.5¢F \j E -0.5F
-1.0 -1.0
—100 o] 100 -100 0 100
neuron (encodes angle [degree]) neuron (encodes angle [degree])

stimulus
stimulus

(a) Step 50 (b) Step 80

Figure 9: Short-term memory (stimulus) (2)
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Figure 10: Neural field (2)

Finally, the figures 9 (b) and 10 (b) show the stim-
ulus and the neural field, when Arnold has passed the
obstacle and is moving directly to the given target po-
sition.

6 Conclusion and future work

We presented a model for autonomous path plan-
ning which is exclusively based on a nonlinear compet-
itive dynamic system, the so-called neural field. As an
example we applied the path planning to the prob-
lem of local navigation in an unknown and dynamical
varying environment. We were able to show that the
neural field can be employed to plan a reasonable path
and acquire more information in ambiguous situations.
Furthermore the quality of the current movement plan
was successfully used to control the robot’s velocity.

We believe that our results can be transfered to
general effector control. Hence, our recent work is
dedicated to the field of manipulators, where we are
faced with a higher dimensional task space. However,



this only makes the underlying mathematics regarding
the neural field more sophisticated, it does not change
the overall concept. Moreover, the uniform language
has the advantage of coordinating mobility and ma-
nipulation in an easy fashion.
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