
A* search algorithm
From Wikipedia, the free encyclopedia

In computer science, A* (pronounced "A star") is a best-first, graph
search algorithm that finds the least-cost path from a given initial node
to one goal node (out of one or more possible goals).

It uses a distance-plus-cost heuristic function (usually denoted f(x)) to
determine the order in which the search visits nodes in the tree. The
distance-plus-cost heuristic is a sum of two functions: the path-cost
function (usually denoted g(x), which may or may not be a heuristic)
and an admissible "heuristic estimate" of the distance to the goal
(usually denoted h(x)). The path-cost function g(x) is the cost from the
starting node to the current node.

Since the h(x) part of the f(x) function must be an admissible heuristic,
it must not overestimate the distance to the goal. Thus for an
application like routing, h(x) might represent the straight-line distance
to the goal, since that is physically the smallest possible distance
between any two points (or nodes for that matter).

The algorithm was first described in 1968 by Peter Hart, Nils Nilsson,
and Bertram Raphael[1]. In their paper, it was called algorithm A. Since
using this algorithm yields optimal behavior for a given heuristic, it has
been called A*.

This algorithm has been generalized into a bidirectional heuristic search algorithm; see bidirectional
search.

Algorithm description

Like all informed search algorithms, it first searches the routes that
appear to be most likely to lead towards the goal. What sets A*
apart from a greedy best-first search is that it also takes the distance already traveled into account
(the g(x) part of the heuristic is the cost from the start, and not simply the local cost from the
previously expanded node).

The algorithm traverses various paths from start to goal. For each node x traversed, it maintains 3

Contents

� 1 Algorithm description
� 1.1 Example

� 2 Properties
� 2.1 Special cases
� 2.2 Implementation Details

� 3 Why A* is admissible and computationally optimal
� 4 Complexity
� 5 References
� 6 External links

Graph search
algorithms

Search

� A*
� B*
� Bellman-Ford

algorithm
� Best-first search
� Bidirectional search
� Breadth-first search
� D*
� Depth-first search
� Depth-limited

search
� Dijkstra's algorithm
� Floyd–Warshall

algorithm
� Hill climbing
� Iterative deepening

depth-first search
� Johnson's algorithm
� Uniform-cost

search

Стр. 1 из 6A* search algorithm - Wikipedia, the free encyclopedia

2009/02/26file://C:\Documents and Settings\ai\Рабочий стол\A search algorithm - Wikipedia, th...

values:

� g(x): the actual shortest distance traveled from initial node to
current node

� h(x): the estimated (or "heuristic") distance from current
node to goal

� f(x): the sum of g(x) and h(x)

Starting with the initial node, it maintains a priority queue of nodes
to be traversed, known as the open set (not to be confused with
open sets in topology). The lower f(x) for a given node x, the higher
its priority. At each step of the algorithm, the node with the lowest f(x) value is removed from the
queue, the f and h values of its neighbors are updated accordingly, and these neighbors are added to
the queue. The algorithm continues until a goal node has a lower f value than any node in the queue
(or until the queue is empty). (Goal nodes may be passed over multiple times if there remain other
nodes with lower f values, as they may lead to a shorter path to a goal.) The f value of the goal is
then the length of the shortest path, since h at the goal is zero in an admissible heuristic. If the actual
shortest path is desired, the algorithm may also update each neighbor with its immediate predecessor
in the best path found so far; this information can then be used to reconstruct the path by working
backwards from the goal node. Additionally, if the heuristic is monotonic (see below), a closed set of
nodes already traversed may be used to make the search more efficient.

 function A*(start,goal)
 closedset := the empty set % The set of nodes already evaluated.
 openset := set containing the initial node % The set of tentative nodes to be evaluated.
 g_score[start] := 0 % Distance from start along optimal path.
 h_score[start] := heuristic_estimate_of_distance(start, goal)
 f_score[start] := h_score[start] % Estimated total distance from start to goal through y.
 while openset is not empty
 x := the node in openset having the lowest f_score[] value
 if x = goal
 return reconstruct_path(came_from,goal)
 remove x from openset
 add x to closedset
 foreach y in neighbor_nodes(x)
 if y in closedset
 continue
 tentative_g_score := g_score[x] + dist_between(x,y)
 tentative_is_better := false
 if y not in openset
 add y to openset
 h_score[y] := heuristic_estimate_of_distance(y, goal)
 tentative_is_better := true
 elseif tentative_g_score < g_score[y]
 tentative_is_better := true
 if tentative_is_better = true
 came_from[y] := x
 g_score[y] := tentative_g_score
 f_score[y] := g_score[y] + h_score[y]
 return failure

 function reconstruct_path(came_from,current_node)
 if came_from[current_node] is set
 p = reconstruct_path(came_from,came_from[current_node])
 return (p + current_node)
 else
 return the empty path

The closed set can be omitted (yielding a tree search algorithm) if a solution is guaranteed to exist, or
if the algorithm is adapted so that new nodes are added to the open set only if they have a lower f
value than at any previous iteration.

Example

A single-step simulation

Стр. 2 из 6A* search algorithm - Wikipedia, the free encyclopedia

2009/02/26file://C:\Documents and Settings\ai\Рабочий стол\A search algorithm - Wikipedia, th...

An example of A star (A*) algorithm in action (nodes are cities connected with roads, h(x) is the
straight-line distance to target point).

green - start, blue - target, orange - visited

Properties

Like breadth-first search, A* is complete in the sense that it will always find a solution if there is
one.

If the heuristic function h is admissible, meaning that it never overestimates the actual minimal cost
of reaching the goal, then A* is itself admissible (or optimal) if we do not use a closed set. If a
closed set is used, then h must also be monotonic (or consistent) for A* to be optimal. This means
that for any pair of adjacent nodes x and y, where d(x,y) denotes the length of the edge between them,
we must have:

This ensures that for any path X from the initial node to x:

where denotes the length of a path, and Y is the path X extended to include y. In other words, it
is impossible to decrease (total distance so far + estimated remaining distance) by extending a path to
include a neighboring node. (This is analogous to the restriction to nonnegative edge weights in
Dijkstra's algorithm.) Monotonicity implies admissibility when the heuristic estimate at any goal
node itself is zero, since (letting be a shortest path from any node f
to the nearest goal g):

A* is also optimally efficient for any heuristic h, meaning that no algorithm employing the same
heuristic will expand fewer nodes than A*, except when there are multiple partial solutions where h
exactly predicts the cost of the optimal path. Even in this case, for each graph there exists some order

Стр. 3 из 6A* search algorithm - Wikipedia, the free encyclopedia

2009/02/26file://C:\Documents and Settings\ai\Рабочий стол\A search algorithm - Wikipedia, th...

of breaking ties in the priority queue such that A* examines the fewest possible nodes.

Special cases

Generally speaking, depth-first search and breadth-first search are two special cases of A* algorithm.
Dijkstra's algorithm, as another example of a best-first search algorithm, is the special case of A*
where h(x) = 0 for all x. For depth-first search, we may consider that there is a global counter C
initialized with a very big value. Every time we process a node we assign C to all of its newly
discovered neighbors. After each single assignment, we decrease the counter C by one. Thus the
earlier a node is discovered, the higher its h(x) value.

Implementation Details

There are a number of simple optimizations or implementation details that can significantly affect
the performance of an A* implementation. The first detail to note is that the way the priority queue
handles ties can have a significant effect on performance in some situations. If ties are broken so the
queue behaves in a LIFO manner, A* will behave like Depth-first search among equal cost paths. If
ties are broken so the queue behaves in a FIFO manner, A* will behave like Breadth-first search
among equal cost paths.

When a path is required at the end of the search, it is common to keep with each node a reference to
that node's parent. At the end of the search these references can be used to recover the optimal path.
If these references are being kept then it can be important that the same node doesn't appear in the
priority queue more than once (each entry corresponding to a different path to the node, and each
with a different cost). A standard approach here is to check if a node about to be added already
appears in the priority queue. If it does, then the priority and parent pointers are changed to
correspond to the lower cost path. When finding a node in a queue to perform this check, many
standard implementations of a min-heap require O(n) time. Augmenting the heap with a Hash table
can reduce this to constant time.

Why A* is admissible and computationally optimal

A* is both admissible and considers fewer nodes than any other admissible search algorithm with the
same heuristic, because A* works from an “optimistic” estimate of the cost of a path through every
node that it considers — optimistic in that the true cost of a path through that node to the goal will be
at least as great as the estimate. But, critically, as far as A* “knows”, that optimistic estimate might
be achievable.

When A* terminates its search, it has, by definition, found a path whose actual cost is lower than the
estimated cost of any path through any open node. But since those estimates are optimistic, A* can
safely ignore those nodes. In other words, A* will never overlook the possibility of a lower-cost path
and so is admissible.

Suppose now that some other search algorithm B terminates its search with a path whose actual cost
is not less than the estimated cost of a path through some open node. Algorithm B cannot rule out the
possibility, based on the heuristic information it has, that a path through that node might have a
lower cost. So while B might consider fewer nodes than A*, it cannot be admissible. Accordingly,
A* considers the fewest nodes of any admissible search algorithm that uses a no more accurate
heuristic estimate.

This is only true when A* uses a consistent heuristic. Otherwise, A* is not guaranteed to expand

Стр. 4 из 6A* search algorithm - Wikipedia, the free encyclopedia

2009/02/26file://C:\Documents and Settings\ai\Рабочий стол\A search algorithm - Wikipedia, th...

fewer nodes than another search algorithm with the same heuristic. See (Generalized best-first search
strategies and the optimality of A*, Rina Dechter and Judea Pearl, 1985[2])

Complexity

The time complexity of A* depends on the heuristic. In the worst case, the number of nodes
expanded is exponential in the length of the solution (the shortest path), but it is polynomial when
the heuristic function h meets the following condition:

| h(x) − h * (x) | = O(logh * (x))

where h * is the optimal heuristic, i.e. the exact cost to get from x to the goal. In other words, the
error of h should not grow faster than the logarithm of the “perfect heuristic” h * that returns the true
distance from x to the goal (Russell and Norvig 2003, p. 101[3]).

More problematic than its time complexity is A*’s memory usage. In the worst case, it must also
remember an exponential number of nodes. Several variants of A* have been developed to cope with
this, including iterative deepening A* (IDA*), memory-bounded A* (MA*) and simplified memory
bounded A* (SMA*) and recursive best-first search (RBFS).

References

� Hart, P. E.; Nilsson, N. J.; Raphael, B. (1972). "Correction to "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths"". SIGART Newsletter 37: 28–29.

� Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, California: Tioga
Publishing Company. ISBN 0935382011.

� Pearl, Judea (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley. ISBN 0-201-05594-5.

1. ^ Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 (2): 100–107.
doi:10.1109/TSSC.1968.300136 (http://dx.doi.org/10.1109/TSSC.1968.300136).

2. ^ Dechter, Rina; Judea Pearl (1985). "Generalized best-first search strategies and the optimality of A*
(http://portal.acm.org/citation.cfm?id=3830&coll=portal&dl=ACM)". Journal of the ACM 32 (3): 505–
536. doi:10.1145/3828.3830 (http://dx.doi.org/10.1145/3828.3830).

3. ^ Russell, S. J.; Norvig, P. (2003). Artificial Intelligence: A Modern Approach. pp. 97–104. ISBN 0-13-
790395-2.

External links

� Tarik Attar's Implementation and visualisation of the A* algorithm
(http://www.tarikattar.com/napier/osmastermap/) - Implementation in PHP and visualisation
using Google Map API

� Justin Heyes-Jones' A* algorithm tutorial (http://www.geocities.com/jheyesjones/astar.html)
� Herbert Glarner's Interactive Single Step Simulation in VB 6.0

(http://herbert.gandraxa.com/herbert/pfa.asp), implemented as a DLL, including a GUI
allowing simulation in user-defined grids.

� Another A* Pathfinding for Beginners
(http://www.policyalmanac.org/games/aStarTutorial.htm) (note: incorrectly states that A*
always needs a "closed set")

� Amit's Thoughts on Path-Finding and A*
(http://theory.stanford.edu/~amitp/GameProgramming/)

� Sven Koenig's Demonstration of Lifelong Planning A* and A* (http://idm-lab.org/applet.html)

Стр. 5 из 6A* search algorithm - Wikipedia, the free encyclopedia

2009/02/26file://C:\Documents and Settings\ai\Рабочий стол\A search algorithm - Wikipedia, th...

� Another Java Applet comparing LPA* and A* Lifelong Planning A* Demonstration
(http://homepages.dcc.ufmg.br/~lhrios/applet_lpa/index.html)

� Cuneyt Mertayak's A Generic C++ A* Library
(http://www.ceng.metu.edu.tr/~cuneyt/astar.tar.gz)

� Tony Stentz's Papers on D* (Dynamic A*) Path-Finding (http://www.frc.ri.cmu.edu/~axs/)
� Remko Tronçon and Joost Vennekens's JSearch demo (http://el-

tramo.be/software/jsearchdemo/): demonstrates various search algorithms, including A*.
� A* search algorithm module (http://lostsouls.org/grimoire_astar) in LPC
� A* search algorithm module (http://www.jamespoag.com/AStarPathfinder.html) in object-

oriented C++ with Demo Written for the PopCap Games Framework
� A* search algorithm demo (http://bravobug.com/news/?p=118) in Objective-C/Cocoa for

XCode
� Open Source A* (http://sourceforge.net/projects/argorha/) in polygon soup (3D world).
� Variation on A* called Near Optimal Hierarchical Path-Finding

(http://www.cs.ualberta.ca/~mmueller/ps/hpastar.pdf) and associated presentation
(http://www.cs.ualberta.ca/~bulitko/F06/presentations/2006-09-29-ML.pdf).

� [fr] Implementation and visualisation of the A* algorithm in C#
(http://www.csharpfr.com/codes/ALGORITHME-PATHFINDING-STAR_41235.aspx) (with
source code)

� A python implementation of the algorithm (http://kks.cabal.fi/A-star)
� A JavaScript implementation of the algorithm (http://www.devpro.it/javascript_id_137.html)

Retrieved from "http://en.wikipedia.org/wiki/A*_search_algorithm"
Categories: Graph algorithms | Routing algorithms | Search algorithms | Combinatorial optimization |
Game artificial intelligence | Articles with example code

� This page was last modified on 24 February 2009, at 13:23.
� All text is available under the terms of the GNU Free Documentation License. (See

Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501
(c)(3) tax-deductible nonprofit charity.

Стр. 6 из 6A* search algorithm - Wikipedia, the free encyclopedia

2009/02/26file://C:\Documents and Settings\ai\Рабочий стол\A search algorithm - Wikipedia, th...

