A* search algorithn- Wikipedia, the free encycloper

A* search algorithm

From Wikipedia, the free encyclopedia

In computer sciencéy* (pronounced "A star") is a best-first, graph
search algorithm that finds the least-cost patimfeogiven initial node
to one goal node (out of one or more possible goals

It uses a distance-plus-cost heuristic functiomgilg denoted(x)) to
determine the order in which the search visits sadehe tree. The
distance-plus-cost heuristic is a sum of two funtdi the path-cost
function (usually denoteg(x), which may or may not be a heuristic)
and an admissible "heuristic estimate” of the disteto the goal
(usually denoteti(x)). The path-cost functiog(x) is the cost from the
starting node to the current node.

Since theh(x) part of thef(x) function must be an admissible heuristic,

it must not overestimate the distance to the didals for an

application like routingh(x) might represent the straight-line distance

to the goal, since that is physically the smalpestsible distance
between any two points (or nodes for that matter).

The algorithm was first described in 1968 by Petart, Nils Nilsson,

and Bertram Rapha{é]. In their paper, it was called algorithm A. Since

using this algorithm yields optimal behavior fogigen heuristic, it has
been called A*.

Crp.1lu3 6

Graph search
algorithms

Search

A*

n B*

Bellman-Ford
algorithm

Best-first search
Bidirectional search
Breadth-first search
D*

Depth-first search
Depth-limited
search

Dijkstra's algorithm

» Floyd-Warshall

algorithm

= Hill climbing
= [terative deepening

depth-first search

= Johnson's algorithm

Uniform-cost
search

This algorithm has been generalized into a bidiveet heuristic search algorithm; see bidirectional

search.

Contents

1 Algorithm description
= 1.1 Example
2 Properties
= 2.1 Special cases
= 2.2 Implementation Details
3 Why A* is admissible and computationally optimal
4 Complexity
5 References
6 External links

Algorithm description

Like all informed search algorithms, it first seags the routes that
appear to be most likely to lead towards the goal. Wieds $*

apart from a greedy best-first search is thati #ghkes the distance already traveled into account
(theg(x) part of the heuristic is the cost from the stant] not simply the local cost from the

previously expanded node).

The algorithm traverses various paths from stagoi@. For each nodetraversed, it maintains 3

file://C:\Documents and Settings'Pabounii ctom\A search algorithn- Wikipedia, tt... 2009/02/2:

A* search algorithn- Wikipedia, the free encyclopet Crp.2u3 6

values:
]
= g(X): the actual shortest distance traveled fromaimode to
current node
= h(x): the estimated (or "heuristic") distance froorent
node to goal
s f(x): the sum of g(x) and h(x)
Starting with the initial node, it maintains a piip queue of nodes A single-step simulation

to be traversed, known as tbygen set (not to be confused with

open sets in topology). The lowix) for a given node, the higher

its priority. At each step of the algorithm, thedeowith the lowesk(x) value is removed from the
queue, thd andh values of its neighbors are updated accordinglgl,these neighbors are added to
the queue. The algorithm continues until a goalenoals a lowef value than any node in the queue
(or until the queue is empty). (Goal nodes maydmsed over multiple times if there remain other
nodes with lowef values, as they may lead to a shorter path ta@h)dgihef value of the goal is
then the length of the shortest path, sine the goal is zero in an admissible heuristithdf actual
shortest path is desired, the algorithm may alstatgpeach neighbor with its immediate predecessor
in the best path found so far; this information tizan be used to reconstruct the path by working
backwards from the goal node. Additionally, if tieuristic ismonotonic (see below), alosed set of
nodes already traversed may be used to make thehgeare efficient.

function A*(start,goal)

cl osedset := the enpty set % The set of nodes already eval uated
openset := set containing the initial node % The set of tentative nodes to be eval uated
g_score[start] := 0 % Di stance fromstart along optimal path
h_score[start] := heuristic_estimte_of _distance(start, goal)
f_score[start] := h_score[start] % Estimated total distance fromstart to goal through
whi | e openset is not enpty

X := the node in openset having the | owest f_score[] value

if x = goa

return reconstruct_path(came_from goal)
renove x from openset
add x to cl osedset
foreach y in neighbor_nodes(x)

if yin closedset

conti nue
tentative_g_score := g_score[x] + dist_between(x,y)
tentative_is_better := false

if y not in openset
add y to openset

h_score[y] := heuristic_estimte_of_distance(y, goal)
tentative_is_better := true
elseif tentative_g_score < g_score[y]
tentative_is_better := true
if tentative_is_better = true
came_fronmy] := x
g_score[y] := tentative_g_score
f_score[y] := g_score[y] + h_score[y]

return failure

function reconstruct_path(came_from current_node)
if came_fronfcurrent_node] is set
p = reconstruct _path(canme_from came_fronfcurrent_node])
return (p + current_node)
el se
return the enpty path

The closed set can be omitted (yielding a treeckealgorithm) if asolution is guaranteed to exist
if the algorithm is adapted so that new nodes dded to the open set only if they have a lofver
value than at any previous iteration.

Example

file://C:\Documents and Settings'Pabounii ctom\A search algorithn- Wikipedia, tt... 2009/02/2!

A* search algorithn- Wikipedia, the free encycloper Ctp.3u36

An example of A star (A*) algorithm in action (nadare cities connected with roads, h(x) is the
straight-line distance to target point).

2 fla)=1,5 + 4

fid)=2 + 4,5

green - start, blue - target, orange - visited

Properties

Like breadth-first search, A* isomplete in the sense that it will always find a solutiéthiere is
one.

If the heuristic functiorn is admissible, meaning that it never overestimates the actuaimal cost
of reaching the goal, then A* is itself admissifie optimal) if we do not use a closed set. If a
closed set is used, thermust also benonotonic (or consistent) for A* to be optimal. This means
that for any pair of adjacent nodeandy, whered(x,y) denotes the length of the edggtween ther
we must have:

h(z) < d(z,y) + h(y)
This ensures that for any patHrom the initial node to:
L(X) + h(z) < L(X) +d(z,y) + h(y) = L(Y) + h(y)

WhereL() denotes the length of a path, ¥slthe pathX extended to includg In other words, it
is impossible to decrea¢mtal distance so far + estimated remaining dstq by extending a path
include a neighboring node. (This is analogousoréstriction to nonnegative edge weights in
Dijkstra's algorithm.) Monotonicity implies admibgity when the heuristic estimate at any goal

node itself is zero, since (lettitP = (f,2y,29,...,2,,g) be ashonash from any nodée
to the nearest goa):

h(f) < d(f,v)+h{v) <d(f,v1)+d(vy, ve)+h(re) < ... < L(P)+h(g) =

A* is also optimally efficient for any heuristlt, meaning that no algorithm employing the same
heuristic will expand fewer nodes than A*, excebiew there are multiple partial solutions whiere
exactly predicts the cost of the optimal path. Ewetiis case, for each graph there exists sordel

file://C:\Documents and Settings'Pabounii ctom\A search algorithn- Wikipedia, tt... 2009/02/2!

A* search algorithn- Wikipedia, the free encycloper Crp.4u3 6

of breaking ties in the priority queue such thatexamines the fewest possible nodes.
Special cases

Generally speaking, depth-first search and brefidthsearchare two special cases of A* algoritr
Dijkstra's algorithm, as another example of a lfiest-search algorithm, is the special case of A*
whereh(x) = 0 for allx. For depth-first search, we may consider thatlea global countet
initialized with a very big value. Every time weopess a node we assigrio all of its newly
discovered neighbors. After each single assignmesntjecrease the countéiby one. Thus the
earlier a node is discovered, the higheh(t9 value.

Implementation Details

There are a number of simple optimizations or inm@etation details that can significantly affect
the performance of an A* implementation. The fitstail to note is that the way the priority queue
handles ties can have a significant effect on pevdmce in some situations. If ties are broken so th
gueue behaves in a LIFO manner, A* will behave Olepth-first search among equal cost paths. If
ties are broken so the queue behaves in a FIFOenaishwill behave like Breadth-first search
among equal cost paths.

When a path is required at the end of the searghcommon to keep with each node a reference to
that node's parent. At the end of the search tredeeences can be used to recover the optimal path.
If these references are being kept then it camipgiitant that the same node doesn't appear in the
priority queue more than once (each entry corredipgrto a different path to the node, and each
with a different cost). A standard approach hete isheck if a node about to be added already
appears in the priority queue. If it does, thengherity and parent pointers are changed to
correspond to the lower cost path. When finding@enin a queue to perform this check, many
standard implementations of a min-heap reqO(® time. Augmenting the heap with a Hash table
can reduce this to constant time.

Why A* isadmissible and computationally optimal

A* is both admissible and considers fewer nodes vy other admissibkeearch algorithm with tt
same heuristic, because A* works from an “optimiséistimate of the cost of a path through every
node that it considers — optimisiit that the true cost of a path through that riodie goal will b
at least as great as the estimate. But, criticallyfar as A* “knows”, that optimistic estimate g
be achievable.

When A* terminates its search, it has, by defimfifound a path whose actual cost is lower than the
estimated cost of any path through any open nodesiBce those estimates are optimistic, A* can
safely ignore those nodes. In other words, A* wdl/er overlook the possibility of a loweost patt
and so is admissible.

Suppose now that some other search algorithm Birtates its search with a path whose actual cost
is not less than the estimated cost of a gatbugh some open node. Algorithm B cannot rulietiog
possibility, based on the heuristic informatiohas, that a path through that node might have a
lower cost. So while B might consider fewer nodemtA*, it cannot be admissible. Accordingly,

A* considers the fewest nodes of any admissiblecbealgorithm that uses a no more accurate
heuristic estimate.

This is only true when A* uses a consistent heigti€therwise, A* is not guaranteed to expand

file://C:\Documents and Settings'Pabounii ctom\A search algorithn- Wikipedia, tt... 2009/02/2!

A* search algorithn- Wikipedia, the free encycloper Ctp.5u3 6

fewer nodes than another search algorithm witlséimee heuristic. See (Generalized bgst-searcl
strategies and the optimality of A*, Rina Dechteddudea Pearl, 19@5

Complexity

The time complexity of A* depends on the heuridliicthe worst case, the number of nodes
expanded is exponential in the length of the sofufthe shortest path), but it is polynomial when
the heuristic functioi meets the following condition:

|h(x) ~h " (x) | =O(logh ™ (X))

whereh " is the optimal heuristic, i.e. the exact costebfgomx to the goal. Ip other words, the
error ofh should not grow faster than the logarithm of therfect heuristich * that returns the true
distance fronx to the goal (Russell and Norvig 2003, p. [fbl

More problematic than its time complexity is A*semory usage. In the worst case, it must also
remember an exponential number of nodes. Severiainis ofA* have been developed to cope v
this, including iterative deepening A* (IDA*), memgabounded A* (MA*) and simplified memory
bounded A* (SMA*) and recursive best-first searBBES).

References

= Hart, P. E.; Nilsson, N. J.; Raphael, B. (1972)rI€ction to "A Formal Basis for the
Heuristic Determination of Minimum Cost PathsSGART Newsletter 37: 28-29.

= Nilsson, N. J. (1980Principles of Artificial Intelligence. Palo Alto, California: Tioga
Publishing Company. ISBN 0935382011.

» Pearl, Judea (1984leuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley. ISBN 0-201-05594-5.

1. ~ Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968)Formal Basis for the Heuristic Determination of
Minimum Cost Paths'\EEE Transactions on Systems Science and Cybernetics SSC4 (2): 100-107.
doi:10.1109/TSSC.1968.300136 (http://dx.doi.orgl109/TSSC.1968.300136).

2. " Dechter, Rina; Judea Pearl (1985). "GeneralizstiHirst search strategies and the optimality of A*
(http://portal.acm.org/citation.cfm?id=3830&coll=pal &dI=ACM)". Journal of the ACM 32 (3): 505—
536. doi:10.1145/3828.3830 (http://dx.doi.org/1@3/8828.3830).

3. " Russell, S. J.; Norvig, P. (2003)tificial Intelligence: A Modern Approach. pp. 97-104. ISBN 0-13-
790395-2.

External links

» Tarik Attar's Implementation and visualisation lo¢ tA* algorithm
(http://www.tarikattar.com/napier/osmastermaptnplementation in PHP and visualisation
using Google Map API

= Justin Heyes-Jones' A* algorithm tutorial (httpww.geocities.com/jheyesjones/astar.html)

= Herbert Glarner's Interactive Single Step SimutatroVB 6.0
(http://herbert.gandraxa.com/herbert/pfa.asp), @mgnted as a DLL, including a GUI
allowing simulation in user-defined grids.

= Another A* Pathfinding for Beginners
(http://Iwww.policyalmanac.org/games/aStarTutortahh(note: incorrectly states that A*
always needs a "closed set")

= Amit's Thoughts on Path-Finding and A*
(http://theory.stanford.edu/~amitp/GameProgramnjing/

= Sven Koenig'‘Demonstration of Lifelong Planning A* and . (http://idir-lab.org/applet.htm

file://C:\Documents and Settings'Pabounii ctom\A search algorithn- Wikipedia, tt... 2009/02/2!

A* search algorithn- Wikipedia, the free encycloper Ctp.6u3 6

= Another Java Applet comparing LPA* and A* Lifelofganning A* Demonstration
(http://homepages.dcc.ufmg.br/~lhrios/applet_|html)

= Cuneyt Mertayak's A Generic C++ A* Library
(http://lwww.ceng.metu.edu.tr/~cuneyt/astar.tar.gz)

= Tony Stentz's Papers on D* (Dynamic A*) Path-Fimd{http://www.frc.ri.cmu.edu/~axs/)

= Remko Trongon and Joost Vennekens's JSearch detpd/éh
tramo.be/software/jsearchdemo/): demonstrateswasearch algorithms, including A*.

= A* search algorithm module (http://lostsouls.orgfgvire_astar) in LPC

= A* search algorithm module (http://www.jamespoagi¢aStarPathfinder.html) in object-
oriented C++ with Demo Written for the PopCap Gaifesnework

= A* search algorithm demo (http://bravobug.com/n&ps/118) in Objective-C/Cocoa for
XCode

= Open Source A* (http://sourceforge.net/projectsdang/) in polygon soup (3D world).

= Variation on A* called Near Optimal HierarchicaltRdrinding
(http://Iwww.cs.ualberta.ca/~mmueller/ps/hpastaj.pdfl associated presentation
(http://www.cs.ualberta.ca/~bulitko/FO6/presentasi@ 006-09-29-ML. pdf).

= [fr] Implementation and visualisation of the A* algthm in C#
(http://www.csharpfr.com/codes/ALGORITHME-PATHFINDG-STAR_41235.aspx) (with
source code)

= A python implementation of the algorithm (http:/8&abal.fi/A-star)
= A JavaScript implementation of the algorithm (htpww.devpro.it/javascript_id_137.html)

Retrieved from "http://en.wikipedia.org/wiki/A* _sedn_algorithm™
Categories: Graph algorithms | Routing algorithi®@edrch algorithms | Combinatorial optimizatjon
Game artificial intelligence | Articles with exaregiode

= This page was last modified on 24 February 200933.

= All text is available under the terms of the GNl@&Documentation License. (See
Copyrights for details.)
Wikipedia® is a registered trademark of the WikinaeBloundation, Inc., a U.S. registered 501
(c)(3) tax-deductibli nonprofit charity.

file://C:\Documents and Settings'Pabounii ctom\A search algorithn- Wikipedia, tt... 2009/02/2!

