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Abstract— Developmental learning approach by changing the
internal state representation from simple to complex is promising
in order for a robot to learn behaviors efficiently. We have
proposed a Reinforcement Learning (RL) method for multiple
learning modules with different state representations and algo-
rithms. One of interesting results we showed is that a complex
RL system can learn faster with the help of simpler RL systems
that can not obtain the best performance. However, it did not
consider the difference in sampling rates of learning modules.
This paper discusses how the interaction among multiple learning
modules with different sampling rates affects the robot learning.
Experimental results in navigation task show that developmental
learning described above is not always good strategy.

I. INTRODUCTION

Reinforcement Learning (RL) [1] is an attractive learning
framework with a wide range of possible application areas.
However, when we apply RL methods naively to robotic
tasks, it often takes prohibitively long time to obtain good
policy (controller). One promising approach is to develop or
switch the perceptual and behavioral capabilities of the robot
from simple to complex state through the learning process,
suggested by recent studies about developmental robotics [2],
[3], [4].

We think that the key for successful developmental learning
is interaction among multiple modules with different state
representation, learning algorithm, and meta-parameters. Re-
cent neuroscience research revealed that there are parallel
reinforcement learning pathways in the human brain, each spe-
cialized for reward prediction at different time scales [5]. We
have proposed a CLIS (Cooperative-Competitive-Concurrent
Reinforcement Learning with Importance Sampling) [6]. One
of the interesting results was that a complex RL system can
learn much faster with the help of simpler RL systems that
can not obtain the best performance.

However, we assume that all modules are updated syn-
chronously. Therefore, CLIS did not take into account the
difference in sampling rates (control cycle) of learning mod-
ules. This difference in sampling rates is typically due to the
computational complexity of the module. In general, sampling

rate significantly affects the original robot performance. For
example, the robot should slow down its moving speed if it
uses complex module. Little attention, however, has been paid
to the effects of the difference in sampling rates in the field
of developmental robotics.

This paper discusses how the interaction among multiple
modules sharing the same sensory-motor system affects the
learning process. Each module has its own state representation
and sampling rate. Importance sampling [7] is used to fill the
gap between the behavior policy and the target policy while
rate conversion by interpolation deals with the difference in
sampling rates. We apply the proposed method to a simple
navigation task by using a mobile robot called Cyber Rodent
[8]. CR has three heterogeneous learning modulesMin,Mvi,
andMpl. The first module Min is an embedded module, and
the stochastic policy ofMin is given by a human designer. The
second module Mvi tries to obtain mapping from immediate
sensory information to motor commands. The third module
Mpl learns behaviors based on the result of spatial learning.
Although the world will be partially observable for Mvi,
the update rate of Mvi is higher than that of Mpl. On the
contrary, this navigation task is completely observable forMpl

because the spatial learning uniquely identifies the world’s
state. Experimental results show that one-way development
from simple to complex is not always good strategy for
developmental learning.

II. CLIS ARCHITECTURE

A. Competitive Policy Selection

The robot has N learning modules Mi (i = 1, . . . , N )
based on reinforcement learning. Let denote x and u are the
state and action, respectively. Each module has a stochastic
policy πi(x, u) and a state value function Vi(x). πi(x, u)
represents the probability to select u at x. The value of a



state x under the policy πi is given by

Vi(x) = Eπi{R(x)} = Eπi

{ ∞∑
k=0

γk
i r(t + k)|x(t) = x

}
,

(1)
where Eπi denotes the expected value given that the robot
follows policy πi. R(x) is the weighted sum of rewards
starting from x, called return. γi is a parameter, 0 ≤ γi ≤ 1,
called a discount rate. r(t) is an immediate scalar reward at
the discrete time t. After M episodes are experienced, the
estimated state value function is represented by

Vi(x) =
1
M

M∑
m=1

Rm(x), (2)

where Rm(x) is the actual return in the m-th episode.
The robot selects the policy of one module following the

probability

Pr(i|x) =
exp [β(1 − γi)Vi(x)]∑N

j=1 exp [β(1 − γj)Vj(x)]
, (3)

where β is a positive parameter called the inverse temperature.
Low β causes (nearly) equi-probable selection of all modules,
while high β causes selection of the module with the highest
value with probability close to one.

B. Cooperative Learning by Importance Sampling

Let us consider how to train all modules i = 1, . . . , N
using an episode obtained by a selected stochastic policy
πi′ . Later, we call πi′ behavior policy. Studies of “off-
policy” reinforcement learning suggest that it is possible and
sometimes better to estimate the value function of a policy
πi by following a behavior policy πi′ (i �= i′). The choice of
distribution obviously makes a difference to the efficiency of
the method. Importance Sampling is a method to compensate
the mismatch between the behavior policy πi′ and the target
policies πi (i = 1, . . . , N ).

Let hm be the sequence of states, actions, and rewards of
the m-th episode generated by πi′ :

hm = {x(0), u(0), r(τi′), x(τi′ ), u(τi′), r(2τi′ ), . . . ,
x((n− 1)τi′), u((n− 1)τi′), r(nτi′ ), x(nτi′ )}, (4)

where τi′ is a sampling rate of the selected module. After
M episodes are experienced, the Monte Carlo estimate of the
state value function is given by [1]

Vi(x) =
1
M

M∑
m=1

Rm(x)
Pr(hm|πi)
Pr(hm|πi′ )

, (5)

where M is the number of episodes. Pr(hm|πi) and
Pr(hm|πi′ ) are the probabilities that the episode hm occurs
by following πi and πi′ , respectively. Pr(hm|πi)/ Pr(hm|πi′)
is given by

Pr(hm|πi)
Pr(hm|πi′)

=
n−1∏
l=0

πi(x(lτi), u(lτi))
πi′ (x(lτi), u(lτi))

=
n−1∏
l=0

ρi(lτi), (6)

where ρi is the correction factor to deal with the differences
between the behavior and the target policies. We only need
the ratio ρi of the action selection probabilities. Note that the
behavior policy should satisfy πi′(x, u) > 0 if πi(x, u) > 0.

Eq. (6) will often increase rapidly over time, especially
if the behavior policy πi′ and the target policy πi are very
different each other. In this case, importance sampling may be
numerically unstable. Therefore, we introduce a small positive
constant ε,

ρ̃i(lτi) =
πi(x(lτi), u(lτi)) + ε

πi′ (x(lτi), u(lτi)) + ε
(7)

to avoid divergence although this approximation causes a bias
to the Monte Carlo estimator.

C. TD learning with an innate behavior

It is not realistic that the robot executes various actions
randomly. Suppose that a mobile robot learns to navigate
in a crowded environment. This mobile robot finally learns
collision avoidance behavior after it makes collisions with
the obstacles. This is not a problem in computer simulation.
However, the collisions with obstacles in the real environment
will cause serious hardware troubles in many cases. In order to
realize robot learning in the real environment, it is important to
introduce a priori knowledge. If the designer has some a priori
domain-specific knowledge, CLIS enables incorporating it in
a hand-made controller, which improves initial performance
and learning of other modules.

Since the stochastic policy of the innate module is fixed, we
can use the method of TD-learning to evaluate it. Let denote
wi and bi(x) are the weight vector and the basis function
vector at the state x, respectively. The state value function is
approximated by

Vi(x) = wT
i bi(x),

where wT
i is a transpose of wi. For given (x(t), u(t), r(t +

τi), x(t+τi)), the weight wi is updated by using the following
rule:

ci ← ρ̃i(t + τi)ci

δi ← r(t + τi) + γiciVi(x(t + τi))− Vi(x(t)),
ei ← λiγiρ̃i(t + τi)ei(t) + cibi(x(t)),
wi ← wi + αiδiei, (8)

where αi and λi are the learning rate and trace rate for
eligibility, respectively.

D. Policy Gradient based Reinforcement Learning

As a behavior learning module, we have a choice between
two major types: Action Value function based Reinforcement
Learning (AVRL) and Policy Gradient based Reinforcement
Learning (PGRL). PGRL algorithms [9], [10] have recently
been re-evaluated since they have some advantages with re-
spect to function approximation and hidden state problems.
We omit to explain AVRL used in our previous experiments
[6] because we do not use AVRL in the experiments shown
in this paper.
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Fig. 1. A multi-module learning system.

PGRL is basically an on-policy method [1] because it esti-
mates the gradient at a given point in the policy space by acting
precisely in the manner of the corresponding policy during
learning trials. In PGRL, the stochastic policy πi represented
by a parameter vector wi is updated to the direction of the
gradient of the expected performance Ji,

wi ← wi + αi
∂Ji(wi)

∂wi
,

where
Ji(wi) =

∑
x

∑
hm

Vi(x) Pr(hm|πi),

and Vi(x) is given by (5). Consequently, the update rules of
PGRL with importance sampling are given by

ci ← ρ̃i(t + τi)ci

ei ← ei +
∂ ln πi(x(t), u(t))

∂wi
,

wi ← wi + αiγ
t
ir(t + τi)ciei, (9)

where ei(t) is an eligibility trace for the policy gradient
method. Although this implementation does not require a state
value function Vi explicitly, we compute Vi by using (8) for
the sake of module selection by (3).

There are several ways to implement the stochastic policy.
We use a multivariate normal density as follows:

πi(x, u) = ηi exp
(
− 1

2σ2d
i

‖u−Wibi(x)‖2
)

, (10)

where d is a dimension of u, ηi is a normalizing constant,
respectively. In this formulation, the policy parameter wi is
(Wi, σi).

E. Dealing with Difference in Sampling Rates

CLIS architecture described above assumes that only one
sampling rate is used throughout a processing system. Here we
show some modifications to deal with difference in sampling
rates. Fig. 1 shows the whole architecture of our extended
CLIS. Each module determines action asynchronously while
all modules synchronously update parameters by (8) and

(9). The extended CLIS is implemented in a multi-threaded
program, in which there are N controller threads and one
learning thread.

In addition the extended CLIS has a short term memory
to save an episode. The actual tuple of (x, u, r) is obtained
every τi′ steps while the state for Mi is obtained every τi

steps. Therefore, we have to resample the data points. We use
cubic spline interpolation to estimate them. Finally, we show
the setting of the discount rate. In the original CLIS, we use
different discount rates to deal with different time scales. In
this paper we, however, use the same time scale for simplicity.
From the theory of semi Markov decision processes (ex. see
[11]) the discount rate of i-th module is set to

γi = γτi′ , (11)

where γ is a common discount rate. Consequently, each
module is evaluated with the same objective function.

III. TASK AND ASSUMPTIONS

A. Cyber Rodent Hardware

Fig. 2 (a) shows a Cyber Rodent (CR) we have developed in
order to investigate learning, developmental, and evolutionary
systems from a viewpoint of computational neuroscience and
robotics [8]. Especially, the main goal of the CR project is
to study the adaptive mechanisms of artificial agents under
the same fundamental constraints as biological agents, namely
self-preservation and self-reproduction. CR has two main
features: the abilities to exchange data and program via an
IR-communication port for self-reproduction, and to capture
and recharge from battery packs in the environment for self-
preservation. Its body is 22 [cm] in length and 1.75 [kg] in
weight. A CR is endowed with a variety of sensory inputs,
including an omni-directional CMOS camera, an IR range
sensor, seven IR proximity sensors, gyros, and accelerometer.
Its motion system consists of two wheels that allow CR to
move at a maximum speed of 1.3 [m/s]. CR has an FPGA chip
for real-time image processing, such as color blob detection.

The task we consider is an autonomous navigation to the
stationary destination placed at the center of the experimental
field shown in Figs. 2 (b) and (c). There are four short
obstacles and two tall obstacles that hide the destination from
the robot. Four landmarks are prepared for self-localization
described later. A wall is placed around the experimental field.

In order to acquire navigation behavior, we prepare three
learning modules: innate module, view-based module, and
place-based module. From the visual information about the
destination and the landmarks and sensor readings of prox-
imity sensors, the state x is constructed for each module
separately. The action u is desired velocities of left and right
wheels. Then we explain these modules in detail.

B. Innate module Min

Min is an embedded module that gives an initial controller.
Therefore, Min has a fixed stochastic policy πin and a value
function Vin trained by (8). CLIS can easily integrate Min as
an innate module by initializing Vin to large values.
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Fig. 2. Environmental configuration. (a) Cyber Rodent hardware. (b) The real environment. (c) Positions of the objects in the environment. Five cross points
(A, B, C, D, and E) are the starting positions to evaluate performance during learning. (d) State variables used in Min and Mre.

CR controlled by the stochastic policy of Min just moves
to the destination directly without considering avoiding colli-
sions. If the destination is not observed, it generates random
action. Therefore, CR makes a collision when the shorter
obstacle is located between CR and the destination. The state
x is the relative angle to the destination θd (see Fig. 2 (d), and
j-th component of the basis function vector is given by

bin,j(x) = exp
(−‖x− θj‖2/ϕin

)
,

where x = [θd] and ϕin is a width of the basis function, re-
spectively. Nine basis functions are uniformly distributed over
one dimension angle input space, and one basis function is
considered to represent with the situation when the destination
gets out of CR’s sight field. Sampling rate of Min is set to
250 milliseconds.

C. View-based module Mvi

Mvi is the simple module. Since this module uses three
instantaneous sensor outputs without estimation of the envi-
ronment, this navigation task is partially observable. However,
this module is sometimes applicable if there are no obstacles
on the path. In addition, the computational cost is cheap.

State representation is constructed from θd and a distance
to the nearest obstacle dn (see Fig. 2 (d)).

bvi,j(x) = exp
(−‖x− xj‖2/ϕvi

)
,

where x = [θd, do, dn] and ϕvi is a width of the basis function,
respectively. We distribute 81 basis functions uniformly for
three dimensional space. Furthermore, one basis function is
added to represent with the situation when the destination is
invisible. It takes 500 milliseconds to make decisions.

D. Place-based module Mpl

The state used in Mpl is the estimated global position.
In the real rat’s hippocampus, neurons with spatial firing
properties have been reported by several researchers. Although
developing a computational model for spatial learning is
also important research issue for robotics and computational
neuroscience, we just use the existing engineering approach
based on the method of Markov localization [12]. We adopt a
grid-based representation, where the spatial resolution is 15 cm

and the angular resolution is 30 degrees. For our environment
of size 3× 3 m2 the state space consists of 450 states.

bpl,j(x) (j = 1, . . . , 450) denotes the robot’s belief at
position x = xj . Here, x = [x, y, θ] is a location where x and
y are Cartesian coordinates and θ is the robot’s orientation.
Initially, bpl,j(x) reflects the initial state of knowledge: if
the robot knows its starting position, bpl,j(x) is centered on
the correct location; if the robot does not know its initial
location, bpl,j(x) is uniformly distributed to reflect the global
uncertainty of the robot. The latter is the case in all our
experiments. When CR make a transition from position x to
x′ by executed action u,

bpl,j(x′)←
∑
x

Pr(x′|x, u)bpl,j(x),

where Pr(x′|x, u) denotes the probability obtained from a
model of the robot’s kinematics. Let s denote sensor read-
ings about the direction of four landmarks, and Pr(s|x) the
likelihood of perceiving s at x. Pr(s|x) is usually referred to
as map of the environment. When CR senses s, the belief is
updated according to the following rule:

bpl,j(x)← η Pr(s|x)bpl,j(x),

where η is a normalizer that ensures that the belief bpl,j(x)
sums up to 1 over all x.Mpl requires 1, 200 milliseconds for
making a decision. This module can be regarded as the most
complex module.

E. Other settings

CR is initially placed at the position A of the environment.
If CR reaches the destination or the pre-specified time interval
(1 minute) expires, the episode is considered to be over and
a new one begins. In order for CR to move to the new
starting position, CR used a policy πwander given by the human
designer.

CR receives a positive reward r = 1 when it reaches
the destination. If, instead, it makes a collision with the
obstacle or the wall, a negative reward r = −0.1 is given
to CR. Otherwise, r = 0. Learning is performed in the real
environment. We do not control the inverse temperature, that
is β = 1. Other parameters are set as follows: ε = 0.2,
αin = αvi = αpl = 0.1, γ = 0.995. These values were
determined by trial and error.
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Fig. 3. Experimental results in the navigation task in the real environment. (a) The number of successful navigation in 50 episodes for each method. (b)
The ratio for Sync to select one out of three modules in 50 episodes. Black, magenta, and green bars represent the ratio of using Min, Mvi, and Mpl,
respectively. (c) The ratio for Sync to select one out of three modules. Same color coding is used in (b).

IV. EXPERIMENTAL RESULTS

A. Learning curves with respect to the number of episodes

To elucidate the advantage of our proposed method, we
test the following three methods: Innate, View, and Place,
where they mean that CR is controlled by the module Min,
Mvi, and Mpl, respectively. Sync is our previous method
[6] in which all modules are updated at the same sampling
rate. Async is the proposed method taking into account the
sampling rates. Since we have already shown the efficiency of
the use of importance sampling [6], we did not evaluate the
method without importance sampling in this experiment.

Every 50 episodes, we counted the number of successful
navigation from five starting points in order to measure the
performance. Fig. 3 (a) shows the learning curves of the
number of successful navigation. Since the stochastic policy of
Innate was not changed, their performance did not improved
at all. Although View achieved the same performance as
Innate after about 300 episodes, its performance did not
exceed that of Innate. By observing the obtained behaviors,
we found that View could avoid collisions with obstacles but
it sometimes lost the destination. The performance of Place
was improved much slower than that of View because the
search space of Place is very large. However, Place obtained

better performance than View did since this navigation task is
completely observable problem for Place.

It took about 150 episodes for both Sync and Async to reach
the same performance of Innate. At the end of learning, they
obtained the best performance. Figs. 3 (b) and (c) show the
selection ratio during learning. They often used Mvi at the
middle of learning. Sync often used Mpl at the end while
Async switched Mvi and Mpl with almost same probability.
These results showed that Mpl was trained efficiently by
simple moduleMvi thanks to CLIS architecture. Note that the
appropriate modules were automatically selected according to
the progress of learning. Although these results were consistent
with our previous experiments [6], there were no significant
differences between Sync and Async. Then, we investigated
the original performance in more detail.

B. Effects on the actual performance

Fig. 4 shows the probability to selectMpl over the location
at the end of learning. Since Min was seldom selected at the
end of learning, we can roughly approximate the relation

Pr(Mvi|x) + Pr(Mpl|x) � 1, for all x,

where Pr(Mi|x) is the probability to select the module Mi

at the state x. Therefore, Fig. 4 also suggests the probability
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to select the module Mvi. Fig. 4 (a) shows that Sync usually
used Mpl at the end of learning. On the contrary we found
that Async sometimes decided to use Mvi according to the
location shown in Fig. 4 (b). Roughly speaking, Async used
Mvi when there were no obstacles on the path to the desti-
nation. Since Mvi had a capability to react faster than Mpl,
Mvi could increase the maximum velocity to be executed. As
a result, CR with Async moved a little bit quickly whenMvi

was available for accomplishing the task.
In order to compare the actual performance, we measured

the average time steps from five starting positions to the
destination. Fig. 5 shows the comparison of Sync and Async.
When CR started from the positions A, B, and C, On the
contrary, we found no significant differences in the elapsed
time from the starting positions D and E between Async and
Sync. These experimental results suggested that the extended
CLIS could improve its original performance performance by
considering the reaction time.

V. DISCUSSION

This paper proposed the developmental learning methods
for the robot with multiple heterogeneous learning modules,
in which each module updates the internal parameters in a
different sampling rate. We have applied our proposed method
to the navigation task. Experimental results showed that the

learning module with the simple state representation was
important because

• it helped the learning module with the simple state
representation by collecting meaningful experience, and

• it was selected to improve the original robot performance
if the module with the simple state representation is
possible to accomplish the task.

We claim that one-way development from the simple to
the complex state representation is not always good strategy
for developmental learning. In other words, multiple state
representations should be used simultaneously for successful
development.

We plan to integrate the proposed method with a spatial
learning mechanism based on models of the rodent hippocam-
pus [13]. Although CLIS is not plausible computational model
from a viewpoint of computational neuroscience, we believe
that CLIS gives us the first step to elucidate developmental
learning system suited for real animals.
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