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Abstract 

Most courses on computational modeling involve having 
students skilled in the computer science implement various 
computational models.  Here, a course is presented which is 
aimed at students with minimal programming background.  
The focus is on using a large number of different models on 
various problems.  Students learn how well various 
algorithms work, rather than how to implement them.  They 
are provided with simple implementations and sample code 
that makes use of these implementations, and are then asked 
to adapt the given system to deal with other problems.  This 
material is presented as part of the ongoing development of 
this course, and it is hoped that others may find it useful for 
their own courses and research. 

Introduction 
Courses in computational modeling tend to presume a 
significant amount of programming skill on the part of the 
student.  Typical projects include implementing neural 
networks from scratch, or writing one’s own genetic 
algorithm to solve a particular problem.  These sorts of 
projects mean that students who are not specialists in 
computer science spend a disproportionate amount of time 
debugging.  Furthermore, since the focus in these courses is 
on implementation, less time is spent discussing what sorts 
of problems they tend to work well or work poorly on. 

In this paper, a course is presented which addresses these 
problems.  The course ran at Carleton University in the 
winter term of 2004 as Cognitive Science 5001: Cognition 
and Artificial Systems.  The only prerequisite was either 
graduate standing or a single previous programming course 
of any sort, and it was open to both graduate and fourth-year 
undergraduate students within the Institute of Cognitive 
Science. 

Course Organization 
Since the goal of the course was to give students practical 
experience using these various algorithms, the major content 
(worth 70%) of the course was weekly assignments.  After 
each week’s lecture, students were given a working 
implementation of a model (such as Kohonen Maps or 
Evolutionary Strategies).  They were also provided with 
working code that used this implementation to perform a 
typical task.  The students were then asked to modify this 
software to perform different tasks, and to modify the 
various parameter values of the models.  The performance 
of these models in these conditions was then examined. 

To allow the students to demonstrate a more in-depth 
mastery of one particular algorithm, the final paper for the 
course involved taking a published paper and replicating 
those results therein.  For this paper, students were also 

expected to discuss the effects of varying various 
parameters of the model, and look at the effect of varying 
the problem representations used.  In this way, the students 
perform a useful role within the cognitive modeling 
community, as this detailed replication is relatively rare. 

The Computational Models 
For all of these models, the students worked exclusively 
with the Python programming language, which was chosen 
for its ease of use and clear syntax.  None of the students 
had any prior exposure to it.  This standardization allowed 
for direct comparisons between models, and made it easy to 
combine models together.  This author has also found 
Python to be highly suitable for modeling research outside 
of the classroom. 

The programs were carefully designed to be as easy to 
read, understand, and modify as possible.  Students 
commented that this significantly increased their confidence 
that their changes caused the programs to do what they 
wanted them to do.  Furthermore, the success of this clarity 
was embarrassingly shown when one student (who had no 
previous programming experience) uncovered bugs in the 
implementations of two different models.  These were 
quickly fixed, and demonstrate the code’s readability.  

Cellular Automata 
To begin the course, students examined systems both with 
agents in the world (e.g. Langton’s Vants) and without (e.g. 
Conway’s Game of Life and Langton’s Loops).  Variations 
of different rules and different types of Vants were 
investigated.  A collective sorting simulation (Deneubourg 
et al, 1991) was also replicated.  This module was used 
throughout in the course as a grid-world environment. 

Genetic Algorithms and Evolutionary Strategies 
A wide variety of evolutionary options were investigated.  
This included various implementations of mutation and 
crossover, elitism, tournament and roulette selection, rank-
based selection, steady-state models, and the recent 
development of neutral network theory, including extrema 
selection (Stewart, 2001).  These techniques were applied to 
the traveling salesperson problem, genetic programming, 
and the evolution of agent behavior on a grid-world. 

In a somewhat uncommon aspect of the course, Genetic 
Algorithms were directly compared to Evolutionary 
Strategies.  Students were exposed to the significant 
advantage that ES algorithms have on parameter-optimizing 
problems (in this case, an ant pheromone model).  They 
were also encouraged to investigate the effect of using ES-
(µ/ρ+λ) selection within more typical GA problems. 



Perceptrons and Multi-Layer Perceptrons 
Here students used back-propagation learning to investigate 
the abilities of this common neural network architecture.  Of 
interest was the effect of learning rate, momentum, varying 
numbers of hidden nodes, different approaches to 
representations, and the significant effect of normalizing 
input and output data.  These systems were also compared 
to a memorization-based approach to supervised learning to 
indicate the practical speed advantages of these models. 

Simple Recurrent Neural Networks 
In this section, the core findings of Elman’s (1990) paper 
introducing this model were replicated.  The capabilities of 
the networks for maintaining context over longer and longer 
periods of time were investigated, as was the effect of using 
a non-obvious representation scheme in his syllable-
identification problem. 

Kohonen Self-Organizing Feature Maps 
Kohonen Maps were compared to standard clustering 
algorithms, and demonstrated in terms of their ability to 
change the dimensionality of input data.  Special attention 
was given to recent results (such as Touzet, 1997) showing 
that Kohonen maps can be used as an automatic way of 
adjusting representations before presenting them to standard 
supervised learning systems.  To show this, the Kohonen 
map was used as a pre-processor to change the 
representation of the input data into a form that proved to be 
more suitable for learning by the backprop networks. 

Fuzzy ART and Fuzzy ARTMAP 
Both the unsupervised and the supervised versions of 
Adaptive Resonance Theory were investigated.  The 
advantages in terms of learning rate were discussed, as was 
their ability to indicate that a particular input is unknown to 
the network.  The models were also dissected to reveal the 
learned rules.  The effect of the vigilance parameter and the 
order of presentation of the input was also studied. 

Q-Learning and Sarsa 
Both of these Temporal Difference algorithms were 
compared, highlighting the effects of the very slight 
difference between the two.  Their behavior on the Cliff 
grid-world was discussed, and students were able to develop 
their own worlds to run the algorithms in.  Students adjusted 
the various parameters of the learning algorithm, and saw 
the effects of changing the reinforcement regime. 

ACT-R 
In a potentially surprising move, a stripped-down 
implementation of ACT-R was also included as part of the 
course.  This version only supported the rule-matching and 
chunk-activation learning aspects of ACT-R.  This was 
sufficient for demonstrating the successful Rock-Paper-
Scissors ACT-R model (Lebiere & West, 1999), allowing 
students to see how the model reacts to different patterns in 

its opponent’s play.  By watching the model adjust to 
different opponent strategies, students gained insight into 
how the ACT-R learning rule dynamically affects its 
behavior.  Also, it provided some evidence that it is possible 
to develop an ACT-R model that is separate from the 
current LISP-based implementation. 

Future Additions 
In preparation for teaching this course again, a few small 
changes are being made to the course.  The interfaces to the 
unsupervised and supervised learning algorithms are being 
standardized so that they can be easily swapped, allowing 
direct comparisons to be made.  Some of the slower code 
(such as the back-propagation system) is being modified to 
interface with existing (significantly faster) C 
implementations, while still maintaining the same simple 
interface as used in the course.  Also, the ACT-R library is 
being expanded with the missing learning mechanisms.   

Conclusions 
The course successfully exposed the students to a variety of 
widely used models, and allowed them more time to work 
with these models than would have been possible if they 
were to perform implementations themselves.  The 
implementations given to the students were in a clear and 
readable language, allowing them to inspect the algorithms 
themselves to see exactly how they worked.  These modules 
were also flexible enough to be easily combined and used 
by the students to replicate published research.  Indeed, in a 
number of cases, the students’ results revealed mistaken 
assumptions in the original research. The course was also 
found to be accessible to students with no previous 
programming experience. 

Everyone is encouraged to make use of the materials 
developed for this course.  The complete lecture notes and 
all software modules are available online at: 

http://chat.carleton.ca/~tcstewar/cgsc5001/ 
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