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Abstract

Most courses on computational modeling involve having
students skilled in the computer science implement various
computational models. Here, a course is presented which is
aimed at students with minimal programming background.
The focus is on using a large number of different models on
various problems. Students learn how well various
algorithms work, rather than how to implement them. They
are provided with simple implementations and sample code
that makes use of these implementations, and are then asked
to adapt the given system to deal with other problems. This
material is presented as part of the ongoing development of
this course, and it is hoped that others may find it useful for
their own courses and research.

Introduction

Courses in computational modeling tend to presume a
significant amount of programming skill on the part of the
student. Typical projects include implementing neural
networks from scratch, or writing one’s own genetic
algorithm to solve a particular problem. These sorts of
projects mean that students who are not specialists in
computer science spend a disproportionate amount of time
debugging. Furthermore, since the focus in these courses is
on implementation, less time is spent discussing what sorts
of problems they tend to work well or work poorly on.

In this paper, a course is presented which addresses these
problems. The course ran at Carleton University in the
winter term of 2004 as Cognitive Science 5001: Cognition
and Artificial Systems. The only prerequisite was either
graduate standing or a single previous programming course
of any sort, and it was open to both graduate and fourth-year
undergraduate students within the Institute of Cognitive
Science.

Course Organization

Since the goal of the course was to give students practical
experience using these various algorithms, the major content
(worth 70%) of the course was weekly assignments. After
each week’s lecture, students were given a working
implementation of a model (such as Kohonen Maps or
Evolutionary Strategies). They were also provided with
working code that used this implementation to perform a
typical task. The students were then asked to modify this
software to perform different tasks, and to modify the
various parameter values of the models. The performance
of these models in these conditions was then examined.

To allow the students to demonstrate a more in-depth
mastery of one particular algorithm, the final paper for the
course involved taking a published paper and replicating
those results therein. For this paper, students were also

expected to discuss the effects of varying various
parameters of the model, and look at the effect of varying
the problem representations used. In this way, the students
perform a useful role within the cognitive modeling
community, as this detailed replication is relatively rare.

The Computational Models

For all of these models, the students worked exclusively
with the Python programming language, which was chosen
for its ease of use and clear syntax. None of the students
had any prior exposure to it. This standardization allowed
for direct comparisons between models, and made it easy to
combine models together. This author has also found
Python to be highly suitable for modeling research outside
of the classroom.

The programs were carefully designed to be as easy to
read, understand, and modify as possible.  Students
commented that this significantly increased their confidence
that their changes caused the programs to do what they
wanted them to do. Furthermore, the success of this clarity
was embarrassingly shown when one student (who had no
previous programming experience) uncovered bugs in the
implementations of two different models. These were
quickly fixed, and demonstrate the code’s readability.

Cellular Automata

To begin the course, students examined systems both with
agents in the world (e.g. Langton’s Vants) and without (e.g.
Conway’s Game of Life and Langton’s Loops). Variations
of different rules and different types of Vants were
investigated. A collective sorting simulation (Deneubourg
et al, 1991) was also replicated. This module was used
throughout in the course as a grid-world environment.

Genetic Algorithms and Evolutionary Strategies

A wide variety of evolutionary options were investigated.
This included various implementations of mutation and
crossover, elitism, tournament and roulette selection, rank-
based selection, steady-state models, and the recent
development of neutral network theory, including extrema
selection (Stewart, 2001). These techniques were applied to
the traveling salesperson problem, genetic programming,
and the evolution of agent behavior on a grid-world.

In a somewhat uncommon aspect of the course, Genetic
Algorithms were directly compared to Evolutionary
Strategies.  Students were exposed to the significant
advantage that ES algorithms have on parameter-optimizing
problems (in this case, an ant pheromone model). They
were also encouraged to investigate the effect of using ES-
(WptA) selection within more typical GA problems.



Perceptrons and Multi-Layer Perceptrons

Here students used back-propagation learning to investigate
the abilities of this common neural network architecture. Of
interest was the effect of learning rate, momentum, varying
numbers of hidden nodes, different approaches to
representations, and the significant effect of normalizing
input and output data. These systems were also compared
to a memorization-based approach to supervised learning to
indicate the practical speed advantages of these models.

Simple Recurrent Neural Networks

In this section, the core findings of Elman’s (1990) paper
introducing this model were replicated. The capabilities of
the networks for maintaining context over longer and longer
periods of time were investigated, as was the effect of using
a non-obvious representation scheme in his syllable-
identification problem.

Kohonen Self-Organizing Feature Maps

Kohonen Maps were compared to standard clustering
algorithms, and demonstrated in terms of their ability to
change the dimensionality of input data. Special attention
was given to recent results (such as Touzet, 1997) showing
that Kohonen maps can be used as an automatic way of
adjusting representations before presenting them to standard
supervised learning systems. To show this, the Kohonen
map was used as a pre-processor to change the
representation of the input data into a form that proved to be
more suitable for learning by the backprop networks.

Fuzzy ART and Fuzzy ARTMAP

Both the unsupervised and the supervised versions of
Adaptive Resonance Theory were investigated.  The
advantages in terms of learning rate were discussed, as was
their ability to indicate that a particular input is unknown to
the network. The models were also dissected to reveal the
learned rules. The effect of the vigilance parameter and the
order of presentation of the input was also studied.

Q-Learning and Sarsa

Both of these Temporal Difference algorithms were
compared, highlighting the effects of the very slight
difference between the two. Their behavior on the Cliff
grid-world was discussed, and students were able to develop
their own worlds to run the algorithms in. Students adjusted
the various parameters of the learning algorithm, and saw
the effects of changing the reinforcement regime.

ACT-R

In a potentially surprising move, a stripped-down
implementation of ACT-R was also included as part of the
course. This version only supported the rule-matching and
chunk-activation learning aspects of ACT-R. This was
sufficient for demonstrating the successful Rock-Paper-
Scissors ACT-R model (Lebiere & West, 1999), allowing
students to see how the model reacts to different patterns in

its opponent’s play. By watching the model adjust to
different opponent strategies, students gained insight into
how the ACT-R learning rule dynamically affects its
behavior. Also, it provided some evidence that it is possible
to develop an ACT-R model that is separate from the
current LISP-based implementation.

Future Additions

In preparation for teaching this course again, a few small
changes are being made to the course. The interfaces to the
unsupervised and supervised learning algorithms are being
standardized so that they can be easily swapped, allowing
direct comparisons to be made. Some of the slower code
(such as the back-propagation system) is being modified to
interface  with  existing  (significantly faster) C
implementations, while still maintaining the same simple
interface as used in the course. Also, the ACT-R library is
being expanded with the missing learning mechanisms.

Conclusions

The course successfully exposed the students to a variety of
widely used models, and allowed them more time to work
with these models than would have been possible if they
were to perform implementations themselves. The
implementations given to the students were in a clear and
readable language, allowing them to inspect the algorithms
themselves to see exactly how they worked. These modules
were also flexible enough to be easily combined and used
by the students to replicate published research. Indeed, in a
number of cases, the students’ results revealed mistaken
assumptions in the original research. The course was also
found to be accessible to students with no previous
programming experience.

Everyone is encouraged to make use of the materials
developed for this course. The complete lecture notes and
all software modules are available online at:

http://chat.carleton.ca/~tcstewar/cgsc5001/
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