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Abstract

Reservoir computing (RC) is a new framework for neural cotapon. A reservoir is usually a re-
current neural network with fixed random connections. Iis #oiticle, we propose an RC model in
which the connections in the reservoir are modifiable. Spedly, we consider correlation-based
learning (CBL), which modifies the connection weight betwaegiven pair of neurons according to
the correlation in their activities. We demonstrate that.@Bables the reservoir to reproduce almost
the same spatiotemporal activity patterns in response tdeatical input stimulus in the presence of
noise. This result suggests that CBL enhances the robgsimése generation of the spatiotemporal
activity pattern against noise in input signals. We apply®RG model to trace eyeblink conditioning.
The reservoir bridged the gap of an interstimulus interedhieen the conditioned and unconditioned

stimuli, and a readout neuron was able to learn and expredsnkd conditioned response.

1 Introduction

Liquid state machines (LSM)[1] and echo state networks (E8Mre an emerging new framework for
neural computation. They were proposed independentlynandare unified under the name of reser-
voir computing (RC)[3]. An RC model consists of a recurreetwork called a “reservoir” that maps
input signals into a higher dimension, and a set of neurolsdcaeadouts” that receive inputs from
the reservoir to extract time-varying information. The gurtational power of RC is outstanding[4],
despite the simplicity of its structure and learning altfori compared with conventional recurrent
networks.

In the standard RC, the reservoir is assumed to have fixednawdnnections, although synaptic
weights in the brain can change dynamically depending ogrnial states and external inputs. In

this study, we consider the change of the computationabpednce of an RC model that possesses
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learnability in its reservoir. Specifically, we apply cdaton-based learning (CBL), which has widely
been assumed in self-organizing neural systems[5, 6],napic weights in the reservoir to examine
whether the computational performance of the RC model isongw.

The reservoir generates a spatiotemporal activity patiErmeurons in response to an input stim-
ulus, and reproduce the same spatiotemporal activity nppattben the same stimulus is given in the
noise-free condition. If noise is added to the input stilsulwowever, the generated activity pattern
may change for the repetition of trials. We demonstrate @it modifies connection weights in the
reservoir under the repeated presentations of input stsouhat the model becomes to generate al-
most the same spatiotemporal activity patterns even in ¢i®yrsituation. This result suggests that
CBL enables computational performance of the RC model toosertolerant.

We also conduct the simulation of trace eyeblink conditigfir] to demonstrate the performance of
our RC model. In trace eyeblink conditioning, a subject isased to paired presentation of a transient
conditioned stimulus (CS, e.g., brief tone) and an uncaotid stimulus (US, e.q., airpuff to the eye)
that induces an eyelid closure with a temporal gap. Afted@wmning by repeated CS-US presentation,
the subject learns to close its eye in response to the trarG& with a delay equal to the interstimulus
interval (1SI) between the CS and US onsets (conditiongubrese; CR). In this conditioning paradigm,
how to bridge the gap is an important issue. We demonstrateotir RC model bridges the gap by

sustained activation of the reservoir and learns the CSdd48caation.

2 Materials and Methods

2.1 Model description

Figure 1 illustrates the schematic of our network model. Mioelel is built on the basis of our previous

model [8]. We added a new feature that synaptic weights ketvexcitatory neurons are updated
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according to CBL. The calculation of neural activity patieand the update of synaptic weights are
repeated several times, which we call trials. The modelistgief N excitatory neurons and the same

number of inhibitory neurons. L (k)

(t) be the activity of neurom of type & at timet at trial k.
& € {ex inh} indicates either excitatory or inhibitory neuron type. rhwuél)(t) which represents the
internal state of the neurongi‘) (t) is defined as

(k) (k)
uft P > 6,
Miy=] " )

0 otherwise

where#; is the constant threshold. The dynamics of the internaéstate given by the following

equations:
Uy (k) () ST
‘L’exd—fx' = O+ 17+ E iwem < exj Zex] (9% Zwexu <inhjZ lth ®), (2)
. du|nh| — _u® (t)+z Z t) (3)
inh—, — at Uinhi Winhi «exj Z ex1 Winhi «inhj |th(

wherer; is the time constamli(k)(t) is the external input to excitatory neuromt timet at trialk. A
uniform noise with intensity; ((—». n]) was added td,*(t) at each time step and for each neuron.
wei —¢j 1S the weight of the synaptic connection from neujoof type&’ to neuron of type&, where
£,& e {ex inh}. Synaptic weights among excitatory neurons are updated efery trial based on

CBL as follows: fork > 1,

(k 1) (k=1
w® Zt 0 Zex (t)ZEX] ® 1 (K—1)
exl «—exj — = k L 1 + 1 wexi <«~—exj’ (4)
\/Zt 0 ( )(t) \/Zt 0 ((Z_\XJ )(t)>

0

Wherewegy . o

is set atCex<_ex/N for anyi and j, andcex<_ex IS @ constant denoting the initial con-
nection weight. The first term of the right-hand side in EQ. r@presents the correlation between
activities of excitatory neuronisand j, whereT is the total simulation step for one trial,is a constant

scaling factor because the correlation takes the valueda#tW® and 1. The second term represents
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a memory effect of excitatory synaptic weights over trialthva decay constant,. We assume that

(k)

Weyi —exi

= 0 for anyk andi, indicating the absence of self-excitatory connectiang —exj is given
under the binomial distributioR (winhi —exj = 0) = P (Winhi —exj = Cinh—ex/N) = 0.5. wey —inhj IS
set atcex_inh if i = j and 0 otherwise: each inhibitory neuron inhibits its cqoaexling excitatory

NeUron.winhi —inhj IS set attinn—inh/ N for anyi andj for simplicity, indicating all-to-all inhibition.

We defined two stimuli CS1 and CS2 fed into the network as fedlto

1 ie{0---,200,te{0,---,50)
CS1 Ii(t) = 4
0 otherwise
(5)
1 ie{200---,400,te{0,---,50
CS2 Ij(t) = {
0 otherwise

It should be noted that CS1 and CS2 activate different excitaneurons in the reservoir.

2.2 Data analysis

We study how the activity pattern of excitatory neurons ie thservoir is evolved by the trigger of
an input stimulus. To do this, first we define the autocon@hadf activities of excitatory neuron
population at timeg andt + At at trialk as follows:

Y 299 0z¥ t + At

5 (20) 5 (o)

The numerator represents the inner product of two populstid active excitatory neurons at times

ch, t + At) =

(6)

andt + At, and the denominator normalizes the autocorrelation gattfells in the range of0, 1]
becausai(k) (t) takes only positive values. It takes a value of 1 if these fains are identical, and it

becomes 0 if no neurons are active at both times. We then der@milarity index at triak by:

.
1

sk At=—§ cOt, t + At). 7

(A1) tho (t,t + Al) (7)



The similarity index is the average of Eq. (6) with respedt.tdhat is, this index represents how two
populations separated kyt are correlated, on average. In particular, it hdB8(0) = 1 for anyk
because of trivial identity. It holdS® (At) = 0.5 for someAt, if the population of active excitatory
reservoir neurons changes with time, and two populatiopars¢ed byAt are uncorrelated. It holds
Sk (At) = 0 for someAt, if any two populations separated it have no overlap. Moreover, if the
generation of the population of active excitatory reserw@urons is nonrecurrent, the index would

decrease monotonically. We define the standard deviatitmeddimilarity index as well:

=
k 1 2
o (At) = = t; (Co(t, t + At — SK(AD)*, (8)

We also define the reproducibility index at triaés follows:

20ty
RO (1) — Do Zei (DZg 7 (D) 9)

\/Zi 29 t) \/Z. 2% 1><t>

The reproducibility index represents how two activity patts of neurons at two successive trials are

similar to each other at the identical time steps. If two\aigtipatterns are completely identical, the
index would be 1 for any. If two activity patterns gradually diverge with time, thedex gradually
decreases.

The values of basic parameters are as the same as that weregedigly [8] exceptex<ex. They
are,N = 10007 = 3000zex = 50.0,7innh = 70.0, Oex = 0.16innh = 0.1, Cexex = 2.0, @ = 0.002,

Cinh—ex = 4.0, Cex—inh = 16.0, Cinhinh = 6.0, andr,, = 10.

2.3 Simulation of trace eyeblink conditioning

We carry out simulation of trace eyeblink conditioning tanamstrate the performance of our RC
model.
We consider a simple model which has one readout neuron. @tn is fed the output of all

excitatory neurons in the reservoir through modifiable emtions. The activity of the readout neuron



o(t) is given by:
N
o(t) = Y wiZexi (1), (10)
i=1
wherew;j is the connection weight from neuraern the reservoir to the readout neuron. The readout

neuron receives the binary instruction sigedl) as well. The connection weights are updated at each

time step as follows:

1 Zexi (1) > O ande(t) = 1,
wi (1) = wi(t) + 10,002 2z (t) > 0 ande(t) = 0, (11)
0 otherwise

This rule represents that the connection from a neuronesgthened if the neuron is active and the
instruction is given simultaneously, and that the conects weaken if the neuron is active but the
instruction is not given. In other words, conjunctive stlation of the afferent and instruction inputs
makes the connection stronger, whereas stimulation oftbelafferent input weaker.

We use CS1 and CS2 as CSs, and define 2 USs (US1, US2) as follows:

1 t=300
US1 et) =
0 otherwise
(12)
1 t=1000
US2 e(t) = ;
0 otherwise

CSs and USs are paired and presented to the network as @esloalow.

3 Results

3.1 Generation of a sequence of active neuron populations

First, we studied the basic property of our reservoir. Fegea represents the activity pattern of the
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first 100 out ofN excitatory neuronszty (t) > 0) when the network received CS1. These neurons
became active immediately after the stimulus onset, an@mweht random repetition of transitions
between active and inactive statesffor 50. The random repetition of state transitions was susdaine
even after the cessation of the input stimulus at 200, which is due to the recurrent connections
among excitatory neurons. Thus, the transient input stisieoked the sustained neural activity. Dif-
ferent neurons exhibited different temporal transitiotigras, and so the population of active neurons
changed gradually with time. This random transition of a¢activity was made by the random re-
current inhibitory connections between excitatory anduitbry neurons. The connections projected a
population of active neurons into another, uncorrelatguifaiion of active neurons repeatedly, and the
nonrecurrent sequence of populations of active neurongyemsrated. To confirm the nonrecurrence
of this sequence, we calculated its similarity index in 2Q. The index takes 1 att = 0 because

of the trivial identity. The index monotonically decreasesiAt deviated from 0, indicating that two
populations of active neurons temporally separated\bypecame dissimilar aat increased. Taken
together, our reservoir generated a nonrecurrent sequémupulations of active excitatory neurons
by the trigger of a transient input stimulus. Because treome-to-one correspondence between a time
step from the stimulus onset and one population of activeamsuat the time, the sequence of active
neuron populations can represent the passage-of-timethestimulus onset.

We then examined the robustness of the sequence genergtorsianoise in input signals. We
ran two simulations with different noise and calculatedréqgroducibility index between the two se-
qguences of active neuron populations. As shown in Fig. 2Zeréproducibility was highest at= 0
and monotonically decreased towards 0.85 as time elapsggdesting that these two sequences were
almost identical at first, and then they diverged into défersequences gradually with time. This de-
crease ended at= 1000 and after that the reproducibility index was almosttant (data not shown),

suggesting that although we conducted simulation for 30086 steps T = 3000), the present model



was capable of representing only the first 1000 time stepsruiné current parameter setting. In the
following, therefore, we showed simulation results only tlee first 2000 time steps. We also calcu-
lated the reproducibility index between the activity pattgenerated in response to CS1 and a random
activity pattern to obtain a lower bound of the index. As taedom activity pattern, we used the activ-
ity pattern generated in response to CS2. W found that thexigdickly increased from 0 to 0.8 within
500 time steps, and was kept constant thereafter (data oetnghTherefore, the reproducibility index
with a random activity pattern is lower than 0.85 in the sjestdte.

Some other properties, including how to stop the sustaieedah activity, has been reported previ-

ously [8].

3.2 Enhanced robustness of CBL in sequence generation

Next, to examine the effect of CBL on the robustness in secgigeneration, we carried out 21 simu-
lations repeatedly with CS1 as an input stimulus. We catedl@0 reproducibility indices for 20 pairs
of two successive trials and 20 similarity indices for 2Qgyéartrials.

Figure 3 represents similarity (a) and reproducibility ifiijices at 1st, 10th and 20th trials. The
similarity did not change largely across trials, whereasréproducibility increased trial by trial. This

result indicates that CBL makes the sequence generatiarst,obithout affecting the nonrecurrence

property.

3.3 Embedding two sequences in a single reservoir

Reservoirs have ability to map different inputs into diffiet spatiotemporal activity patterns in a higher
dimension [9, 10]. We questioned whether our reservoir hasame ability, and conducted the fol-
lowing simulation. Figure 4a shows the schematic of ingivegresentation of 2 CSs to the reservoir.

We repeated 10 sets of trials of CS presentation. Each seiatsf tonsists of a pair of CS1 trials
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followed by another pair of CS2 trials. For each set of triale calculated the reproducibility indices
for responses to CS1 and CS2 using a pair of CS1 trials anotk82 trials, respectively.

Figure 4b shows these reproducibility indices. Here, RI2, RI3, and RI4 denote the indices for
CS1 and CS2 at the first trial and the indices at the final téalpectively. Compared between RI1 and
RI3, and RI2 and RI4, the reproducibility of responses to @8d CS2 was evidently increased at the
10th set of trials. This result suggests that CBL enhanocedabustness of the sequence generation for

2 different stimuli simultaneously.

3.4 Simulation of trace eyeblink conditioning

We carried out two simulations of trace eyeblink conditraniln the first simulation, CS1 was paired
with both US1 and US2 to examine whether our RC model can leadtiple timings. In the second
simulation, CS1 was paired with US1, whereas CS2 with US2hi&ysimulation, we studied whether
two sequences generated by CS1 and CS2 represent diffeeembnptraces.

Figure 5a shows the readout activities when CS1 was paitidbeth US1 and US2 with or without
CBL. In both cases with or without CBL, the first peak appeatledrly att ~ 300. The building-up
activity started at ~ 600 and reached the maximuntat 1000 (data not shown). Namely, there is the
second peak @t= 1000. The width of the second peak was larger than that ofrgteiak, suggesting
that the precision of representation of longer time beconmse. On the other hand, CBL improved
the reproducibility of the activity pattern generationle reservoir by strengthen connections between
correlated neurons while weaken between less-correlatatbns. This manipulation increased the
overall activity of the reservoir and made the output sigodhe readout stronger. As a result, the
amplitude of the readout activity became larger with CBLntlxathout CBL.

Figure 5b shows activities of the readout neuron after tiparsg¢e conditioning of CS1-US1 and

CS2-US2. The activity of the readout neuron in response tb €8ched the maximum arouhd=
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300, and then gradually decreased. On the contrary, theueagtivity in response to CS2 steadily

increased and reached the maximunt at 1000. Both cases showed single peak activities around
the instructed times, indicating that there was little stakk between two sequences of active neuron
populations for CS1 and CS2. Thus, our reservoir with CBLgw@ency to generate distinct sequences

of active neuron populations for different input stimuli.

4 Discussion

In conventional RC, a reservoir is composed of neuronsdoterected with fixed connection weights,
and acts as a static nonlinear filter that maps input signatsa higher dimension. Because the dy-
namics is deterministic due to the fixed connections, a vegegenerates the identical output signals
for the identical input stimulus in noise-free condition.noisy condition, however, the reservoir could
generate different output signals for the identical inpuslus. To generate the almost identical output
signals despite the presence of noise, learning must bepoiaied. In this article, we parsimoniously
extended the convention of RC so that the synaptic weightgdaa excitatory neurons are allowed to
change according to CBL. The CBL improved the reprodudibdf the output signals for the identical
input stimulus in the noisy condition. This made the outpghals to readout neurons stronger, and
eventually increased the amplitude of readout neuronsrefdre, CBL was demonstrated to be use-
ful for robust RC against noise. We also conducted the sitiomaf trace eyeblink conditioning and
confirmed that the readout neuron was able to learn and esgrdee instructed time.

In the construction of our reservoir, connections betweeita&ory neurons work to sustain neural
activity even after the cessation of input stimuli, theseveen inhibitory neurons control the total ac-
tivity of neurons, and recurrent random connections betveeitatory and inhibitory neurons cause

random repetition of transitions between active and inacttates of neural population. This con-
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struction seems consistent with experimental studiesglwluggest that inhibitory neurons play an
important role for generating complex spatiotemporalvégtipatterns of excitatory neurons in the
olfactory bulb during odour discrimination [11] and in theefrontal cortex during working memory

tasks [12]. Moreover, these functional roles of the conpastin our RC model elucidate properties
of the reservoir beyond a blackbox generating spatioteattivity patterns as in the previously
proposed RC models [1, 2].

The present model can represent up to 1000 time steps ureleuttent parameter setting. We
could extend the maximal time steps by, for example, scdhegime constantsy, tinn). We could
also reduce the inhibition to excitatory neurarg. innh to increase the reproducibility index, which,
however, increases the similarity index as well and resualtise worse separation of two time steps in
the simulation of trace eyeblink conditioning. There isaalx-off between increasing the reproducibil-
ity and decreasing the similarity.

Correlation-based learning incorporated in the resenvmdified the connections among excita-
tory neurons such that connections between well-cortlageirons are strengthened, whereas these
between less-correlated neurons are weakened. Owing totG8hetwork was self-organized and the
generation of sequence of active neuron populations beocame-tolerant. Furthermore, it would be
of interest to examine the property of the resulting conbaanatrix after the learning in terms of, for
example, sparseness or scale-freeness.

Although RC is a promising concept in the field of modern nkeaoanputation, many problems
remain to be solved for enabling its practical use. One oirttportant problems was how to determine
neural connections to achieve robust and efficient reservoicorporation of CBL that we showed here

provides a simple solution to construct robust reservaiteraatically.
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Figure 1. Schematic of our network model. The model consibts/o networks: the reservoir and
readouts. The reservoir is a recurrent network composedaifagory and inhibitory neurons. Ex-
citatory neurons receive external inputs representinglitiomed stimuli (CS, Eq (5)). Four types of
connections, excitatory to excitatory, excitatory to itory, inhibitory to excitatory, and inhibitory
to inhibitory, are assumed. Connection weights betweeita®cy neurons are modifiable by CBL
(Eq. (4)), whereas the weights of other connections are faseith conventional RC models. On the
other hand, a readout neuron receives inputs from excjtegservoir neuronsy (t), 1 <i < N) and
the input representing unconditioned stimuli (US, Eq (1Z))e connection weights between excitatory

reservoir neurons and the readout neuron are modifiablegmrgised learning rule (Eqg. (11)).
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Figure 2: The basic property of the reservoir in our RC mo¢Bl Active states of the first 100 out of
N excitatory neuronsz, (t) > 0). The abscissa and ordinate represent time and neurax iedgec-
tively. A horizontal line represents the duration of the\acstate of a neuron. (b) The similarity index
of this activity pattern. The abscissa and ordinate are tifierence (At) and the index, respectively.
The solid line indicates the mean index value, whereas tag iggion represents the standard devia-
tion of the index. (c) The reproducibility index between tagquences of active neuron populations

generated under different noise. The abscissa and ordegatesent time and the index, respectively.
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Figure 3: Effect of CBL for the sequence generation againo&en (a) Similarity indices for the se-
guences of active neuron populations at 1st (solid line)j {dbtted line) and 20th (dashed line) trials.

(b) Reproducibility indices for the same sequences at theegdals. Conventions as in Figs. 2b,c.
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Figure 4. Embedding two sequences in a single reservoirS¢agmatic of the simulation. Ten sets
of trials of the simulation were conducted. Each set ofgr@nsisted of a pair of CS1 trials and a
successive pair of CS2 trials. Reproducibility indicesmstn (1) CS1 trials at the 1st trial set, (2) CS2
trials at the 1st trial set, (3) CS1 trials at the last trid| s@d (4) CS2 trials at the last trial set were
calculated and labeled as RI1, RI2, RI3, and RI4, respdgtifb) Reproducibility indices obtained
from simulations. RI1 (gray solid line), RI2 (gray dottedd), RI3 (black solid line) and R14 (black

dotted line) were plotted. Conventions as in Fig. 2c.
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Figure 5: Activity of the readout neuron in the simulatiortraice eyeblink conditioning. (a) Activities
of the readout neuron with CBL (black line) and without CBLdyg line). The simulation was per-
formed under the pairing of CS1 with both U1 300) and US2t(= 1000). (b) Activities of the

readout neuron when CS1 was paired with US1 (solid line) amehwCS2 was paired with US2 (dotted

line). The abscissa and ordinate represent time and thetgcti the readout neuron, respectively.



