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Abstract

Reservoir computing (RC) is a new framework for neural computation. A reservoir is usually a re-

current neural network with fixed random connections. In this article, we propose an RC model in

which the connections in the reservoir are modifiable. Specifically, we consider correlation-based

learning (CBL), which modifies the connection weight between a given pair of neurons according to

the correlation in their activities. We demonstrate that CBL enables the reservoir to reproduce almost

the same spatiotemporal activity patterns in response to anidentical input stimulus in the presence of

noise. This result suggests that CBL enhances the robustness in the generation of the spatiotemporal

activity pattern against noise in input signals. We apply our RC model to trace eyeblink conditioning.

The reservoir bridged the gap of an interstimulus interval between the conditioned and unconditioned

stimuli, and a readout neuron was able to learn and express the timed conditioned response.

1 Introduction

Liquid state machines (LSM)[1] and echo state networks (ESN)[2] are an emerging new framework for

neural computation. They were proposed independently, andnow are unified under the name of reser-

voir computing (RC)[3]. An RC model consists of a recurrent network called a “reservoir” that maps

input signals into a higher dimension, and a set of neurons called “readouts” that receive inputs from

the reservoir to extract time-varying information. The computational power of RC is outstanding[4],

despite the simplicity of its structure and learning algorithm compared with conventional recurrent

networks.

In the standard RC, the reservoir is assumed to have fixed random connections, although synaptic

weights in the brain can change dynamically depending on internal states and external inputs. In

this study, we consider the change of the computational performance of an RC model that possesses
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learnability in its reservoir. Specifically, we apply correlation-based learning (CBL), which has widely

been assumed in self-organizing neural systems[5, 6], to synaptic weights in the reservoir to examine

whether the computational performance of the RC model is improved.

The reservoir generates a spatiotemporal activity patternof neurons in response to an input stim-

ulus, and reproduce the same spatiotemporal activity pattern when the same stimulus is given in the

noise-free condition. If noise is added to the input stimulus, however, the generated activity pattern

may change for the repetition of trials. We demonstrate thatCBL modifies connection weights in the

reservoir under the repeated presentations of input stimuli so that the model becomes to generate al-

most the same spatiotemporal activity patterns even in the noisy situation. This result suggests that

CBL enables computational performance of the RC model to be noise-tolerant.

We also conduct the simulation of trace eyeblink conditioning[7] to demonstrate the performance of

our RC model. In trace eyeblink conditioning, a subject is exposed to paired presentation of a transient

conditioned stimulus (CS, e.g., brief tone) and an unconditioned stimulus (US, e.g., airpuff to the eye)

that induces an eyelid closure with a temporal gap. After conditioning by repeated CS-US presentation,

the subject learns to close its eye in response to the transient CS with a delay equal to the interstimulus

interval (ISI) between the CS and US onsets (conditioned response; CR). In this conditioning paradigm,

how to bridge the gap is an important issue. We demonstrate that our RC model bridges the gap by

sustained activation of the reservoir and learns the CS-US association.

2 Materials and Methods

2.1 Model description

Figure 1 illustrates the schematic of our network model. Themodel is built on the basis of our previous

model [8]. We added a new feature that synaptic weights between excitatory neurons are updated
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according to CBL. The calculation of neural activity patterns and the update of synaptic weights are

repeated several times, which we call trials. The model consists of N excitatory neurons and the same

number of inhibitory neurons. Letz(k)
ξ i (t) be the activity of neuroni of type ξ at time t at trial k.

ξ ∈ {ex, inh} indicates either excitatory or inhibitory neuron type. Using u(k)
ξ i (t), which represents the

internal state of the neuron,z(k)
ξ i (t) is defined as

z(k)
ξ i (t) =



















u(k)
ξ i (t) u(k)

ξ i (t) > θξ ,

0 otherwise,

(1)

whereθξ is the constant threshold. The dynamics of the internal states are given by the following

equations:

τex
du(k)

exi

dt
= −u(k)

exi (t)+ I (k)
i (t)+

∑

j

w
(k)
exi←exj z

(k)
exj (t)−

∑

j

wexi←inh j z
(k)
inh j (t), (2)

τinh
du(k)

inhi

dt
= −u(k)

inhi (t)+
∑

j

winhi←exj z
(k)
exj (t)−

∑

j

winhi←inh j z
(k)

inh j (t) (3)

whereτξ is the time constant,I (k)
i (t) is the external input to excitatory neuroni at timet at trial k. A

uniform noise with intensityη ([−η, η]) was added toI (k)
i (t) at each time step and for each neuron.

wξ i←ξ ′ j is the weight of the synaptic connection from neuronj of typeξ ′ to neuroni of typeξ , where

ξ, ξ ′ ∈ {ex, inh}. Synaptic weights among excitatory neurons are updated after every trial based on

CBL as follows: fork ≥ 1,

w
(k)
exi←exj =

α

τw

∑T
t=0 z(k−1)

exi (t)z(k−1)
exj (t)

√

∑T
t=0

(

z(k−1)
exi (t)

)2
√

∑T
t=0

(

z(k−1)
exj (t)

)2
+

(

1−
1

τw

)

w
(k−1)
exi←exj , (4)

wherew
(0)
exi←exj is set atcex←ex/N for any i and j , andcex←ex is a constant denoting the initial con-

nection weight. The first term of the right-hand side in Eq. (4) represents the correlation between

activities of excitatory neuronsi and j , whereT is the total simulation step for one trial,α is a constant

scaling factor because the correlation takes the value between 0 and 1. The second term represents
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a memory effect of excitatory synaptic weights over trials with a decay constantτw. We assume that

w
(k)
exi←exi = 0 for anyk andi , indicating the absence of self-excitatory connections.winhi←exj is given

under the binomial distributionP(winhi←exj = 0) = P(winhi←exj = cinh←ex/N ) = 0.5. wexi←inh j is

set atcex←inh if i = j and 0 otherwise: each inhibitory neuron inhibits its corresponding excitatory

neuron.winhi←inh j is set atcinh←inh/N for anyi and j for simplicity, indicating all-to-all inhibition.

We defined two stimuli CS1 and CS2 fed into the network as follows:

CS1 Ii (t) =



















1 i ∈ {0, · · · , 200}, t ∈ {0, · · · , 50}

0 otherwise,

CS2 Ii (t) =



















1 i ∈ {200, · · · , 400}, t ∈ {0, · · · , 50}

0 otherwise.

(5)

It should be noted that CS1 and CS2 activate different excitatory neurons in the reservoir.

2.2 Data analysis

We study how the activity pattern of excitatory neurons in the reservoir is evolved by the trigger of

an input stimulus. To do this, first we define the autocorrelation of activities of excitatory neuron

population at timest andt +1t at trialk as follows:

C (k)(t, t +1t) =

∑

i z(k)
exi (t)z

(k)
exi (t +1t)

√

∑

i

(

z(k)
exi (t)

)2
√

∑

i

(

z(k)
exi (t +1t)

)2
. (6)

The numerator represents the inner product of two populations of active excitatory neurons at timest

and t + 1t , and the denominator normalizes the autocorrelation so that it falls in the range of[0, 1]

becausez(k)
i (t) takes only positive values. It takes a value of 1 if these populations are identical, and it

becomes 0 if no neurons are active at both times. We then definethe similarity index at trialk by:

S(k)(1t) =
1

T

T
∑

t=0

C (k)(t, t +1t). (7)
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The similarity index is the average of Eq. (6) with respect tot . That is, this index represents how two

populations separated by1t are correlated, on average. In particular, it holdsS(k)(0) = 1 for anyk

because of trivial identity. It holdsS(k)(1t) = 0.5 for some1t , if the population of active excitatory

reservoir neurons changes with time, and two populations separated by1t are uncorrelated. It holds

S(k)(1t) = 0 for some1t , if any two populations separated by1t have no overlap. Moreover, if the

generation of the population of active excitatory reservoir neurons is nonrecurrent, the index would

decrease monotonically. We define the standard deviation ofthe similarity index as well:

σ
(k)
S (1t) =

√

√

√

√

1

T

T
∑

t=0

(

C (k)(t, t +1t)− S(k)(1t)
)2

. (8)

We also define the reproducibility index at trialk as follows:

R(k)(t) =

∑

i z(k)
exi (t)z

(k−1)
exi (t)

√

∑

i

(

z(k)
exi (t)

)2
√

∑

i

(

z(k−1)
exi (t)

)2
. (9)

The reproducibility index represents how two activity patterns of neurons at two successive trials are

similar to each other at the identical time steps. If two activity patterns are completely identical, the

index would be 1 for anyt . If two activity patterns gradually diverge with time, the index gradually

decreases.

The values of basic parameters are as the same as that we used previously [8] exceptcex←ex. They

are, N = 1000,T = 3000,τex = 50.0,τinh = 70.0, θex = 0.1,θinh = 0.1, cex←ex = 2.0, α = 0.002,

cinh←ex= 4.0, cex←inh = 16.0, cinh←inh = 6.0, andτw = 10.

2.3 Simulation of trace eyeblink conditioning

We carry out simulation of trace eyeblink conditioning to demonstrate the performance of our RC

model.

We consider a simple model which has one readout neuron. The neuron is fed the output of all

excitatory neurons in the reservoir through modifiable connections. The activity of the readout neuron
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o(t) is given by:

o(t) =
N

∑

i=1

wi zexi (t), (10)

wherewi is the connection weight from neuroni in the reservoir to the readout neuron. The readout

neuron receives the binary instruction signale(t) as well. The connection weights are updated at each

time step as follows:

wi (t) = wi (t)+







































1 zexi (t) > 0 ande(t) = 1,

−0.002 zexi (t) > 0 ande(t) = 0,

0 otherwise

(11)

This rule represents that the connection from a neuron is strengthened if the neuron is active and the

instruction is given simultaneously, and that the connection is weaken if the neuron is active but the

instruction is not given. In other words, conjunctive stimulation of the afferent and instruction inputs

makes the connection stronger, whereas stimulation of onlythe afferent input weaker.

We use CS1 and CS2 as CSs, and define 2 USs (US1, US2) as follows:

US1 e(t) =



















1 t = 300

0 otherwise,

US2 e(t) =



















1 t = 1000

0 otherwise,

(12)

CSs and USs are paired and presented to the network as described below.

3 Results

3.1 Generation of a sequence of active neuron populations

First, we studied the basic property of our reservoir. Figure 2a represents the activity pattern of the
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first 100 out ofN excitatory neurons (zexi (t) > 0) when the network received CS1. These neurons

became active immediately after the stimulus onset, and underwent random repetition of transitions

between active and inactive states fort > 50. The random repetition of state transitions was sustained

even after the cessation of the input stimulus att = 200, which is due to the recurrent connections

among excitatory neurons. Thus, the transient input stimulus evoked the sustained neural activity. Dif-

ferent neurons exhibited different temporal transition patterns, and so the population of active neurons

changed gradually with time. This random transition of neural activity was made by the random re-

current inhibitory connections between excitatory and inhibitory neurons. The connections projected a

population of active neurons into another, uncorrelated population of active neurons repeatedly, and the

nonrecurrent sequence of populations of active neurons wasgenerated. To confirm the nonrecurrence

of this sequence, we calculated its similarity index in Fig.2b. The index takes 1 at1t = 0 because

of the trivial identity. The index monotonically decreasedas1t deviated from 0, indicating that two

populations of active neurons temporally separated by1t became dissimilar as1t increased. Taken

together, our reservoir generated a nonrecurrent sequenceof populations of active excitatory neurons

by the trigger of a transient input stimulus. Because there is one-to-one correspondence between a time

step from the stimulus onset and one population of active neurons at the time, the sequence of active

neuron populations can represent the passage-of-time fromthe stimulus onset.

We then examined the robustness of the sequence generation against noise in input signals. We

ran two simulations with different noise and calculated thereproducibility index between the two se-

quences of active neuron populations. As shown in Fig. 2c, the reproducibility was highest att = 0

and monotonically decreased towards 0.85 as time elapsed, suggesting that these two sequences were

almost identical at first, and then they diverged into different sequences gradually with time. This de-

crease ended att = 1000 and after that the reproducibility index was almost constant (data not shown),

suggesting that although we conducted simulation for 3000 time steps (T = 3000), the present model
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was capable of representing only the first 1000 time steps under the current parameter setting. In the

following, therefore, we showed simulation results only for the first 1000 time steps. We also calcu-

lated the reproducibility index between the activity pattern generated in response to CS1 and a random

activity pattern to obtain a lower bound of the index. As the random activity pattern, we used the activ-

ity pattern generated in response to CS2. W found that the index quickly increased from 0 to 0.8 within

500 time steps, and was kept constant thereafter (data not shown). Therefore, the reproducibility index

with a random activity pattern is lower than 0.85 in the steady state.

Some other properties, including how to stop the sustained neural activity, has been reported previ-

ously [8].

3.2 Enhanced robustness of CBL in sequence generation

Next, to examine the effect of CBL on the robustness in sequence generation, we carried out 21 simu-

lations repeatedly with CS1 as an input stimulus. We calculated 20 reproducibility indices for 20 pairs

of two successive trials and 20 similarity indices for 20 single trials.

Figure 3 represents similarity (a) and reproducibility (b)indices at 1st, 10th and 20th trials. The

similarity did not change largely across trials, whereas the reproducibility increased trial by trial. This

result indicates that CBL makes the sequence generation robust, without affecting the nonrecurrence

property.

3.3 Embedding two sequences in a single reservoir

Reservoirs have ability to map different inputs into different spatiotemporal activity patterns in a higher

dimension [9, 10]. We questioned whether our reservoir has the same ability, and conducted the fol-

lowing simulation. Figure 4a shows the schematic of instructive presentation of 2 CSs to the reservoir.

We repeated 10 sets of trials of CS presentation. Each set of trials consists of a pair of CS1 trials
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followed by another pair of CS2 trials. For each set of trials, we calculated the reproducibility indices

for responses to CS1 and CS2 using a pair of CS1 trials and thatof CS2 trials, respectively.

Figure 4b shows these reproducibility indices. Here, RI1, RI2, RI3, and RI4 denote the indices for

CS1 and CS2 at the first trial and the indices at the final trial,respectively. Compared between RI1 and

RI3, and RI2 and RI4, the reproducibility of responses to CS1and CS2 was evidently increased at the

10th set of trials. This result suggests that CBL enhanced the robustness of the sequence generation for

2 different stimuli simultaneously.

3.4 Simulation of trace eyeblink conditioning

We carried out two simulations of trace eyeblink conditioning. In the first simulation, CS1 was paired

with both US1 and US2 to examine whether our RC model can learnmultiple timings. In the second

simulation, CS1 was paired with US1, whereas CS2 with US2. Bythis simulation, we studied whether

two sequences generated by CS1 and CS2 represent different memory traces.

Figure 5a shows the readout activities when CS1 was paired with both US1 and US2 with or without

CBL. In both cases with or without CBL, the first peak appearedclearly att ≈ 300. The building-up

activity started att ≈ 600 and reached the maximum att = 1000 (data not shown). Namely, there is the

second peak att = 1000. The width of the second peak was larger than that of the first peak, suggesting

that the precision of representation of longer time becomesworse. On the other hand, CBL improved

the reproducibility of the activity pattern generation in the reservoir by strengthen connections between

correlated neurons while weaken between less-correlated neurons. This manipulation increased the

overall activity of the reservoir and made the output signalto the readout stronger. As a result, the

amplitude of the readout activity became larger with CBL than without CBL.

Figure 5b shows activities of the readout neuron after the separate conditioning of CS1-US1 and

CS2-US2. The activity of the readout neuron in response to CS1 reached the maximum aroundt =
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300, and then gradually decreased. On the contrary, the readout activity in response to CS2 steadily

increased and reached the maximum att = 1000. Both cases showed single peak activities around

the instructed times, indicating that there was little crosstalk between two sequences of active neuron

populations for CS1 and CS2. Thus, our reservoir with CBL haspotency to generate distinct sequences

of active neuron populations for different input stimuli.

4 Discussion

In conventional RC, a reservoir is composed of neurons interconnected with fixed connection weights,

and acts as a static nonlinear filter that maps input signals into a higher dimension. Because the dy-

namics is deterministic due to the fixed connections, a reservoir generates the identical output signals

for the identical input stimulus in noise-free condition. In noisy condition, however, the reservoir could

generate different output signals for the identical input stimulus. To generate the almost identical output

signals despite the presence of noise, learning must be incorporated. In this article, we parsimoniously

extended the convention of RC so that the synaptic weights between excitatory neurons are allowed to

change according to CBL. The CBL improved the reproducibility of the output signals for the identical

input stimulus in the noisy condition. This made the output signals to readout neurons stronger, and

eventually increased the amplitude of readout neurons. Therefore, CBL was demonstrated to be use-

ful for robust RC against noise. We also conducted the simulation of trace eyeblink conditioning and

confirmed that the readout neuron was able to learn and represent the instructed time.

In the construction of our reservoir, connections between excitatory neurons work to sustain neural

activity even after the cessation of input stimuli, these between inhibitory neurons control the total ac-

tivity of neurons, and recurrent random connections between excitatory and inhibitory neurons cause

random repetition of transitions between active and inactive states of neural population. This con-
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struction seems consistent with experimental studies, which suggest that inhibitory neurons play an

important role for generating complex spatiotemporal activity patterns of excitatory neurons in the

olfactory bulb during odour discrimination [11] and in the prefrontal cortex during working memory

tasks [12]. Moreover, these functional roles of the connections in our RC model elucidate properties

of the reservoir beyond a blackbox generating spatiotemporal activity patterns as in the previously

proposed RC models [1, 2].

The present model can represent up to 1000 time steps under the current parameter setting. We

could extend the maximal time steps by, for example, scalingthe time constants (τex, τinh). We could

also reduce the inhibition to excitatory neuronscex←inh to increase the reproducibility index, which,

however, increases the similarity index as well and resultsin the worse separation of two time steps in

the simulation of trace eyeblink conditioning. There is a trade-off between increasing the reproducibil-

ity and decreasing the similarity.

Correlation-based learning incorporated in the reservoirmodified the connections among excita-

tory neurons such that connections between well-correlated neurons are strengthened, whereas these

between less-correlated neurons are weakened. Owing to CBL, the network was self-organized and the

generation of sequence of active neuron populations becamenoise-tolerant. Furthermore, it would be

of interest to examine the property of the resulting connection matrix after the learning in terms of, for

example, sparseness or scale-freeness.

Although RC is a promising concept in the field of modern neural computation, many problems

remain to be solved for enabling its practical use. One of theimportant problems was how to determine

neural connections to achieve robust and efficient reservoirs. Incorporation of CBL that we showed here

provides a simple solution to construct robust reservoirs automatically.
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e x 1 e x Ne x ← e x i n h ← i n he x ← i n hi n h ← e x1 N

1 N
R e s e r v o i r

I n h i b i t o r yE x c i t a t o r y

R e a d o u t U S

C S
Figure 1: Schematic of our network model. The model consistsof two networks: the reservoir and

readouts. The reservoir is a recurrent network composed of excitatory and inhibitory neurons. Ex-

citatory neurons receive external inputs representing conditioned stimuli (CS, Eq (5)). Four types of

connections, excitatory to excitatory, excitatory to inhibitory, inhibitory to excitatory, and inhibitory

to inhibitory, are assumed. Connection weights between excitatory neurons are modifiable by CBL

(Eq. (4)), whereas the weights of other connections are fixedas in conventional RC models. On the

other hand, a readout neuron receives inputs from excitatory reservoir neurons (zexi (t), 1≤ i ≤ N ) and

the input representing unconditioned stimuli (US, Eq (12)). The connection weights between excitatory

reservoir neurons and the readout neuron are modifiable by supervised learning rule (Eq. (11)).
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Figure 2: The basic property of the reservoir in our RC model.(a) Active states of the first 100 out of

N excitatory neurons (zexi (t) > 0). The abscissa and ordinate represent time and neuron index, respec-

tively. A horizontal line represents the duration of the active state of a neuron. (b) The similarity index

of this activity pattern. The abscissa and ordinate are timedifference (1t) and the index, respectively.

The solid line indicates the mean index value, whereas the gray region represents the standard devia-

tion of the index. (c) The reproducibility index between twosequences of active neuron populations

generated under different noise. The abscissa and ordinaterepresent time and the index, respectively.
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Figure 3: Effect of CBL for the sequence generation against noise. (a) Similarity indices for the se-

quences of active neuron populations at 1st (solid line), 10th (dotted line) and 20th (dashed line) trials.

(b) Reproducibility indices for the same sequences at the same trials. Conventions as in Figs. 2b,c.
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Figure 4: Embedding two sequences in a single reservoir. (a)Schematic of the simulation. Ten sets

of trials of the simulation were conducted. Each set of trials consisted of a pair of CS1 trials and a

successive pair of CS2 trials. Reproducibility indices between (1) CS1 trials at the 1st trial set, (2) CS2

trials at the 1st trial set, (3) CS1 trials at the last trial set, and (4) CS2 trials at the last trial set were

calculated and labeled as RI1, RI2, RI3, and RI4, respectively. (b) Reproducibility indices obtained

from simulations. RI1 (gray solid line), RI2 (gray dotted line), RI3 (black solid line) and RI4 (black

dotted line) were plotted. Conventions as in Fig. 2c.
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Figure 5: Activity of the readout neuron in the simulation oftrace eyeblink conditioning. (a) Activities

of the readout neuron with CBL (black line) and without CBL (gray line). The simulation was per-

formed under the pairing of CS1 with both US1 (t = 300) and US2 (t = 1000). (b) Activities of the

readout neuron when CS1 was paired with US1 (solid line) and when CS2 was paired with US2 (dotted

line). The abscissa and ordinate represent time and the activity of the readout neuron, respectively.


