Realistic Autonomous Navigation
in Dynamic Environments

Alex J. Champandard

October 2002

Master of Science by Research

Institute of Perception Action and Behaviour
Edinburgh University

ii

This project aims to develop a navigation system capable of generating humanlike behaviours within
complex virtual environments. Fully autonomous animats with sensorial honesty and subjective perception
are at the base of the experimentation. The focus on a complete solution emphasizes the capabilities of
disparate components and underlines the importance of their interaction during the creation of realistic
motion.

A natural interface is designed, providing versatile and powerful control over the movement. Complex
desires can be communicated to the system by implicit destinations, allowing route combination and dynamic
planning.

At the lowest level, reactive behaviours using evolved perceptrons provide a flexible framework controlled
by intuitive high-level parameters, which can be used to craft obstacle avoidance and wall following activities
(known as hosts).

Parasites are trained to influence the movement by modifying the information passed to the hosts in
the form of obstacle distances. Also using evolutionary neural networks, this parasitic approach can thereby
perform behaviour blending smoothly — providing a hook the higher-level behaviours.

The representation of the terrain is assimilated incrementally as the animat wanders around. This
topography learning is accelerated and improved by spatial common sense, which factors out trivial movement
using the sensory information available. This creates coarse but accurate models of the terrain.

Path planning is performed using a greedy heuristic process to maintain the spanning tree, and reward
percolation and accumulation to determine the best path. This exploits the incremental and persistent
nature of animat navigation, allowing dynamic planning and route combination.

The system is evaluated as a whole from an external point of view, by several judges who can examine
the animats under various trials, showcasing various different conditions and abilities. The animat performs
extremely well in specific situations, fooling judges into believing they are human. In other circumstances,
motion is rather more reliable than realistic, but is still regarded as an improvement over existing navigation
systems.

iii

I declare that this thesis was composed by myself, that the work contained herein is my own except
where explicitly stated otherwise in the text, and that this work has not been submitted for any other degree
or professional qualification except as specified.

(Alex J. Champandard)

iv

Hopefully the abstract has convinced you to step beyond this page anyway, so I'll be exhaustively
grateful to the people that accompanied me along my long perilous journey through science and engineering.

First and foremost, thanks to Gillian Hayes for the focused supervisions and the expert advice during
the writeup stages. Apologies for being such a bad influence during nights out, although I hope the fun
outweighed the days lost!

Even bigger thanks go to my parents for their support and guidance in my hours of doubt, and to my
comfortable uncle David for preventing me from putting McDonald’s on my map. The blame should also be
placed on Linden Hutchinson and Andy Coates who unselfishly convinced this was the best path for me —
and while I'm at it, Patrick and Suresh from Lexicle for making me question my original route in the first
place.

I’d like to acknowledge Kurt Miller and Des Browne for keeping me company throughout the yearlong
trip, especially during the late-night bursts. Thanks to Kurt for brainstorming the buzzword “pathematics,”
and to Des for entertaining my game Al fantasies with me.

Big thanks goes to Peter Ottery for the company during the cold winter months and for always pointing
out the flaws in my behaviours. Acknowledgements to the rest of the MRobots gang, including Paul Crook
for the mutual support during the summer, Jay Bradley for the game Al discussions, Yuval Marlom, Ignasi
Cos Aguilera & George Maistros their support, advice and lunch break company. Credit goes to Craig
Robertson for the fleeting visits, keeping my trek in place within the grand scheme of things.

I’d like to thank David Lawton especially warmly for putting up with a “crazy Frenchman” sleeping on
his floor, Mike Chisholm for the guitar tips and jamming sessions, and Jessica Champandard for completing
those great weekend breaks.

Thanks to Tim, Dave and Daniel for the friendship and the many Go games, and to the rest of the
“normal” MSc crue for making me feel so lucky and out of place at the same time (no lectures you seel).
Cheers to Mat Buckland for his company in the later stages and the exhaustive proof reading, to Rob
Saunders for his belief and help, and the #openai developers for the great discussions.

Finally, thanks to the development gurus over on Flipcode for getting me out of dead ends and providing
an endless flow of expertise. Thanks to id software for creating such a great Al development platform that
is Quake 2, and I'm eternally grateful of your opening of the source code!

vi

1 Introduction 1
1.1 Imspiration L e 1
1.2 Foundations 2
1.3 Applications 3

1.3.1 Prediction oL 3
1.3.2 Synthesis e 4
1.4 Definitions 4
1.4.1 Animat e e e 4
1.4.2 Navigation e 5
1.5 Challenges L e 5
1.6 Technology« . e 6
1.7 OVerview e e 6
1.8 Motivation e 7
1.8.1 Genuine Settings L e 7
1.8.2 Capable System 8
1.8.3 Simple Usage o 8
1.9 Aims and Assumptions 8
1.9.1 Primary 8
1.9.2 Secondary e 9
1.9.3 Assumptions 9
110 Summary o e e 9

2 Related Work 11

2.1 Robotics e e 11
211 OVerview 11
2.1.2 Solutions e e 12
2.1.3 Synopsis oo 15

2.2 Academia e e 17

2.3 Military o e 18

24 Games Industry oL e 18

2.5 Analysis e 19
2.5.1 Criteria e e e 19
2.5.2 Observations e 21
25,3 SUMMATY L e e e 22

3 Design 23
3.1 Requirements Revisited L 23
3.2 Approach 25

3.2.1 Embodiment e 25

vii

J.xT. L e e = A T T R S R N T N S TR S Y
3.4.2 Layout L
3.4.3 Process e
3.4.4 Parallels L
3.5 Components
3.5.1 Surroundings
3.5.2 Motion Controller e
3.5.3 Reactive Influences
3.5.4 Topography Learning e
3.5.5 Path-Planning
3.5.6 Arbitrator e
Framework
4.1 Background L e e
4.1.1 Evolutionary Algorithms
4.1.2 Neural Networks 0 e
4.2 Environment L L
4.2.1 OVErvIiew e e e e e
4.2.2 Description e e e
4.2.3 Development
4.3 Framework L e
4.3.1 Skeleton
4.3.2 Flexible Behaviours
4.3.3 Animat Architecture
Hosts: Motion Controllers
5.1 Requirements e
5.2 Existing Approaches e
5.2.1 Grid Based
5.2.2 Flocking Behaviour L
5.2.3 Fuzzy Logic L e
5.2.4 Feature Mapso e
5.2.5 SUMMATY . . . o v vt e e e e e
5.3 Specification e
5.3.1 Input e e e
5.3.2 Output
5.4 Technology e
5.5 Model Design oL
5.5.1 Obstacle Avoidance e
5.5.2 Wall Following e
Parasites: Reactive Behaviours
6.1 Requirements L e
6.2 Existing Approaches L
6.2.1 Subsumption
6.2.2 Expert Systems e

V.. 1 L ULLITULIAUVIULL & o ¢ o o o o 0 o o o s e e e
6.4.2 Procedure
6.5 Model Design
6.6 Analysis
Topography Learning
7.1 Overview
7.2 Requirements
7.3 Existing Approaches
7.3.1 Biomimetic
7.3.2 Strong Representations
7.3.3 Synopsis
7.4 Foundations
74.1 Overview
7.4.2 Assumptions
743 Procedure
7.5 Technology
7.5.1 Nearest Neighbour Search
7.5.2 Spatial Common Sense
7.5.3 Algorithm
7.5.4 Parameters
7.6 Example.
Pathematics: Deliberative Path-Planning
8.1 Overview
8.2 Related Work 0.
8.2.1 Static Shortest-Path Algorithms . . .
8.2.2 Dynamic Re-optimisation Algorithms
8.3 Autonomous Agents & Navigation
8.3.1 Specification
8.3.2 Queries
8.4 Pathematics
8.4.1 Foundations
8.4.2 Overview
8.4.3 Description
8.5 Exploitation
8.5.1 CaseStudy
85.2 Issues
Evaluation
9.1 Premise
9.1.1 Turing Test for Navigation
9.1.2 Procedure
9.2 Navigation Trials
921 Lobby
9.22 Garden

ix

73
73
74
74
74

75
75
75
75
76
7
78
78
78

e & Bt e

9.4.1 Realism
9.4.2 Reliability e
9.4.3 DynamiSm e
9.4.4 SUmMMATY e e e

10 Conclusion
10.1 Retrospective Overview 0 e e e e e e e e e
10.1.1 Imterface Design o e
10.1.2 Complete System o L e
10.1.3 Flexible Architecture e
10.1.4 Real-time Solution e
10.1.5 Embodiment e e e
10.1.6 SUMIMATY o vt e e e e e e e e
10.2 DISCussion e e e
10.2.1 Fitness Functions e
10.2.2 Evolution & Believable Agents
10.2.3 Expert Design L
10.2.4 General Applicability
10.3 Future Work e e e
10.3.1 Topography Learning L e
10.3.2 Pathematics e
10.4 Final Word e e

A Flexible Behaviours
A.1 Obstacle Avoidance e
A2 Wall Following e
A.3 Seeking Behaviour

B Organ Specifications

3.1
3.2
3.3
3.4

4.1

4.2
4.3
4.4

5.1
5.2
5.3

6.1
6.2

7.1

7.2

7.3

74

8.1

8.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Simple host capable of reactive navigation. 0oL 32
Parasites that bamboozle the flow of information to the host, thereby influencing the behaviour. 32

Higher-level cognitive layer that handles the planning of paths. 33
Simplified diagram of the entire system. L oL Lo 34
Features of a complex game environment. From left to right: ladders, stairs, bridges, doors,

elevators and ledges. e 41
Flow chart of a flexible behaviour; script function can handle the components as appropriate. 42
Diagram of a typical flexible component, a neural network wrapped inside a custom script . . 43
An embodied animat using its sensory and effectory organs to interact within its environment

(reproduced with permission from the FEAR team). 45
The motion controller’s interface with the rest of the system. 50
Graphical interpretation of the module’s I/O interface. 51
Diagram of the obstacle avoidance function. o0 oo 52
The interface of the reactive behaviours with the rest of the system. 58
The modular neural network which processes each distance sample to influence the movement

in the appropriate direction. 60

Learning paths by movement: (A) Existing graph learnt previously (B) New node dropped
and linked due to restricted access back (C) Nodes representing objects that have been seen

but not connected yet. 66
Learning paths by movement: (A) Closest node known, agent moving away (B) Different
nearest node found (C) New path created. Lo L. 68
Learning paths by movement: (A) Closest link is a path (B) New closest link found (C) Path
split at link point, and new path created. o 0oL 68
Comparing different parameters in learning the topography 71

Percolation and accumulation of the reward in the spanning tree, causing the animat to select

a slightly longer path to collect more reward. 77
Percolation of the reward from multiple sources. 79
Picture of the terrain layout in the lobby trial. oL, 82
Comparing a reactive bot and a human beginner 83
Picture of the staircase that leads down to the garden. 84
Differences between reactive and deliberative control 85
Start and end sections of the cellar trial. 85
Matching a deliberative bot with a human expert 86
Judging humans vs. bot in a dynamic populated environment 87
Four players compared for the final freeform trial 89

xi

xii

Introduction

“An ant on the move does more than a dozing ox.” —Lao Tzu

1.1 Inspiration

An average field rodent has countless daily problems; it must creep out of its lair early in the evening, fleeing
the menacing owl. Most of the night will be spent wandering around, finding interesting locations with food
for the young offspring. Then, it must navigate the exhausting journey back to its hole while still avoiding
the famished predators.

This is one of many harmless mammals abused by principles of the universe; it’s due to their physical
nature that all animals have to deal with such spatial constraints. Movement is the solution, allowing them
to handle these obstacles scattered in space. However, beyond just relying on crude motion as a necessity,
some animals make it appear almost as an art — effortless yet elegant.

Humans fall into a very similar category; they too are hostages of physics, somewhat limited by the
abilities of their bodies. Nevertheless, their movement abilities remain a step ahead of most mammals. A
generally superior intellect has allowed them to enhance their locomotion with simple materials (e.g., pairs
of shoes or walking sticks). People have also been able to make good use of their environment for further
assistance (e.g., creating roads and posting signs). A popular example is the tale of Hansel and Gretel, who
used stones to mark their route into the dark woods, allowing them to safely plot their course back home.

Already, a distinction is appearing between straightforward abilities (moving body limbs, preventing
collision) and more intricate skills (remembering landmarks, finding routes back). Most types of mammals
are capable of simple tasks like avoiding obstacles, explaining why it is often taken for granted. However,
complex navigational behaviours can be a distinguishing factor between animals and humans.

In fact, besides the daily quandaries, people have found ways to evaluate and improve their abilities
by devising challenges in space. Events are organised regularly to test movement aptitude under different
settings; at the simpler level, Olympics test aerobic or anaerobic capabilities for speed and endurance, while
more elaborate orienteering events reward navigational skills. Mock versions of the mythological Cretan
labyrinth have also even been built to tease and entertain guests in chateaus from the Renaissance. Multi-
player settings such as basketball and football present further dynamic difficulties, as well as a necessity for
coordination of movement. Other team efforts such as paint balling are similar, though stealth and strategy
tend to be rewarded more. Technology is also used to enhance the challenge, as in Formula 1 races where
competitors have to steer powerful cars at over 300 km/h.

Even this brief overview reveals the wide variety of skills required in navigation, ranging from power to
precision, including reflexes or planning, not forgetting dexterity and synchronisation. This partly explains

Vst e ML AR e ARV Y Ly VAR L U A A A s YA Y AL s VAV AL L VAL A AL A AL il M A Y A ALV A

to automate, as shown by the slow progress in the field. Such jobs are commonly taken care of by human
operators instead, who are for example responsible for controlling speed in trains or checking for eventual
mishaps when passengers board. Removing people from the loop is the next logical step for efficiency in
navigation systems, which would make them truly autonomous.

An increasing emphasis is placed on virtual simulations for this reason; the entire spectrum of navi-
gational behaviours can potentially be reproduced. In combining clever supporting design and appropriate
assumptions, the problematic parts of human navigation can be modelled and tested with more freedom.
Additionally, a fully competent entity can be produced, which presents a different panoply of challenges.

This project intends to develop an entire system capable of reproducing navigational behaviours within
such a virtual environment for an autonomous animat. During the research, novel algorithms and solutions
will be developed as appropriate to provide realistic behaviours efficiently.

1.2 Foundations

Such a fascinating omnipresent skill in nature and everyday life, as may be expected, has important impacts
in science, which aims to understand such phenomena and manifestations. For researchers, this proves both
challenging and insightful, explaining why so much work has been done on the subject.

Navigation is prominent in a surprisingly large number of branches in science. Some approaches try to
understand the process behind movement; this involves reverse-engineering by observational study. Other
methods are rather more practical, attempting to engineer behaviours from scratch, but all attempt to
further understanding in navigation.

e Cognition — Navigation is a relatively trivial form of planning, yet it has all the characteristics of
higher-level plans (obstacles, dead-ends, traps, dangers), although in a physical rather than abstract
form. Thankfully, this provides a practical technique for studying reasoning; by placing creatures
in situations that require observable movement, their ability seems amazingly linked to the level of
intelligence. While one generally associates mammals with relatively simple motion, it is surprisingly
efficient and often leads to pleasant revelations.

e Ethology — As the study of animal behaviour, ethology aims to understand how navigation is possible.
Observation at the individual level can help determine why a bee always finds its way back to the
flowers. At a collective level, we can explain how and why zebra organise into herds, how flocking birds
manage to remain coordinated and coherent, or even how ant colonies can seemingly communicate the
location of food to each other.

e Neurobiology — Taking a much lower-level approach to navigation, it is studied by the reaction of
neurons in the brains of mammals when they are placed in stimulating scenarios. By extensive test-
ing, scientists can attempt to determine what the animal is taking into account, what parts of the
environment are remembered, and how the nervous system triggers motor actions.

By studying rats, scientists can get insights into how they can find their way through a maze to the
cheese, or how the knowledge of rats is used to orchestrate the navigation according to their emotions
and drives.

e Computer Science — In a very generic fashion, many problems can be considered as walking through
nspace to find the solution to a problem. These are known as optimal path problems (mostly focusing

e Artricial Intelligence — A.l. Nhas tackKled navigation I1rom a very nign-ievel point ol view, applied 11
generic situations in grid worlds. The solutions are devised mostly as search algorithms, which are
ideally suited to finding optimal results in a computer-friendly fashion. This can apply to planning
single trajectories relatively well, though this neglects many other equally important aspects of animat
navigation that are so often ignored in literature.

e Robotics — Over the past two decades, the field of Robotics has seen a tremendous amount of focus on
navigation. This remains one of its most active areas of research, and arguably the most fascinating.
Aside from providing a plethora of technical challenges for computer vision, machine learning, and robot
motor control, navigation can transform abstract algorithms into palpable locomotive behaviours; it
provides a face for Artificial Intelligence.

Applying the theoretical knowledge gained from computer science and artificial intelligence into real-
life is an extremely difficult process. However, the quality of the robots engineered is consistently
increasing as more effort, computational power and money is poured into them.

The combination of the fields described above contributes to common navigational knowledge; observa-
tion, imitation and modelling by trial-and-error offer a surprisingly broad understanding of navigation. All
this experience can be drawn upon to engineer solutions appropriately tailored to the problems at hand.

1.3 Applications

Scientific research is often implicitly driven by the applicability of the technology. In the case of navigation,
much can be achieved in by understanding its theory. The potential uses range from the real world to virtual
environments; literally any domain where autonomous movement is involved stands to benefit.

1.3.1 Prediction

One of the major benefits of comprehending motion lies in the ability to anticipate it. This allows people to
be able to control, shape and influence it how they see fit.

e Hunting — In prehistoric days, Neanderthals successfully hunted mammoth despite them being over
100 times heavier; common techniques involved inciting the animal towards camouflaged traps in the
ground or steep cliffs, which they knew would give them the advantage over the beasts.

e Preservation — In modern times, the knowledge can be used to prevent wildlife from crossing dangerous
roads, or designing defences that protect species from others (humans included), like in zoos.

e Traffic — The flow of cars and trucks can be analysed on two levels: on a hourly scale for road
congestion, or on a real-time basis for physically accurate movement of specific vehicles. This can be
used to assist the driver and reduce travel times.

Many other similar domains have also benefited from the understanding of navigation practice.

Table 1.1: Summary of applications for artificial navigation systems.

1.3.2 Synthesis

Automated movement in the real world has become extremely important for our civilisation, with progress
becoming dependent on our ability to travel the globe and to physically move things around fast enough.
Good understanding of navigation allows engineers to artificially create systems, synthesising behaviours
that can transform inanimate objects into navigating artificial creatures.

Firstly, real-robots are popular applications, for entertainment as well as industrial purposes.

e Toys — Increasingly, toys and similar small gadgets are becoming self powered. Making them au-
tonomous increases the fun they can provide, but relies on their ability to move around. Toys like
Sony’s robotic pet dog Aibo, or fully reactive bugs each have built in navigation skills.

e Industry — Manufacturing industry can benefit from autonomous workers to shunt goods around depots,
or self-controlled cleaning bots that keep the factory floor tidy.

e Transport — Mass-transportation in the form of optically guided busses to mostly autonomous trains
increase reliability and reduce operating costs. Personalised carriers such as the Segway are also
predominantly self-sustained thanks to their balancing system, though they require human pilots.

Understandably, synthesis of navigation is crucial not only for mobile robots but also for virtual agents,
which forms the second major category where navigation plays a crucial role.

e Films — Entire herds of stampeding buffalos, like in The Lion King, can be generated very quickly by
simulating the movement of each mammal. Software is available to automate this task.

e Games — Computer generated forces in Hidden & Dangerous for example need convincing navigational
abilities to be able to provide a worthy challenge for the human player.

e Military — Virtual soldiers can provide training for troops, mostly from a strategically (e.g., syn-
chronisation or planning) and psychological point of view (e.g., emotional and anticipatory) point of
view.

The main aim of this thesis is to design a system that is capable of fulfilling most of the demands
of such applications, summarised in Table 1.1. Before venturing further into technical details, a rigorous
specification of the problem should therefore be established.

1.4 Definitions

1.4.1 Animat

The project deals with animats; the term coined by Wilson (1987) has become an overloaded buzzword even
in academia. Etymologically, it appears the word stems from the combination of “artificial animal”. This
primarily implies that the creature is a physical entity, subject to the constraints of its environment. We
intend both real robots and virtual creatures to fall under this category, since they are autonomous entities
whether simulated or not.

Definition Autonomous navigation is the ability of a system to purposefully steer its course through a
physical medium, in an independent, self-controlled fashion.

The only ambiguous term in this definition is certainly one of the most important: “purposefully”.
Although some philosophers will no doubt debate whether animals (which are also included in this scope)
are capable of intention, the word mostly implies a proactive action; falling leaves do not navigate through
the air, just as a driverless car rolling down hill does not either. As a lesser connotation, navigation aims to
satisfy requirements in space; in practice, it usually involves reaching a target, specified with varying degrees
of precision.

By loosely describing navigation as the art of “solving problems in space”, the standard definition —
consisting of just reaching a target — is somewhat broken away from in a more generic way. Looking at the
problem in this new light has many advantages when interacting with the system, and these properties will
be exploited by our design (c.f. Chapter 3).

1.5 Challenges

So why is artificial navigation such an interesting problem? Whether applied to real robots or synthetic
creatures, there are numerous common issues to take into account.

The environments in which animats operate are extremely diverse, ranging from scouting the surface
of Mars to cleaning a warehouse floor, including office environments and radioactive power stations, or even
military training environments. Such surroundings host a multitude of hazardous conditions: dynamic obsta-
cles, temporary weather conditions, variations in lighting, and many other unpredictable events. Considering
this ubiquitous presence of uncertainty, surrounding phenomena become hard to quantify.

Together with this, animats do not possess of omniscience. Rather, their perception is limited to measly
exteroceptive sensors (this is especially problematic for robots). Despite constant improvements in portable
sensing devices, or increase in computation power to acquire virtual information, the data available for
processing is often both inaccurate and incomplete. This condition is mostly attributed to the subjectivity
of the perception.

This implies animats are never totally aware of their state; at best they are able to make only partial
observations. This predicament is known as perceptual aliasing;' the only way around it is to design the
underlying AI accordingly — for example using probabilistic reasoning. This inability to recognise their
state is a significant problem for animat navigation.

The actuators are equally troublesome (though synthetic creatures have an advantage here). Indeed,
due to unforeseen conditions, there may be a disparity between the request and the actual physical action.
This causes a divergence between the position in theory and in practice, which can be minimised by the
use of proprioceptive sensors to monitor the internal hardware. However, these too are victims of the
treacherous noisy conditions; Columbus’ idea of Dead Reckoning? remains utopianism in robotics. Even in
virtual environments, there is a surprising precision loss in the rotations required to enforce embodiment.

Given such tough settings, there is little doubt that autonomous navigation is an impressive challenge.
Aside from the uncertainty problems introduced, flexibility is ideally required from the solution in order for it
to handle novel environments. Together with this, dynamic properties of the surroundings ideally require the
animat to continuously update its beliefs, which would otherwise swiftly become out of date. Consequently,
a static plan simply won’t achieve the goal reliably, regardless of the accuracy of the information at decision

1This is due to the one to many mapping from observations to states.
2This process attempts to determine the global position by continuously monitoring the relative movement.

as closely as possible to the ideal system described above, while still dealing with requirements established.
Such a model is known as an architecture, which corresponds to a blue-print of the navigation system,
showing how the information flows and is taken into account to make the decision of movements. Building
an architecture for a specific problem implies anticipating contingencies and noticing regular patterns in the
navigational task; architectural short-cuts can then be devised to exploit them. Thus, the more limited the
application, the quicker the design and the better the robot will generally perform.

The framework crafted also needs to assist initial stages in the development, reduce maintenance over-
heads and allow straightforward debugging. Extensibility is also a key factor to integrate into the design,
making the system more future-proof. This is achieved mainly by making extensive use of customisable
behaviours via scripts and configuration files, which can each be tailored to fit.

Conceptually speaking, the knowledge used for deciding how to navigate is potentially integrated into
the system via fixed expert rules, engineered at development time. Alternatively, a learning approach can
be set up to learn equivalent behaviours automatically. The latter choice was made, allowing developers
to dissociate themselves from the low-level details, allowing them to concentrate on specifying the final
outcome of the learning process. In practice, the agent can assimilate procedural and declarative knowledge
automatically.

Greater insight into this development process will be provided along with the literature review of
Chapter 2.

1.7 Overview

There has been a plethora of work done towards artificial navigation; understandably so, it’s a vast topic. Yet
still, there are many holes to be filled, gaps to be bridged, dead ends to be explored, and miracle solutions
to be discovered. We intend a relatively novel approach to the problem, thereby partly alleviating these
knowledge lacunae, but also shedding light on some problematic issues uncovered.

Our work intends to nestle itself amidst the artificial intelligence approaches, while drawing from con-
cepts borrowed from other areas of science. Many research projects tend to be off-balanced towards the
preferred approach of the author (showing prejudice against any other approaches along the way), we at-
tempt to keep an open-mind about the many options available for inclusion. Each of the foundations will be
drawn upon as appropriate to engineer solutions matching our requirements.

The combination of these three following traits we believe make it unique:

1) Full System — An entire universal autonomous navigational framework is established, rather than
developing inconsistent separate components under the delusion that a working system is simply the
sum of its parts. This corresponds to Brooks’ apprehension towards the design of synthetic creatures
as independent components:

“No one talks about representing the full gamut of human intelligence any more. Instead we see a
retreat into specialized subproblems [...J. All the work in these subareas is benchmarked against the
sorts of tasks humans do within those areas. Amongst the dreamers still in the field of Al [...], there is
a feeling that one day all these pieces will all fall into place and we will see ‘truly’ intelligent systems
emerge.” — Brooks (1991)

In a similar fashion to Brooks, we build up a system incrementally from the ground up, though this is
not done using the method suggested; a custom development process is attempted.? This allows us to

30ne that does not rely on inhibition and subsumption points.

6

2) Complex Virtual Environments — Accurate simulated worlds provide a base for the development, ex-
perimentation and evaluation of the navigation system. Robots are used to operating in complex
environments, but they tend to only perform well in specific situations (no stairs, sensor friendly
walls, no menacing chair legs). By tackling the problem from a virtual perspective, experimentation
has more freedom; environments are limited only by imagination, time constraints for simulations prac-
tically vanish, costs and risks to equipment diminish drastically. Nevertheless, the resulting technology
can be applied directly as virtual navigation, and indirectly as artificial navigation in real-life.*

3) Realism — The navigation and overall motion-related behaviours are intended to be as human-like as
possible — from an external point of view. Accurate underlying mechanisms are simply interesting to
study and observe, but do not necessarily provide the most realistic motion.

This requires a top-down approach to design, which differs significantly from the bottom up ap-
proaches (some based on ethology, neurobiology, or artificial life). Practically, this implies we specify
the kinds of behaviours required first, understanding them and conceptually reverse engineering them.
Only then can they be synthesized, in an incremental fashion. So in essence, the design is top-down
and the development is bottom-up.

Another significant part of this realism, we believe is due to the autonomy of the system. Much effort
was invested in actively enforcing the autonomy of the animats. Few virtual navigations are capable
of coping with this restriction, let alone enforcing it.

Striking the balance between these requirements in a navigation system remains an extremely interesting
and challenging task.

1.8 Motivation

Aside from the applications, there are three main reasons for developing an artificial navigation system
within the context of virtual environments.

1.8.1 Genuine Settings

Initial attempts at robot navigation altered the environment in a sensor-friendly fashion (by painting white
lines on the floor, or drawing small visual landmarks on the walls). The design would then be fine-tuned to
take into account the possible assumptions incurred, extracting and exploiting the data implanted into the
surroundings. Aside from being inappropriate for most environments, the process was expensive and time
consuming. Similar trends can be spotted in current computer game agents, whose implementation takes
advantage of the underlying terrain representation — information not accessible visually.

Today’s approaches in robotics are more flexible; using more reliable sensors, they no longer rely on
indirect human intervention. In synthetic creatures, competent expert systems are increasingly used to devise
fully autonomous control systems. Though generally, one would agree that a certain degree of competence
and realism has been lost in the process.

4 Again, in the words of Brooks “Simulators are doomed to succeed.”

7

functioning animat. Indeed, it can be relied upon like a very smart horse that understands material concepts!

1.8.3 Simple Usage

In practice, implementing navigation seems a trivial task when done in a straightforward fashion, but more
elaborate behaviours require time and effort to match. The system should attempt to minimise the amount
of time taken to obtain the desired results, mainly by abstracting tasks as much as possible.

However, despite animats being able to learn the basic concepts, navigation systems still rely on being
designed by researchers — more or less. This is usually done in a modular fashion, in order to accommodate
various different algorithms efficiently, thereby also allowing incremental development.

1.9 Aims and Assumptions

1.9.1 Primary

The project intends to develop a navigation system for an autonomous animat. While fundamentally this
seems like an engineering task, research comes into the equation to push current ideas or technology further
and develop novel solutions suited to the problem at hand. Additionally, with regards to the settings,
questions of achievability will need to be answered.

Design an interface

Starting from a high level, the services provided by the navigation system must be specified. This involves
drafting an intuitive yet powerful interface. Ambiguity and inconsistency both need to be avoided as much
as possible, and research will have to determine how this can best be done.

Develop a complete navigation system

The underlying functionality of the system will then need to be implemented to provide the behaviours
as specified. These will need to work reliably within the complex environments the animat is expected to
survive (e.g., indoor and outdoor terrains, crowded and deserted environments).

Since there has been a modest amount of work on entire systems within our context, the project
will encounter many research issues that will need to be tackled. Notably, weaving together independent
components together, and handling human-like navigation in autonomous conditions will require further
investigation.

Produce realistic behaviours

This is a relatively complex problem, having taken nature a few billion years to fine-tune. The ability of
a creature to display such interesting movement behaviours is generally a sign of competence, too easily
mistaken for intelligence. Although conversely, a lack of navigation ability generally leads to the dismissal
and humiliation of the animat in question.

This project aims to develop realistic navigation that does not rely on rigging environments, cheating
or objective information. Rather, a fully embodied, honest creature is defined; authentic animats are at the
base of the experiment. Existing algorithms and solutions will no doubt have to be extended and improved
to handle the problem.

Since the solution is expected to perform efficiently on lower-end consumer hardware, in non-exclusive
fashion, its implementation will need to be as lean as possible. There should be minimal overhead in
both computational power and memory usage.

1.9.3 Assumptions

The extremely low-level details of locomotion, such as moving individual limbs and dealing with accurately
simulated characters, are abstracted out. This stems from the fact that all our development platforms do this
by animation, and this is not a requirement. Furthermore, this capability is often conceptually dissociated
from the essence of motion since the final result is most important, and not the order in which the limbs
were moved.

From a perceptual point of view, objects are represented as symbols, and do not need extracting from
the raw sensory data. As such, the animats do not have any form of visual perception per se, simply an
interface which fakes this higher-level of processing that humans perform somewhat automatically.

1.10 Summary

Since the thesis focuses on a complete system and tackle issues that arise in the process, a certain amount
of detail will have to be glossed over in each of the sections. Notably, the depth of the background reviews
of specific modules and their evaluation is neglected in favour of completeness.

The rest of the dissertation is divided as follows:

e Related Work — The next chapter contains an overview of existing solutions, including insights into
robot based, military, academic and computer game applications. An objective analysis of these
systems looks into their advantages and deficiencies, allowing the identification of key areas for potential
improvements.

e Design — Afterwards, in Chapter 3, the design of the proposed solution will be discussed, allowing us
to define the skeleton of the system. This specifies the modules utilised as well as their interaction.

e Framework — The Chapter 4 describes the common techniques used throughout this project, and
documents the relevant implementation details of the software used.

e Modules — Subsequent chapters (5, 6, 7, 8) will discuss specific components of the navigation system
in more detail; each provides information about requirements, specification, design, motivation, and
implementation for the respective modules.

e Evaluation — The system as a whole is evaluated on human terms in Chapter 9. A discussion of the
results and corresponding development process follows, with each component conceptually analysed
where applicable.

e Conclusion — Finally, Chapter 10 comments on potential applications of the technology. We reflect
on the thesis of this Masters, hopefully providing pertinent insightful comments. The road ahead is
considered as planned improvements for the future are discussed.

This should provide a thorough overview, although sadly not exhaustive, of the system created during
this yearlong project.

10

Related Work

“He who loves practice without theory is like the sailor who boards ship
without a rudder and compass and never knows where he may cast.”
—Leonardo da Vinci

This chapter looks at existing solutions capable of performing navigation, from a variety of backgrounds.
Many fields of applied science have roots in navigation, each of which are relevant for this dissertation.
Admittedly, some concepts may need adapting, but any agent related publication may prove insightful.
Therefore, the following pages attempt to provide a representative cross-section of previous efforts, ranging
from robotics to the computer games industry, including military development and other academic research.
Each will be briefly described and evaluated against some general criteria relevant to the problem at hand.

Designing a fully-fledged autonomous navigation system is a surprisingly large task, as the size of this
dissertation and many other project reports testify. To that end, designers often find ways of splitting it
into smaller manageable chunks — and understandably so; modularity is one of the hottest topics of this
past decade, and applies equally well to Artificial Intelligence." In part, this explains why a significant
proportion of navigational research has focused on separate components. Such specific algorithms relevant
to the architecture are reviewed in the appropriate chapters; meanwhile this literature review takes a broader
look at complete packages, concentrating on how they are woven together as a whole.

2.1 Robotics

Navigation was one of the earliest problems tackled with robots, and has arguably been one of the most
popular ever since. Over the decades of research in the area, trends have naturally emerged. These different
styles will be first summarised, as they can provide a myriad of pertinent insights even before the review
commences. Specific implementations will then be analysed in more detail.

2.1.1 Overview

There are sufficient fingers in one hand to count the number of distinctive navigational architecture types.
Historically, there are in fact three (reactive, deliberative, hybrid). However, there has been much inter-
breeding over the decades that boundaries are no longer distinctly marked out. Some subcategories have
also become increasingly popular and broader than others, but each still has its own advantages and pitfalls.
Selecting the most appropriate blend is effectively a matter of omniscient experience, which can only really
be done successfully with hindsight — if at all. Even then, there are compromises to be made.

!Despite Brooks’ apprehensions of the design of individual “intelligent” parts.

11

Behaviour Based Models

Behaviour based architectures are composed of parallel concurrent behaviours (Arkin, 1998). These can
be purely reactive (as originally intended, a subset of the previous category) but also based on internal
representations (in subsequent implementations) — whatever helps the designer perform mappings from
condition to action. However, since the system is distributed, there is no good place to put a central world
model; the exchange of information between behaviours is generally done implicitly via the environment.?
Increasingly, however, internal communication is used to facilitate this task. Typically, a priority-based
model of arbitration is applied to select the dominant behaviour. Such models are constructed incrementally
by extensive testing and debugging, which implies a bottom-up design that emergently creates a whole.

Deliberative Architectures

Deliberative navigation typically generates a sequence of actions, based on a centralised internal representa-
tion of the world. When the aim is to reach a specific goal, the current solution often requires to be refined
over time to avoid dynamic problems; this corresponds to the conventional sense-plan-act paradigm. In-
ternal representations need to be tailored in order to facilitate the deliberative process (e.g., cells, grids or
nodes), along with discrete actions. This allows a search algorithm to be performed, which — thanks to
reasonable anticipatory capabilities — proves capable of exploring consequences of actions in the future in
order to find the best outcome.

Hybrid Systems

Hybrid architectures tend to separate systems into conceptually different parts, each with different tasks,
communicating together. These layers can be considered as independent black boxes, which simplifies devel-
opment. This category is also known as heterogeneous, since the internal computation methodology can be
extremely varied — as opposed to homogenous deliberative or reactive systems.

In some cases, the components may be arranged in a layered fashion. Depending on which way one
looks at the problem, this layering can be either horizontal or vertical. Horizontal arrangements are typically
based on the flow of information from sensors to effectors (passing once or twice via each layer, increasing
or decreasing level of abstraction), while wertical solutions tend to have layers of increasing behavioural
complexity; for example lower levels of the hierarchy can involve straightforward obstacle avoidance, while
higher-level modules deal with path-planning.

2.1.2 Solutions

Over the years, numerous award winning systems and architectural masterpieces have been designed. Here
is a representative selection of systems, featuring some of the most capable.

Rhino & Minerva

Minerva is an interactive tour-guide robot in a museum, designed in follow-up to Rhino (Burgard et al., 1998;
Thrun et al., 1999). There are numerous similarities between the two models, but the latter has witnessed

2This philosophy culminates in the theory that robots should tie a string around their finger to remember what its doing.

12

localisation. 1 he occupancy grid used to model the terrain 18 updated Dy applying bayes rule, which
requires sensor models.

e Any-time Algorithms — All components in the real-time system are built around soft deadlines, which
generally injects more flexibility into the design.

Interestingly, the collision prevention module takes into account dynamics, as opposed to just kinemat-
ics. This implies a certain amount of prediction in this typically reactive behaviour. Soft constraints force
a move away from obstacles rather than seeking targets, and hard constraints are set-up to stop movement
before impact. Dynamic obstacles such as people are filtered out before the probabilistic reasoning. Fi-
nally, the path planning takes into account danger of getting lost (avoiding large halls, hugging walls, and
preventing ambiguous identical turns).

Xavier

Xavier is an office robot, based on a layered system (Simmons et al., 1997). The task-planning layer is
the highest-level, asynchronously prioritising goals assigned by humans via a web interface, suspending and
activating tasks. The path-planning layer computes the quickest path to a destination, using an A* algorithm
that takes into account blockage probabilities (doors, people) and the risk of misinterpreting junctions. A
navigation layer takes care of “virtual” low-level processing; this includes state estimation and execution of
tasks using a POMDP (a state machine of possible cardinal movement directions). Finally, the lower level
deals with physical sensory data and motor execution of the virtual orders.
Notes of interest include the following points:

1) The decomposition of the system is chosen by task function rather than by architectural constraint;
reactive and planning components are scattered throughout the hierarchy.

2) Lower levels are not dependent on higher levels, which assures consistency and reliability.
3) The design emphasizes internal representation, improving the overall efficiency of the implementation.
4) No signs of environment learning can be observed.

Thanks to this technology, Xavier robot has serviced thousands of requests and travelled hundreds of
kilometres.

AuRA

AuRA uses a hybrid approach (Arkin and Balch, 1997), split into a deliberative hierarchical planner (for mis-
sion planning, spatial reasoning, plan sequencing), and a reactive controller using schema theory (behaviour
fields super-positioned). These provide an improvement over potential fields, which have some problematic
issues. Various techniques are used to resolve the problem of local minima: deliberation, using noise as
“reactive grease”, momentum, the avoid-past behaviour, and other learning and adaptation techniques.
Gain values also allow the scaling of each field. There is no need for arbitration since all the behaviours are
combined in an order independent fashion.

The solution has numerous advantages, identified by its creators: modularity (in design and exper-
imentation thanks to iterative improvements), flexibility (by a variety of learning mechanisms, and self-
optimisation), generalisation (it seems to perform well in numerous test environments), and “hybridity”
(both deliberative and reactive policies combined).

13

2) It is able to follow path segments reliably, thanks to behaviour based motion.
3) Localisation is based on rectangular corridors, and their layout is used as landmarks.

4) The robot tries to stick to the average heading over short-term past, providing a small sense of persis-
tence.

5) Wall-following identified as being a useful behaviour, allowing the robot to get around simple obstacles
reliably.

Despite its old age, SSS remains a landmark in the field, which many other researchers have used as
guidance.

ATLANTIS

This is A Three Layer Architecture for Navigating Through Intricate Situations (Gat, 1992). The structure
described is generic, and specific instances need to be designed on a per-problem basis, which does admittedly
require a reasonable amount of work. Modules of the framework include:

e Controller — Coordinates reactive sensorimotor activities. To allow complex transfer functions, a spe-
cialised programming language was devised, intrinsically supporting state-machines and inter-module
communication.

e Sequencer — Arranges sequences of activities and deliberative processes. When designed to deal with
cognisant failure (aware of its own mistakes), problems can be detected and planned around.

e Deliberator — performs the planning computations, initiated and supervised by the sequencer. These
take the form of a LISP program whose output is passed merely as suggestion to the rest of the system.

This framework has been applied to both indoor and outdoor navigation, in object collecting robots as
well as Mars rovers.

Saphira

Saphira’s architecture emphasizes the 3 C’s: coordination between the low-level effectors and high-level
goals using an abstraction hierarchy, communication with inter-agent cooperation and NLP, and coherence
of knowledge thanks to a strong internal representation which aids coordination (Konolige et al., 1997).
The organisation is partly vertical and partly horizontal; first comes a layered perceptual system (dealing
with raw depth, surfaces, objects, then people), and secondly an action hierarchy (reactive, purposeful, then
task schemas). On top sits a PRS (Procedural Reasoning System), which determines weightings of specific
behaviours based on goal-oriented objectives. The control problem is split into basic-behaviours (obstacle
avoidance, wall following), specified in fuzzy logic (using basic operators AND OR NOT). This means each of
them specify a fuzzy ’distribution’ of possible movement called a desirability function, which is then combined
using a defuzzification process taking the weighted average. One should particularly note the following:

1) Basic behaviours should not conflict, since the weighted average defuzzification process fails. More
complex combination technique have been developed to counter this.

14

corridors.

AMOR

This is a hybrid architecture designed for office delivery tasks, in a natural dynamic environment (Hans Blaas-
vaer and Christensen, 1994). The system is distributed, comprised of components running in parallel. Logi-
cally, it is divided into three categories:

e Sensing — Includes generic obstacle detection, and more specific procedures such as door finding.
e Planning — This is composed of local reactive actions, as well as higher-level task management.

e Action — Allow execution of effectors as well and control of the data acquisition.

At the base, reactive behaviours assure reliable navigation, while on top it is guided by a higher-level
strategic executive. However, one should note that the robot is given a priori maps of the office (doors,
walls, connectivity information). Other object properties, however, are assimilated and dealt with online.

DAMN

As a Distributed Architecture for Mobile Navigation, this approach advocates the development of inde-
pendent behaviours (Rosenblatt, 1995a). These activities can be reactive as well as deliberative; their
implementation is wrapped inside a black box. Their desired actions are communicated to a centralised
arbiter under the form of votes. The arbiter is responsible for combining them and generating appropriate
commands. This is done taking into account priorities and objectives, which provides weightings for each of
the behaviours.

In practice, there are 5 activities that are used: avoid obstacles, follow road, seek goal, maintain heading
and avoid tip-over. These behaviours are handcrafted based on domain specific knowledge. The arbitration
is split into three components, constraints (e.g., speed limits), actuation (explicit positive/negative votes for
specific actions), and effect (implicit request for a resulting state, regardless of the action). There are some
major benefits:

1) There is no need for a hierarchical structure; the multiple levels of goals and constraints can be
simultaneously fulfilled by the arbiter and the distributed nature of the architecture.

2) Subsystems are easy to integrate, and the development process is simplified by incremental design (also
suited to evolutionary strategies).

This approach has successfully been applied to several autonomously controlled vehicles, mainly outdoor
ones.

2.1.3 Synopsis

In brief, there is no such thing as the ideal architecture. Each design reviewed here has some issues, though
they generally do not arise in the domains they were intended for. Often pushing these solutions to their
limits reveals problems with the design.

15

Generating the behaviours is also a controversial issue, since either extreme is possible; both deliberative
and reactive approaches have been successfully demonstrated (though again, “success” is typically a context
specific metric). However, it does seem that recent literature has settled on hybrid approaches, allowing the
problem to be split modularly. An unspoken consensus has been reached to design the planning to make as
few assumptions as possible, and let the execution deal with problematic dynamic conditions.

Modularity

With the increasing complexity of navigation systems, engineers increasingly favour a modular approach —
whereby components can be implemented independently. The process of dividing the system is still a matter
of debate. Decomposition can be:

e Behavioural — In some cases, distinct activities can be observed (like following walls or preventing
collision). These can usually be designed separately, but some form of arbitration is required in order
to decide which behaviour gets control.

e Functional — The system can also be made of components which are required to perform different oper-
ations and computations. This is generally done based on previous research in sub-areas of navigation
(e.g., planning and localisation).

e Representational — The information sensed can be analysed, and interpreted at different conceptual
levels (distance data, cell based, entities). Different operations can be undertaken based on these
different representations; these are also usually linked to a similar effectory decomposition.

Often, as you may expect, designs show traits of multiple of these categories.

Arbitration

Systems often have multiple components, whether behaviours or computational processes. It is possible to
let each of them control the animat, ignoring each other. However, this often has malevolent side effects.
Either extensive design is required to create emergent coordination, or alternatively some form of command
fusion like a voting system. This corresponds respectively to distributed and centralised models.

Design

The engineering of a navigation system is very similar to the creation of a computer program. Starting
from the specification, a top-down approach can be taken to draft the interface and develop the matching
implementation. With a bottom up approach, working components are assembled together, in order to
match as closely as possible the requirements.

Abilities

Given the necessary capabilities of the system, there are different ways of blessing it with navigational skills.
Firstly, an expert system can be devised; the developer generates a set of fixed rules, which serve the animat
throughout its life. Second, a learning system can be setup to learn the behaviours required — either offline
as a pre-processing, or online.

16

ror tnose animarts needing a representation to operate at a nigner-ievel, tne 1ssue oI NOw 1t 1s obtalned arises.
This can be given to it apriori, when appropriate. The acquisition of the knowledge can also be assisted by
sensorial cues placed by designers. Finally, the entire environment can be learnt automatically without any
external help.

Sensing & Cognition

The sampling of the data, and the internal processing can deal with different types of information. This
can be continuous (using floating point numbers), discrete (using booleans or integers), or even fuzzy (with
fuzzy variables). This affects design as much as the development process.

2.2 Academia

This section looks into projects from the rest of academia — outside of robotics research. Many non robot-
based projects focusing on navigation often do so coincidentally; problems in navigation are often somewhat
convenient to develop and debug, and provide a good demonstration of generic algorithms. There are few
navigation systems developed for the sake of it!

Soar Quake-Bot

The Soar Quake-Bot (Laird and Duchi, 2000; Laird, 2000) is an interesting concoction since it is the first
academic implementation to tackle a computer game navigation problem. This aspect of the bot is brushed
over in every paper, but Dr. John Laird (2001) was kind enough to take some of his time to describe the
system. The bot can scout around the terrain when not disturbed and create a simplistic model of its
environment, which it can use later as part of the deliberative process. The bot is fully autonomous, but
has significant limitations. Firstly, the bot can only handle specific layout, where rectangular rooms are
connected by hallways. Secondly, the connectivity information is stored in a fashion which does not scale
up elegantly; it is of order O(n?). Finally, the bot goes through a terrain learning phase, wherein it moves
in a very deliberate fashion in order to identify and understand its surroundings. However, since it has
managed to remain fully autonomous, this agent remains a reference for simulated navigation — despite the
limitations.

Quake A.I. Agent

In his masters dissertation, Jonathan Ritchie (1998) devised a fully fledged navigation system for a game
agent. His approach unfortunately was heavily dependent on humans for preparation; they were required
to move around the level dropping nodes in the corner of rooms. The bot can thereby locate itself, and
plan routes through the rooms as determined by its higher-level strategy. Though this approach did spawn
incredibly efficient representations, the time required to map a small terrain was too significant to be practical,
both for users and game developers.? The dynamic path-planning, on the other hand, was extremely practical
and elegant. The digraph created from the preprocessing phase is essentially distorted around nodes that
are of value to the agent; distances of adjoining paths are artificially set to their minimal value. Then,
when Dijkstra’s standard shortest-path algorithm is used, it is locally influenced by the counterfeit gain of
travelling by the beneficial item. The length of the edges limits the extent to which path can be distorted;

3In his thesis, Jonathan points out the problems with the time consuming process of laying the room nodes, and advocates
its improvement as future work.

17

information. Deliberative algorithms can be mapped onto reactive guiding strategies, combined with other
activities using layered subsumption. This allows, for example, flocking behaviours or D* algorithms to be
implemented and integrated.

2.3 Military

Tactical Movement Planning for Individual Combatants

Reece et al. (2000) present a solution that is very reminiscent of the academic approaches described above.
The terrain is discretised into small cells, which can be assigned varied cost based on cover and direction.
Indoor and outdoor scenarios can be handled interchangeably as the graphs inside link with the grid outside.
A standard A* algorithm is used to find the optimal path over this search space. A post process is applied
to the resulting path to smooth it, and determine the appropriate posture.

There are some interesting points to be made about this approach.

1) Ouly potential fields are considered as reactive behaviours, and they are discarded since it was difficult
to avoid obstacles while remaining close to them.

2) The standard Euclidian heuristic used in A* becomes ineffective when intricate cost variations in the
cells can be observed.

3) The hard work done by the search to obtain an optimal path is negated by a post-process aiming to
obtain human-like behaviours.

Though the approach works extremely well for the application it was designed for, such problems may
prove problematic in other scenarios.

2.4 Games Industry

Along with the increasing focus of computer games on artificial intelligence, navigation systems have also
improved; they are probably even at the inception of the trend.

Eraser Bot

The Eraser Bot was the first good simulated opponent available for Quake 2 (Feltrin, 1998). This was
mostly due to its navigation abilities, since the code was actually develop to test the ideas of the author,
Ryan ‘Ridah’ Feltrin. However, conceptually speaking, the bot’s movement cannot be classed as autonomous,
since its representation of the world are based on routes travelled by the human players. So essentially, human
perception is used to establish a set of routes, which is saved to disk for future use; these files are compressed
yet still weigh from 10k to 30k, depending on the size of the level. The creation of such route files is
not an especially difficult task, but it is something the user must pay attention to. Indeed, the player is
advised* to move around a lot, and return to the start of routes as soon as possible, presumably so the
internal representation can be more efficient. Getting this right is a task difficult enough to justify the online
distribution of route files prepared by experts. Despite all this, a revamped version of this navigation code
was used in the commercial game Kingpin.

4Recommendation taken from the Readme.txt file provided with the bot.

18

basic physical rules of the game — (Anonymous, 1997).

This technology was developed and expanded as part of Epic’s Unreal, another ground breaking FPS.
However, many were disappointed with the Artificial Intelligence in general, despite it being the first game to
ship with built-in bots. The following generation of game AT within Unreal Tournament (Epic, 2000), on the
other hand, is said to be the best around. The custom editor provided with the graphics engine allows the
user to place the waypoints manually. This allows the human designer to assist the navigation — otherwise
a potentially troublesome process.

Quake 3 Bot

The Quake 3 Arena Bot (van Waveren, 2001) can be considered as a polished amalgamation of the author’s
previous experimental efforts: Omicron and Gladiator. The navigation itself is very robust, since it is
based on the intrinsic BSP® representation of the game graphics. Essentially, the world that the player can
collide with is composed of basic 3D primitives: prisms, pyramids, and select other irregular polyhedra. By
expanding these volumes, the author (J.M.P ‘Mr Elusive’ van Waveren) was able to determine the current
location of the bot; this forms the Area Awareness System which the bot is based upon. The connectivity
between these areas is then established via knowledge-based preprocessing,® which effectively simulates the
player’s potential movement. A graph with a two level hierarchy can then be built with the room connectivity
information, which is used for the path-planning. This is accomplished by a breadth first routing algorithm,
whose result is stored in a cache.

PathEngine

PathEngine is a middleware library (Young, 2002), aiming to handle shortest path queries for in-game agents.
The solution is based on a precise knowledge of the ground mesh (areas which can be walked upon by the
agent). These can be exported as triangles from the same 3D editing tool used to create the polygonal world
itself. The library processes this mesh to determine accessibility for each agent. A conceptual graph of the
connected areas can thereby be established. This is used to perform standard shortest path computations,
and returning the result requested by the game Al.

2.5 Analysis

Anyone with experience in navigation systems cannot help but feeling a sense of amazement for well-designed
architectures, almost as for impressive edifice from the Renaissance. However, this is often of very little
consequence in real-life — just like magnificent buildings can be very awkward to live in! This section
contains a list of practical criteria used to examine the potential of the solutions in real-world applications,
and specifically the problem we are concerned with.

2.5.1 Criteria

The following paragraphs provide a description of the deciding factors used for judging the solutions. They
were also partly chosen to match our goals and intentions. Therefore, some will also be part of our formal
requirements listed in the Design Chapter. For now, it suffices for them to allow satisfactory classification

5Quake 3 uses a proprietary Binary Space Partitioning file format to store spatial coherence between the polygon brushes.
6Precomputation usually takes a couple minutes of dedicated processing time to complete on average maps.

19

4 Airiiiicve ulYviistHttse YY s+ Y H Y Aty ApWl L ithooLad o vl e vl ol Vg, W psave biii wihpyvwiliaiiy YAt

others in that group. However, the most widely accepted definition in the field — and the one that makes
the most sense theoretically — is of a truly independent animat, capable of controlling itself under all
circumstances. In practice, this can be achieved by imitation and self-learning, but other human designed
techniques are equally plausible.

A consequence of navigational autonomy is that no objective, or third party data may be passed to the
entity. Only information that has been perceived by the animat may be used for its movement. This also
implies that no a priori knowledge or pre-processing of the terrain is allowed. Solutions will be rated on how
well they can cope without such “illegal” information.

Dynamic

In realistic simulations, the environment can witness terrain transformation, moving creatures, temporary
objects and changing conditions (e.g., doors opening and closing) among others. These all contribute to
making the world a complex dynamic problem, which must be dealt with.

While typical environments do remain mostly static, the dynamic parts are often key features (like
doors, platforms and crowds) — despite being limited in space and time. The navigational architectures
described will be judged on how well they are capable of dealing with such scenarios.

Flexible

Navigation architectures can be designed in a very abstract fashion, as well as for specific problems. In fact,
the problem itself can be tailored to suit the solution, by using recognisable marks on the walls or lines on
the floor. In natural environments, many different scenarios may be encountered, including many that are
not specifically designed for the animat!

The flexibility of a solution lies in its ability to cope with such a wide range of conditions, indoor as
well as outdoor for example. Variable terrain layouts ranging from dense indoor obstacle courses to wide
open plains will be considered when evaluating the applicability of each scheme.

Human-like

Mammals in general — and humans specifically — have a very distinct navigational style; the motion is
extremely elegant and smooth. It remains effective overall, while in some situations errors can be committed.
These are both high-level (e.g., taking the wrong turn) or low-level (e.g., falling off a cliff or stumbling over
a banana skin). This is not an error due to the lack of adaptability, as often witnessed with AT

While some systems have been specifically designed to handle some of these cases, others have not ex-
plicitly. This criterion will consider how well the solutions can be adapted to exhibit such realistic movement.

Real-time

In theory, the navigation behaviour could be computed in different fashions: pre-processed, devised incre-
mentally, temporarily cached, or fully on the fly. Whichever approach is chosen, a timely response is required
by the animat, since the simulation itself happens continuously.

Current systems all have some kind of upper limit on the processing that can be done. If a prompt
response is required in every case, these restrictions will need to be taken into account. The systems will be
examined on how well they would perform in a very demanding context.

20

In computer games, agent autonomy is very limited. The programmers handle the navigation by using
global terrain data, and designers guide the paths by placing waypoints. However, the player is not generally
expected to actively help the animat in any way. Autonomy is not something that is seen as important for
such an application.

Academic work seems to be slightly more adept at dealing with autonomy. For the solutions reviewed,
this is achieved by creating navigational behaviours that do not rely on any form of objective data. Either
the capabilities of the systems are kept simple, or assumptions are made about the environment (without
which the system would fail). Such independence of control is something that researchers strive towards.

Robots typically only rely on their sensors to perform the navigation (as opposed to global positioning
systems and global maps for example). This is a restriction that researchers have to put up with more than
anything. Entire architectures have been designed around interpreting the sensorial data, in order to allow
sufficiently complex behaviours.

Dynamic

In-game animats generally have reasonable capabilities for dealing with dynamic conditions. For starters,
locked doors are generally taken into account by the path planning. Closed doors can be open with a simple
behaviour, which can be taken into account by increasing the length of the path concerned. Platforms and
elevators are dealt with similarly. Queries are mostly dealt with dynamically, as the targets unexpectedly
change based on the current state (although these are kept to a minimum, and even designed around). How-
ever, other players and dynamic obstacles are not always taken into account; violent assaults can generally
resolve the problem! Changing terrains are not handled either, unless the pre-processing was made aware of
that.

Other academic implementations seem on a par with these commercial implementations from a tech-
nological point of view, although unafraid of fully dynamic searches like D*. With regards to human-like
behaviours, they generally remain less polished than professional implementations.

Robots are a reference for handling dynamic surrounding conditions. All of the architectures reviewed
are either pure reactive behaviours (which can cope with the problem intrinsically), or have reliable reactive
policies at their base. This allows them to deal with people, doors. The systems with map learning also tend
to use probabilistic reasoning, which allows them to update their representation over time; changes in the
terrain are taken into account. Path plans are also done dynamically, due to the high-probability of failure.

Flexible

In game simulations, the flexibility is limited as much as possible, but gives satisfactory results. To squeeze
as many processor cycles out of the navigation code as possible, it is not only restricted to the types of terrain
found in the games, but also to specific “levels”. The designer often has to place waypoints manually, which
makes supporting different terrains fairly tedious and time consuming. When waypoints are not placed, an
extensive pre-processing phase is required before any kind of movement is possible.

Some other research done in academia is a slight improvement. While the type of terrains is restricted
to match the exploration behaviours, specific layouts can be learnt automatically online. This decreases the
hassle entailed by handling novel environments.

Architectures designed for real robots are striving towards flexibility. That said, problems tackled are
still often limited to office tasks, or outdoor navigation. The reactive robots tend to handle any configuration
transparently without realising it. Those that need cognitive maps to perform deliberative reasoning usually

21

behaviours can potentially go horribly wrong in unforeseen situations (Champandard, 2002b).

On the other hand, robots struggle for even reliable motion, so human behaviours seem far out of reach.
This is definitely something researchers strive towards, but the underlying robotic hardware often doesn’t
lend itself to the task.

Real-time

Programmers of game agents often see the worse part of the computation budget. This forces them to neglect
otherwise interesting features, in order to squeeze the most processor cycles out of the logic. The result is
an extremely lean implementation, with everything pre-processed where possible.

Academic work often has additional features focusing more on the research aspect. This causes them
to remains a step behind with regards to efficiency and real-time capacity, though still reasonable.

Finally, robots are intrinsically capable of real-time performance, due to their design requirements.
That said, they typically have dedicated hardware to exploit, which is usually fully required to analyse the

sensory data.

| Feature | Robotics | Game Al Academic |
autonomous || generally never possible
dynamic intrinsic minimum | overhead
flexible reasonable | limited simplified
human-like no usually no
real-time exclusive | shared passable

Table 2.1: Conditions fulfilled by existing systems from different domains.

2.5.3 Summary

To sum, up the pre-conditions establish are satisfied individually by some approaches, but never as a group.
The synopsis looks at the best options of the three major trends, robotic designs, in-game navigation system,
and academic architectures.

Table 2.1 demonstrates this; cells with underlined text show that unsatisfactory results are achieved for
this feature. This is somewhat an oversimplification, but reveals the areas that this dissertation wishes to
address.

The motivation for creating a custom system is to satisfy these overall requirements within the context
of virtual environments. Existing systems cannot be directly applied, as they have not been considered with
each of the premises in mind.

22

Design

“Navigation is about wayfinding, you can’t treat it as separate because
many other things run parallel with it.” —Clement Mok

In the task of engineering a complete solution for our navigation problem, the initial step is to design
the architecture based on a conceptual study. This essentially involves determining what behaviours are
necessary as well as organising them in order to satisfy the external expectations.

This chapter will start by formalising a set of requirements. Then, building on the observations and
lessons extracted from the literature review, our generic approach in tackling the problem will be explained
and justified. An interface with the rest of the system will be drafted, thereby laying down a foundation for
the implementation. Finally, the underlying architecture is to be organised, with the role of each individual
task described.

3.1 Requirements Revisited

In Section 1.9 of the introduction, a brief list of project objectives was given somewhat informally, but
from a practical perspective. These can now be further refined to take into account observations from
Section 2.5.1 of the literature review. However, these criteria used to judge existing work were rather more
analytical. Since they are nonetheless important concepts for our architecture, these latter points need to be
incorporated! into a new set of requirements that extends and combines those listed in Section 2.5.1, thereby
improving the development process. Thus, later stages of the design and implementation would correspond
to fewer requirements.

Environments

For better or worse, simulated environments in games are becoming more realistic — but more complex.
This includes continuous 3D worlds of potentially infinite size. Increasingly intricate scenarios and storylines
are forcing game creatures into unexpected situations, in which they are naturally required to move around
unhampered. As such, no assumptions should be made about the animat’s “natural habitat,” as they may
exist in a wide variety of settings: indoor and outdoor, deserted and highly populated, complex and very
simple. The ability of the navigation to take into account these changing surroundings will thereby increase
the likelihood of successfully reaching its goal.

IThere is a (somewhat ambiguous) mapping of the objectives onto the requirements.

23

Simulation

Conceptually, this virtual world is simulated in a fully continuous fashion, and all interactions happen in
real-time. That said, for efficiency reasons the agents are rather given discrete opportunities to reason,
though this happens at a high-enough frequency for it not to be an issue. However, this does not guarantee
that events happen in a deterministic fashion.

Only a real-time system will be capable of coping with these restrictions at interactive rates. Efficiency is
also crucial since the system is expected to perform non-exclusively on the hardware, sharing resources among
agents as well as with other components. To maximise the quality of the final product, the computational
overhead of the module should also be minimal, or at least scalable with respect to the quality of motion
provided.

Practically speaking, this influences the design of the computational processes used by each module
(e.g., heuristic, deliberative search, reactive), as well as an overall efficiency of the implementation.

Embodied Animats

Each creature is fully genuine, modelled as an embedded entity. To that end, the information it receives
is physically limited, as well as the scope of its possible actions. As such, no pre-processing techniques
common to most complex navigation systems will be possible since that bulk information is simply not
initially available.

The design will have to take such limitations into account by being fully autonomous, which reduces
the amount of information it has to deal with.

From an engineering point of view, this translates into the design of the interface with the environment,
and how the body’s constraints are enforced. This also affects what assumptions can be made during the
design, as the system will either have to cope with ambiguous information, or somehow reason to extract
meaning from the data.

Behaviours

Increasingly high-expectations are placed in the quality of the behaviours observed. Our navigation module
should be capable of providing realistic motion ranging from complex patterns involving jump sequences to
hesitation-induced pauses — as well as errors like reversing into walls or getting lost by assuming a different
starting location.

For the system requirements, this implies a design of components which interact together and emergently
create human-like behaviours. They also need to be flexible enough, so appropriate behaviours can be crafted
and inserted into the system when necessary.

In practical terms, this has a great impact on the parameters chosen for low-level motion. Also, it reveals
the importance of the conceptual reasoning in the higher layer to emulate the human cognition process.

Higher-level AI

As the navigation component will constitute a small part of a complex system, it must provide an intuitive
handle for specifying the desired result. As sophistication increases, one can expect these higher-levels to
require complex navigation, with intricate time-dependent responses. Therefore, the range of behaviours
provided also needs to be sufficient to fulfil these needs, yet never inconsistent.

24

e AR Y Y A il s BeaaA A At vl AL AV AL o At A ARy A B A A A AL At e A A RSy VAR

architecture of the system should facilitate both these tasks, reducing development times. The system should
also be easy to test and debug, and customisable enough to allow simple adjusting and extending at will.

By definition, this implies building a very flexible system, allowing behaviours and modules to be
included — almost at the click of a mouse. Such modularity allows incremental development, as well as
facilitating debugging and improvements.

For the implementation, this implies a very object oriented style of programming, which would allow
the components to be relatively easily organised and extended. The level of competence required to modify
the system should be proportional to the complexity of the operation. Experts are capable of changing the
entire skeleton of the architecture, connoisseurs can update specific tasks and behaviours, while beginners
have the option of configuring them.

3.2 Approach

The task placed in front of us is to design and implement an architecture that manages to satisfy all of these
requirements, without neglecting others. This section underlines the general concepts at the base of our
model allowing us to satisfy these requirements. The creation of specific modules will, wherever possible,
attempt to follow these guidelines.

3.2.1 Embodiment

In robotics, embeddedness can be an undesirable and somewhat annoying property; so much so that an
increasing amount of recent research is trying to enhance robot perception abilities by overloading them
with sensors (both internal and third-party). In fact, the field of pervasive/ubiquitous computing is trying
to break these constraints — to the satisfaction of many researchers.

However, for the simulation of realistic virtual animats, embodiment appears fundamental. The physical
constraints imposed on their animal counterparts define their relationship with the environment, which some
ethologists believe is a key component in the emergent behaviour observed. In navigation particularly, we
believe it has numerous intrinsic advantages that influence the realism of the motion. Therefore, beyond
considering it as a requirement, we have gone through great lengths to actively enforce this embeddedness.

Not only is the perception restricted to sensory range, but it is made fully subjective — that is, relative
to the current state of the animat. Additionally, sensed data is generalised and fuzzyfied to some extent,
which increases the realism of the simulation.

3.2.2 Learning

Many believe learning is an essential component of intelligence. Rather, we present it as a human character-
istic, whose modelling will increase the authenticity and realism of the animat. Additionally, this simplifies
the manual handling of somewhat complex scenarios, at the cost of the overhead needed to develop the
learning algorithm.

In our system, the learning is split into two sub-classes — as generally believed by psychologists. The
declarative learning gathers facts about the animat and its environment, while the procedural learning
attempts to produce useful behaviours.

Our behaviour learning takes place offline, which simulates the navigational abilities that mammals
are blessed with over time (thanks to evolution and early life development). Factual learning takes place

25

Pt i e sidis A ts A aiici i Wil v bt AL 4L v Ay Ay A G

In the development of our navigation, where instantaneous reactive behaviour cannot be used, we devise
heuristic solutions as much as possible. This allows them to order to provide “quality of service” results,
where the approximations improve over time. Basing our solutions on psychological observations allows even
more realism to be introduced into the mix.

3.2.4 Stochasticity

Along with the search paradigm, developers seem to have kept the attitude that nothing but the optimal result
should be returned. Though this may have benefits for industry optimisation problems, the simulation of
realistic animats often requires more than flawlessness. By this we imply that many interesting and desirable
behaviours do not arise from perfection — contradicting many sci-fi stereotypes.

Instead of randomising perfect results, which would clash with the use of heuristics, we build this
stochasticity into the solutions themselves. When done in a reasonable fashion, efficiency is not sacrificed at
the cost of a more captivating behaviour.

3.3 Interfaces

From the requirements and the informal guidelines, a robust interface can be designed; it in itself establishes
the skeleton of the architecture. The design of the interface is crucial since it can make the difference between
a useless black box and an extremely effective tool.

Since the navigation system is to be developed as a separate component, the interface with the rest of
the software will also provide a fundamental definition of the functionality required, as well as formalising
the assumptions made from other modules. These external interactions can be narrowed down to two types:
environmental and with the higher-level AI component, both of which we will discuss in turn.

3.3.1 Environment Interaction

This formalises the information available to the animat from the world it’s in, as well as the actions it can
perform (input/output). It has the following properties:

e Sensorial Honesty — The information given to the animat is restricted to that within sensory range.
The physical laws of the virtual environment are enforced actively, which implies the system is more
likely of applying to real-world scenarios, given adequate pre-processing to support the assumptions.
For example, the animat cannot see objects through walls.

e Subjective Perception — The agent can access the environmental information via sensorial queries; they
can only return values relative to the current state of the animat, in the true spirit of embodiment.
For example, objects in space appear relatively to the current orientation. In practice, this forces the
agent to interpret this data to maintain a coherent internal state (if any).

e Inaccurate Information — Together with subjectivity and honesty, the agent also has to deal with
inaccuracies. Once again, these are imposed upon it in a human-like fashion. For example, distance
estimation of obstacles becomes more error-prone as it increases, and determining the exact identity
of other players is not always possible when they are facing in the opposite direction. Customisable
scripts can be written to formulate these errors parametrically.

26

Aside these developmental challenges, we rank this approach as a key factor in the creation of human-
like behaviours, which implies a greater level of realism in virtual environments. Indeed, this scheme has
numerous intrinsic advantages over traditional models, as will be emphasised all along this dissertation.

3.3.2 Higher-level Al

The second interface that needs to be specified resides between the navigation system and the user’s custom
Al reasoning component that lets high-level orders filter down. Such an interaction requires both simplicity
(in order not to overwhelm the programmer) and versatility (allowing the raw power of the underlying
mechanism to shine through).

Instead of using explicitly specified targets, the system relies on distal reward values. This creates
the concept of implicit destinations, which can be combined to guide the animat. The navigation systems
must maximise its reward, in fashion similar to reinforcement learning. A knowledgeable reader may notice
similarities with potential fields; the independent rewards indeed superimpose to define a navigation policy
for the entire terrain. However, we associate this with arbitrarily complex layouts rather than mostly reactive
navigation, which presents familiar problems but on a much larger scale (e.g., local minima).

Terminology

The simplicity and intuitiveness of the interface often relies on some underlying concepts, in the form of
fundamental navigational behaviours.

e Seeking — This behaviour is defined by heading towards a fixed target; this is called following for a
moving point, but the concepts remain the same. While these are usually associated with shortsighted
reactive behaviours, we expand the definition to cope with complex terrains and more deliberative
approaches, permitting distant occluded points to be specified.

e Fleeing — Conversely, this behaviour attempts to move away from static points (or evading dynamic
ones). Once again, arbitrary obstacle configurations should be taken into account, not only uncluttered
scenarios.

e Avoiding — This type of motion is abstracted from obstacle avoidance, but applied to any point in
space; it must be simply circumnavigated. This differs from the previous bullet point, which is a more
active intention rather than a passive action.

All other types of motion can be more or less trivially mapped onto these primitive ones, such as
patrolling, exploring, and finding. The definition of the interface is based around the ability to ele-
gantly specify which behaviours should be performed around which points in space, and how they should be
combined together.

Definition

Though these behaviours are extremely intuitive and could be assimilated with a negligible amount of
experimentation, a more formal definition may prove valuable to developers. Moreover, it will allow robust
evaluation of the underlying algorithms, based on such precise metrics.

Both seeking and fleeing can be abstracted to the same definition. The value of a point in space z
decreases exponentially (respectively, increases) with respect to the distance from the target point ¢.

27

htationale

To date, most deliberative navigation policies can be expressed as ‘shortest-path to fixed destination’ queries,
in an attempt to keep things simple and efficient.? No doubt this representation was also influenced by the
abundance of related papers within the context of network flow problems, graph theory, or combinatorial
optimisation. Though applicable, this approach has serious limitations (short of calling them flaws); it relies
on the ability of a decision-making module to map the navigational desires — however complex — onto single
destination points. Since artificially intelligent agents are becoming more sophisticated, communicating such
intentions to a navigation system only by specifying one target point is generally ambiguous and incomplete.
We call this phenomenon behavioural aliasing, which cannot be neglected.

The most can be made of the limitation by carefully designing the destination selection function;
prioritisation of the drives and exponential distance scaling of the selection probability prove extremely
useful in practice. However, this tedious task remains non-trivial, not to mention the computational overhead
incurred in the higher layers.

Additionally, we argue that the higher-levels are ill-suited to making decisions about the points in space
that should be selected! In robotics, some systems separate the task-planning with the path-planning, in
order to get around the problem with the interface. There is much redundancy involved, as the information
used is often duplicated (travel times are used to plan the order of goals before paths to each are computed).

This is possible, as the skill of many artificial players in modern computer games demonstrates, or as
the reliability of the robots running office errands testifies. However, we argue that the planning within the
navigation system itself is better placed to perform decisions about such space-related problems, and can
often do so more efficiently.

Motivation

As expectations become higher and requirements increase, cracks start to appear in the old model. Whispers
of dynamic environments, multiple path combination and weighted destinations can already be heard in the
game A.I. community. We believe a more generic definition that encapsulates the original would remedy
these problems. Such a rigid specification would also:

e Allow testing and comparisons of different implementations on equal terms,
e Provide an interface draft in the development of a navigational system,
e Bridge the gap between behavioural studies and the maths-based theory.

This paper intends to define intuitive parameters that can implicitly control the results obtained by the
path-planning algorithm.

3.3.3 Interface

The interface designed during this project has many links to the ideas described above. Some accessors allow
the user to tweak the cost and rewards of particular locations in space freely. This is done either relatively
to the current location using 3-vectors, or globally with regards to the world model using landmarks.

?Local reactive models do not rely on such an approach, but they have not been scaled up to the entire terrain as many
problems tend to arise in the process.

28

o~

void Move(const Landmarks landmark)7

void Patrol(const std::vector<Landmark+«>& 1, bool ordered = false);

3.4 Architecture

Designing an architecture is a matter of determining what functionality the system must provide, finding a
correspondence with modules that can be implemented, and organising them together in a coherent fashion.

3.4.1 Principles

Synthesising complex behaviours necessarily relies on achieving reliable primitive motion. In a similar fashion
to horseback riding, the rider would have great difficulty choosing the way if the horse could not follow path
segments reliably. We craft such straightforward navigational entities — called “hosts” — using a reactive
mapping from the sensors to the effectors. This allows them to perform tasks such as obstacle avoidance,
among others.

In such circumstances, one notices that elaborate movement is essentially a subset of reliable motion.
Indeed, seeking distant targets requires avoiding obstacles along the way in a particular fashion. Instead of
believing that this is just a matter of arbitrating appropriate reactive behaviours, we rather rely upon higher-
level algorithms to influence the outcome. The reaction of the host can be manipulated by modifying the
sensory data it requires. Such an approach can be understood as inserting (or removing) internal artefacts
to the world model; these are harmless bits of geometry that push the animat away (respectively, a lack of
geometry that draws it in).

We call the entities responsible for adapting this sensory information “parasites”, as they indirectly
abuse the capabilities of the hosts by bamboozling them. They are typically responsible for less trivial
reactive behaviours like seeking and fleeing. Since poor performance of the hosts would also affect the
parasite negatively, the latter are responsible for not overloading the former. This approach allows the
behaviours of the hosts and the parasites to be combined in a smooth and natural fashion.

These reactive influences can be applied in weighted fashion to obtain compound blended behaviours.
This provides a hook for higher-level behaviours to influence the movement. Notably, one of our algorithms
is for path planning, which suggests the desired heading to the “seek” parasite.

The choice of the hosts and the parasites can be made fully based on the requests of the client AI. The
entire system is driven from state to state by upper interface calls. On the other hand, tasks like learning
of the terrain or sampling the surroundings can be done completely transparently. Such data structures are
chosen to assist the behaviours only, and match their level of cognition.

3.4.2 Layout

The lower layer of the system consists of reactive behaviours, which handle the motion control. This com-
ponent can be instantiated as any activity mapping sensory data onto primitive actions. The outcome of
this process is a set of fully functional navigational entities (the hosts). They get full control of the motion
effector, and remain liable for the survival of the animat with regards to navigation.

More elaborate behaviours form the higher level of the navigation system. Virtually any control algo-
rithm can be implemented, as long as they can be expressed as a desired heading. An arbitrator is responsible
for selecting these behaviours depending on the current state.

29

However, unlike most other systems, the representation does not become more abstract with each
layer; it remains the same right until the decision is made.

Vertical Layering — There is a certain sense of vertical layering since both the representation and the
levels of cognition vary from practical data to more abstract concepts. However, the link between these
layers is only implicit as the upper layer can only suggests it moves to be made.

Behaviour Based — The arbitrator can select a combination of hosts and parasites to generate any
reactive behaviour. This can be done based on the state and persistent variables allowing activities to
interact in a typically behaviour based fashion.

Voting Systems — The arbitrator can also combine parasites and their corresponding reactive be-
haviours. These are blended together using weighted influences on the host. Mishaps can be prevented
by monitoring the fitness feedback of the host.

3.4.3 Process

The main procedure of the navigation system can be understood as follows:

1)

2)

3)

4)

5)

6)

Select Host — The fundamental navigational entity must be chosen first. It will perform a reactive
behaviour whose output will be directly sent to the motion effector.

Sample Surroundings — Using its sensors, the animat must gather information to update its internal
representation of the local surroundings. This is a dynamic data-structure storing distances to obstacles
all around.

Request Data — The host is now asked to request information from the cache of the surroundings, in
order to base its motor decisions upon.

Prepare Parasites — Using the requests of the higher-level Al, specific parasites can be chosen in order
to obtain the desired moment. Appropriate parameters need to be chosen for these parasites, which
usually involves running another algorithm to compute the desired direction.

Apply Parasitical Influences — The parasites can now be applied by bamboozling the information re-
quested by the host. In this fashion, the motion can be influenced in the appropriate directions.

Engage Host — Finally, the host itself gets to process the information it requested and decided what
the final action should be.

Tasks that are performed transparently or simply run on a regular basis.

3.4.4 Parallels

Many similarities with other systems can be observed. While some were purely coincidental, they need to
be acknowledged to confirm the position of their original authors.

e Xavier — Simmons et al. (1997) emphasises the independence of the lower layer, which increases

reliability in the situations. Our lower layer is also self-standing, providing satisfactory motion even
when no other components are active.

30

blend behaviours and provide a hook for higher-level influences.

e Minksy — The representational promiscuity applied here involves choosing a model of the terrain that
suits each layer best.

e Using incremental design ala Brooks, our system is built from the ground up.

e Seymour (2001), among many others, maps deliberative path-planning algorithms onto suggested head-
ings. This reactive policy can be followed like a carrot on a stick.

3.5 Components

This section briefly describes each of the components used within the system from a conceptual point of view.
Those causing issues in the implementation, or with particularly interesting algorithms will be described later
in the dissertation.

3.5.1 Surroundings

This is a simple persistent data-structure that stores a discrete representation of the local environment. It
is updated on the fly by querying the visual sensors, which pass back the distance of nearby obstructions.
When queried by the motion controller module, a simple look-up is performed to return the estimate of
the obstacle’s distance. A consequence of this module is local spatial awareness; by continuously caching
information about the environment, this can be subsequently queried in any direction, independently of the
orientation.

However, since our system is tested in the context of navigation rather than for game playing, the ability
of this module is not pushed to its limits. Indeed, the animat can mostly look in the direction of travel.

3.5.2 Motion Controller

This is conceptually the lowest layer of the system, working on a mostly reactive basis. The activities handled
by this module generally map sensor readings onto movement actions. Specifically, this involves taking in
the distance of obstacles, and outputting a desired direction and speed.

This component is the only one to be connected to the output layer: the motion effector. All other
layers thereby require and depend on it. However, it does not explicitly perform the arbitration! The only
inputs it is given are those that it requires for basic functioning.

The major innovations of our approach involve a modular feed forward neural network for control-
ling motion, combined with incremental evolution and high-level fitness parameters to generate the desired
behaviour. This is described further in Chapter 5.

3.5.3 Reactive Influences

In order to combine more elaborate reactive behaviours with the primitive motion provided by the hosts,
we advocate a parasitic approach somewhat different to existing work. It is based on a more “laissez-faire”
attitude, involving a machine learning approach to bamboozling environment models. Inserting or removing
obstructions can influence the host into appropriate directions.

31

obstacle

distances fitness

feedback

MOTION
CONTROLLER A

move l turn l stanceJI

motion effectors

Figure 3.1: Simple host capable of reactive navigation.

SURROUNDINGS

;argﬁl:eeds motion request

‘—
BEHAVIOUR INFLUENCE

47

A

values Vv V V
MOTION
CONTROLLER

Figure 3.2: Parasites that bamboozle the flow of information to the host, thereby influencing the behaviour.

32

e T e e R & A N = e & e S S

Our approach is based on the incremental learning of a graph, inspired by the Hansel & Gretel fairytale.
A pebble is dropped when no other pebbles are accessible, and it is linked together with the previously closest
pebble in the cognitive map. The model is enhanced by adding features common in SOFM, such as node
displacement and edge decay. This explains some of the similarities with growing neural gas (GNG), though
the numerous assumptions about the navigational nature of the problem allow us to highly optimise the
model. Indeed, the concept of spatial common sense (SCS) is introduced to generate simpler models, of higher
quality, quicker than usual. Additionally, human-like features such as cognitive constraints, preferences and
habituation further contribute to our incremental self-organising topography. Chapter 7 is fully dedicated
to describing the algorithm and data-structure behind this concept.

3.5.5 Path-Planning

This module relies on the learnt topography to deliberatively compute dynamic paths to destination nodes.
This is done in an implicit fashion since the path is passed back continuously, one step at a time. Such a
scheme allows multiple weighted destinations to be taken into account, in a dynamic fashion.

physical sensors visual sensors
 —— [
perceived entities
movement
checks
-
SURROUNDINGS TOPOGRAPHY
accessibility

assumptions | |

¢ rewards

DYNAMIC OVERLAY

¢ COsts

PATH PLANNING [e— Position

vy

next step options

Figure 3.3: Higher-level cognitive layer that handles the planning of paths.

Properties of the terrain that the higher-level AT has decided upon (such as rewards and costs for specific
areas) are stored alongside with the topography, but in a separate data structure called the Overlay, shown
in Figure 3.3. This is used by the path planning to take into account the dynamic aspects of the problem.

The underlying process itself is a heuristic. A simple routine is applied repeatedly to improve the quality
of approximation in the results. The greediness of the procedure provides very good initial estimates. A

33

L~ - - -« - 4+ 4L 4

(multiple are possible) select the approprlate para51tes and give them targets (multlple are poss1ble) These

can be optionally blended together, in which case the arbitrator must compute their weights.

A finite state machine proves sufficient to handle all these requirements, as each situation can be pre-

empted and handled with relatively flexible commands.

physical sensors visual sensors

e i

;\

! | W .
HOSTS (MC)

-—.
v

PARASITES (RI)<:> T
o O L v\\\\\\\\\\.ARBITRATOR
l—
v

motion effectors

Figure 3.4: Simplified diagram of the entire system.

higher-lev
interfac

Framework

“Science is organized knowledge.” —Herbert Spencer

The task of implementing and developing the architecture can be assisted and also sped up by a common
set of tools and methodologies, which can also improve the final result. This chapter aims to regroup and
describe the common Al techniques and ideas used in our experimentation. Then the core of the framework
will be explained. A description of the environment will be provided, along with a description of its interaction
with animats.

Readers with theoretical and practical experience of all these fields, methodologies and software ex-
plained below may wish to move on to the next chapter tackling the first component of the navigation
system itself.

4.1 Background

This first section intends to describe techniques of Artificial Intelligence that were used within this project,
and vindicate our approach to them.

4.1.1 Evolutionary Algorithms
Overview

The field of Evolutionary Algorithms is inspired by Darwin’s theory of evolution (Holland, 1992; Mitchell,
1998; Goldberg, 1989). Various different approaches exist, ranging from Evolution Strategies (ES) to Genetic
Algorithms (GA). While initially isolated research groups, they are merging slowly; ideas are being borrowed
and implanted across old boundaries. Such techniques can be used for artificial life simulations, where
survival of the fittest is a fundamental issue, but also implicitly in optimisation problems.

Motivation

The main benefit for using GA in this context lies in unsupervised learning. They allow us to train other
components based on objective fitness functions. This allows designers to tweak the behaviours using high-
level parameters, assuming these have been incorporated into fitness scripts. Supervised processes on the
other hand are often too restrictive with regards to possible solutions, whereas self-adapting solutions often
have too little control.

Due to their generality, GA also allow various parameters to be optimised, no matter what the format
or representation of the problem.

35

3)

4)

5)

6)

......... T T E e e e

sexual breeding respectively). This usually involves processing parts of the population, and applying
a selection scheme to pick out fit individuals. Commonly used approaches include roulette wheel
selection, tournament selection, and best of group selection. Such elitism allows the quality of the
population to improve over time.

Crossover — When two parents are selected, their genetic code is merged together to create an offspring.
In essence, it’s a matter of determining whether an allele should be set from the mother or the father,
gene by gene. Standard genetic operators such as unary crossover (the mother genes are copied until
one random point in the genotype, then the father’s), binary crossover (the father’s alleles are only
copied between two random points), uniform crossover (each gene has a x probability of being copied
from either parent). Since these operators are usually symmetric, it is customary to generate two
offspring, dubbed son and daughter; they have genetically opposite genetic code.

Mutation — Once the crossover operator has been applied, a bit more variation can be given to the
offspring by mutation. Select genes are chosen, usually at a low probability, and have their value
mutated. Depending on the type of gene, this can happen in various ways; bits are flipped for binary
genes, random values can be added to integer genes, and floating-point genes are subject to Gaus-
sian distributions. This brings more genetic diversity to the population, preventing stagnation and
improving the coverage of the search space.

Evaluation — Once the offspring have been created, they need to be tested against the problem. This
is known as the evaluation procedure, whose goal it is to determine the fitness of a solution at a
particular task (as performed in the initialisation stage). Once this fitness has been determined, it may
be normalised; window and rank based techniques are common. This maintains pressure for survival
on the best solutions, and increases the chances of poor solutions.

Replacement — Given the normalised fitness, the candidate offspring can optionally be reinserted into
the population. Conceptually, the process can be either steady state (where new populations are
created each generation), or incremental (where individuals are inserted into a persistent population).
Both these cases can be handled implicitly by a replacement function. In practice, it can replace the
parents, the worst individuals, or based on other randomised metrics.

Typically, each stage of the evolutionary process takes parameters; how these parameters are initially

chosen and change during the evolution naturally has a huge impact on the number of epochs needed for
convergence.
Capabilities

While problem-specific solutions often perform better, Fuvolutionary Algorithms still are a reliable form of
optimisation. In fact, they are often praised for the following benefits:

Generality — Evolutionary solutions generally rely on a very abstract form of representation, known
as a genotype. This allows the underlying genetic operators to also be very flexible, allowing virtually
any problem to be optimised.

Efficiency — By combining the benefits of both random search and local optimisation, algorithms can
normally avoid local minima effectively. Near-optimal solutions can thereby be reached when good
default parameters are chosen.

36

as it can directly impact the quality of the final solution.

e Coherence — When crossover and mutation operators are used on specific genomes, they may cause
an inconsistency in the genetic code. This proves problematic when it needs mapping onto a phenome,
as the conversion procedure will need to check for consistency, truncating and completing genetic code
as it sees fit. Alternatively the conversion routines must work with inconsistent genomes. Though
possible, this is a very tedious process.

e Genetic Drift — Since good genetic code is more likely to propagate throughout the population, the
crossover operator can cause a specific allele to take over the gene pool. This has the negative effect
of preventing diversity, and causing premature convergence.

e Stability — Since much of the underlying process of the genetic algorithm can be seen as a biologically
driven random search, this causes issues with online learning. Performance stability cannot be guaran-
teed, nor can its improvement over time; one moment it may evaluate the fittest individual yet, while
the next trial could see the second worse. This is something that should be taken into account.

e Fitness Function — The definition of the fitness function is surprisingly important. Ideally, it needs to
be defined smoothly over the search space. GA tend to struggle with fractures in fitness space.

Precautions can be taken to prevent all these problems but the designer should be aware of them in
order to understand them as they happen.

Approach

The implementation used throughout the project is based on a toroidal GA, similar to that described by
Gruau (1994). The implementation itself is based on Champandard (2001). It has the following properties:

e Incremental — Individuals are reinserted directly into the existing population. Each stage does not
have a new set of individuals; there is no concept of “generation”.

e localisation — The population is stored in a grid world, wrapping round in both dimensions in a
doughnut-like fashion. Selection of individuals to mate is limited to the local neighbourhood of the
offspring’s location. This actively enforces localisation to prevent genetic drift; fitness islands, where
the genetic code is similar, quickly appear in the population. Since these islands can only directly affect
local individuals, the spreading of dominant alleles is thereby limited, but possible when appropriate.

Since we do not believe the problems tackled with GA are exceptionally complex in our case, the choice
of a particular GA over another has little motivation or practical benefit. Many properties of the chosen GA
are interestingly very close to the Artificial Life paradigm (our initial research did indeed lean towards such
multi-agent evolutionary systems).

However, we include the following enhancements; some deal with issues to improve performance, while
others facilitate the implementation:

e Candidate Selection Scheme — A stochastic walk from a randomly selected grid coordinate is used
to find the worse individual in a local neighbourhood. Its location is chosen for the next candidate
offspring. Such a greedy candidate selection policy tends to increase global fitness rapidly.

37

4.1.2 Neural Networks

The field of neural networks is part of machine learning, inspired by a neuro-biological model of the human
brain. They are based on artificial models of real neurons, which are more or less accurate; we are still
somewhat uncertain about how neurons fully function.

Topology Types

With over five decades of research in the field, there are understandably many different types of ANN.
Each has its own preferred domain of application, and selecting the most appropriate type already requires
thorough consideration.

e Perceptron — This is the famous feed-forward layout, where input values propagate directly through
the network towards the output connections (Rosenblatt, 1962). While initial models only consisted of
a single layer, improvements in the early 1980s allowed multiple layers to be trained (D. E. Rumelhart,
1986).

e Hopfield Network — Named after its inventor (Hopfield, 1982), this network has a fully recurrent topol-
ogy, such that all neurons are interconnected. The dynamics of such networks are reasonably complex,
but understood. Training algorithms have only just been devised.

e Gasnet — This recent model is based on the discovery that gas can behave as a neurotransmitter
(Husbands, 1998). The complexity of the neural model introduces time dependent results and plasticity,
which can be of great benefit for robotic controllers.

e There are also many other neural models based on self-organisation.

Given any topology, each neuron can be simulated in turn by processing the inputs to generate an
output. The neural network can thereby perform computations, which can be interpreted and exploited as
appropriate.

Learning

The purpose of learning is to replace an initially random set of weights with a near optimal one. There are
numerous ways of doing this, as you may expect.

e Back-Propagation Training — This is one of the original forms of training (Rumelhart et al., 1986),
based on supervised learning. Before each training sample, the output error is percolated back through
the layers, gradient descent is performed on the weights. Many enhancements have been made to the
initial algorithm over the years (Riedmiller and Braun, 1993), aiming to improve performance and
reliability.

e Evolutionary Algorithms — A relatively recent form of NN optimisation involves GA. They can be used
to evolve all parameters, including weights and layer sizes. Both supervised an unsupervised learning
can be done in this fashion. Typically, performance doesn’t compare to back-propagation algorithms,
though they can have many advantages in specific situations.

38

While neural networks are very flexible solutions, they are generally used for two purposes:

e Regression — This technique is used to smoothly control robotic limbs, based on information given by
a collection of sensors.

e Pattern Recognition — In a high-level fashion, they can be used to sort input vectors into classes. This
has numerous uses in industry, such as conveyor belt monitoring and face recognition.

e Function Approximation — Neural networks can be used to approximate complex functions, modelling
them in a much simpler and more efficient fashion.

e Prediction — This is used to anticipate time series, by a certain amount of steps. The stock market is
being monitored using this technique.

In these applications listed, interesting properties of neural networks are exploited. In general, these
are the primary incentive for using such solutions.

e Generalisation — Due to the way the knowledge is internalised, a well trained Neural Network can be
expected to perform well in situations that it has not encountered before. By taking especial care
during the design of our model, generalisation can be almost guaranteed.

e Noise Tolerance — One of the many advantages of the neural network approach remains its ability to
deal with noise effortlessly. This is often attributed to the internal neuro-fuzzy representation.

e Continuous Values — Despite originally being intended to work on boolean quantities, many practical
applications have shown the potential of using continuous floating point values, for robotics controllers
especially. This is an intrinsic advantage since deciding how to convert continuous values data to
discrete ones can be an error prone process (but nonetheless crucial).

Issues

Like other seemingly miracle solutions in AI, Neural Networks reveal their own set of pitfalls when one looks
beneath the surface.

e Local Minima — When learning the weights by gradient descent, some algorithm can settle in a sub-
optimal configuration. This can be due to the back-propagation algorithm itself, or the way the inputs
are modelled which directly shapes fitness space; it may not be possible to solve the problem with the
given inputs.

e Expert Design — Often, devising a good model is an intricate process, with under- and over- fitting
notably causing problems. While initially, design relied on knowledgeable specialists, more and more
solutions allow reliable tuning of structural parameters.

e Modelling I/0 — The modelling of the interface is equally important, and tends to be neglected. This
procedure cannot yet be handled automatically, and causes an extra dependency on the expert. Such
preparations take up a significant proportion of the development time.

39

davliiviviial dUudlvivil vl Huvloe, Ul vlalloivliilldivivil Ul Lvillv valuvo vid 4 1ullvulull, 5C11U1(1,l/1115 vulllpuulliu

features as well as removing symmetry.

e Structural Choices — We opt for a feed-forward perceptron for its speed and simplicity. By using the
previous output as an extra input we can also get sufficient feedback to model interesting behaviours.
Due to bad scalability issues, we tend to limit our networks to small sizes, both in neuron and layer
counts.

e Evolutionary Algorithms — Using the genetic algorithms described in the previous section, unsupervised
learning is used to train the networks.

Motivation

There are numerous reasons for choosing an evolutionary artificial neural network based approach, most of
which can be split into two categories. Firstly, it may be appropriate to justify the need for a machine-learning
approach to the problem.

e Simplicity — Models based on explicit mathematical equations are already simple from a “cut and
paste” perspective. Little effort is required to get the initial solution working. However, adjusting the
parameters of the model is a tedious matter, which requires much more knowledge of the underlying
process. A machine learning approach allows the learning algorithm to adapt to new parameters
intrinsically. This black-box approach allows a good compromise between high-quality performance
and simplicity of the tuning.

e Customisation — Since the machine learning algorithm is usually based on high-level parameters, defined
in human-like terms, it provides a much simpler way of obtaining the desired emergent behaviour.
Additional fitness components can be set-up by the programmer, forcing the agent to learn to cope
with these additional constraints while solving the collision avoidance problem at hand.

Secondly, the Neural Networks have many desirable properties that influence decisions to include them:

e Generalisation — In creating our navigation system, there will not be an infinitely long training pro-
cedure! This implies the need for such a high-level form of learning, allowing a finite number of
well-chosen scenarios to do the trick.

e Noise Handling — In many aspects of the system, the continuous values passed around will be subject
to imprecision (from internal communication to sensory data).

e Efficiency — When tackling a problem like navigation, fortunate enough to be easily optimisable, one
can expect a reasonable size of the final NN. This not only implies fast learning, but also that its
simulation will be extremely efficient (especially when implemented correctly). For animat simulations
this is crucial since the frequency of the responses greatly affects the outcome.

The theory reveals neural networks as a good candidate solution for some navigation problems, but
only experimentation will confirm this.

4.2 Environment

The world used to develop the navigation system is virtual 3D. It proves challenging due to its not realistic
nature.

40

Figure 4.1: Features of a complex game environment. From left to right: ladders, stairs, bridges, doors,
elevators and ledges.

4.2.1 Overview

While some believe computer games are ideal for developing human-level Al, they seem to forget that such
games are generally straightforward (like deathmatch first-person shooters focused upon). Due to the high-
pace of the game, a very reactive opponent — admittedly with convincing behaviours — would often perform
well enough not to be noticed.! The fact that teenagers can pick this up in a few minutes, or that game
developers can muster up their Al in a few months before shipping is a testimony to this fact.

Instead, our interest lies in the environments offered by modern game engines. Providing an excellent
platform for development, this commercial quality software is all too often neglected by researchers. Our
work uses the Quake 2 engine, recently made open source (id Software, 2001). The custom AT itself can be
inserted into the game DLL, which handles all the game logic, without recompilation of the main executable.

4.2.2 Description

These polished 3D simulators, along with their interesting indoor design provide an ideal test-bed for a
navigation system. Without going into too much detail, such environments can be summarised as follows:

e Terrain — This composes the major part of the environment, composed of indoor buildings and outdoor
landscapes. Conceptually speaking, this can be further split into two parts:

— Structure: The important part of the terrain that the animat can collide with. This includes floors,
walls, fences, big trees, buildings...

— Detail: The second part of the terrain that is purely cosmetic; they have very little effect on the
movement, but may be used for other purposes (i.e. as landmarks). This includes plants, pavements,
grass...

This distinction will be made obvious by the interface to the environment. Structural queries will
reveal the rough shape of the terrain, while detail will be accessible as visible entities.

e Items — The terrain is populated with objects; some cannot be picked up by the animat, while others
have a particular benefit. For example, there are health-packs, armour jackets, ammunition, and
power-ups...

Additionally, there’s an assortment of contraptions scattered around the terrain that can each affect
the player’s movement. These challenges for the navigation system are:

Mn fact, the other bots evaluated somewhat rely on this; the spectator modes are crippled enough not to allow objective
observation of the bot.

41

e Ladders — As bits of walls that the player can grab hold of, ladders have a more generic definition
than per usual. They could be standard ladders, fences, or big trees. Sadly, ladders are not handled
as entities; a special kind of structural query reveals the nature of the wall.

4.2.3 Development

The use of a robust game engine accelerated the development greatly. A combination of passive observation
and interaction with the bots also simplified the debugging.

1) Let the animats learn in accelerated console mode, without the graphics.
2) Check on the learning by connecting a spectator client to the server.
3) Freeze the animats when a satisfactory level has been reached.

4) Connect a player client to the server, and interact with the animats.

Such a typical session is the base of our development procedure.

4.3 Framework

This section underlines the core of our implementation, as well as the tools used to develop the architecture.

behaviour function

Component
1T A

input output
values variables
component

A\v4

Av4

to

Figure 4.2: Flow chart of a flexible behaviour; script function can handle the components as appropriate.

42

4.3.2 Flexible Behaviours

These are abstract classes that can be customised to perform any task, at virtually any level of the archi-
tecture. However, they are typically assigned to learn specific behaviours — whence comes their name.

A behaviour is essentially a function in the dynamic scripting environment. Python was recruited for
this task since it provides all the power offered by a modern programming language, and virtually any
standard control technique can be implemented. In order to simplify the process, it can optionally rely
on “flexible components.” these are generic objects that provide more sophisticated Al techniques — like
evolutionary neural networks. Components can be instantiated during the creation of the behaviour, and
used freely within the behaviour function. The scripting language provides the cement which connects the
components.

The underlying learning process of a component is based on a NN, whose properties are set inside
an hand-editable XML file. The genetic algorithm can also be tweaked using this same file. The fitness
function itself is stored inside a Python script. This is not only used to perform pre-processing, but also
post-processing and the actual evaluation. The control variables it returns are then directly used to perform
the task at hand. The scripts written are able to take into account high-level parameters set inside the
configuration file, allowing non-programmers to simply tweak these values.

pre-processing simulation post-processing

input output

Figure 4.3: Diagram of a typical flexible component, a neural network wrapped inside a custom script

Once connected to the rest of the skeleton, the “flexible behaviours” can become modules themselves.
There are two phases involved to insert flexible behaviours into the navigation system; one of them cor-
responds to its implementation within the skeleton, while the other instantiates the generic behaviours by
providing a configuration and a control script. The behaviours are designed on a per-individual basis, but
multiple such instantiations are possible to accomplish varying navigational behaviours as part of the same
module in the system.

Inside each python script, variables have naming conventions. The prefix "r_" indicates this variable is
returned by the script to the system, "g_" indicates a global variable, while "s_" is a state variable that is

43

impact on the navigation system.

In practice, we need to look at the two extensions that are used by our navigation system. The first
two are considered sensors: physical and visual, while the third motion effector is optional — since the
system can simply return suggestions and not execute anything.

e Physical Sensor — These provide basic information about the environment in immediate contact with
the animat. This includes the type of medium (air,ground,water), the presence of obstacles with
collision feedback, and odometric queries to track movement.

e Visual Sensor — The vision interface allows items and other humans to be perceived in a symbolic
fashion. Only the type of each entity is returned, and they do not broadcast their own unique ID —
as commonly assumed. Additionally, the structure of the environment can also be checked visually;
this is done by explicit requests rather than passing all the raw distance data back. This allows a more
efficient, scalable management of the information, but also implies that the visual sensor can abstract
out the complex processing (such as checking for visible obstacles along a path). This is something
humans can rely on thanks to millions of years of evolution behind them.

e Motion Effector — Movement is handled via this class specification. The agent can chose to move in
any direction (speed restrictions are applied when moving backwards), and independently turn its
body for looking in different directions. Additionally, less trivial actions such as jump and crouch are
provided.

For more details, the complete code listing for the specification of these interfaces is given in Appendiz
B.

44

organs | ANIMAT

|
|
|
ensors effector%
AW _

Y

— I actions

perceived performed

information

[
>

! BRAIN .’

to

Figure 4.4: An embodied animat using its sensory and effectory organs to interact within its environment
(reproduced with permission from the FEAR team).

45

46

Hosts: Motion Controllers

“Obstacles are like wild animals. They are cowards but they will bluff you
if they can. If they see you are afraid of them... they are liable to spring
upon you; but if you look them squarely in the eye, they will slink out of

sight.” —Orison Swett Marden

The motion control (MC) is a low-level module providing a flexible framework to define mostly reactive
activities. By putting this scaffolding to use, specific applicable behaviours mapping sensory input streams
onto action sequences can be crafted with minimal overhead (e.g., for collision prevention or wall hugging).
This allows navigational entities to be produced within the context of our environment; we call these “hosts”,
as they are primitive creatures capable of straightforward movement.

First, a generic description of requirements of motion controllers is provided, as expected from a some-
what idealised solution. Then, select existing approaches will be analysed. Based on that, a specification for
this module will be defined and the technology framework will be established. Finally, the specific parameters
used for our obstacle avoidance and wall following behaviours will be given and explained.

5.1 Requirements

This section tries to outline implementation independent requirements from similar control components.
However, these requirements are not always explicit aims for motion controllers — though they can nonethe-
less be evaluated with regards to these criteria. Fortunately, they are also the exact features our implemen-
tation is striving for.

e Real-time Response — Since the MC is responsible for carrying out movement, the responsiveness of
the system depends on the speed of its execution. This has consequences on the sensitivity to higher-
level commands, as well as the ability to handle dynamic conditions. A timely response is thereby
required, in a fashion reminiscent of Real-Time Systems. Specifically, one with a soft deadline where
the module’s output remains important as time goes by, but the benefit of a late action decreases with
respect to time.

e Human-Like Motion — By handling the lowest-level of motion, this module is an important (but not
exclusive) aspect of realistic overall behaviour. While this is not always an immediate requirement,
related properties such as smoothness or laziness are coveted, as they often translate into efficiency.

e Reliability — When the rest of the system is built on top of a single component, it needs to guarantee
that nothing will go wrong. This implies providing satisfactory movement in all situations, not just

47

of the entire system. Other behaviours, which could be classed as higher-level, will rely entirely on this layer
to actually perform the motion.

5.2 Existing Approaches

This section looks into options for implementing the MC, based on existing work. Solutions will be evaluated
with respect to the requirements listed above, as well as criteria given in Chapter 3 considering the design
policy.

5.2.1 Grid Based

Initial investigations in reactive behaviours and virtual obstacle avoidance always reveal a plethora of grid-
based solutions (c.f. the review of Chapter 2). These either use simple reactive rules (both expert designed
and learnt) to determine the next step with a minimal amount of reasoning, or more deliberative approaches
based on local search.

While these are appropriate for simple worlds, complex environments are ill-suited to being discretised;
our requirements do not limit themselves to such regular environments. Embodiment does not lend itself well
to the paradigm either; the animat’s sensors would require exhaustive probabilistic processing to generate
a usable grid representation. Also, the cardinal actions implied are also inappropriate by their coarseness
(especially unrealistic).

While such searches may be plausible at a higher-level of the architecture, they do not provide the
realism, reliability and efficiency required for low-level control.

5.2.2 Flocking Behaviour

Craig Reynolds’ work (Reynolds, 1987, 1999, 2000) is generally associated with artificial life and collective
intelligence, but his creatures are defined with primitive low-level actions — emergently creating realistic
group behaviours. Obstacle avoidance happens to be one of these activities, achieved by using obstacle
distance sensors, which return the exact position of obstacles at a given angle. Some of his creatures have
fixed distance sensors (of layout angles {—45°,0°, +45°} and limited distance ranges), while others use a
random scan within their field of view. It should be noted that, due to the simulated nature of these sensors,
they have an extremely precise angular setting as well as the distances returned.

Mathematical equations defined by the author take into account these measurements, updating the
speed and turning rates. The reactive nature of this model implies a very efficient implementation, capable
of real-time response. This explicit approach seems to work surprisingly well in practice, with the creatures
only colliding with obstacles (in dense environments) every 500 steps of the simulation.

5.2.3 Fuzzy Logic

Some projects use fuzzy logic for obstacle avoidance behaviours; a keen reader should refer to an in-depth
review by Saffiotti (1997) for more information. Essentially, fuzzy variables are defined to represent the
presence of obstacles on the left, right and front. The actions are also made fuzzy; turn/brake. An expert
system of fuzzy logic equations (fuzzy program) can use these variables to define what action should be
taken. Evolved fuzzy classifier systems are also increasingly popular, since they allow the learning of the
behaviours.

48

AT ASS AR AR Yy SV e Aty HRAAS Y PARERE s AR A MRt B A A Y B A A AS S AR 2 AR S RS

associates the output with motor schema by imitation, a correspondence learnt during a separate phase (the
results can then be exploited later). Another method uses a reinforcement process to learn the mapping to
continuous values in action space. This is learnt online, and the action selection progressively varies from
exploration to exploitation.

Due to the way the motor schemas are exploited in the first case (without interpolation), the motion
learnt is not especially smooth, though it does prove generally quite reliable thanks to the extensive imitation
phase. In the second case, low frequency of action selection produces smooth results, but a sufficiently long
training process would also theoretically prove adequate (this was not the aim of the project).

5.2.5 Summary

Obstacle avoidance is a simple task, and the motion control should be kept as simple as possible. Self-
organising feature maps are especially suited to problems requiring tight control. Obstacle avoidance does
not exploit such sophisticated adaptation in input/output space; the overhead of SOFM is not required. Grid
based approaches do not fit in with the requirements of complex environments. The flocking behaviours have
the disadvantage of being based on explicit equations, which need to be understood and tweaked to craft
desired behaviours. Fuzzy logic based approaches have a similar problem, as well as requiring a dedicated
fuzzy interpreter.

Experience from these implementations can be drawn upon to define both an interface for the MC and
its operating process.

5.3 Specification

This section focuses on the definition of the interface. While this is a crucial aspect of its integration into
the system, it also allows us to sketch a rough outline of the expected underlying functionality.

Although each agent is modelled as a 3D entity with a position/velocity tuple to match, in most media
movement generally remains constrained to a 2D plane due to gravity. The local environment is represented
relatively to this state, so inputs and actions are also therefore relative.

5.3.1 Input

Due to the simulated nature of the project, the information needs to be actively acquired, unlike real robots
for which the sensory data simply needs sampling and processing. Since the acquisition of this information
can be relatively costly, the dependency of the MC should be kept to a minimum. This sensory data can be
indiscriminately fetched from the environment directly (the world acts as input), or indirectly using a simple
cache of the obstacle data (a persistent internal representation). Conceptually speaking, this does not affect
the motion control itself.

Our model samples the surroundings in a very coarse fashion, using the concept of a virtual whisker.
These return the distance of an obstacle within range, at a specific angle on a horizontal plane around the
animat. This approach intuitively seems to present a high-risk of perceptual shortcomings. Specifically,
obstacles between whiskers may be invisible, potentially causing the animat to ignore them.! However
this potential hazard, due to the persistence of the models, the continuity of the sampling, and the noise
artificially inserted to change the angles of the whiskers can be prevented with minimal effort.

I This idiosyncrasy happens in real robots too, notably when their sonar sensors fail to detect chair legs.

49

ettt Bt o Dt S ettt e A o i A

is not necessarily biologically accurate, but generates more realistic movement.

data from sensors,
surroundings, or parasites

obstacle
distances
MOTION
CONTROLLER
turn brake stance

motion effectors

Figure 5.1: The motion controller’s interface with the rest of the system.

The knowledgeable reader will notice the similarities of this input scheme with the highly acclaimed
work of Craig Reynolds, though the project never actively set out to model it. In essence, parallels can be
drawn with concept of the whisker as well as the angular noise intrinsic to these sensors. However, our model
provides a more flexible motion controller as it can detect various other obstructions than solid obstacles
(ledges as well as walls). Additionally, the flexible behaviours provide the ability to evolve the layout of the
whiskers, which potentially removes the dependency on human design.

5.3.2 Output

The outputs of the motion control are obviously actions that engender movement! Specifically, these can be
continuous cardinal controls (forward,backward,left,right), all of which are performed relatively to the
current position. However, this can be simplified further into more intuitive parameters that are simpler to
learn. In practice, the two commands turn and brake are sufficient, and prove to be more human-like when
the direction of travel is distinguished from the orientation.

In fact, this dissociation was one of the key concepts for obtaining realism, compared to other human
players. It produces very interesting strafing behaviours, complex manoeuvres such as fleeing while looking
back towards the predator, and provides a platform for rather more stupid mistakes like running into walls
by negligence.

Additional parameters for the movement involve specific stances such as jumping and ducking, respec-
tively to get over low obstacles and underneath constrained ceilings. Each of the commands are taken into
account by the effectors and applied to the physical state of the animat using the physical rules of the world.
The next frame, it can then query its internal sensors to check what actually happened, and update its state
accordingly.

50

orientation

(A) external (B) module
inputs outputs

Figure 5.2: Graphical interpretation of the module’s I/O interface.

5.4 Technology

Now the skeleton of the module has been defined, the underlying tools that will craft the behaviours need
to be described. Specifically, the solution presented is based on Evolutionary Artificial Neural Networks
(EANN), an approach which is becoming increasingly popular for robotics controllers. Aside from the
general benefits listed in the Background Chapter, these also tackle the following issues:

1) Real-time Capacity — Due to the efficiency of simulating simple neural networks, these can easily achieve
even rigid real-time deadlines. This is important for MC to obtain overall responsiveness.

2) Smooth Control — The continuous outputs, the neuro-fuzzy internal representation, and the use of
relative turns usually causes the output movement to be smooth. This provides surprisingly human-
like behaviours.

Generally speaking, the task of avoiding small obstacles can be easily tackled without using complex
deliberative algorithms — as shown by most approaches in the brief review of Section 5.2. By working on a
purely reactive basis in taking immediate sensor data as input, achieving the soft-deadlines becomes a more
likely outcome.

Flexible behaviours are used to handle this, as described in Section 4.3.2. Navigational “hosts” can be
created using any method, though we use the EANN approach. Despite them having no internal restrictions,
there are common issues to be taken into account during their development.

e Fitness Feedback — When flexible components are used, their performance needs to be evaluated to
assist the learning. In this case, this can be done on a purely reactive basis; collision with walls are
punished and large obstacle distances are rewarded.

e Realism — The key aspects of the reward function involve realism components. These are parameters
that quantify human-like characteristics (e.g., laziness, persistence, smoothness). In practice, they
prove important to tune the desired behaviour.

e Symmetry — Many configurations expose some kind of balance; for motion control the animat turning
left is similar to its turning right. Instead of expressing this as a requirement in the fitness function
(which constricts the solution and complicates the problem), it can be actively enforced by flipping the
input distances and negating the output yaw. This proves to generate better quality animats.

e Incremental Learning — The evolution often needs to take place in stages to be optimal, or even correct
altogether. Though the framework supports parallel evolution, components can be learnt individually
then frozen.

The ability to take into account these factors will increase the overall quality of the movement, as well
as speed up the development and learning process.

51

NN learnt preferably beforehand, but within the environment itself.

Avoid() function

s_collision

r turn

7

STEER

s_distances|] r speed

AvA

BRAKE [

Figure 5.3: Diagram of the obstacle avoidance function.

Steer

The steering NN component conceptually deals with three pieces of information: the normalised sensory
data (which may constitute more than one actual input), one recurrent connection and a collision indicator.
The value of the collision indicator increases linearly with the collision time, to give the network a sense of
urgency. The clamped output corresponds directly to the turn rate required.

Brake

The braking NN component is given similar inputs: one feedback connection, and the distance sensors. The
output corresponds to the amount of slow-down required. The model attempts to minimise the use of the
brake as overall performance can decrease, and human players rarely slow down anyway.

Procedure

These are evolved incrementally, partly to obtain a high-quality solution, but also to prevent the solution
exploiting loopholes in the fitness functions.? First the steering is evolved with speed locked on full. It is
rewarded for avoiding obstacles efficiently and realistically. Only then is the braking component included,
rewarding for preventing collision when the occasion arises.

Parameters

The properties of the obstacle avoidance can be configured by XML in a straightforward fashion. The full
listing is given in Appendiz A.1, and should be consulted for practical insights into the engineering of the
behaviours.

2A good way of avoiding collision is not to move forward at all!

52

141Ul 1 ouadauvvuvLl U DCILDU107 AN Dlllélc VYV AILIONOUL Pl abblbally DUl aléllb}v Juu 11U ulouvlilluvyu vl Uililuo alliotv. 11l Plabblbc,
forcing three whiskers on the left, right and middle allow good behaviours to evolve. Their length is limited
to 5 steps only to reduce the overhead required for detecting the obstacles.

The neural network used is a feed forward perceptron with simply 5 neurons in the hidden layer.
Evolutionary parameters are also provided, which allow the network to learn the behaviour according to the
fitness function.

Script

This Python procedure takes into account the high-level parameters and incorporates them into the process-
ing and the evaluation of the fitness. It can be found alongside the XML file in Appendixz A.1.

Symmetry removal is performed to simplify the search space, and to guarantee that the animat is just
as capable of turning either way. This is done by making sure that the right obstacle is further away than
the left, flipping and negating values appropriately. This halves the search space by mapping one side onto
another.

The main part of the behaviour function builds up the arrays acting as inputs for the neural networks,
and calls the simulation. Once the result has been retrieved, it is post-processed. This consists of simple
clamping, and the second part of the symmetry removal.

This next part evaluates the fitness of the behaviour. All fitness components are scaled according to
parameters in the XML file, which are denoted with the "x_" prefix. The penalty increases linearly with
each colliding time-step. Variations from the previous output are punished proportionally, as well as large
changes in orientation — especially when no obstacles are present. Oscillatory movement also deserves a
constant penalty.

Results

The resulting animats perform very reliable obstacle avoidance. When not disturbed by obstacles in front
of them, they keep moving straight. When obstacles arise, they swerve away relatively rapidly. Externally,
this looks like they bounce off the walls.

This is due to the relatively short length of the whiskers. With slightly broader sensing horizon, they
are capable of anticipating obstacles more. Also, punishment can be increased for such sharp turns, but this
proves to generate unreliable behaviours in tight corners where the animat occasionally gets stuck.

5.5.2 Wall Following
Parameters

Once again, a node in the XML document defines the wall following behaviour in a simple fashion. Appendix
A.2 lists the file, and the interested reader should consult it for further information.

The wall following behaviour is another function in the scripting environment. The high-level parameters
use specify the desired outcome. In practice, these reward the presence and proximity of a wall, but punish
large turns and collisions.

The wall following behaviour uses two whiskers only. One relatively long whisker on the side checks for
the wall, while one smaller frontal one checks for potential collisions while moving forward.

The neural network used is a feed forward perceptron with 12 neurons in the hidden layer. This
empirically proved to generate satisfactory behaviours.

53

reported back.

Results

Again, the behaviour is surprisingly robust, except in one situation. When the wall curves away from the
bot especially quickly (like a narrow wall where 180° turn is required), the bot can overshoot and end up
spinning upon himself repeatedly if the behaviour is not disengaged.

This can be remedied by adding a proactive breaking component, and training the bot on such layouts
more often; they are very rare in practice, so an average training session does not get the opportunity to fail
there.

54

Parasites: Reactive Behaviours

“Consider the difference between riding a horse and driving an
automobile. A horse will not run into a telephone pole at high speed. If
you fall asleep in the saddle, a horse will continue to follow the path on its
own. If you have two horses but only one rider, you simply have one
horse follow the other.” —Jonathan Connell

In the previous chapter, fully functional entities capable of purely reactive motion were crafted, using
a mapping of sensory information directly onto the effectors. These fundamental behaviours were defined
in terms of obstacles only, which made them generally reliable — in a way you’d expect animals not to
repeatedly collide with walls.

However, the resulting movement still lacks the sophistication of human navigation, which is under-
standably more than just reliable obstacle avoidance. The first step to extending this lower layer will be to
blend more elaborate behaviours to the movement, while still remaining in the domain of reactive motion.
This includes activities such as seeking and fleeing, providing a handle for incorporating arbitrarily complex
higher-level tasks into the architecture.

In essence, the problem resides in combining behaviours of varying reactive degrees: avoid with seek/flee
for example. This can be done by selecting them (arbitration, overriding, voting) or blending them (inter-
polation, defuzzification), although the process needs to maximise the overall performance.

This chapter will first look at a generic set of criteria, which can be used to rate the suitability of a
solution. Then existing approaches that could be used to solve this dilemma are considered, and we discuss
their respective pitfalls. Thereafter, our “parasitic” approach will be described along with the biological
parallels. Finally, specific instances like evading and pursuing will be demonstrated and explained.

6.1 Requirements

This section has many parallels with its counterpart in the motion control chapter (Section 5.1), in both
structure and content. It outlines generic requirements from solutions capable of integrating reactive be-
haviours together. These are criteria for their evaluation as well as goals for our implementation.

e Real-time — Such reactive behaviours need to be as alert as possible. A significant part of the system
relies on them, and the dynamics of the environment often impose a responsive setup. If the overhead
of combining activities together is too high, it completely negates the effort placed in crafting efficient
behaviours in the first place.

55

e Uptimality — lhere are many diiferent ways ol 1ntegrating behaviours togetiher, each oI which can
provide different results. These should match as closely as possible the wishes of the user.

e Simplicity — Designing and tweaking the interactions between the behaviours, as well as the selection
process can be a time consuming process. The method should allow the engineer to spend the least
time possible on the procedure.

Unlike the MC, this problem is not so trivial. However, it is equally important for the outcome of the
system, as an increasing number of problems must be dealt with.

6.2 Existing Approaches

No matter which paradigm is used, the important concept is to retain a fully working motion-controlling
layer. Naturally, there are observations and regularities to exploit; the trick is to find a way of doing this
reliably, without neglecting either of the potentially diverging requirements.

6.2.1 Subsumption

As one of the most famous techniques for behaviour arbitration, subsumption finds its roots in navigation
(Brooks, 1991). Fundamentally, described alongside a methodology advocating incremental design, it uses
suppression and inhibition points to integrate new behaviours into the existing system. This is done by
overriding the information flow at key points in the system. The result can be represented as a complex
diagram, with behavioural components handling distributed control between the sensors and the actuators.

Over the years, this has been interpreted as a vertically layered approach. While the analogy is made
in the original paper, where these layers are built in and linked together as the designer sees fit, nowadays
the output of previous layers is entirely subsumed by the layer just above in the hierarchy. Such a disparity
in practice makes it difficult to analyse the technique fairly.

Despite the attractiveness and popularity of the generic design methodology associated with Brooks’
architecture, we believe that subsumption fundamentally has many flaws for human-like navigation — some
more critical than others.

e Complexity — Adding an extra “layer” on the top of the system is not a trivial task, the challenge it poses
increases as the number of underlying layers grows. Not to mention the fact that defining suppression
and inhibition points is not a trivial task in the first place, requiring foresight when building lower
layers. This requires time-consuming expert design, implying this is not a trivial procedure that could
be easily automated.

e Unrealistic — Though rigid selection of existing behaviours may be satisfactory in many cases, the
simulation of human-like navigation requires a little more refinement than just inhibiting connections
and superseding others. In fact, the verb “subsume” in itself implies that existing behaviours are
replaced, albeit enhanced. The blending and combination of behaviours is not something that a
subsumption network could handle, which rules out a certain degree of smoothness and intricacy in
the actions.

e Redundancy — While redundancy is a trick mother nature uses to avoid the side effects of noise, this is
not always a desirable property of robotic systems (time costs, unreliability, computational overheads).
However, the approach employed by recent subsumers promotes independency of the layers rather than

56

In a fashion similar to the grid based obstacle avoidance, further reactive behaviours can be incorporated
into rule-based systems. These need to be manually engineered appropriately to maximize the expected
reward. For example with fleeing while avoiding obstacles, steps in a direction further away from the target
are given priority when obstructions are not present.

Similar approaches based on rather more deliberative approaches are also popular. Global searches like
A* are performed to seek particular targets, while backtracking takes care of avoiding obstacles and dead
ends.

Fuzzy logic has also been used to create expert behaviours with fuzzy programs. The engineer encodes
the behaviour arbitration as rules, which are interpreted and defuzzified. This provides surprisingly smooth
actions, even with simple programs.

6.2.3 Voting System

Like in a democracy, voting systems arbitrate behaviours by attempting to reach a compromise. Candidates
are essentially actions, and the most popular is executed. This proves very successful when no conflicts are
witnessed. More elaborate statistical algorithms for combining the votes are necessary, or introducing the
concept of a veto.

6.2.4 Learning Systems

Using the user’s specification of the desired outcome (in the form of a fitness function), learning approaches
can be used. Reinforcement learning algorithms can find an optimal policy mapping states onto actions —
given enough training time to explore the search space.

Classifier systems are also capable of learning, using genetic algorithms and combined classifiers. These
are breed according to positive feedback from the environment. This allows combinations of behaviours,
since there are few restrictions on the possibilities of a classifier.

Both approaches attempts to synthesise practical behaviours based on abstract rewards.

6.2.5 Summary

In brief, some solutions presented above are too computationally expensive to be feasible in a simple agent
(A* or SOFM), while others have a certain complexity in design and do not provide a simple way of crafting
the behaviours in complex worlds (expert systems and fuzzy equations). Additionally, select approaches have
issues with modelling human-like behaviours (subsumption and classifiers), lacking the tools and flexibility
to create a wide range of realistic motion.

6.3 Specification

In this section, the parasitic approach is described, revealing its simplicity and biological inspirations.

6.3.1 Foundations

Often, humans take for granted their ability to avoid obstacles, as this is performed somewhat subconsciously.
This provides a natural base implicitly influenced by higher-level plans. To model the fact that the lower level
is in control, and that further reactive behaviours are not necessary, the following functional observations
are made:

57

e One can falsify the input values from the distance sensors to obtain the desired motion. This process
can be easily applied more than once in a weighted fashion to blend chosen behaviours.

e When this bamboozling is done in a reasonable and controlled fashion, the impact on the performance
of the lower-layer is minute, but sufficient.

These observations what can be taken into account to specify the interface.

6.3.2 Input / Output

Practically, this is achieved by intercepting the obstacle distances from the surroundings. These are continu-
ous values that indicate the proximity of walls. While these are almost accurate estimates on the input, they
become rigged on the output in order to influence the movement of the host in charge of motion control.

data from sensors or surroundings

obstacle
distances

REACTIVE BEHAVIOURS

modified
distances

Av4 Av4 Av4
MOTION CONTROLLER

Figure 6.1: The interface of the reactive behaviours with the rest of the system.

Certainly, there are some strong similarities with a horizontally layered model; layers pass information
to each other in direction of the output. However, there are some key differences. While traditional models
tend to use different levels of abstract representations away from the input, the parasitic approach keeps a
constant representation throughout the base level right until the output. This crucially implies that there
is no dependency established — even less than in standard horizontal models: any layer can be removed
without any significant structural issues (though naturally, the expected behaviour may change). Another
consequence is the ability to design the layers completely independently from any other, without having
to worry about previous representations. Simple working systems can thereby be achieved with much less
effort.

6.3.3 Biological Parallels

The research described here was not the foundation of our model. However, many interesting parallels can
be drawn, and due to the novelty of the approach the discussion is welcome.

58

AR AR A R VS ARty Y R A S Y s A MR A AR B s A A S Yy MY VAR AR AL 4 AL VAL AL

Intelligence, especially navigation, are also of great benefit:

e Robustness — The fundamental navigational behaviour of the rat is not overridden by the electrodes.
The millions of years of evolution allowing such smooth and reliable motion is thereby not discarded,
subsumed, or otherwise sacrificed in favour of human overrides.

e Simplicity — From the pilot’s point of view, there is very skill required in controlling the rat. A simple
simulated twitch of the whisker on either side sets the rat in motion along a complex obstacle course.

Since the rat’s obstacle course can be seen as a particularly tough test environment, the applicability
seems quite generic. An artificial version of this model would have mainly benefits for robotics and animat
creation, though the theory may assist neuroscience also. The challenge lies in translating the experiments
from roaming rats to computer controlled virtual creatures, as this is a more elegant approach suited to
creating human-like navigation.

6.4 Technology

As a reminder, the motion-controller requests obstacle distance information from the surroundings in order
to perform its reactive mapping onto motion. Typically, there are three values passed — corresponding to
left, front and right whiskers. This layer intercepts the calls, and modifies their value. This process is done
by a neural network mapping learnt online by artificial evolution, in a fashion very similar to the previous
chapter.

6.4.1 Formulation

The task at hand is defined mathematically as follows; given a set of samples s; = (d;, a;) from the sur-
roundings (respectively distance and angle values), determine the set of values d; such that they maximize
the long-term fitness function f.

The problem is modelled as an additive function g, since this simplifies its learning greatly:

di = di + g(s:) (6.1)

We also make the function g modular, in that it is applicable to individual samples rather than the
collection of data as a whole. Early models were successfully tested using this latter brute force approach,
but this was discarded since there are many benefits associated with processing individual samples:

e Simplicity — Since the function is to be learnt, any reduction of search space size is welcome. Modularity
is a well-known technique among the machine learning community for achieving such a task. The
additive function, as defined in Fquation 6.1, achieves this by abstracting the computation applied to
a single sample.

e Flexibility — Any brute force solution that expects a fixed number of samples will fail when the request
counts do not match. If the motion controller was extended to adaptively sample the surroundings in
an incremental fashion, such an approach would fail. When individually processing samples, however,
these limitations can be overcome.

The theory must now be put into practice using evolutionary neural network.

59

cellitre N

right E

Figure 6.2: The modular neural network which processes each distance sample to influence the movement in
the appropriate direction.

6.4.2 Procedure

Once again, flexible behaviours are used to tackle this task; a single feed forward perceptron is used to learn
the additive function. To the reader extremely familiar with NN techniques, the parallels with the modular
neural network approach by Gruau (1995). The main difference is that we manually design the solution,
whereas Gruau’s approach would allow this to be evolved.

While there are no particular restrictions on parasites, common themes arise during their design.

e Since the parasite is responsible for keeping the host healthy, it must monitor its fitness feedback. The
parasite can learn to take this into account when applying its influence.

e While reactive behaviours can be combined in a very rigid fashion too, the parasitic approach allows
blending behaviours and should be taken advantage of.

e Selecting features for the parasite to base its decision on is not a trivial task. It must permit the first
two points above, as well as allow the reactive behaviour to be accomplished. Especial care must be
taken in this process, especially when attempting to model the modular function.

e Finally, the realism also needs to be taken into account. This must be done by providing high-level
parameters that can be tweaked in a simple fashion.

6.5 Model Design

Fleeing and seeking are abstracted into one script function, but their parameters are tweaked individually
as appropriate.

Procedure

Seeking and fleeing behaviours are only combined with the obstacle avoidance behaviour. Once this host
has been evolved successfully, the parasites are learnt. It is trained on average for 60 seconds, attempting
to turn the host to a specific orientation. This rotates variably over time, and mimics seeking of a point in
space.

60

2) The absolute value of the relative orientation.
3) The raw fitness of the host for the past timestep.

4) The clamped angle relative to the desired orientation, normalised with respect to all other relative
angles.

The output, as explained, is simply added to the distance to create the modified distance, which is
passed on to the host.

Parameters

The reactive behaviour is another node in the navigation document object model (DOM), and can be found
in full detail in Appendiz A.3.

First, parameters for the fitness function need to be specified in high-level form. In essence, divergence
from the target is punished. Laziness can also be rewarded to prevent unnecessary modifications to the
distance samples from the whiskers, more so under dangerous conditions (when the walls are close).

The neural network used is evolved with this fitness function. Five inputs correspond to compound
features used to base the decision on, and sixteen hidden nodes are required in this case.

Script

The function in the Python script performs the computation, and defines how the parameters are used.

The pre-processing phase normalises the angles of the whiskers relative to the desired orientation,
and finds the minimum, maximum and average values. This is to transform the data into a convenient
representation for the neural network.

A loop construct deals with each whisker individually. A sequence of features is built up, containing
the most relevant criteria that are used to decide how to modulate the output. The neural network processes
these features, and returns the value to be added to the distance sample. The fitness components are then
computed, punishing large changes in dangerous situations, and to a lesser extent in normal conditions.
Persistence is also rewarded to prevent jerky movement.

A final post-processing stage punishes divergence from the desired orientation, reports the fitness to
the neural network, and last of all returns the modified distance values.

Results

The seeking behaviour proves generally reliable, though finding the right balance in the weighing parameters
can be crucial. If the values are too strong on either side, the animat can seek the heading too much and
run into walls, or not enough and it looks like it’s wandering around nonchalantly.

Once again, in some scenarios unseen during the evaluation, performance drops and the animat can even
get stuck in a corner. In some cases, it manages to break free, but in others the arbitrator must intervene
and disable the parasite. The chances of this occurring are greatly diminished when the terrain previously
learnt is used to drive the seeking; indeed, rarely is a move straight into a wall even requested!

61

approach. One could consider our model as a more general superset of the rat model.

e Mirrored Signals — While the rat receives signals on the left side when it is required to turn left, our
approach on the other hand tends to modify the perception on the opposite side. Conceptually, it’s a
bit like placing fake walls in the mammal’s mind in order for it to treat them as normal.

e Learning Method — It is generally assumed among cognitive scientists that the method of learning
closest to the mammalian approach is temporal difference learning. We do not utilise this approach,
instead making use of the genetic algorithm. While the outcome of the learning can be considered
similar enough, the learning process differs quite significantly.

e Neural Influence — In the rat model, the artificial stimuli mimic sensory inputs. In our model, they
are placed between the cognitive model of the world and the motor control, and influence the flow of
information between these two components. A more biologically accurate model could be obtained by
placing the parasite right after the sensory connections.

These differences were partly a consequence of the fact that the research did not actively set out to
model the neuroscientific experiment. Also, some were necessary changes to cope with the simplicity of the
model, allowing it to generate interesting behaviours none-the-less. Finally, some changes can be attributed
to the sake of experimentation, proving in the end to be a valuable addition to the model.

62

Topography Learning

“How often I found where I should be going only by setting out for
somewhere else.” —R. Buckminster Fuller

To support any form of higher-level intelligence such as planning, the navigation system requires an
internal model of the terrain. This representation is learnt online in a human-like fashion to support dynamic
conditions and assimilation of new maps.

7.1 Overview

The challenge at hand is to map space, in a more or less precise fashion. The degree of precision is usually a
factor of the quality requirements, the rest of the architecture, and the restrictions imposed by the hardware.
These already represent important issues, before even reaching the technological side of things.

While our mathematical understanding of Euclidian 3-space allows us to understand each point as a
unique vector, often the only way to recognise a location is by its surroundings. Practically, this can be
characterised by all the sensory data available at a particular location. Even with perfect sensors, there are
ambiguities in the world, due to the many to one mapping from position to sensory data.’ These ambiguities
can be partly resolved by using the concept of “position” and updating it as time goes by. This second point
presents two complementary options for representing places.

A third issue involves the obstacles; should these be stored explicitly in the representation, or are
they implicit in the mapping of open space? Both options naturally have their own advantages. When the
obstacles are ignored, the representation is compact and to the point. On the other hand, if the obstacles
are stored, a more precise model of the world is created, which comes in useful for exploration and terrain
analysis.

Finally, the learning of the terrain in autonomous systems is often coupled with the localisation algo-
rithms, aiming to position the animat in space. In our case, complex localisation was neglected, mainly due
to time constraints. We rely mostly on odometry and local correction of the position using perceived objects.
Global localisation is not performed, which tremendously simplifies the development of a terrain-learning
algorithm.

LA predicament known as perceptual aliasing, briefly mentioned in the introduction.

63

e Dynamic — Since small changes may occur in the environment during the simulation, the agent should
be able to cope with them as they are noticed.

e Incremental — Since the animat is expected to build up its knowledge of the world from scratch, and
be capable of dealing with dynamic changes, the learning of the topography should be done in an
incremental fashion.

e Generic — The system should make few assumptions about the nature of the environment; for example,
both indoor and outdoor settings should be supported. The properties of the animat should also
be flexible, so that varied sized creatures with different capabilities would still be able to learn the
topography.

e Efficient — Since the process of learning the layout of the terrain is a small aspect of the navigation
system, it should have a minimal overhead, as any performance overhead will affect the rest of the
system.

e Optimal — The module should try to learn strictly the information required to perform the task required
from it. When striking this balance between practical benefit and memory requirement, the efficiency
reaches a maximum.

e Noise Tolerant — Since from the low-level sensorial point of view there are no guarantees that the data
is accurate, the terrain learning module will not be able to rely on that fact.

These contrasting requirements must be taken into account in the best suited fashion to solve the
problem at hand.

7.3 Existing Approaches

7.3.1 Biomimetic

Some approaches are inspired by study of real animals, based on how they are capable of locating themselves
in space. Conceptually, each of the approaches explained below are based on the perception of the animats;
their knowledge of a place is based on what their senses told them about its surroundings. For further
information, and more detail about each of these solutions, the keen reader should look into the work of
Trullier and Meyer (1997).

Place Recognition

Such models associate the input from the sensors with a conceptual location (O’Keefe and Nadel, 1978;
Burgess et al., 1994). In practice this can be done with standard pattern recognition technology, which
provides “Landmark Triggered Response”. This can be learnt over time, but there is little consistency within
the model; all known landmarks have no connection between each other.

This is a very reactive model that can be found in animals such as rats. Simple feed-forward perceptrons
have been shown sufficient to model this.

64

Metric Maps

For these models, angular and distance information is also stored with the connections. This allows the
animat to compute expected travel times, and know which direction it needs to head towards in order to
reach a neighbouring node (Wan et al., 1994; Worden, 1992).

Geometric Maps

Finally, taking into account global consistency of space, geometric maps assign a position to the known
places. This is a fairly accurate model of real world, though it tends to be projected into 2D due to gravity;
the third dimension is often not required. Such representations allow a more elaborate form of anticipation
and knowledge based processing of the terrain. These appear to be used by dogs, monkeys and men.

7.3.2 Strong Representations

Some terrain models are based on more explicit data structures, using stronger mathematical basis (grids,
triangles). These representations are not based on perception, rather the mapping of 3-space in a convenient
fashion.

Grid Worlds

In many cases, it is possible to exploit properties of the environment and represent them as regular lattices.
Square components are most frequent, as they offer simple storage and adjacency handling, but hexagonal
grids can also be found.

Often, both open space and obstacles are represented as Boolean conditions, but probability distribu-
tions are becoming increasingly popular in robotics.

Cellular Representations

Other cellular representations are not necessarily based on straight grids. The ability to handle irregular
discretisations is often useful as complex worlds rarely conform to such linear patterns.

In practice, much simpler constraints are imposed for placing each node in the grid. The only restriction
is one of minimal distance to any other node in the grid.

Polygonal Meshes

A world can also be decomposed into surfaces that can be walked upon by the animat. Often in virtual
worlds, these can be defined in terms of the geometry used for graphics or physics, created in the same process.
These triangles laid on floor constitute a graph also, where nodes are triangles and links are determined by
adjacency.

7.3.3 Synopsis

The strong representations often carry unnecessary detail and complexity, and as such become a strain on
the memory as well as a burden for the path planning. The simpler biometric approaches tend to rely too
heavily on sensory pattern recognition, and do not provide any sense of space. It is often obvious that

65

Lellably. UDJCCL5 alld 1LCLLS 111 L6 WOLIAd SHOoUld DE 1COLIPOoLated ILtO LHE TEePIEsClilatloll OL tHE Lellalll OO, 111
order for them to take part in routing strategies. While localisation is an important issue, most of it can be
done independently from the topography; odometry and visual position correction is satisfactory for short
distances. Global relocation is generally extremely predictable in nature (notably during teleportation or
respawn after death), and can be neglected during the design of the terrain learning. Additional auxiliary
data-structures and algorithms can be devised as necessary.? Essentially, all this is achieved by a coarse
graph mapping empty areas and learnt incrementally. This covers Euclidian space rather than being built
upon a perceptual basis.

7.4.1 Overview

The main concept behind the solution is inspired by Hansel and Gretel’s story tale. Virtual pebbles are
dropped in memory at regular intervals, when the previous one is no longer accessible. The model is
improved by storing nodes in a graph rather than in a sequence, which allows arbitrary terrains to be
assimilated without relying on a specific exploration policy.

(c)

Figure 7.1: Learning paths by movement: (A) Existing graph learnt previously (B) New node dropped and
linked due to restricted access back (C) Nodes representing objects that have been seen but not connected
yet.

The graph learnt includes nodes which essentially mark out objects in the terrain. These are included
so the path-planning can include them in the routes when necessary. Additionally, they tend to provide a
great skeleton for the graph, as objects seem to be often placed down in key areas like intersections, corners
or even dead ends. Such nodes are placed automatically when new objects become visible to the animat.

Since in some locations there are no items around (or they cannot be perceived), the terrain learning
algorithm does not rely on their presence. This second type of node is purely virtual (handled completely
transparently from others), and leaves no mark in the physical world itself. Normal nodes can be placed in
arbitrary positions, in order to provide links between object nodes or to mark out empty rooms. Such link
nodes are required when the original path is too complex, or the animat cannot move directly between the
two end points.

The nodes dropped and connected together as the animat navigates around in the world. If it moves
from one node to another, then there is a possible path in space that can be used, and a virtual link is
created in the graph. If it moves into an area with no nodes, a new one is dropped and a link is created too!
Doing this repeatedly allows the layout of the terrain to be learnt incrementally.

2For example, simple global localisation has been performed by detecting single visible objects that match unique nodes in
the topography.

66

1UULLLS t:z:muy, Wil vUpuoutatllc avuluallvc stalls al Tdads VUL‘y Clllblcllbl‘y. 41115 vlliuos LU UlllUlsUllbly CAPIULC Ciliuvlil ©
levels. Human examples combined with a desire to reach particular objects can both improve the process
too. However, the algorithm itself doesn’t rely on any particular exploration policy.

Areas

The algorithm assumes that the current position is known, either by odometrically tracking it or by using
localisation. If the current position is uncertain (for example after teleporting or respawning), the algorithm
will start to learn the terrain as a separate area. This will be adjusted with more information and experience
of the terrain, and merged with the original area when a link is discovered.

Media

The environment can be conceptually divided into different materials (air, water and ground). These affect
how the animats interact with parts of the world; cue the concept of “medium”. Defined as a surrounding
or enveloping substance, this includes the media mentioned. However, we extend this definition with virtual
media that simplify the handling of certain situations. Such concepts include ladders, teleporters, and
platforms — each of which directly affect the movement just like natural media.

The algorithm assumes that the animat can determine the current medium, using the physical sensors.
This would allow it to assign a medium type to each node, and modify the topography learning algorithm
based on local changes.

Spatial Common Sense

A strong sense of spatial common sense is relied upon to produce high-quality maps, and this is a key aspect
of our solution. This drastically reduces the times required to learn maps, as it does not require exhaustive
scouring of the terrain (trivial movement is abstracted out). The quality is also increased, as the information
stored is more concise and relevant.

Fundamentally, the SCS is an anticipatory state transition function; it determines if local movement
can be performed or not. It attempts to emulate the strong ability of humans to visually extract short paths
from their environment (e.g., “Yes, I can walk to that table from here.”).

Given to points in space, the SCS function needs to determine if it’s possible to get from one to another.
The function itself can take into account parameters such as distance, height, and the visible structure of
the landscape geometry to make the guess.

7.4.3 Procedure
The basic method for updating the topography is defined as follows:

1) Determine the current position and medium, based on proprioceptive sensors, odometric queries and
local position correction.

2) Check if an update of the topography is needed based on the current and previous state (position,
media, etc.).

3) Locate the closest currently accessible link to the topography.

4) Update topography based on the current location and the previous one.

67

Figure 7.2: Learning paths by movement: (A) Closest node known, agent moving away (B) Different nearest
node found (C) New path created.

5) Actually set the current state to the new parameters determined by the sensors.
The update of the topography is a compound procedure which happens as such:
1) Check medium for problematic conditions, and if necessary update the links to the topography.
2) Conditionally link the current edge to the previous (edge/vertex).
3) Optionally connect the current vertex with the previous (edge/vertex).
4) If required, create a new vertex [and optionally link to previous (edge/vertex)].

These operations depend on the type of link between the animat’s position to the topography, which
can either be edges or vertices.

A ~ -~
(a) (B) (©)

Figure 7.3: Learning paths by movement: (A) Closest link is a path (B) New closest link found (C) Path
split at link point, and new path created.

7.5 Technology

The solution presented here is a very flexible framework which can be tailored to match particular scenarios.
However, there are some common requirements that need to be taken into account.

7.5.1 Nearest Neighbour Search

This k-NN search is used to find the nodes of the topography closest to the current position. From a
functional point of view, it can be treated as a black box, since the underlying implementation should not
affect the results in any way. While a binary point tree was initially used to perform this search, subsequent
implementations used a sweep scan on two sorted arrays containing the coordinates of the points. This
proved to offer better cache consistency in the implementation.

The search can also return not only nodes, but also points on edges. When the animat is closer to an
edge than a point, the closest projected point is found and returned instead. This allows coarse graphs to be
refined without losing precision, as the edge can be split to place a new node to be processed transparently.

68

it to be simply included within the nearest neighbour search. It is simply used to filter out close nodes that
are not accessible.

In practice, these movement checks are done by an expert system, though we believe a learnt function
would perform ideally here. Close nodes are always marked as accessible, which filters out redundant checks.
Visible nodes can generally be checked for accessibility using the visual sensors. Invisible nodes are assumed
inaccessible, unless they were previously selected; in this case, they are assumed accessible until the animat
steps too far away from the path back.

7.5.3 Algorithm

The algorithm relies on finding the closest accessible nodes on the topography, achieved by combining the
nearest neighbour search with the spatial common sense. At any time, the active point on the topography
can be reported. It can be a specific node, or along a path.

As the active point is changed, a quick check is made to see if there is a corresponding link in the
topography. If not, then a new link is created.

The concept of areas is used to counter localisation problems. When the position is uncertain, a new
area is created. As the animat confirms how two areas fit together, they are merged into one in a moment
of revelation.

7.5.4 Parameters

The algorithm is mainly controlled by the parameters which refine the nearest neighbour search. Essentially,
they restrict the nodes and edges selected even before spatial common sense is applied to filter out candidates.

First, there are parameters to limit the selection of nodes. These are defined proportionally to a step
of an animat, corresponding to a length of 18 units. Only the points within a certain range are acceptable,
and only a certain maximum of nodes can be processed (this avoids unnecessary complexity of the graph
and improves the efficiency of the search).

const float selectAlwaysDist = 72.0f;
const float SelectMaxDist = 540.0f;
const int closestPointsMax = 4;

Secondly, the selection of points on edges is also restricted further. Notably, the parameters prevent
points too close to the end nodes from being selected, as well as imposing a maximum limit. There is also
a penalty added for selecting a point on an edge, as the algorithm generates better quality graphs when
“normal” nodes are selected in preference.

const float minDistFromEnds = T72.0f;
const float edgeDistPenalty = 108.0f;
const float selectEdgeMax = 360.0f;

7.6 Example

A simple terrain was learnt with various different parameters to show the versatility of the system. These
are shown in Figure 7.4. The first map has a very fine setting; points are placed regularly, paths are not

69

70

,,
O o

.
!
Ay

@
AN
NG
.O

RN

898
7

&

Figure 7.4: Above, a fine resolution map with no spatial common sense. Below, the same terrain learnt with
SCS, inserted objects (double circles) and a coarse resolution. Colour merely indicates altitude.

71

72

Pathematics: Deliberative Path-Planning

“It isn’t where you came from, its where you’re going that counts.” —FElla
Fitzgerald

Though some believe intelligent behaviour may arise from cunning arbitration of reactive motion, it is
often necessary to influence the outcome with a more deliberative path-planner. This is done by reasoning
over the cognitive model of the terrain, in order to generate the desired move sequence.

In practice, the path-planning exploits the learnt topography, and determines which routes should be
travelled to achieve particular goals. Suggested headings are then passed to the parasites which can influence
the movement to achieve these targets.

8.1 Overview

Many optimal path problems have been formalised over the decades (Martins et al., 1999) — and various
solutions devised to efficiently compute the required result (c.f. review below). However, an overwhelm-
ing majority of these papers consider broad settings and unrestricted queries that are tuned for equally
generic applications. Typically, when targeting particular scenarios, numerous assumptions can be made,
and together with specific requirements, custom-tailored algorithms shine through.!

When applied to autonomous agents, things are no different. Current path-generation components are
based on a selection of static shortest-path problems (single pair, single source, all pairs), using a variety of
algorithms ranging from heuristic depth-first searches to building minimum spanning trees. They are used to
determine shortest paths from scratch, or at best by looking up previous computations in a cache. Dynamic
algorithms have been overlooked by the intelligent agent community, probably due to the overwhelming
aspect of the theory or the overhead of the data-structures required by some solutions.

We believe intrinsic properties of embodied creatures (such as persistence and continuity) allow the
development of a more efficient algorithm, better suited to the problem. Furthermore, by adding psycho-
logically inspired characteristics to our design, it becomes increasingly capable of modelling human-like
behaviour. In this chapter, a fully dynamic algorithm for agent path-planning is presented. It is continuous
since computation of approximations is performed online, and can be halted at any point. The heuristic
approach also allows the result estimates to improve over time.

TAn example is the Intelligent Route Finding system that finds shortest paths based on human settings and learnt user
preferences (Liu, 1996). Another is the page rank scheme (Page et al., 1998), that uses a customised network flow algorithm to
determine the importance of a web-page.

73

S N2/ T T — T ST T T T T e

cycles.? For the tree to be valid, it should be possible to traverse the data-structure from each vertex u to
the root r. The set of edges required during this traversal is called a path, where its total length Dq(f) is the

sum of the individual edge lengths. A minimum spanning tree verifies:

Dy, < Dy + lyy Y(u,v) € E (8.1)

Such a spanning tree is generally at the base of most shortest-path algorithms, and tends to be the
format of the result too.

8.2.1 Static Shortest-Path Algorithms

The algorithm by the late Dijkstra (1959) is one of the most popular solutions to the single-source problem,
based on a relaxation process that iteratively adds candidates to the spanning tree — starting with just
the root node. Candidates are picked from the part of the graph directly accessible via one edge from the
current tree. When nodes are selected with a best first strategy, they do not need further processing once
their distance has been set; this assumes that no negative-length edges are present. Thus, this label-setting
procedure can return within O(n?). Over the years, many changes to this fundamental algorithm have been
made, notably improving the updates and searches of the data-structure storing candidates (with S-heaps
(Johnson, 1972) and buckets (Dial, 1969) instead of an unsorted linked-list).

The Bellman-Ford-Moore algorithm performs successive approximations to solve the system of equations
(Bellman, 1958; Ford, 1956; Moore, 1959). By maintaining a list of vertices to scan, redundant computation
can be prevented and convergence can be detected. This implies the algorithm can run in O(mn), as well as
being capable of dealing with negative arc-lengths. In practice, this label correcting process can be enhanced
further with specific temporary data-structures (Pape, 1974). Heuristics based on adjacency can also improve
convergence in practice (Goldberg and Radzik, 1993), though the theoretical bounds remain the same.

8.2.2 Dynamic Re-optimisation Algorithms

While these initial approaches are static in nature, much recent work tackles dynamic algorithms that can
re-optimise a minimum spanning tree. Indeed, in a sequence of problems, the (k+ 1) problem often barely
differs from the k**. The literature has mainly focused on two sub-types of algorithms; the first handles
changes of origin. Gallo (1980) noted that the sub-tree rooted at the new node is still optimal, and uses
reduced costs relative to the existing shortest-path tree to compute the new one.

The second case deals with changes in the graph’s specification; incremental algorithms can deal with
edge insertions (and — less commonly — length decrease), while decremental algorithms handle edge deletion
(with length increases, respectively). Fully dynamic algorithms handle both these cases, but semi-dynamic
versions stick to one. While early approaches were memory-intense, Gallo (1980) provides an elegant solution
that identifies these two scenarios, and updates part of the spanning tree with procedures similar to the static
approaches mentioned above.

8.3 Autonomous Agents & Navigation

This section proposes a new approach to path-planning that extends the fixed destination paradigm.

2Tt also holds that E’ = |V| — 1, since each vertex requires a connection to an antecedent, except the root.

74

This sp‘eciﬁes how much interest the agent shows in a node. For the sake of soundness, we assume the
animat can only collect the reward once.

e cost function Reminiscent of other graph algorithms, this is a dynamic function that assigns costs to
edges ¢ : E — IR. Conceptually, this measures the expected distance between the agent’s state at both
ends of the path. This can be quantified using travel time, space, or a weighted combination thereof.

The astute reader will notice the parallels with network flow theory. Each node with a value can be
seen as a “source,” and the animat’s location as the “sink.” However, there is no maximum capacity of an
edge, and the process does not attempt to maximise the same variables.

8.3.2 Queries

A planning component should expect virtual agents, ranging from the simplest to the most complex, to
request the following types of information:

e Path Request of a specific single-pair path P. When it is generated, edges should be chosen that
maximise:
~Dp+w) R (8.2)
icP

Informally, w is the trade-off factor between path-length Dp and reward R collected at all nodes. When
w = 0, “standard” physically shortest paths are returned, while w > 0 encourages the agent to wander
more and collect the rewards.

e Direction The path-planning should suggest if there is any benefit in moving, and if so, which
step should be taken to maximise long-term reward collection (i.e. w > 1). This is the recommended

query, as it intrinsically deals with dynamic conditions by letting the underlying implementation decide
moves, based on the data provided.

e Distance Often, before the path is even considered, an estimate of its length is required for decision-
making. This operation should approximate this result more efficiently than by a full path query.

Any implementation of these queries should attempt to match the specification as closely as possible.

8.4 Pathematics

In this section, we catalogue interesting properties of autonomous agents that model humans, and design a
path-planning algorithm that takes advantage of them.

8.4.1 Foundations

Proposition Agents show a high proportion of egocentric path queries.

75

e & Dl J T T AR S A A R e

Path queries and length computations rarely require to be exact. Even with perfect information at
a given time, the randomness of the environment during execution, limited scope and perceptual aliasing
imply that highly accurate results are little extra benefit. Furthermore, when designing human-like agents,
one often needs to randomly perturb the paths to encourage more interesting patterns (Ritchie, 1998).

Our paradigm stores approximate path lengths in each node of the directed tree. These estimates are
corrected by the main iterative pass of the heuristic algorithm, using stochastic properties.

Proposition The cognitive model of the paths through the terrain has a high degree of persistence.

Due to the physical constraints imposed on the agent within the world, changes to its state remain
limited. For example, in a couple seconds, you can expect an agent to walk at most a few meters. Also, the
agent perceives this information incrementally. In practice, this translates into a strong persistence of the
cognitive model. Admittedly, dynamic environmental conditions provide some sudden state changes, but in
practice they remain rare and localised (within sensory range).

A dynamic approach (both incremental and decremental) that maintains a spanning tree, and re-optimises
it from frame to frame takes advantage of this fact, reducing the redundant computation to a minimum. Our
directed tree is also stored implicitly; rather than maintaining pointers, the distance estimates at each node can
instead be checked to determine descendants.

Proposition Agents often need to trade-off cheap rough estimates with more expensive accurate results, as
they see fit.

Robots and animats are continuous entities in time; they belong to the world, and can expect to exist
at time ¢ + 1. Though executing an immediate decision at time ¢ may have advantages, delaying for a while
is often an option which can sometimes even prove valuable. When the cognitive process is not interrupted,
the wait can imply discovering a better solution. This approach proves to be extremely human-like in nature,
as both instinctive decisions and thinking times can be modelled.

A continuous algorithm based on successive approximations provides a variable level-of-quality solution.
Greedy heuristics incite the results to converge quickly. By relying on simple atomic operations, the algorithm
can return at any point.

8.4.2 Overview

At the core of our algorithm are the concept of reward percolation that enables us to provide an efficient
approximation of the specification in 8.3.2. In essence, reward is amplified as it percolates towards the root.
At the agent can then assume that the branch with the most reward is the best direction to head in.

The cumulated reward for a node u is defined recursively in terms of its neighbours Adj(u) that are
estimated further from the root:

Cu = (Ry + > Ci) * (1 + |Rul) (8.3)
i€ Adj(u),Dy < D;

Our algorithm stores the distance estimates of each node in the graph. This is corrected over time, in
a fashion reminiscent of the BFM algorithm where values monotonically decrease towards their final target.
However, we rely on the precondition that this estimate is greater or equal than the optimal value. This

76

‘VIV =

Figure 8.1: Percolation and accumulation of the reward in the spanning tree, causing the animat to select a
slightly longer path to collect more reward.

allows us to perform a greedy traversal of the graph in the optimisation phase, which may remind the
attentive reader of hill-climbing.

D:<D, YueV (8.4)

Apart from the variables used to store distance estimates and reward, no extra information is required.
During the optimisation, the graph is the only data-structure required, keeping things memory friendly and
extremely simple to implement.

8.4.3 Description
Phase 1, Distance Estimation Updates

This is the main part of the algorithm. It is a heuristic approximation process that corrects the distance
estimates for each node. Fundamentally, this is a label correcting process, guided by a greedy traversal of
the graph. At a given node, adjacent edges are relaxed if they invalidate Fquation 8.1. Informally, if the
distance estimation of a node can be improved by taking the current edge, we update it. The next node
chosen is the neighbour that was corrected the most. When no neighbour can be corrected, a new random
start vertex is chosen (initially this is always the root, to preserve correctness of the immediate surroundings
of the agent).

Algorithm 1: Greedy heuristic process that reoptimises a spanning tree incrementally.
while iterations below threshold do
for each neighbour do
update distance conditionally;
if largest update then
| remember as best ;

end
end
if there is a best neighbour then
| select best neighbour;
else
| select random node;
end
increment number of iterations;

end

Though theoretical bounds are not improved with this approach, it allows the re-optimisation to con-
verge extremely quickly in practice. Additionally, the quality of the distance estimates tend asymptotically

7

This process simply intends to maintain the precondition of Equation (8.4), when the graph conditions
changes. Though this phase has many similarities with existing re-optimisation literature, it does not fall
into that category as we only intend it to perform minimal updates to preserve validity — letting the main
procedure correct existing estimations.

Due to our sub-optimality tolerance, we can afford not to explicitly take into account all updates; those
that do not invalidate the spanning tree can be cast aside. There are only two operations on the graph
that cause problems. These are well known scenarios: root node change, and edge length increase (or arc
removal). While existing work advocates the separation of these cases, allowing independent research and
implementation, we propose to regroup all maintenance operations into one pass.

e When the root changes from r to s, we observe the following property about the new distances:

D <D 4 D e N (8.5)

Intuitively, any node can be reached by moving to the previous root (length Dgr)), and traversing the

previous best estimated path (lengh DZ(T) , which naturally still holds if the previous estimate Dg)
is suboptimal given 8.4). As r and s are often very close neighbours in the graph, the quality of the
estimates does not suffer much.

e If a edge (u,v) increases length by k, similar observations about the subtree rooted at v can be made.
All the descendant nodes’ distance estimations are at worse offset by +k.

We take the approach of an approximate correction procedure, that uses an extremely efficient, cache-
friendly O(n) scan of the data-structure. It sacrifices precision over speed, which minimises the overhead of
the necessary maintenance procedure.

Algorithm 2: Maintenance pass to preserve the necessary preconditions.
offset = distance to old root + sum of length increases;
for each node n do
| n.distance += offset;

end

8.5 Exploitation

8.5.1 Case Study

In Figure 8.2, all the armor items denoted as squares have a reward of 1. By applying the heuristic process
repeatedly, reward flows towards the location of the animat from the different sources, getting amplified
along the way. At the root, the animat can select which path to take based on the highest reward.

8.5.2 Issues

In practice, there are some things to watch out for.

78

Figure 8.2: Percolation of the reward on the learnt topography. Squares indicate sources of reward that
the animat is interested in. Reward flows towards the double circled root, inflating the size of each node
proportionally to the accumulated reward.

Root Correctness

The distance estimates around the root need to be taken especial care of. Taking a few extra operations to
assure they are upto date before each process will allow the algorithm to perform better, and the reward
values to be returned without unexpected surprises.

For example as the agent moves, the old rewards that was percolated towards the root may persist,
indicating to the agent he can retrace his steps and get high reward there too!

Momentum

Due to the dynamic and persistent nature of the process, some better solutions may be suddenly discovered
when not enough computation was dedicated to the task in previous frames. This can cause the agent to
want to turn around completely to exploit the better solution. Aside dedicating more power to the algorithm,
the familiar concept of momentum can be introduced. When the animat is 30% as likely to turn around
completely, he only does so in extremely beneficial situations (which do not arise often at all).

Reward Magnitude

Often, the animat needs to trade off close items with distant ones. When one is on the way to the other, the
algorithm copes well by combining paths. When the paths are separate, a choice needs to be made. This
can be done intrinsically when the reward is attenuated along each edge, so closer objects broadcast more
“power” towards the root.

Problem Specification

When specific scenarios arise, there is the issue of how to communicate the conditions to the underlying
process. For example, when Fred needs to be avoided in the staircase, does one scale the rewards as they

79

80

Evaluation

This chapter first evaluates the navigation from a high-level point of view, taking the system as a whole.
Practically, the competence of the movement in various different tasks is compared with a human player.
The second part looks at each module individually, and does a theoretical analysis where possible.

9.1 Premise

The major part of the evaluation considers the system as a whole — just as the design chapter does. It is
assessed in various different conditions, and compared it with select other solutions as well as human players.

9.1.1 Turing Test for Navigation

Since the navigation system strives for realistic behaviours, it seems appropriate to evaluate it with a test
for humanlike behaviour. Alan Turing established the most popular of these tests, but within the context of
natural language interaction. It involved placing two contestants behind a red curtain; one is a human, the
other a computer. If the judge cannot distinguish one from the other, then the computer can be assumed to
have a human-level intelligence (or at least NL capabilities).

A test for navigation can be established a very similar fashion; an artificial entity controlled both by
a human and artificially can be presented to a judge. The red curtain becomes implicit, as the spectator
cannot visually ascertain the method of control.

Our version of the test, however, is rather simplified since it does not include any form of interaction;
the judges are only presented pre-recorded animations of the game simulation. A demo fully responsive to
human commands would have required an additional natural language layer, which is by no means trivial
— and possibly even crucial. The author does intend to tackle a fully interactive Turing test for navigation
eventually.

9.1.2 Procedure

The judging process was split into five main tests, combining various situations with two major conditions.
Namely, these are simple and complex layouts in both deserted and crowded circumstances. This navigation
system was evaluated against human navigation, as well as two other game bots of almost commercial
standard. The human candidates were selected with a wide range of skills, ranging from beginners to
experts in the game. The existing bots were chosen for their support of the Quake 2 platform.

Each of the volunteer judges was explained the purpose of each of the trials. There was about a dozen
judges coming from gaming or robotics backgrounds, but also unrelated to AI. They were allowed to view
the demos freely using identical third person cameras.

81

Figure 9.1: Picture of the terrain layout in the lobby trial.

9.2.1 Lobby

Overview

This is a simple test that involves going through a doorway and wandering down three flights of stairs into
an open area. The first two stairs have a ledge on their left side and on their right side a wall that stops
just before the third section. The whole path spirals around 270 degrees, getting increasingly closer before
having clear sight to the target.

Candidates

1) A reactive bot is shown first, only using seeking, wall following and obstacle avoiding behaviours.

2) The human beginner is asked to perform the same task after having familiarised himself with the
controls for a few minutes.

Description

The reactive bot does well; the door is crossed effectively and the seek behaviour does a good job of finding
part of the way down the stairs. The left wall following is engaged once the target is behind the agent. A
relatively sharp turn at the corner prevents the bot from falling off the landing. Both behaviours alternate
until the target is reached.

The human player also does a good job of getting part of the way downstairs, but slightly struggles at
the corner having to pause for a second to realign.

82

Realism

Human Likelihood

Reactive Bot Human Beginner Reactive Bot Human Beginner

Figure 9.2: Comparing the perceived realism of the players and their likelihood of being human based on
the judges votes. The reactive bot appears more realistic.

Analysis

The results are extremely surprisingly for two reasons. Firstly, the judges could not distinguish our reactive
bot from a human, and in fact most thought it was — which is a major success in itself. However, despite
the impressive display, some gamers pointed out some details that are indeed unrealistic (mainly not cutting
corners). These are problems with the reactive nature of the solution. Additionally, the reader should not
assume that such realism is achieved consistently. While this is one of many cases handled in a human like
fashion, in some situations the system tends to strive for reliability over realism.

The second interesting point involves the inability of the audience to associate incompetence with
humans. Presumably, this is due to the audience’s desire to identify and mark down players that are
unlikely of being artificial, which they wouldn’t do outside the bounds of the trials. To the trained eye, the
characteristics are obvious: sections of paths performed reliably, variable pauses before complex sequences,
and the overall appearance of uncertainty.

9.2.2 Garden

Overview

A similar setup to the lobby is used at the garden side of the same level. The task is to follow a ledge until
the staircase descending the other way can be taken. This is followed down through 90 degree turn, after
which the target is just on the right.

Candidates

1) The reactive bot is used again, and is expected to perform in the same way as for the previous trial.

2) A deliberative bot is also utilised. It was allowed to explore that area, and when necessary shown
around reactively.

83

Figure 9.3: Picture of the staircase that leads down to the garden.

Description

The reactive bot generally manages to get downstairs like in the previous trial. However, on some occasions
the first turn proves lethal; the bot under-steers and falls off the ledge. A simple reactive strategy from then
on allows it to find the target. This demo was chosen to evaluate the bot’s mistakes and recoveries.

The first few steps of the deliberative bot are somewhat uncertain as it finds itself on a narrow turning
path. Once on the straight portion, things smooth out and the bot has no trouble engaging the staircase.
The rest of the way down is also no problem.

Results

In Figure 9.4, the bars show that the reactive bot scores around 2.2 in realism, while the deliberative bot
reaches 2.8. However, when it comes to the ”Is it human?” question, around 20% of the judges voted
affirmatively in either case.

Analysis

The results regarding the reactive bot are somewhat predictable based on the previous trials. While falling
off the cliff can be expected from human players now and then, the judges singled this out as looking artificial.
Again in the context of a game and not a formal evaluation, this would no doubt be satisfactory.

Judges marked the deliberative bot as being artificial purely because of the “epileptic” oscillations in
the narrow path. Most confirmed that they would have been fooled if it weren’t for those initial few seconds.
This happens to be one of the infrequent cases (discussed above) where the bot achieves its reactive task
without realism. Once identified, the designer can take active measures to prevent problem — but only
then.! This procedure is characteristic of the entire project, and will be scrutinised further in the discussion.

1This problem was actually fixed for subsequent trials.

84

0.6

Realism

Human Likelihood

Reactive Bot Deliberative Bot Reactive Bot Deliberative Bot

Figure 9.4: Differences in judging between reactive and deliberative bots. The second is slightly more
realistic, but both remain visibly artificial.

Figure 9.5: Start and end sections of the cellar trial.

85

1) The first candidate is the deliberative bot, who once again was allowed to reactively explore the area.
When necessary, the developer accompanied it to demonstrate the desired start- and end-point of
course.

2) The human expert was also asked to perform the same task.

Description

The bot does a really good job of exploiting the waypoints it laid down. Finding its way out of the seller is
trivial and engaging the staircase causes no problems. The corners in the staircase are actually cut, saving
the bot a few seconds. Once through the doorway, the small set of stairs near the chain gun is infringed
slightly to cut the corner.

The human expert also performs in a very similar way. The corners are, however, not cut as much yet
still maintaining extremely smooth movement.

Results

The barcharts in Figure 9.6 reveal a very similar score for both candidates. The human expert scores slightly
higher, achieving 4.4 average realism vs 4.2 obtained by the deliberative bot. As for the votes, both achieved
very similar scores with around 40% of judges believing each of them was artificial.

Realism
Human Likelihood

Deliberative Bot Human Expert Deliberative Bot Human Expert

Figure 9.6: The human expert and the deliberative bot match up, with the edge attributed to the biological
entity.

Analysis

This trial is fascinating for yet another reason. Both performances are extremely similar and could be
classed as flawless — depending on the definition of “flawless.” Therein lies the revelation of this demo; the
subjectivity of the judging is often the deciding factor. In this case, part of the audience considered cutting
the corner near the stairs a routing problem, while others thought it was extremely humanlike.

Some gamers considered both routes unrealistic from a strategic point of view, as the ledge is extremely
vulnerable to snipers, and running into the dead-end near the chaingun is extremely risky too.

86

Candidates

1) This time the human with intermediate skills goes first.

2) The deliberative bot gets second spot, using a very similar setup procedure as before.

Description

The human has a relatively easy first section; there are few opportunities for collision with bots. Towards
the end, two clashes are narrowly prevented, but one holds him back for barely a second. On the return
journey, one small collision happens in the stairs but the clump of bots at the base is well circumnavigated.
Along the conveyor belt, the human manages to anticipate the bots and avoid them, but a group of three
bots blocks the path temporarily before he can continue.

The artificial player starts badly with a small collision in with a bot in the narrow corridor at the top
of the stairs. A strange swerve happens at the bottom of the stairs, but it remains smooth and the path is
still acceptable. A group of four holds the bot back around the conveyor belt for a few seconds, but the 8
others are avoided successfully. A narrow collision up the second stairway is prevented on short notice. On
the way back, the bot is much luckier and has a smooth ride straight to the endpoint.

Results

The intermediate human player obtains a better realism score of 4.3, while the bot achieves around 3.6
on average, as shown in Figure 9.7. Fewer judges, in fact only around 20% thought the bot was human,
compared with 60% for the human player.

0.8+

o
o
|

Realism
o
+

Human Likelihood

0.2+

Human Intermediate Deliberative Bot Human Intermediate Deliberative Bot

Figure 9.7: Judging human vs. bot in a dynamic populated environment. The impact of unrealistic non-
navigational behaviours take their toll.

Analysis

This set of demos emphasises another extremely important issue; not only the navigation is taken into account
during a trial. Admittedly, there are some specific behaviours that allow the bot to be distinguished, but

87

In this trial, each player 1s given about o4 seconds Of Iree time 1n a factory level to demonstrate 1S navigation
abilities. Since there are no strict required elements, the bots must be judged on technical stills and artistic
interpretation of the terrain.

Candidates

1) Gladiator Bot — As described in the background review of Chapter 2, this is arguably known as the
best Quake2 bot to date, and became a commercial implementation for another popular game.

2) The human expert is there as a benchmark.

3) Eraser Bot — The first truly competent bot for Quake2 has many fans, though it’s starting to show its
age.

4) Our own deliberative bot is tested last to compare its abilities to other bots as well as the human in a
freeform setting.

Description

The gladiator bot shies away from two staircases, seemingly changing its mind or not being aware of their
presence. While human players do tend to step around corners, this bot tends to glide excessively. Towards
the end, a seemingly voluntary jump is made in two stages from the first floor down to the basement. The
bot loses quite some health in the process.

The human’s movement comes across as really smooth, deliberate and efficient. There are no collisions
and many items are collected.

The Eraser bot has a relatively rectangular path, until it falls off the ledge. Ending up on top of a crate,
it ends up stuck there for almost ten seconds. Thereafter it resumes to a normal item collecting routine.

Finally, our own deliberative bot has a slight tendency to drift left, due to the characteristics of the
obstacle avoidance behaviour. This causes the bot to hug walls, excessively infringing on small edges. Only
select items are actually picked up despite the bot touching them, since it already had full health and armour.

Results

The scores of the final test are revealed by Figure 9.8. Faith in the judging system is confirmed by the
human player scoring very highly in both metrics: 4.5 and 100% respectively. Both third party bots perform
equally poorly for varied reasons, scoring 1.8 and 0%. Our own deliberative bot achieves slightly better with
an average of 3 realism and barely 20% of guesses as human controlled.

Analysis

The fact that everyone managed to recognise the human which reveals that such a free-form test is an
appropriate setting. With the expert also achieving maximum realism, this confirms the scale used by the
judges as adequate.

The particular instance of obstacle avoidance behaviour of our deliberative bot was evolved just before
the trials to prevent the oscillatory problem cited above. This proved to have a small flaw which sadly
hampered the realism of the bot. However, none of the other bots were tweaked and tuned before the run,
so it seemed fair not to pay any particular attention to our solution.

Despite the small problems, our system achieved the runner up score for realism, and also fooled the
second most judges into believing it was human (after the expert).

88

Gladiator Bot Human Expert Eraser Bot Deliberative
Gladiator Bot Human Expert ~ Eraser Bot Deliberative Bot Bot

Figure 9.8: Comparing the perceived realism of all four players and their likelihood of being human based
on the judges votes.

9.3 Modular Analysis

While an in-depth empirical analysis? of each component of the navigation system would prove extremely
enlightening, this falls beyond the scope of our project (mainly due to the time constraints of developing a
full system). However, a brief discussion can nonetheless establish the major benefits and pitfalls of each
module, in view of extending them to a formal study as the system witnesses further improvements.

9.3.1 Motion Controller
Advantages

Neural networks are extremely well suited to this kind of motor control. When trained correctly, they offer
an extremely smooth navigational policy. Despite such reactive behaviours requiring foresight (or simply a
broader horizon) to be realistic, our model does a good job of faking this in most cases.

Evolution allows the creation of working models extremely simply, using very few fitness parameters.
EANN provide a reconfigurable framework, which can be applied to creating pretty much any reactive
behaviour with few changes.

Disadvantages

It can take a bit of time to understand and patch up loopholes in fitness functions, but once that is done one
can truly focus on the major issue: tweaking the parameters of the various equations. The first developer
can assist others by providing higher-level concepts that affect these behaviours, but third parties will still
have to experiment for long enough to be able to generate the desired results. At this point, it might have
been easier to devise explicit mathematical models instead!

Genetic algorithms do suffer from a variation in the performance during lifetime learning, which could
be fixed by using alternative optimisation techniques that only rely on scalar feedback values — such as
reinforcement learning. This would probably exhibit a slightly more consistent performance increase.

There are also issues due to the limited perception of the module; humans can navigate reactively with
more anticipation due to their ability to process visual information. This system does not even belong in the
same league, as its horizon is very limited. While this is something higher levels of intelligence can simulate,
it would be interesting to compare both reactive models on the same grounds. On the similar note more
complex time dependent patterns would require something else but a simple perceptron.

2This was done somewhat informally during the development phase.

89

lecnniCally speaking, tic numerous DEncelits 10 macline learning snould also be acknowledged — sSINCe
the field is emerging as one of the most capable for navigation purposes. Firstly, the search space finds
itself greatly reduced; both the host and parasite can be treated as completely separate problems, and the
parasite itself can be abstracted as a modular solution in nature. Secondly, this lends itself very well to
the incremental design approach, whereby the solution is improved module by module over time. Since the
machine learning can rely on the “frozen” components, it performs much better than any dynamic approach.

Disadvantages

Despite the concept of artificial evolution being extremely useful from some aspects, it causes some serious
issues with the quality of the online learning. Indeed, when a genetic algorithm is used, it is tough to
guarantee any kind of base performance — due to the manner in which evaluation is done in trials. Any
solution that guarantees reasonable fitness would most likely suffer from premature convergence.

Although the process of tweaking behaviours is simpler using a high-level fitness function than having
to rewire the underlying implementation, it can still be criticized. It does admittedly take time to get used
to the process of adjusting the behaviours, but this process is generally done once only. Together with this,
the default values provided in this dissertation are a very good starting point for further experimentation.

Figure 9.9: Amidst the crowd in the atrium trial.

90

Disadvantages

While the graphs learnt are fairly coarse, they remain somewhat more precise than the terrain models that
humans have been empirically shown to use. This is due to the fact that our reactive model is not as well
developed, and needs additional assistance.

Obstacles are also not stored explicitly; this causes many problems as the system cannot assume much
from the absence of nodes and edges in the topography. As a consequence, the exploration process is affected.
It cannot be guided by the intrinsic nature of the terrain representation.?

9.3.4 Pathematics
Advantages

The solution itself proves very powerful in practice. The routes it can generate combine paths and goals
successfully, taking into account complex desires of animats. With regards to efficiency, our approach also
fares well. The heuristic process can return at any point, while its greedy nature leads to good initial
solutions.

Disadvantages

Exploiting the algorithm to its full potential requires reinterpreting the higher-level requests onto practical
parameters. These can change the input conditions of the graph (connections and distances), as well as the
reward setting process. This is a nontrivial task since there are usually many ways of executing the orders.
Notably, determining if the avoid behaviour should correspond to a reward scaling or a distortion of space
is still an open question.

While the incremental dynamic nature of the heuristic process can cause problems, these can be pre-
vented once identified, although they need to be acknowledged. Small precautions can be taken to make
sure they do not affect the behaviour in a negative fashion. For example, this includes keeping the distance
estimates around the root node as accurate as possible, and making sure there is no residue reward left in
previous locations.

9.4 Global Impressions

This section looks at the trials, analysing how the results reflect on the design of the entire system.

9.4.1 Realism

The solution devised does perform surprisingly well with regards to realism. Human-like behaviours can be
generated in most cases, though they seem to collapse in occasional situations that the designer has not been
able to test. The evolved behaviours assure that the goal is generally still achieved, but not in the intended
fashion.

This realism problem is tough to fix, reminiscent of programmed behaviours in standard game Al
Scripts need to be understood and debugged in many situations in order to guarantee that they will perform
as expected. With our learning solutions, short cuts cannot be taken either; the emergent “features” of the
learning need to be identified and remedied when appropriate.

3 Although it may be possible to devise an algorithm or additional modifications to the current format.

91

guaranteeing the desired result. However, the animats cannot perform reliably until the terrain has been
explored sufficiently. Granted, the reactive behaviours can in most cases lead to the chosen destinations, but
not in arbitrarily complex layouts. Reactive arbitration of the behaviours cannot do this either, so a minimal
amount of deliberative processing is required. This would no doubt take the form of a short stack-like history
of planar constraints that need to be satisfied, which would guide the animat out of mazes. Alternatively,
the learning of the topography could be integrated with the reactive behaviours, allowing similar exploration
or guidance policies until the target is reached.

9.4.3 Dynamism

The system performs extremely well dynamically, since multiple levels of the architecture support dynamic
conditions. The lower-levels take into account a constant stream of information from the surroundings
reactively, and the higher-levels adapt the plans based on the changing conditions of the environment.

However, there is too little feedback between the reactive behaviours and the planning. Currently, two
things cause plans to change based on their execution: the current edge length increases as the animat takes
more time to get to its destination, and the likelihood to chose the same path again once the animat has
turned around is scaled by 0.25. However, this does not allow the animat to persevere, waiting to force its
way through a temporary hazard (currently it’d just turn around and use another path). A certain amount
of feedback from the lower-levels, and analysis of the benefits of waiting should be performed.

9.4.4 Summary

In the process of developing our complete navigation system, some interesting discoveries were made, espe-
cially with regards to the synthesis of human-like behaviours.

e Levels of Dynamism — Each level of the architecture needs to be dynamic for complex situations to
be handled correctly. A strong sense of feedback is needed for the coordination of the levels, and the
coherence of the entire system.

e Heuristics and Reactivity — Components should not be allowed to slow down the system for efficiency
and responsiveness reasons. While programming tricks can be used to convert deliberative searches into
incremental procedures, our research shows that specialised algorithms can be devised with heuristics,
or simply on a fully reactive basis.

e Complete Learning — Getting reliable behaviours requires a thorough evaluation of the fitness in as
many situations as possible. This is not something pre-evolution handles perfectly, as trials need to be
finite, and the chances of all situations being covered are extremely unlikely. Rare situations are often
encountered during a lifetime, requiring adaptation — or a helping hand from the designer.

e Incremental Design — Intensive human design and debugging is necessary for realistic behaviours to
be provided. Learning tends to create reliable motion when left to its own devices, but realism is
something that requires a tremendous amount of time and effort — even more so than just reliability!

e Request Interpretation — The commands passed to the navigation system via the higher-level interface
need to be interpreted in a coherent fashion. This is required both for the sake of obtaining the desired
result reliably, and in a realistic fashion.

92

93

94

Conclusion

Navigation systems are extremely interesting to research. The project has been equally challenging to
develop, and was fascinating to watch unfold. Despite still having a long way to go, much has been achieved
and a solid base has been established.

10.1 Retrospective Overview

Looking back at the entire project, and analysing it with regards to the aims defined in the introduction,
how well does the system perform?

10.1.1 Interface Design

The loose definition of navigation as solving problems in space does allow a great improvement of the
interface specification. Instead of specifying target points in space, the user describes the whole problem
using rewards and costs. By providing abstract functions, this works extremely well in practice, and remains
a simple interface.

Developing the system around the interface was surprisingly smooth; in most cases, the path-planning
handles all the rewards and costs, and controls the lower-level motion around on request. When a topography
is not present, requests are only mapped onto reactive desires and targets.

However, it seems a problem with the interface is the lack of natural language understanding. Admit-
tedly, this is not fundamentally part of navigation, but the major part of the source code used to create the
animats in the demonstration was in fact primitive NL processing — allowing the designer to interact and
experiment with the behaviours. If this system was to be improved, NL would be the next step forward.

10.1.2 Complete System

The project has managed to develop a substantial working system, however it still falls short of being
complete. Much of the requests given via the interface can be satisfied, but some intricate situations cannot
be handled by the architecture. Alternate solutions are generally found, for example going around the long
way instead of taking the ladder, but this solution is not always an option.

That said, it would only take a small amount of work to extend the system to handle infrequent cases
like ladders or platforms, and given the existing framework these could be integrated fairly simply.

10.1.3 Flexible Architecture

The architecture defined allows navigational architectures to be crafted with relative ease. The skeleton
needs to be established, and learning components can be inserted arbitrarily. Our specific architecture is
relatively reconfigurable, though it becomes less customisable towards the upper-levels (since it is not really
required).

95

vitboL aliliiildabn Uil Uyl vuliouiivi daltidvwalv, aild itliall)y daisviiviiiiio Lall UL LUuolUiiiiobidl o davie ainiiiicat
overhead (memory and computation).

However, in the short term, it seems unfeasible to have the full panoply of features enabled, as well as
having multiple such agents in a modern computer game. When barely 5% of the budget can be utilised for
AT, many corners need to be cut, and navigation would involve mostly static plans and no obstacle avoidance.

10.1.5 Embodiment

There should be no denying it; implementing a fully embodied animat is not a minor task. Developing the
interface with its environment is something that can be done once and for all, although the framework used
defines flexible standards that can be developed incrementally in a backwards compatible fashion. On top of
this, the overheads of designing an architecture capable of coping with such restricted information can not
be neglected either.

However, there is little doubt that such constraints improve the realism and genuine feel of the animat.
Most human mannerism are implicit consequences of their embodiment, and simulating this body allows
us to obtain a wide range of desired properties. Specifically for navigation, path smoothing is no longer a
problem, as the simple concept of momentum does a tremendous job.

10.1.6 Summary

In brief, there are some things to note about the development aspect, with regards to targeting complete
human-level navigation systems.

e Interface Design — The top down specification of the system by designing the higher-level interface
first was extremely helpful during the development. This allowed the definition of the underlying
structures, and behaviours using these structures. When the system is incapable of performing a task,
an additional function is added to fill the gap and provide complete functionality.

e Completeness — The development of a complete system revealed the inconsistencies in many existing
separate solutions, and the amount of work required to fit everything together. Making the system
easily extendible also proves important to handle novel situations that were not in the original design.

e Reconfigurability — Designing a complete system revealed the need for flexibility. Behaviours, functions,
data-structures and their interaction change so often over the course of the design that a really universal
framework shines through. Only when a reconfigurable architecture smoothes this process, which
should even be as intuitive as possible.

e Efficiency — Programming efficient behaviours is a matter of selecting or designing the right solutions in
the underlying implementation. Heuristics and reactive approaches should be preferred, and constraints
should be set on memory and processor consumption when necessary.

e Embodiment — This is a great way of obtaining genuine behaviours; when done in a biologically inspired
fashion and develop the underlying representations in a suited fashion, extremely interesting emergent
behaviours arise.

This project has only been moderately successful in these tasks, but yes has mostly striven in the right
direction and identified the need for such approaches.

96

LO ODLalll 5000 DCllaviOuls, DUl 1Claulvely COLUPICA SCLIPLS alC 1Cqullcdd 1O ODualll 11ulllall=1CVel llavVIigatlOll. 1110
functions describe an intricate fitness space with hints, details, and special cases; it has become so elaborate
that almost the entire problem has thereby been modelled. This takes meticulously time-consuming iterative
development, which negates the whole point of using a learning approach. The solution might as well be
crafted manually.

10.2.2 Evolution & Believable Agents

While this may seem a good idea at first, artificial evolution is no more likely of generating realistic behaviours
than any other Al optimisation technique. Making something behave in a humanlike fashion with an EA is
a matter of modelling the body as precisely as possible, and letting the fittest survive. This was not done
here, and will probably take another couple of decades to be even thinkable.

In some contexts, this project succeeded in creating humanlike behaviours with evolutionary solutions,
but this should not be attributed to them in any respect. In fact, the key component was meticulous tweaking
of the fitness functions, and expert design of the models.

10.2.3 Expert Design

Much of AI development nowadays relies too heavily on expert knowledge. While this is something that
some veterans advocate, it does not really sink in to the extent it should until it’s too late. Admittedly
learning techniques are often used, but rarely is the design of Al systems placed in the hands of the Al

The same mistake was made here. The few learning algorithms introduced here were mostly convenient
from an external point of view, allowing behaviours and factual knowledge to be assimilated. Still too much
work was left in the hands of the designer.

This could have been greatly simplified by the use of imitation instead of fitness functions, or using
some sort of structured evolution to organise the internal architecture in an incremental fashion.

10.2.4 General Applicability

All along this dissertation, many parallels with fully functional agents were present — some more obvious
than others. Fundamentally, there is much overlap between the study of agent architectures and navigation.

Firstly, we believe that the parasitic approach would have mixed success when applied to generic agents.
For motor control, they remain an extremely useful tool capable of providing sophisticated blended behaviours
in the very realistic fashion. However it remains to be shown if they can handle symbolic representations;
we expect them to work in some situations but prove more problematic in others.

Moving onto the learning of the terrain, the procedure would apply extremely well to learning facts
about life. Spatial common sense would be replaced by common sense (defining how one can get to a specific
situation from a current state), and the algorithm would coarsely learn relationships between situations.
Naturally, robust reactive behaviours would again be relied upon. There will also need to be a few adjust-
ments to take into account the assumptions made for navigation, and also to deal with the increase in the
size of the animat’s state.

Finally, with regards to Pathematics applied to generic problem solving, we believe it would also per-
form surprisingly well. Combining many different desires is also a requirement in life, and the many other
properties of our solution desirable in navigation would remain desirable in any implementation.

That said, all this needs to be substantiated!

97

10.3.1 Topography Learning

While the framework supports things such as node removal or edge deletion, it would be extremely interesting
to apply these procedures to create more humanlike struggles with map learning. Beyond just forgetting
places and path segments, this would require graceful deterioration and habituation. For example, humans
can remember paths segments as a whole, but forget little details. They have to re-explore the location to
rebuilt the “model” of the path. Graceful deterioration would allow such memory losses, and allow surprised
to be expressed when it is once again discovered.

We’d also like to develop the localisation algorithm further. Moving beyond identifying key objects
within the field of view, the system requires further sensory analysis to solve the “kidnapped animat”
problem. By using a heuristic statistical matching of numerous visible objects, tracked probabilistically over
the course of a few seconds, the animat should be able to localise itself. Using active exploration to test
localisation theories, interesting behaviours should arise.

10.3.2 Pathematics

Though our approach performs well for agents in large terrains (outperforming existing implementations),
we do not expect it to scale to huge graphs. Like humans, the cognitive process of agents is often limited,
and applying it to a consequent data-structure would give poor results. In this case, we believe the best
improvements would be incurred by modelling the terrain using a more human-like approach, with a hierarchy.
Our existing algorithm would need to be adapted to suit this new paradigm.

The current implementation is suited to single agents that intend to plan their own movement. Path
queries about other agents may be required for anticipation purposes. While our design would lend itself
well to simulating multiple agents separately, some benefit may be gained by merging these computations,
moving a step closer to dynamic all the pairs algorithms.

Throughout the paper, associations of path-planning with decision making have been noted. At times,
it has taken some restraint to remain within the domain of navigation. We believe an adapted version of
this algorithm would be ideally suited to human-like deliberation, though the specification of the problem
would have to be redefined.

10.4 Final Word

As a navigation system, ours is usable in its current state. It needs to be expanded slightly to support the
more advanced contraptions of the environment (like ladders), but our flexible framework allows this easily,
and it would be just a matter of time.

The realism of the system is reasonable in most situations, though it does require extensive monitoring
and tweaking to iron out the idiosyncrasies. This, once again requires spare time and effort. Despite being
an improvement over existing solutions, the motion remains shy of human-level realism.

The research involved creating a complete system, which revealed major issues. Essentially, creating
human like behaviours is something that can be done by extensive expert design, but there should be more
emphasis placed on higher-level learning — allowing the system to learn almost entirely what to do and
practically design itself.

98

10

15

20

25

30

35

Flexible Behaviours

A.1 Obstacle Avoidance

def Avoid ():

global wvariables
global r_turn
global r_brake
global g_collision
global g_fitness

remove symetry to reduce search space Size

g_inverted = 0

if x_symetric and s_distances[0] > s_distances[s_sensors —1]:

swap the values around

s_distances.reverse ()
r_.turn = —r_turn

remember we did this!

g_inverted =1

build up input array
s_distances.append(r_turn)

s_distances .append(g-collision / 2.0)

fetch the result by simulating the perceptron
s_distances)

output = avoid_turn.simulate (

check if wvalue is too big
if output[0] > x_clamp:

output [0] = x_clamp
if output[0] < —x_clamp:
output[0] = —x_clamp

flip back if mnecessary

if g_inverted:
output[0] = —output [0]
r_turn = —r_turn

99

reward lazzy behaviour , penalise big increments over small changes

fitness —= Squared (abs(output[0]) % x_change)

fitness —= Squared (abs(output[0]) * x_trouble * (1—s_distances[1]))
reward persistence of movement

fitness —= Squared (abs(r_turn — output[0]) % x_persistence)

oscillation penalty
if r_turn *x output[0] < 0.0:
fitness —= x_oscillation * abs(r_turn — output|[0])

report the fitness to the turn component
avoid_turn. fitness (fitness)
g_fitness = fitness

output turning direction
r_turn = output [0]
r_-brake = sqrt(s_distances[1])

commands passed back implicitly via r_x wvariables
return

A.2 Wall Following

def Follow ():
global r_turn
global r_brake

concatenate previous decision as extra input
s_distances.append (r_turn)

fetch the result by simulating the perceptron
output = follow_steer.simulate (s_distances)

check if wvalue is too big
if output[0] > x_clamp:

output [0] = x_clamp
if output[0] < —x_clamp:
output[0] = —x_clamp

squares penalise big increments over small changes
fitness = —Squared (abs(output[0]) * x_change)
reward the presence of a wall left
if s_distances[0] > 0.0:
fitness += x_presence

fitness += (0.5 — abs(s-distances[0] — 0.5)) % x_proximity
punish collision with wall
fitness —= Squared (x_collision x s_distances|[1])

100

35

10

15

20

25

30

35

i e e |

r_-brake = 0 #s_distances [1]

commands passed back automatically via r_x variables
return

A.3 Seeking Behaviour

def Seek ():

global g_previous
global g_fitness

consistency check
if len(g_previous) != len(s_distances):
g_previous = [0 for i in s_distances|

preprocess angles into another python sequence
copy = []

min, max = 100, —100

for a in s_angles:

store angles relatively to desired orientation

relative = abs(a / 90.0 — s_orientation)
copy .append (relative)
and isolate the two extremities

if relative > max:
max = relative

if relative < min:
min = relative

compute the average of the distances
average = Max(s_distances) x Average(s_distances)

fitness = 0.0
process each of the sensor wvalues one by one
for i in range(len(s_distances)):

build up array with selected inputs

input = [abs((copy[i] — min) / (max — min)),
s_distances[i],
g_fitness ,
abs(s_orientation),
g_previous [i]]

let the neural network compute the desired change

output = seek_adjust.simulate (input)

101

50

it B N e L

and return modified distances
return s_distances

102

>y — -+ YV AL RS

had

/

10

15

20

25

30

35

Organ Specifications

class Motion : public Organ

{

public:
void Move(const Vec3f& direction);
void Turn(const Vec3f& orientation);
void Jump ();
void Duck ();

s // class Motion

class Physics : public Organ

{

public:
bool Collision ();
bool isPlatform ();
bool isLadder ();
bool isWater ();
bool isAir ();

e

// Odometry

S

void Movement(Vec3f& m);
void Orientation(Vec3f& o);

Ys // class Physics

class Vision : public Organ

{

public:

const std::vector<Entity >& FetchVisibleEntities () const;

float CheckForObstacles (const float angle, const float steps) const;

;s // class Vision

103

104

Anonymous (1997). Reaper bots don’t cheat! http://www.mindspring.com/ win32ch/reaper.htm.
Arkin, R. C. (1998). Behaviour-Based Robotics. The MIT Press.

Arkin, R. C. and Balch, T. R. (1997). Aura: Principles and practice in review. JETAI 9(2-3):175-189.
Bellman, R. (1958). On a routing problem. Quarterly Applied Mathematics 16, pages 87-90.

Brooks, R. A. (1991). Intelligence without representation. Number 47 in Artificial Intelligence, pages 139—
159.

Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., and Thrun, S.
(1998). The interactive museum tour-guide robot. In AAAI/IAAI pages 11-18.

Burgess, N., Recce, M., and O’Keefe, J. (1994). A model of hippocampal function. pages 1065—-1081.

Castillo, P., Merelo, J., Prieto, A., Rivas, V., and Romero, G. (2000). G-prop: Global optimization of
multilayer perceptrons using gas.

Champandard, A. J. (2001). A server client based approach to ga class design http://geneticalgorithms.ai-
depot.com/tutorial /ga-class.html.

Champandard, A. J. (2002a). The dark art of neural networks. AI Game Programming Wisdom.

Champandard, A. J. (2002b). Return to castle wolfenstein: Ai analysis http://ai-
depot.com/gameai/wolfenstein.html.

Connell, J. H. (1992). Sss: A hybrid architecture applied to robot navigation. In ICRA - IEEE Conference
on Robotics and Automation, pages 2719-2724.

D. E. Rumelhart, G. E. Hinton, R. J. W. (1986). Learning internal representation by error propagation.
Parallel Distributed Processing.

Dial, R. B. (1969). Algorithm 360: Shortest path forest with topological ordering. Communications of the
ACM 12, pages 632-633.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerishe Matematik, 1:269-271.
Epic (2000). Unreal technolgy http://unreal.epicgames.com/.

Fear (2002). Official website http://fear.sourceforge.net/.

Feltrin, R. (1998). Eraser bot http://impact.frag.com.

Ford, L. R. (1956). Network Flow Theory. Rand Co.

105

ool s, . . \lﬂoﬂ}. T ALYUT oblibiits oIt JCWi i, U pPJutilitbcWotUTe Wit IVAWCILeItC /el 1oelioy. AUULSULL VY EolTy.
Gruau, F. (1994). Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis.
Gruau, F. (1995). Automatic definition of modular neural networks. Adaptive Behaviour, 3(2):151-183.

Hans Blaasvaer, P. P. and Christensen, H. I. (1994). Amor: An autonomous mobile robot navigation system.
In IEEE, International Conference on Systems, Man, and Cybernetics, pages 2266-2271.

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. The MIT Press.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities.
Proc. Natl. Acad. Sci. USA, 79:2554-2558.

Husbands, P. (1998). Evolving robot behaviours with diffusing gas networks. In EvoRobots, pages 71-86.
id Software (2001). Quake 2 source code ftp://ftp.idsoftware.com/idstuff/source/q2source-3.21.zip.
Johnson, E. L. (1972). On shortest paths and sorting. In Proc. 25th ACM Annual Conference, pages 510-517.

Konolige, K., Myers, K. L., Ruspini, E. H., and Saffiotti, A. (1997). The Saphira architecture: A design for
autonomy. Journal of experimental € theoretical artificial intelligence: JETAI 9(1):215-235.

Laird, J. (2001). Personal communication about the soar quakebot’s navigation.

Laird, J. E. (2000). An exploration into computer games and computer generated forces. Computer Generated
Forces and Behavior Representation 8.

Laird, J. E. and Duchi, J. C. (2000). Creating human-like synthetic characters with multiple skill levels: A
case study using the soar quakebot. AAAI 2000 Fall Symposium Series: Simulating Human Agents.

Liu, B. (1996). Intelligent route finding: Combining knowledge and cases and an efficient search algorithm.
In European Conference on Artificial Intelligence, pages 380-384.

Marom, Y. and Hayes, G. (2001). Interacting with a robot to enhance its perceptual attention. In Towards
Intelligent Mobile Robots.

Martins, E., Rasteiro, D., Pascoal, M., and Santos, J. (1999). The optimal path problem. Investigac ao
Operacional, 19:43-60.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. The MIT Press.

Mohammadian, M. and Stonier, R. J. (1995). Fuzzy logic and genetic algorithms for intelligent control and
obstacle avoidance. Complexity International, 2.

Moore, E. F. (1959). The shortest path through a maze. In Proc. International Symposium on Theory of
Switching, volume 2, pages 285-292.

O’Keefe, J. and Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation ranking: Bringing order
to the web. Technical report, Stanford Digital Library Technologies Project.

106

Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics,
21(4):25-34.

Reynolds, C. W. (1999). Steering behaviors for autonomous characters.
Reynolds, C. W. (2000). Interaction with groups of autonomous characters.

Riedmiller, M. and Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The
RPROP algorithm. In Proc. of the IEEE Intl. Conf. on Neural Networks, pages 586—-591, San Francisco,
CA.

Ritchie, J. (1998). An Artificially Intelligent Agent for the Computer Game Quake. PhD thesis.
Rosenblatt, F. (1962). Perceptrons and the theory of brain mechanisms.

Rosenblatt, J. K. (1995a). DAMN: A distributed architecture for mobile navigation. In Proc. of the AAAI
Spring Symp. on Lessons Learned from Implememted Software Architectures for Physical Agents, Stanford,
CA.

Rosenblatt, J. K. (1995b). DAMN: A distributed architecture for mobile navigation. In Proc. of the AAAI
Spring Symp. on Lessons Learned from Implememted Software Architectures for Physical Agents.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning internal representations by error propagation.
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1(8).

Saffiotti, A. (1997). The uses of fuzzy logic in autonomous robot navigation. Soft Computing, 1(4):180-197.

Schmajuk, N. A. and Thieme, A. D. (1992). Purposive behavior and cognitive mapping: a neural network
model. pages 165-174.

Seymour, J. (2001). A flexible and extensible framework for modelling and simulating physical agents.

Simmons, R., Goodwin, R., Haigh, K., Koenig, S., O’Sullivan, J., and Veloso, M. (1997). Xavier: Experience
with a layered robot architecture.

Stentz, A. (1995). The focussed d* algorithm for real-time replanning. In IJCAI pages 1652-1659.

TALWAR, S. K., XU, S., HAWLEY, E. S., WEISS, S. A., MOXON, K. A., and CHAPIN, J. K. (2002).
Behavioural neuroscience: Rat navigation guided by remote control. pages 37-38.

Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Dellaert, F., Fox, D., Hahnel, D., Rosenberg, C. R.,
Roy, N., Schulte, J., and Schulz, D. (1999). MINERVA: A tour-guide robot that learns. In KT - Kunstliche
Intelligenz, pages 14-26.

Trovato, K. (1990). Differential a*: An adaptive search method illustrated with robot path planning for
moving obstacles and goals, and an uncertain environment. Journal of Pattern Recognition and Artificial
Intelligence, 4(2).

Trullier, O. and Meyer, J. (1998). Animat navigation using a cognitive graph.

Trullier, O. and Meyer, J.-A. (1997). Biomimetic navigation models and strategies in animats. AI Commu-
nications, 10(2):79-92.

107

108

