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Abstract

Two new developmental neural network controllers for evolutionary robotics are described.
These controllers present opportunities for experiments into many areas of development: the re-
sults of several experiments are described.

Relevant former work in evolutionary robotics and the natural sciences is reviewed. The moti-
vations of the work are presented: to generate working examples of systems which may be said to
exhibit development for use as tools in its study, and to explore various open questions involving
development using these tools. Several open questions are presented, most of which involve sug-
gestions that controllers which are constrained to be developmental may offer advantages (in terms
of how easily they may be evolved to exhibit certain behaviours) over more traditional controllers.

The experimental work is divided into two parts. The first part describes a controller which
has neurons located in a two-dimensional space growing during the robot’s lifetime in processes
affected by the experience of the robot as well as its genotype.

The second piece of experimental work describes a controller designed to put into practice the
lessons learned in the first part: one which has a fixed size but allows for the growth and death of
synapses as well as plastic changes in their weights.

Little evidence was found to support the ideas behind many of the open questions explored: in
particular, the controllers with added developmental dynamics were not found to have any advan-
tage over standard controllers in tasks involving flexibility to predictable changes or adaptability
to different environments.

Discussion is offered of the reasons for the results found, the utility of the tools developed and
lessons learned about evolving developmental controllers. Possible avenues for future work are
suggested.
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Chapter 1

Introduction

1.1 Overview

How does the fact that natural behaving creatures grow from a single cell affect their behaviour?
How does the process of development interact with evolution? Developmental systems continually
cause wonder in human beings: the experience of parenting a child is often cited as the most
profound experience a person can have. The secrets of development often seem more mysterious
even than those of cognition - perhaps they contain the secrets of life itself: how it came about and
how it so successfully filled the planet Earth.

This thesis describes an attempt to make a step very close to the beginning of the journey
towards understanding development - a journey which may eventually lead to a greater knowledge
of this process, and which may allow the use of this knowledge to build complex, adaptable and
robust artificial creatures.

The thesis begins by examining the meaning of the word development for the purposes of this
work before providing a summary of the research and its contributions, including the tools de-
veloped and open questions explored. It moves on to examine the relevant work which has been
undertaken in the field of evolutionary robotics (chapter 2), and survey some relevant work in the
biological disciplines (chapter 3). These chapters provide the context within which the work was
completed, part of an ongoing research programme that is relatively young and must continue,
mature and move forward a great deal before its ambitious goals are achieved. They describe
in detail the motivation for the study of development, from very practical reasons about building
better robots immediately, to the longer term aim of providing understanding which may feed into
the biological sciences. The work of researchers on evolving robots whose controllers develop in
various senses is described, and the degree of success they achieved in producing robots capable
of performing a variety of tasks. In the biological realm, recent changes in perspective in neuro-
science are described which suggest that the distinction between development and other processes
such as cognition and learning may be largely artificial. Some philosophical issues over the un-
natural concept of a separation between inherited and acquired characteristics, and the expected
form that an evolved developmental process will take, are examined, looking at concepts such as

canalisation and genetic assimilation. Finally, attention is turned to a debate in neuroscience about
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whether brain development may be viewed as a Darwinian-like process.

The thesis continues by collecting together its motivations, stating the open questions which
have been explored (chapter 4) and going over the generally-applicable techniques and concepts
used in this work and in much of the similar work in this area (chapter 5). It reviews agent-based
simulation, genetic algorithms, fitness functions, fitness landscapes, evolvability and studying ar-
tifacts produced by evolution before describing a commonly-used type of robot controller, the
continuous-time recurrent neural network (CTRNN). After this it explains the methodology of
studying minimally-cognitive behaviour, which is used in the following chapters.

The experimental work begins with part one, which is broken into two chapters (6 and 7)
and describes the motivation, design, implementation, evolution and study of a new type of robot
controller, based on an expansion of the CTRNN model, the chemical-guided growth network.
The first part looks at the reasons for the decisions made in the design of the controllers and the
tasks used to test them (based on the need for simplicity to allow successful evolution and the
need to build on previous work), before describing these controllers in detail, with their neurons
located in a two-dimensional space and growing neurons and synapses during the robot’s lifetime
in processes affected by the experience of the robot as well as its genotype. The results of the
experiments are presented: it was found that these controllers may be successfully evolved to
perform a very simple behaviour arguably of cognitive interest, but that the process was much
harder than expected, since the developmental system was found to be more difficult to evolve
than anticipated. Through a detailed study of the behaviour of one of these agents, and a general
overview of the phenomena observed, some of the reasons for this difficulty are identified, most
notably the difficulty of building up structure from a sparse network into a larger, more connected
one, and the use of tasks which are unlikely to provide benefit for controllers capable of structural
change.

Part two, again broken into two chapters (8 and 9) describes the way the lessons learned in part
one were applied to the design of a new type of developmental controller, the growth and pruning
network, which has a fixed size but allows for the growth and death of synapses as well as plastic
changes in their synaptic weights. These controllers are described in detail, as well as the set of
tasks that were designed to investigate some of the expected practical advantages of development,
and the different roles of growth and death in this process. The results of these experiments are
then presented, providing little support for many of the suggested answers to open questions, but
notably showing that constraining some controllers to be developmental can improve robustness to
certain disruptions. Again, study of an evolved individual provides insight into how developmental
processes may work in practice under evolution, and some suggestions for ways to improve such
processes are presented.

The thesis concludes in chapter 10 by gathering together the motivations, methodology, open
questions, results and analysis undertaken and discussing wide-ranging topics such as the extent
to which the ideas behind each open question are supported by the results found, the utility of
the tools developed, practical ways to improve the chance of successfully evolving developmental
robots, theoretical concepts behind the difficulties encountered and some of their possible solutions
and suggestions that may be made in the debate about Darwinian processes in brain development.

It concludes by looking at ways in which further research may move forward, and summarising
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the advice that might be offered to those who wish to perform this work.
Before all of this may be attempted, it is important to examine what is meant by the word

development. The following section answers this question for the purposes of this thesis.

1.2 What is development?

Section 1.2.1 explains that the definition of development here is structural change instantiating a
two-tier system. A specific point about the clear distinction between development and evolution

is then made in section 1.2.2.

1.2.1 Structural change: a two-tier system

For the purposes of this work, a developmental system is one which may be observed to consist of
two tiers, a behavioural tier which instantiates the behaviour of an agent, and a structural change
tier, which modifies the properties of the behavioural tier, changing its structure. The phrase
structural change here is used as a short-hand for changes which modify the character of the
dynamics of the behavioural tier, for example by altering the number of dimensions.

Since the division between tiers is subjective, this definition is dependent on the observer.
Informally, the controller may be seen to consist of two controllers: a ‘behaving controller’ and a
‘developing controller,” which adjusts the behaving controller. When these terms are used in this
thesis they are intended to be understood as described here.

In an artificial neural network, the electrical and chemical interactions in neurons and synapses
may be viewed as the behaving controller while changes to the properties of neurons and synapses,
and their addition and removal may be viewed as the developing controller. However, this is not
the only way an observer may view neural networks. Some networks which do not allow changes
to neuron and synapse properties might be viewed as developmental with, for example, some parts
of the network instantiating the behaving controller and other parts the developing controller.

In this thesis the two tiers (‘controllers’) are implemented explicitly as separate systems, which
allows for simple study of the phenomena observed. The behaving controller is expected to be
formed by the interaction of existing neurons and synapses, and the developing controller is ex-
pected to consist of changes to synapses and growth and death of neurons and synapses. As will
be seen later, in practice, the separation of these levels is not always so simple.

This definition of development includes the processes of morphogenesis, growth and ageing,
and learning. However, these processes may have different properties. Whereas morphogenesis
may sometimes involve changing from a simple or random state into a complex, ordered state, the
others, especially learning, involve changing from one complex, ordered state into another. Most,
but not all, of the work detailed in this thesis involves processes like morphogenesis, moving from
a simple or random state towards a complex, ordered one.

It has been shown that neural networks with fixed structure and leaky integrator neurons
(CTRNNES, see section 5.2) are capable of learning behaviour (Tuci et al., 2002b). CTRNNs have
been shown to be capable in principle (if they are large enough and have wide enough time con-
stant ranges) of recreating any given smooth dynamical system (Funahashi and Nakamura, 1993).
This includes developmental systems, but there are advantages in modelling separate developmen-

tal processes explicitly, and in practice evolving developmental systems in CTRNNs may be very
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much harder than this theoretical result might initially suggest.

Much current evolutionary robotics work uses CTRNN controllers. The work discussed here
aims to enhance the clarity with which developmental systems may be studied by enforcing ex-
plicit separation between tiers. By explicitly modelling developmental processes separately from
the behavioural processes of a robot’s controller (and complementarily restricting the behavioural
processes to operate over relatively short timescales), the advantage is gained that the process of
development may easily be observed separately from that of behaviour.

1.2.2 Development is not evolution

Some research treats evolution as being almost equivalent to development. For example, Ackley
and Littman’s (1991) experiments into the Baldwin effect modelled learning as a temporary phase
of random mutation. While this is acceptable as a greatly-simplified model, it is dangerous to
expect development to act on the same systems as evolution. While evolution modifies the genetic
material of related individuals over generations, development is the process of change within the
phenotype.

For example, evolution might modify the number of fingers which a person develops, but
development will consist of the growing in size of the hand during childhood. To confuse devel-
opmental changes with evolutionary ones here would mean suggesting that more fingers could be
grown in response to a particular environmental stimulus: in practice, this type of development is
not observed under normal conditions. Evolution may often be seen as providing the capacity for
certain types of development to occur, but the developmental process itself is very different.

For some time, it was believed that the development of an individual followed its species’
evolutionary history, but this theory has been thoroughly discredited (Gould, 1977).

More subtly, many experiments attempt to shed light on animal brains (which have been pro-
duced by development and learning) by ‘teaching’ neural networks through an evolutionary pro-
cess to do some cognitive task (Beer, 2000; Dale, 2002). This approach is not without value, since
artificial evolution has some characteristics in common with developmental processes - behaviour
may be produced without specifying the exact process of how it is generated. However, it is impor-
tant to realise that development and evolution are very different processes; not only do they operate
over hugely different timescales, but they are of very different natures. Using evolution to model
development may be misleading if caution is not exercised. The work described here models de-
velopment as a completely different and separate process from evolution over which evolution
has only indirect control. For more on the viewpoint that the differences between evolution and

learning are significant, see (Nolfi, 2002).

1.2.3 Note on the word ‘plastic’

For the purposes of this thesis, the word ‘plastic’ is only used in the context of ‘plastic neural net-
works,” which should be considered an abbreviation for ‘neural networks whose synaptic weights
are subject to plastic change.” No implication should be taken that such controllers are in any sense
more plastic (more capable, in general, of plastic change) than any other controllers.
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1.3 Summary

This work serves two goals: development of tools for studying development, and the use of those
tools to investigate some open questions. Since the investigations presented are not rigorously
controlled they represent exploratory experimentation only, and the results found, whether positive
or negative, are not to be relied upon as supporting any general hypotheses.

1.3.1 Development of tools

As in any relatively new area of study, there is a need in the area of developmental evolutionary
robotics for a good set of tools which may be used to shed light on the matters which are of
interest. This thesis discusses in detail the motivations, design and practical working of several
tools, which it is hoped may be useful in future study. The most important of these tools are the
two developmental controllers which were designed.

The neural network controllers described in chapters 6 and 8 were designed with an explicit
separation between the behaving part of the controller and the developmental part. This separation,
although in practice not complete, allows the experimenter to study the phenomena of interest in
relative isolation: explanations of how the agent’s behaviour is generated may begin with the as-
sumption that ‘development’ and ‘behaviour’ take place in the ‘developmental’ and ‘behavioural’
parts of the controllers dynamics, although some refinement of this view may be needed in due
course.

The controllers presented here exhibit several unique properties: the controllers of part 1 com-
bine properties such as spatial separation and chemical gradients, influence of experience on de-
velopment, a single genotype for all units and behaviours of cognitive interest, some of which
have been used in previous work, but which may not have been combined together into a coherent
whole before. Similarly, the controllers of part 2 represent a practical scheme for evolving devel-
opmental controllers which may be successfully evolved to perform many different tasks - again
the application of a single developmental controller type to so many differing and varied tasks may
not have been undertaken before.

Both controllers have been shown to be practically useful in that they may be evolved to
perform simple tasks, while at the same time they exhibit behaviours which may be of interest for
those studying development. Furthermore, through the work described in the next section, these
controllers have been shown to be useful tools in the exploration of open questions in the area of
development and its interactions with behaviour and evolution.

In addition to the controllers themselves, the methods used for evolving and studying the evo-
lution and behaviour of these controllers in many different scenarios may prove to be useful addi-
tions to the developmental researcher’s methodological toolkit. Many lessons have been learned
about how to evolve developmental systems (and how not to evolve them), and these are presented
throughout the thesis, most notably in sections 7.3, 8.1 and chapter 10.

The most important lessons learned involve providing structure for evolution to work with
(rather than an empty system to be grown from nothing), using fitness functions that prevent
suboptimal non-developmental methods from being adopted, and understanding and controlling
the extra degree of complexity that is introduced with the adoption of developmental systems -
other factors may need to be simplified to allow feasible study.
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All of the tools described were developed in the pursuit of the practical goal of learning about

development through the exploration of open questions. This work is described in the next section.

1.3.2 Exploring open questions

Throughout this work the goal has been to explore open questions about development - to shed
some light on some of the many speculations that have been made about developmental systems.
These open questions are outlined in chapter 4, but they are outlined briefly, along with the results
of the investigations, here. Attempted explanations for the results outlined below are made in
chapter 10.

An over-arching idea has been that developmental systems may be designed which evolve
successfully to perform the kinds of tasks that are performed in evolutionary robotics by non-
developmental controllers. Some evidence to support this idea has been found, but it seems clear
from both part 1 and part 2 that while it is possible to evolve developmental controllers to perform
these tasks, it is certainly not as easy as evolving similar non-developmental ones.

A second open question about development is that a developmental controller will be more able
to evolve to undergo a predictable change in the lifetime of the agent, than a non-developmental
one. This question is based on the idea that an agent which is able to change the structure of its
behaving controller might be able to use that ability to produce different behaviours at different
times, whereas a more static controller would need to produce different behaviours using the same
controller structure. In the investigations of this question, unexpectedly, the non-developmental
controllers performed better at a task involving predictable change than the developmental ones.

A further question on the subject of predictable change is that agents evolved under selec-
tion pressure to undergo change in their controllers at the time at which a predictable change in
behaviour is required, would evolve to perform that predictable change more successfully. The
idea behind this question is that if selection pressure is used to push agents down an evolutionary
path involving change in the controller at the time when a change in behaviour is required, the
already-existing controller change may be harnessed later in the evolutionary process to produce
behavioural change. In the investigations of this question, agents evolved with this extra selection
pressure in a task involving predictable change performed significantly worse than those evolved
without this selection pressure, which was not the expected outcome.

A fourth open question concerns whether developmental controllers will be capable of per-
forming more complex behaviours than non-developmental ones. This question is inspired by
the idea that in order to produce more complex behaviours, more complex brain structures are
required, and it may be easier to produce useful complex structures under evolution using a de-
velopmental system (for example a system which exhibits self-organisation) than using a non-
developmental system. This question was not strengthened through this work, since the develop-
mental controllers generally performed worse at the tasks for which they were evolved than the
non-developmental ones. However, the developmental controllers performed better as the com-
plexity of the tasks increased, which suggests that further study may be justified into whether they
might outperform non-developmental controllers in tasks of sufficient complexity.

A fifth open question is whether developmental controllers may be more easily evolved to

perform tasks involving learning than non-developmental ones. Similarly to the previous point,
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the basis for this idea is the idea that if a developmental controller can undergo structural change
in its behaving controller, that structural change could be used to adapt the behaving controller in
response to learning, which may be easier to evolve than a controller which adapts its responses
without undergoing structural change. In the investigations of this question, the developmental
controllers performed better than the non-developmental controllers in learning tasks, but since
the developmental controllers were capable of change over longer timescales and had more free
parameters, further investigation is required.

A sixth open question is whether developmental controllers may evolve more easily to perform
different behaviours when confronted with different environments. The idea behind this question
is that a developmental process may be able to use environmental triggers to produce entirely
different controllers in different environments, whereas a non-developmental controller would be
required to produce different behaviours in different environments with the same controller struc-
ture. In the investigations of this question, the developmental controllers did not perform signif-
icantly better than the non-developmental ones in a task requiring different behaviour in each of
two different environments.

A seventh open question is whether evolved developmental controllers may be more capa-
ble of adapting successfully to overcome changes in the agent or environment which were not
present during evolution than non-developmental controllers. The idea behind this question is that
since a developmental controller must ‘construct’ its behaving controller in every lifetime, and
this construction may be influenced by environmental factors, if the environment is changed, the
construction process may also be changed - possibly in ways that preserve the original behaviour
of the agent. The controller containing explicit processes of development scored more highly in
some tests of robustness than a more standard neural network controller with temporal dynamics
which were allowed to vary over the full lifetime of the agent, and which had a similar number of
free parameters. Thus it appears that in some tests of robustness the explicit developmental pro-
cess introduced facilitated robustness more than the simple addition of widely varying timescales
and large numbers of free parameters.

An eighth open question is whether agents evolved to develop under noisy conditions within
their controllers would be more robust than those evolved under more predictable conditions. The
idea behind this question is that if the self-construction of the agent is generally executed under
varying conditions, the construction process may become evolved to resist other variations, such
as changes in the body or environment of the agent. In the investigations of this question, the
performance of agents evolved with noisy developmental processes was consistently lower than
that of those evolved under less noisy conditions both during normal evolution and within the
robustness tests, providing no support for the ideas behind the question.

A ninth open question comes out of the work described in section 3.3. The suggestion is
that controllers whose development consists mainly of synapse death will be easier to evolve than
those whose development consists mainly of synapse growth. This belief (extrapolated from the
view held by the ‘selectionists’) is motivated by the idea that brain growth may be Darwinian
in nature, with competition between synapses (resulting in their death in some cases) producing
useful structures, while the growth of synapses is largely random or uniform, not guided by the

experience of the animal. The investigations into this question were inconclusive, but if anything
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suggested that the opposing view (that of the ‘constructivists’) may be correct, in that controllers

whose development consisted mainly of growth outperformed those whose development consisted

mainly of death in some experiments, while in others the performance was similar in both cases.

14

Contributions of the thesis

This thesis contributes to the field in the following two areas: development of experimental tools

and investigation of open questions. The former is presented as the major contribution of the work,

while the latter demonstrates the utility of the tools developed in practical experimental work.

14.1

14.2

Tools development

Two new classes of neural network controller have been developed which may have utility
in the study of developmental dynamics. These controllers combine novel combinations of
features inspired by natural systems and have proven effectiveness in practice, having been
successfully evolved to perform a number of simple tasks.

Practical issues and difficulties in the artificial evolution of developmental systems have
been brought to light, and ways to overcome some of them outlined. Solutions include the
provision of appropriate structure and the use of specialised fitness functions.

Several conceptual issues, including the importance of symmetry and the need for pre-
existing structure through which the developmental process can operate, have been dis-
covered and explained.

Investigating open questions

Open questions about the potential advantages (greater flexibility, adaptability, robustness
and ability to produce more complex behaviour) of using an explicit development process
in robot controllers have been investigated. In several cases little or no evidence has been
found to support the ideas behind these questions. Possible explanations for these results
have been offered.

Open questions about ways of influencing the evolutionary process to enable the evolution
of higher-fitness developmental controllers have been explored. These involve selection
for change in the controller at the time at which behavioural change was required, and the
introduction of noise into the developmental process to increase robustness. In both cases,
against the expectations of the author, these mechanisms were not found to have the positive
effect predicted in the conditions tested.

One of the controllers developed, the ‘growth and pruning’ controller, has been shown to be
more robust in some cases than controllers without explicit developmental mechanisms (but
with comparable size in terms of number of genetically-controlled parameters and compara-
ble temporal ranges of behaviour) to certain disruptions of a robot’s body and environment.

A comparison between different levels of growth and removal of structure in controllers
has been undertaken whose results may have relevance to the debate in neuroscience be-
tween constructivist and selectionist models of brain development. It has been shown that
guided growth appears to be more useful in these developmental systems than guided death,
potentially providing weak support for the constructivist viewpoint.



Chapter 2

Background in evolutionary robotics

2.1 The overall research programme

Evolutionary robotics, and the wider field of artificial life, study artificial systems which have,
or appear to have, similarities to natural systems. By studying these artificial systems it may
be possible to investigate the dynamical character of lifelike systems and develop conceptual,
statistical and practical tools which help to classify and understand them.

This programme has properties in common with thought experiments: the process begins with
a set of assumptions which are then programmed into an artificial system, and the outcome in-
vestigated. However, in practice the complexity of the systems means that the work resembles
empirical science since analytical solutions are rare, and the systems are most often understood by
means of a trial and error style similar to empirical investigation. Di Paolo et al. (2000) coined the
phrase ‘opaque thought experiment’ to explain this scenario: a thought experiment is being per-
formed, but the consequences of the assumptions are not immediately obvious (they are ‘opaque’)
and thus investigation is required to find them. The work described in this thesis fits into the above
description, being intended to shed light on the types of mechanisms that produce interesting be-
haviour.

Much of the work in evolutionary robotics studies the properties of different types of controller
evolved to perform certain tasks. Often the controllers used are specified in genotypes, and change
over evolutionary timescales (from generation to generation), but do not exhibit much change
during the lifetime of a particular individual. The work here represents an attempt to extend this
work to capture some of the different dynamics involved when structural change to a controller is
allowed (or required) during a robot’s lifetime.

For a book providing a definitive overview of evolutionary robotics, see (Nolfi and Floreano,
2000).

2.2 Previous work

The work on developing neural networks falls roughly into two categories: experience-independent

and experience-dependent. The next two sections cover work in each of these areas.
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Figure 2.1: Some of the genetically-defined operations which are applied to the growing neural
networks in Gruau’s (1995) work. The network on the left may be transformed into one of the ones
on the right, depending on the instruction being interpreted in the genotype. There are several other
types of possible operation, including changes in weight values and neuron copy operations which
only copy some of the connecting synapses. This figure is a partial copy of one found in (Gruau,
1995).

For further coverage, there are good overviews of the literature available on development in

evolutionary robotics models, in book chapters by Nolfi (2002) and Cangelosi et al. (2003).

2.2.1 Experience-independent change

The attraction for some researchers of using developmental mechanisms has been the possibility of
the construction of large neural networks using relatively small genotypes. This is often achieved
by explicitly implementing modularity in the growth system, so that parts of the genotype may
be used several times to build different parts of the controller. In this case development is used
simply as an indirect mapping from genotype to phenotype, and this goes on before the agent’s
life begins, independently from its experience.

Gruau (1994; 1995, Gruau and Whitley (1993)) used a tree-like genotype with a graph-rewriting
grammar to create modular neural networks. The system, which involved each section of the
genotype being interpreted by the neuron to which it applied rather like a computer program with
instructions such as ‘divide into two cells and assign branch A of the genotype to the first cell and
branch B to the second,” was successfully used to evolve locomotion in a simulated six-legged
agent and other tasks. Some of the types of operations that go on during the development process
are illustrated in figure 2.1.

Gruau proved the concept was feasible by hand-designing a solution to the walking task us-
ing his system, and then showed that such a solution may be evolved. While the hand-designed
solution used six identical subnetworks, one for each leg, the evolved solution built a single sub-
network for each pair of legs, which was repeated three times. These solutions met the aim of
the experiment which was to show that the ‘cellular’ encoding scheme enables evolution to re-use
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parts of the genotype to construct networks consisting of repeated structures. It did not address any
of the other issues mentioned in section 4.1.3 since all development took place before the agent’s
lifetime began.

Other work using string and graph rewriting to develop neural networks may be found (Belew,
1992; Husbands et al., 1994; Kodjabachian and Meyer, 1998; Vaario, 1991).

Jakobi (1995) designed a developmental neural network scheme modelled on the biological
mechanisms of neuron growth. It involved models of DNA molecules, protein transcription and
diffusion as well as a genetic regulatory network. The controller was seeded with a single unit and
others grew according to the rules of the genotype and protein interactions. This development oc-
curred within a two-dimensional controller space. Controllers were successfully evolved to allow
agents (simulated Khepera robots) to perform two behaviours: corridor following and obstacle
avoidance. However, further attempts to evolve more complex behaviours proved unproductive. It
is likely that this failure may have been connected with the high level of complexity involved in
the developmental process (some of which is illustrated in figure 2.2), involving genome prepro-
cessing, a genomic regulatory network, protein transcription, different protein classes, and a two
stage development process producing a genomic regulatory network which in turn produced the
neuron properties and connectivity. The complexity of this model was an influence on the work
in this thesis: it was decided that by adding only the minimal level of complexity to a standard
model, both evolution and understanding would be aided.

Dellaert and Beer (1994b; 1994a; 1996, Dellaert (1995)) performed simultaneous evolution of
the morphology and controller of agents with a developmental system that consisted of a genetic
regulatory network controlling the division of cells that formed a grid containing sensors, motors
and neurons. They constructed two systems, one of which was relatively closely modelled on
biological development, and turned out to be difficult to evolve to perform simple behaviours. The
other system was simpler, making it possible to evolve a line-following behaviour. (For more work
involving genetic regulatory networks, see (Eggenberger, 1997).)

Cangelosi et al. (1994) used a spatial system of cell division and migration to develop con-
trollers capable of navigating to different locations in a grid world. Some stages of the develop-
ment of the controllers are illustrated in figure 2.3.

There are other examples of experiments in experience-independent development of neural
networks, including those of Nolfi and Parisi (1992) whose development process sometimes con-
tinued during an agent’s lifetime, but remained independent of its experience. Other examples
may also be found (Astor and Adami, 1998; Belew, 1992; Fleischer and Barr, 1993; Goodwin,
1994; Harp et al., 1989; Kelso, 1995; Kitano, 1994; Lindenmayer and Rozenberg, 1976; Wilson,
1987).

2.2.2 Experience-dependent change

There have been several pieces of work that use developmental processes to construct neural net-
works whose structure and properties may be influenced by the experience and behaviour of the
agent whose behaviour they control.

Nolfi et al. (1994; 1996) used a developmental neural network system to show that agents can

be evolved that behave differently under different circumstances using the same genotype. The
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Figure 2.2: The protein matching stage of the model described in Jakobi (1995). Proteins are
encoded in the genotype as strings of characters formed into a circle. Matches between exist-
ing proteins and genome segments cause the activation of certain genes, which in turn produce
proteins. The resulting genomic regulatory network, consisting of different classes of protein, is
found in a preprocessing stage before being used to grow the neural network with different protein
classes triggering events such as cell division and movement. This figure is a copy of one found
in (Jakobi, 1995).



cnaplter 2. packgrouna in evoiutionary roootics <1

0
oooooo(K Q
Q00 O O
oloo)xe

) oo O

Figure 2.3: The last stages of development in the controllers used by Cangelosi et al. (1994). In the
figure on the left, the cells have divided and migrated, and the axonal growth phase is complete.
On the right is shown the resulting neural network. Neurons near the bottom of the controller are
linked to sensors, and those near the top are linked to motors. This figure is a partial reproduction

of one found in (Cangelosi et al., 1994).

developmental system is based on back-propagation with the training signal being provided by the
agent itself. These systems allow the experience of the world to affect developmental outcomes
for an agent operating in a grid world, and for a robot navigating in an environment which varied
over different generations between being dark or light.

These experiments emphasise the need for agents to be able to influence their own experience
and thus change the path of the developmental process by their behaviour. The need for agents to
react differently in dark and light environments results in a situation similar to that described in
this thesis in section 8.2.11, where an agent is required to respond differently to identical stimuli
when other aspects of the environment are different.

Nolfi and Parisi were able to show that networks that develop using a back-propagation learn-
ing system with a training signal provided by the agent itself were better able to explore the light
and dark environments by using the learning mechanism to behave differently in the two different
environments (this is illustrated in figure 2.4). Networks without the learning mechanism used a
single strategy for both types of environment and thus performed less well. Since preventing the
learning networks from undergoing learning resulted in performance worse than that of the non-
learning networks they concluded that the evolved initial connection weights were selected for a
predisposition to learn rather than for optimal immediate task performance.

This thesis shares many of the same motivations and guiding principles as the work described
above, and explores many of the same issues, attempting to extend these ideas to more general
developmental mechanisms and more complex tasks.

Other examples of the use of development to construct neural networks are available (Kitano,
1994; Nolfi and Parisi, 1995; Cangelosi, 1999).
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Figure 2.4: The paths taken by two evolved individuals from Nolfi and Parisi’s work on agents
that are able to adapt to different environments. The non-learning individuals are shown in the
top row and the learning individuals are in the bottom row. Behaviour in the dark environment is
shown on the left and in the light environment on the right. The learning agents are able to adapt
to the differences in the environment and behave similarly in the two environments whereas the
non-learning agents behave differently depending on what type of environment they are born into.
This figure is reproduced from (Nolfi and Parisi, 1996).

Much other work on structural change affected by the agent’s experience uses plastic neural
networks (Floreano and Mondada, 1996, 1998). These controllers have Hebbian-like learning
rules that apply to each synaptic connection, changing its weight according to the activity of the
pre- and postsynaptic neuron firing rates. Floreano and Mondada used four different learning
rules to allow the connection weights to change during the lifetime of the agent, and did not
specify initial weight values, so that the weights were determined simply by the outcomes of the
application of the learning rules. A key finding was that the resultant controllers did not simply rely
on static weight values being approached, but used dynamic weight changes as part of the control
system. The plastic controllers used in part two of this thesis are based on these controllers, but
with a single learning rule in place of the four different ones used here.

Plastic neural network controllers have been shown capable of performing very simple tasks
such as wall-following and obstacle avoidance (Floreano and Mondada, 1996, 1998; Elliot and
Shadbolt, 2001). They have also been been used to investigate learning (Tuci et al., 2002b; Fer-
nando, 2002) and homeostatic change (Di Paolo, 2000) and shown to be capable of evolving
relatively very complex behaviours.

Recent work has investigated spike-timing dependent plasticity to alter the synaptic weights in
a network of spiking neurons (Di Paolo, 2003; Kempter et al., 1999; Rao and Sejnowski, 2001).

The work described in this thesis attempts to go beyond some of the research described above
by allowing for large structural changes to occur (including death and growth of neurons and
synapses) within a system that has all the additional advantages (both practical and theoretical) of
being affected by the experience and behaviour of agents embodied and situated within complex
dynamic environments.

Further influences on this work come from the biological sciences. Some of these are described

in the next chapter.



Chapter 3

Background in biology

Both theoretical and experimental biology provide concepts, frameworks and experimental setups
that influence this work. This chapter describes some experimental evidence for the need to un-
derstand development in order to understand learning and cognition and then outlines some of the
theoretical ideas underpinning the research programme. Finally, it sketches the parameters of a

specific ongoing debate to which this work may contribute.

3.1 Development’s role in learning and cognition

Work in neuroscience has recently uncovered a much greater incidence of structural change (in-
cluding significant growth and death of neurons) in brains than previously expected. This change
occurs even after brain development is complete. It is increasingly believed that this kind of struc-
tural change is vital for cognition and memory.

Recent studies have shown that newly generated neurons not only appear in the brain, but
that they become involved in its functional activity. For example, van Praag et al. (2002) charac-
terised new neurons in adult mice over time after their appearance and found that they developed
morphologies similar to those of mature neurons. They were able to show strong evidence that
these new cells received synaptic input from their neighbours and were functionally incorporated
into the hippocampal network, displaying action potentials and synaptic inputs similar to those
found in mature cells. The fact that these structural changes in real brains, including growth of
new neurons, may be important to the functioning of those brains (since the new neurons are in-
corporated functionally) suggests that there is real value in studying similar structural changes in
artificial systems, in the hope of understanding how the behaviour of those systems is affected by
the capacity for such changes.

Meanwhile, momentum for the general view that change is vital and pervasive in adult brains
is continuing to grow (for a review of some of the work in this area see (Kolb et al., 1998)).
Ivanco and Greenough (2000) argue that the changes brought about by learning and experience
are exhibited as physical changes indicating functional reorganisation, and that the mechanisms
that bring these changes about may be the same mechanisms that repair tissue after damage to

the brain. They show that such structural change goes on throughout the lifetime and is important
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for brain function. This work too provides strong motivation for the work in this thesis, since it
implies that the kinds of adaptation and repair which are of interest to robot designers may be
brought about in the brain through structural change.

Elman (1993) argues that the long maturation phase in human development is crucial to fa-
cilitate the large amount of learning that takes place during that period. He uses neural networks
being trained to process sentences in an artificial language to illustrate his point: he shows that
an unconstrained network does not learn successfully, but if the network’s memory is constrained
to be short at the beginning of the training and is lengthened over time, it is able to learn the
required language structures. He argues that this success shows a possible explanation for the
posited critical period in human language acquisition, during which children are more capable of
learning language than at later times. The explanation is that the learning that takes place when
the network is constrained simplifies the weight space to be searched, limiting it to useful areas
and preventing the network from moving into incorrect local maxima. This work emphasises the
need to consider development in any study of learning.

The important of experience-dependent structural change is emphasised by the work of Purves
(1994), who showed that there is evidence that neural connectivity is affected by the activity of
neurons. This observation is crucial to the design of the experiments in this thesis, since here
development is seen not as a kind of information compression system or pattern generator, but as
a way of absorbing environmental influence into the controller structure and adapting to changes
in that environment.

For an overview of the work suggesting the need to understand structural change in brains
in order to address questions about cognition, and the idea that neural structures are constructed
in a complex interaction between intrinsic and experience-dependent processes, see (Quartz and
Sejnowski, 1997; Quartz, 1999). An attempt to synthesise the conflicting viewpoints of those
who suggest that many cognitive skills are ‘hard-wired’ as innate skills and those who argue that
almost nothing is innate but rather cognitive structures are constructed through interaction with
the environment is given by Karmiloff-Smith (1992).

As the evidence begins to point to the idea that multi-tiered processes of structural change
are pervasive in the cognitive and behavioural systems of animals, the need to understand such
processes becomes clear. This thesis attempts to work towards this understanding by generating
and studying processes which are in some sense analogous to these natural developmental systems.
The analogy is inevitably extremely weak, but through such poor imitations it is hoped that enough
information will be acquired to generate better models and progress over time towards a more

complete understanding.

3.2 Development and evolution

3.2.1 Canalisation and genetic assimilation

The role that development plays in evolving populations is not fully understood. However, the
pioneering work of Waddington (1975) helped open many questions for investigation.
Waddington saw development sometimes as a stabilising force, acting in opposition to evolu-
tion in some circumstances, through the process of canalisation. This process means that similar
phenotypic outcomes occur even given differences in the genotype and the environment. Any
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study of development must be a study of the canalised pathways formed through evolution to
construct viable outcomes.

This view of developmental balancing evolution (or at least mutation) has not been reflected in
much of the evolutionary robotics literature: often here development is seen as a way of generating
more complex outcomes from simple starting points, or as a way of producing repeated structure,
but not as a stabilising force. In nature, stable developmental pathways are needed to force a
system which in principle could be very sensitive to initial conditions down a consistent pathway.

A developmental system which resulted in wildly different outcomes each time would not be
open to evolution since its fitness would not be consistent, and so in nature this type of devel-
opmental system does not arise. In artificial systems, however, it is quite possible that a very
unstable developmental system could be designed. Thus it is a prerequisite for any developmental
system which will exhibit evolvability to allow for some form of canalisation to occur, preventing
instability of outcomes in the face of environmental noise and genetic variation.

Waddington’s description of genetic assimilation demonstrated a mechanism whereby ‘ac-
quired’ characteristics could become incorporated to such an extent into the developmental process
that they became ‘inherited,” producing a process that appeared to be similar to Lamarckian evolu-
tion (Lamarck believed that acquired characteristics were inherited directly from the parent). This
idea provides evidence for the arguments of Oyama that such terms are effectively meaningless
(see next section). Genetic assimilation is one mechanism by which developmental systems could
offer an evolutionary advantage over non-developmental ones. If useful structural changes are first
allowed by evolution under the right environmental circumstances, they may later be enforced by

evolution to be present at all times.

3.2.2 Acquired and inherited characteristics

Oyama (2000) argues that while most researchers claim to avoid the nature-nurture distinction, in
practice they often continue to apply it. She argues for a new approach of ‘constructive interaction-
ism’ which sees every organism and interaction as a product of the evolutionary and developmental
historical processes leading up to it, none of which may meaningfully be divided into inherited and
acquired, or genetic and non-genetic. This requires a huge paradigm shift, especially in the world
of evolutionary robotics where genotype, development and behaviour are often explicitly defined
and separated.

It is interesting to note that these arguments still apply in situated and embodied robots: the
distinction imposed by the experimenter on such systems between behaviours or features ‘caused’
by the genotype and those ‘caused’ by the environment is still meaningless since in the presence
of a different environment the ‘genetic’ behaviours are unlikely to happen, and equally in the
presence of a different genotype the ‘environmental’ behaviours would change. In evolutionary
robotics we often see that some features of an agent are identical no matter what environment
it is presented with (unless the properties of the agent itself are changed), and in this case we
may properly regard them as being caused by the genotype. However, the interesting features
(often the behaviour of the robot) are always caused by a complex interaction between agent and
environment.

Similar ideas are explored by Elman et al. (1996) who argue that genes may be seen as cata-
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lysts for development, rather than blueprints for morphologies, and that these catalysts may work
at many different levels from molecular to behavioural. They emphasise the importance of regu-
latory genes that control the timing of events, which is a theme encountered in the developmental
systems studied in this thesis. They argue against the idea that knowledge of innate abilities
such as universal grammars are contained in the genome, but instead claim that such a concept is
meaningless since knowledge may only be understood in terms of brain structures, and that such
knowledge may only be acquired through developmental processes. They claim that since the
connectionist models they describe are capable of performing cognitively interesting tasks such
as linguistic processing, the idea that such tasks may only be performed by fully-specified innate
systems is disproved.

By introducing development into artificial systems, we move towards a situation closer to that
found in nature, where no feature or behaviour may properly be explained without reference to
the complex interactions between genotype and environment, or, more accurately, the historical
processes of evolution and development leading up to the currently active process.

If inherited and acquired characteristics are actually identical, or located on a single contin-
uum, it follows that in order to learn about adaptation and learning, the acquisition of such char-
acteristics through development must be included within the scope of our investigations. Agents
must be regarded as processes (in fact sub-processes of the evolutionary process) rather than static
products of evolution.

The work described in this thesis, like most of the current work in evolutionary robotics, makes
explicit the influences of genetic and non-genetic factors on the some of the structures within the
agents. Nevertheless, the argument that the outcome is a product neither of the one nor the other,
but of the whole, still holds. Behaviours and neural structures such as those found in section 7.2
and 9.2, require the integration of both genetic and other factors for a full explanation of their

origins.

3.3 A live debate: constructivism and selectionism

A debate is going on within theoretical neuroscience between two groups of researchers with
opposing views on the nature of the process going on during brain development. This debate
relates strongly to a theme of this thesis about the need for refinement of pre-existing structure
rather than directed building of structure from sparse networks.

Purves et al. (1996) frame the debate in an article entitled ‘Is neural development Darwinian?’
in which they claim that some tacit assumptions are being held by many neuroscientists against
the available evidence. The assumption is that Darwinian-like processes select neuronal ele-
ments (neurons, neuronal branches, synaptic connections and groups of interconnected neurons)
on the basis of whether they produce adaptive behaviour. Purves et al. claim this assumption is
widespread but unquestioned, and furthermore that it is often simplified to mean simply an initial
overproduction of material which is pruned away later.

They argue that the evidence for overproduction of neural elements is sparse in many areas
and is flatly contradicted in others: brain mass increases over time, and since the number of neu-
rons remains approximately constant they argue that the nerve cells and the complexity of their

arborisations become larger over time, rather than being pruned into greater simplicity. A similar
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viewpoint is presented by Quartz and Sejnowski (1997).

The counter-argument comes from Sporns (1997), and Changeux (1997) who argue that Dar-
winian processes need not result in a reduction in neuronal elements from an initial excess since
the processes of variation and selection may occur simultaneously, rather than being temporally
separated. Furthermore, they criticise the alternative concept put forward, ‘directed growth’ of
neuronal elements, pointing to evidence suggesting that change comes about through selection
from many small undirected variations.

To some extent both sides in the debate appear to be answering straw man arguments from the
other side - on one hand, the selectionists are not claiming that an explicit two-stage process of
overproduction and then pruning takes place, but rather than this process is ongoing, with contin-
uous unguided growth and competitive death or weakening of synapses occurring simultaneously,
and on the other hand the constructivists are not claiming that such competitive processes do not
go on, but are simply pointing out some of the evidence that this may not be the only way that
genetic and environmental influence combine to shape brain structure.

Nevertheless, this debate raises some interesting questions, and some of them may be informed
by the work in this thesis, since one of its over-riding themes is the need for initial structure with
which development can work in order to produce the necessary useful structures. Some of the
experiments in part two are designed in an attempt to shed some light on the situation from an
evolutionary robotics perspective, by looking at the question of whether growth or pruning of
structure is a more useful way of generating behaviour-producing structures.

The next chapter collects together the motivations for this work, and the open questions to be

explored and lays them out explicitly, to be addressed in the following chapters.



Chapter 4

Motivation and Open Questions

4.1 Motivation - why study development?

Development has been overlooked by some evolutionary robotics researchers: sometimes in the
past the computing resources available were too limited to model developmental processes in
satisfactory ways, but more significantly some people have seen development as fairly irrelevant:
bodies are seen as being built by genes, and the specifics beyond that are treated as unimportant,
since it is assumed that evolution is powerful enough to work within any system to produce highly
adaptive products. However, recently it has been becoming increasingly clear that the specific
properties of a system crucially affect the structures that arise as the result of an evolutionary
process. The fact that behaving animals are not static systems but developing ones must be taken
into account if systems with similar properties are to be generated.

Many researchers believe that modelling development will bring advantages in two areas:
natural science, where the expectation is that by generating examples of artificial developmental
systems it may be possible may learn useful information about development that may inform our
study of natural organisms, and engineering, where the expectation is that development will assist
in the development of agents capable of performing more complex or more difficult behaviours
than those currently in existence.

By removing one aspect of ‘hand-crafting’ from the evolutionary robotics process, since the
experimenter makes fewer arbitrary decisions about the experiment (such as the number of neurons
and synapses), advantages may be gained from both the scientific and engineering perspectives.
Every experimenter wishes to reduce the number of assumptions made in order to improve the
chances that the results may generalise, and so development may be attractive from this viewpoint,
but similarly, an engineer may well be happier putting such choices under evolutionary control,
rather than using a trial-and-error approach to find good parameters.

Sections 4.1.2 and 4.1.3 discuss two motivations for the study of development, and the next
section addresses the question of whether CTRNN controllers are sufficient for the study of devel-

opmental systems.
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4.1.1 Are CTRNNSs developmental enough?

It has been argued (Harvey, 2005) that since they contain internal state and have been shown
to be universal approximators (Funahashi and Nakamura, 1993) of smooth dynamical systems,
continuous-time recurrent neural networks (see section 5.2) are sufficiently flexible that the addi-
tion of a further set of dynamics is superfluous. There are two counter-arguments to this proposi-
tion.

First, the property of universal approximation is proven as a theoretical result, but its applica-
tion is limited in practice since no comprehensive information is available on whether it is possible
to evolve these networks to display a given set of dynamics in a feasible time. Anyone who has
worked with evolving CTRNN s knows that it is far from guaranteed that the desired dynamics are
successfully evolved in any particular situation. Some types of dynamics are easier to evolve than
others with CTRNNS, and the intrinsic properties of the neurons make some dynamics require
large numbers of neurons to produce. Many experiments limit the number of neurons available to
evolution, effectively preventing the expression of certain types of dynamics, since an unlimited
number of neurons is required for the universal approximation result to be valid.

Second, it is sometimes argued that the particular dynamics produced by CTRNN models
resembles the dynamics of networks of neurons. If this description of CTRNNS is accepted then it
is certainly reasonable to introduce another process whose dynamics is designed to resemble that
of development.

Evidence is growing that CTRNNs may need to be extended to allow the evolution of more
sophisticated behaviours. It has been shown that learning behaviour is difficult (but not impossible)
to evolve in CTRNNs (Tuci et al., 2002b), and that path integration behaviour is much easier to
evolve in models extending the CTRNN system (Vickerstaff and Di Paolo, 2005) than in ordinary
CTRNN:E.

For the purposes of this work, however, one does not need to rely on these arguments to
justify the use of an extended CTRNN model since the explicit separation between two levels of
operation in the controllers is inherently useful in order to understand how such two-tiered systems
evolve and behave in a situation where there is no confusion about the level at which any given

phenomenon is acting.

4.1.2 To learn about how it works

There are rich possibilities for the study of models of development to feed into biological and
psychological studies of development, cognition and behaviour. By making development a sep-
arate process from evolution the analogy could be improved between the natural systems to be
understood and the artificial ones being generated and studied. This would mean that phenomena
observed in artificial systems were more likely to lead us to insights into natural systems, and
questions from nature could be explored in more relevant simulated scenarios.

In the natural world, development is a major constraint on the paths taken by evolution. Un-
derstanding the interactions between behaviour, development and evolution is essential if progress
is to be made in understanding each of these systems.

The naive view of phenotypes being generated from genetic ‘blueprints’ has been shown to be

incorrect and unhelpful by Oyama (2000). She argues that the developmental history of an organ-



cnaplter 4. wvioltvation and upen Juestions SV

ism is crucial to its character, and that any distinction that is made between innate and acquired
characteristics is always a false one since they are inseparable. If these observations are taken on
board, systems must be modelled with dynamics analogous to development if living systems are
to be understood, since the dynamics of development are core to their structure.

By modelling development, opaque thought experiments may be performed comparing, for
example, two different theories about brain development, and conclusions drawn about which
system is more likely to evolve, and which is capable of producing useful behaviours. As research
continues, an understanding may be built of what kinds of dynamics produce useful and lifelike
behaviours, and this understanding may feed into the types of dynamics being searched for in
natural systems.

Of course, this is a very ambitious and speculative research programme which is in its most
basic first stages. It is always difficult to justify a suggested similarity between artificial and
natural systems, and there is a great deal to be learnt before truly valid analogues may be found
(and proved valid). At present it is simply hoped that very general conclusions may be drawn
about the kinds of system that may produce certain classes of outcome.

This section and the preceding chapters touch on many different assumptions, theories and
questions about development. In order to increase our understanding of this area, these ideas must
be clearly stated, and explored through experiments. Section 4.2 attempts to make explicit the
open questions which are to be explored, and the chapters following that describe the experiments
performed, and the conclusions reached.

4.1.3 To build better robots

It has long been believed that introducing developmental processes into the methodology of evo-
lutionary robotics will provide opportunities for the evolution of agents capable of more complex
and more difficult behaviours (Hinton and Nowlan, 1987; Harp et al., 1989; Kitano, 1990; Ackley
and Littman, 1991; Gruau, 1994). Some of the reasoning behind this belief is a little vague, and
some of it is more well-founded.

It is certainly true that by copying phenomena found in nature many useful methods and sys-
tems have been found, and nature certainly makes use of many developmental systems. Thus,
one of the more informal arguments for studying development is that it is likely to produce better
agents because it is similar to the process that produces extremely capable agents in nature.

The following sections outline some of the arguments put forward to explain how development

may be useful in the production of more capable controllers and agents.

Modularity and Symmetry
Developmental processes may allow the reuse of parts of the genotype to construct similar struc-
tures in different parts of the organism. A possible example of this kind of mechanism is that
cells of the same cell type in multicellular organisms may owe their similarity to each other be-
cause they are influenced by the same regions of the genome. The physical left/right symmetry in
most organisms may well represent such redundancy, and there are likely to be many more subtle
symmetries involved.

Gruau (1994) exploited a developmental mechanism to produce modularity making it easier

to evolve a six-legged walking robot with similar neural mechanisms controlling each leg.
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Environmental influence
Often developmental processes produce an advantage by allowing environmental conditions to
influence the developmental pathway.

This process may depend either on predictable or guaranteed environmental conditions (for
example in some plants where the process of root growth depends implicitly on the fact that gravity
pulls downwards towards the earth) or on unpredictable conditions.

Waddington (1975) discussed the case of predictable environmental conditions as a situation
where influence from the environment may be used at one stage of the evolutionary process before
a process of ‘genetic assimilation’ takes place, and development begins causing such conditions to
occur, making the outcome present even if the environmental conditions which originally triggered
it are removed. This leads to a Lamarckian-like process where environmental adaptations may be
assimilated as genetically-specified characteristics over the course of evolutionary time.

Most forms of learning involve the process of influence from the environment, and, since the
definition of development given in section 1.2 includes learning, this is an example of this kind of
development. Clear similarities between the neural processes of learning and development have

been shown in mice (van Praag et al., 2002).

Flexibility over different environments

In nature development is often used as a mechanism that allows flexibility in the character of the
phenotype depending on factors in the environment. This is clearly a useful effect of development
if the environments into which organisms are born contain variation (which is almost always the
case). Non-developmental genotype-phenotype mappings are incapable of supporting this form of
flexibility.

Potentially, an evolved developmental agent could be flexible enough to adapt to different
circumstances, which could allow it to be used in many different contexts, and could also offer
the possibility of making the transfer from an agent evolved in simulation to its implementation in
hardware, since the inevitable differences between the simulation and reality could be smoothed

by the flexibility of the agent.

Adaptability to changing conditions

Humans and other animals have a remarkable capacity to adapt to disruptions in their bodies and
environments (Stratton, 1897, 1896; Ewert, 1930). This is probably made possible through of their
ability to undergo structural change in response to changing circumstances.

There is an increasing amount of evidence to suggest that the mechanisms of lifetime adapta-
tion in natural organisms are strongly connected with those of early development: they may even
be the same mechanisms operating under different conditions. If developmental agents can be
successfully evolved in an evolutionary robotics context, the developmental mechanisms operat-
ing throughout the agent’s lifetime could allow the agent to adapt to the change it experiences.

These changing circumstances may be predictable (such as the changes needed to adjust for
an increase in size as an organism grows, or the changing seasons), or they may be unpredictable
(such as an injury to the organism). In both cases, the greater capacity of a developmental system
permanently to change its properties give it the potential to deal with such situations better than a

more static system.
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In order to build better robots which incorporate developmental ideas, we must not only ex-
plore open questions and learn abstract knowledge about development, but we must also gain
practical knowledge of how to generate developmental controllers through evolution, and we must
understand how such generated controllers work in practice. The experiments described in the
following chapters provide examples of how developmental controllers may be generated, and
some of the lessons learned in the process are also explained. The in-depth analyses described in
sections 7.2 and 9.2 may provide much useful insight into how such controllers generate different

behaviours in practice.

4.2 Open Questions

The work described in previous chapters, and the motivations explained above, lead to a number
of open questions about developmental systems which are addressed through the work described
in this thesis. The following sections describe these questions and outline some of the reasoning
behind them. Section 10.2 examines what light has been shed on them, and looks into some
explanations for the results found. These experiments are exploratory only and not rigorously

controlled. As such, they may not be relied upon to support any general hypotheses.

1. May developmental systems be evolved to generate simple behaviours using today’s methods?
In order to be able to study evolved developmental systems performing behaviours of interest, it
must be possible to generate agents capable of these behaviours. An idea underpinning this work
is that systems exhibiting development may be evolved using current evolutionary techniques and
within current technological limitations.

Further than that, though, it is believed that the developmental systems may ease evolution
(leading to higher fitness) in some situations, and allow evolution to produce more complex be-
haviours than may be produced in non-developmental systems. This belief arises from the idea that
development’s incremental and adaptable mechanisms fit well with the process of evolution. All
of the potential advantages described in section 4.1 might be utilised during evolution to produce
advanced behaviours.

The primary motivation for this idea is that in the natural world development and evolution
appear to be so tightly coupled as to be virtually indistinguishable, and many of the possible
advantages of developmental systems such as flexibility, adaptability and use of environmental
influence are seen in those systems, appearing to ease the evolutionary process and allow for more

open-ended evolution.

2. Can developmental systems handle predictable changes in required behaviour
better than non-developmental ones?
Natural systems are often required to alter their behaviour in predictable ways over their lifetime:
for instance, most animals have to adapt their muscle control to deal with the enlargement of their
limbs, and a caterpillar must alter its behaviour radically after it undergoes metamorphosis into a
butterfly. It is believed that such alteration in behaviour may be accompanied by alteration in brain
structure.

Similarly, in artificial agents, it may well be beneficial (in terms of maximum fitness achieved)

to allow the alteration of the behaving controller in tasks requiring predictable change (change
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which may be relied upon to happen in every generation) since one possible way of generating

changing behaviour is to alter the structure of the behaving controller to give it different dynamics.

3. Will developmental systems selected for change in the controller at the time at which
behavioural change is required evolve more successfully to exhibit that change?

The previous question includes the assumption that a change in behaviour is most easily gener-
ated through a change in controller structure. If this assumption is true, we might further expect
that if selection pressure is applied to an agent to undergo change in its controller at the time at
which behavioural change is required, this might encourage evolution to produce agents which
undergo change in the controller at the appropriate time, leading to the production of a linked
controller-behaviour change system that has higher fitness than those generated without such ad-

ditional selection pressure.

4. May developmental systems be evolved to perform tasks that are too

complex for any non-developmental system?

Section 4.1 outlines some of the expected advantages of using developmental controllers over
more static ones. It is believed that the exploitation of modularity and symmetries, the use of
environmental influence, and flexibility and adaptability will allow developmental controllers to
gain higher fitness in some complex tasks than any non-developmental controller. This question
is explored here by comparing a single developmental system with a single non-developmental

system. Clearly there is room for much wider investigation of this question in the longer term.

5. Are developmental controllers more capable of performing learning
tasks than non-developmental ones?
If a developmental controller can undergo structural change in its behaving controller, that struc-
tural change could be used to adapt the behaving controller in response to learning, which may be
easier to evolve to higher fitness than a controller which adapts its responses without undergoing
structural change.

Some of the pieces of work described in section 3.1 show correlation in natural systems be-
tween the performance of learning tasks and structural change occurring in the brain. This cor-
relation leads naturally to the idea that such structural change is a useful way of bringing about

behavioural change.

6. Are developmental controllers more able to produce different behaviours depending on

the type of environment with which they are faced?

Given that developmental controllers may develop in entirely different ways given different envi-
ronmental conditions, it is reasonable to suggest that they may be able better to produce different
behaviours when faced with different environments, and thus achieve higher fitness in such sce-
narios.

The idea behind this question is that a developmental process may be able to use environ-
mental triggers to produce entirely different controllers in different environments, whereas a non-
developmental controller would be required to produce different behaviours in different environ-
ments with the same controller structure.

The work of Nolfi et al. (1994; 1996) showed that a developmental controller of their devising
was able to adapt more effectively to differing environments than a comparable non-developmental
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controller.

7. Are developmental controllers more robust to previously unencountered
change than non-developmental ones?
Since the developmental process may be seen over each lifetime as a process of adaptation -
moving from an unpredictable unordered state to a more ordered one, and since this process may
be influenced by and take advantage of regularities in the environment, it may be that if changes
occur in the body or environment of a developmental agent, the developmental process could be
altered in such as way as to preserve the original behaviour of that agent more effectively than in
a non-developmental agent.

The work of Waddington (1975) covers in detail the ability of natural developmental systems
to maintain the stability of behavioural or morphological outcomes in the face of variation, both
genetic and environmental. In the cases he covers, the fact that the systems he studies are devel-

opmental is crucial to the explanations he finds for their robustness.

8. Are developmental controllers evolved to be robust to noise in the developmental process more
robust to previously unencountered change than those evolved in more predictable conditions?

Following from the previous question, the idea that the ability of an agent to self-construct from
an unpredictable state to a stable state gives it stability in the face of unexpected change may
be extended with the idea that if the initial unpredictability is increased, the stability of the final
solution may also be increased. Thus, agents evolved to produce stable outcomes in the face of
noisy developmental processes may be more stable to other types of unpredictable change than

those evolved to develop through a less noisy process.

9. Will controllers whose development involves mainly guided pruning of structure be more
successful than those whose development involves mainly guided growth?

Section 3.3 describes an ongoing debate between two groups in the world of neuroscience. The
suggestion of selectionists that brain development in animals and humans is mainly guided by
Darwinian-like selection processes leads to the idea that controllers involving pruning or death
of structure, being more like those found in nature (according to selectionists), may be more
successful (evolve to higher fitness) than those involving mainly growth of new structure.

This question, more than the others mentioned here, is not presented as an assumption of
the author. The debate described is very much still ongoing. Furthermore, the extrapolation of
the opinion of selectionists about how one existing system actually operates to the idea that in
the abstract this type of system will always be best, is uncertain at best. However, if one way of
working could be proved conclusively to be superior (easier to evolve to higher fitness), this would
add some weight to the idea that natural evolution might have taken this path, all other things being
equal.

Having enumerated the open questions which are to be explored by the experiments performed
in this work, the following chapter describes the general methods used, and the following chapters

describe the experiments and their results.



Chapter 5

Methods

5.1 Evolutionary robotics

The work described in this thesis is within the field of evolutionary robotics (Nolfi and Floreano,
2000), which is concerned with designing robots through the use of artificial evolution. Artificial
evolution is a method of automatic design which is inspired by natural evolutionary processes. This
section outlines some of the most important concepts in evolutionary robotics that run through the
work.

Evolutionary robotics uses a bottom-up approach to designing agents capable of very simple
behaviours such as navigation and simple visual object recognition. This approach was taken
when it was discovered that the top-down symbol processing systems traditionally used in artificial
intelligence research encountered serious problems when embodied in real robots. Evolutionary
robotics takes inspiration from natural systems in the design of its robots and controllers and
uses genetic algorithms (section 5.1.2) to alter the parameters automatically to satisfy general
requirements specified in a fitness function (section 5.1.4). Genetic algorithms are simplified
models of biological evolution.

The field has had much success in designing robots capable of simple tasks which have proved
difficult for other approaches, such as navigation (Ficici et al., 1999), visual recognition of object
classes (Cliff et al., 1996) and physical locomotion (Gruau, 1995) and has opened lines of enquiry
of potential interest to researchers in other disciplines such as animal behaviour (Dale, 2002),
neuroscience (Husbands et al., 1998) and psychology (Beer, 1996). Active progress is being made
on the evolution of robots capable of adaptation to changing circumstances and disruptions to their
body and environment (Di Paolo, 2000; Urzelai and Floreano, 2000). Current challenges centre
around the generation of more complex behaviours such as those requiring long term retention
of complex internal state, and reasoning abilities such as those which might be more naturally

generated with the use of symbol processing systems.

5.1.1 Agent-based simulations

The robots being evolved in this thesis are simulated inside computer systems, and are not instanti-

ated as real, hardware robots. This approach allows the process of evolution to progress extremely
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quickly, and gives the experimenter complete control of robot and environment. This high degree
of control can be something of a double-edged sword, however, since it is easy to inject one’s
own assumptions into a model. Careful analysis of the purpose and scope of a piece of work can
reduce the risk of making assumptions that the experiment is designed to prove. A framework
within which that analysis may take place, minimally-cognitive behaviour, is described in section
5.3.

Unlike much simulation work in the pure biological sciences and psychology, the simulations
described here are agent-based. This means that each individual agent (simulated robot in this
case) operates as an autonomous unit which acts and interacts independently. The alternative
approach is to model changes in populations and proportions, whose movements may be modelled
by differential equations.

The robots modelled are intended to be both embodied and situated, as described by Brooks
(1991). Brooks argues that agents which are embodied, experiencing the world directly, influ-
encing it and receiving immediate feedback, and situated, not dealing with abstractions but with
the immediate reality of their sensory environment, are able to produce complex and useful be-
haviour without the need for high levels of internal complexity. Evolutionary robotics works on
this principle, deriving simple agents that perform tasks of interest through evolutionary processes.

5.1.2 Artificial evolution and genetic algorithms

The way the agents introduced in the previous section are derived in evolutionary robotics is
through artificial evolution. This is a process designed to capture some of the properties of natural
evolution to design agents through an automatic process which can produce novel and unexpected
results. The resultant agents have the advantage that the specifics of their design have not been
pre-specified by the experimenter, which reduces the weight of assumptions being made when
studying ways in which a certain behaviour may be produced.

The type of artificial evolution used in this work is the genetic algorithm (Holland, 1975;
Goldberg, 1986; Mitchell, 1996), which operates on a population of individuals, each of which is
generated from a set of data (called a genotype) that partially determines its properties. The initial
population may consist of individuals with random genotypes, or it may be seeded with specific
data. The individuals are generated using their genotype and evaluated to find their ‘fitness’ ac-
cording to some criteria, and a new population is created containing individuals with genotypes
derived from the genotypes of the original population members by (possibly) combining genotype
data from more than one individual (‘crossover’ or ‘recombination’) and making slight modifi-
cations to the genotypes (‘mutation’). The new population is created such that individuals with
higher fitness are more likely to pass genotype data into the new population than those with lower
fitness (this process is known as selection).

Each iteration of the process is called a generation, and a typical genetic algorithm goes on
for many generations. Over the course of these generations, the fitness of the individuals in the
population tends to increase, and often high fitness individuals eventually emerge. Using this
method, researchers are able to generate individuals that satisfy certain criteria (i.e. they achieve
a given fitness score) without providing an explicit design for the solution. Often the resultant

designs are surprising and subtle: sometimes they may reach beyond the limits of what a human
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designer could normally produce.

5.1.3 Fitness functions

The evaluation of a robot to find a fitness score is performed by applying a fitness function to its
behaviour. This function is designed to reward robots that are good at the required behaviour.
However, the design of a fitness function is more subtle that this: it must deal well with poor
individuals as well as good ones, since at the beginning of the evolutionary process all individuals
are likely to perform poorly.

Thus a key property of a fitness function is to be able to distinguish between very bad and
quite bad solutions, and to provide a ‘path’ through the ‘fitness landscape’ (section 5.1.4) which
allows evolution to move in short steps through genotype space (applying small mutations to the
genotype data) on an ever-increasing path towards high fitness.

In some cases the design of an appropriate fitness function is quite difficult. For example, when
a task is sequential or consists of competing priorities, it is easy to design fitness functions that
create ‘local optima’ where the population becomes settled in an area of the genotype space that is
surrounded by worse areas (most mutations lead to lower fitness), and yet is not of a particularly
high fitness relative to the final required fitness. An example of this problem and a neat solution
are described by Tuci et al. (2002a). In this case the solution was to bias the fitness function to
reward one part of the task ‘unfairly’ greatly, encouraging evolution to specialise on solving that
part of the task before moving on to find a full solution.

The design of fitness functions in complex situations is crucial to the success of the genetic
algorithm technique, and, as will be seen later, some work is needed in this area in order to evolve

developmental robots to perform non-trivial tasks.

5.1.4 Fitness landscapes and evolvability

When a fitness function is specified it generates a surface over the space of all parameters under
evolutionary control, in the sense that given any set of values for the parameters, we may construct
an agent with those values, and evaluate it using the fitness function. Its fitness gives the height
of the surface at the point defined by the parameter values. It is often useful to think of fitness in
these terms, and to see evolution as generally proceeding upward on this surface, which is known
as the fitness landscape. Figure 5.1 illustrates this concept in the extremely simplified situation
where only two parameters are under evolutionary control.

Evolvability (Wagner and Altenberg, 1996) is an important concept, but it is difficult to define
in formal terms. Loosely, it refers to how easy something is to evolve - the easier it is to evolve,
the more evolvable it is - but in practice this is not only highly contingent on the exact details
of the evolutionary algorithm, task and fitness function in use, but also it can have very different
meanings. For example, when it is said that a system is evolvable is it meant that it reaches
satisfactory solutions faster, that it is able to reach satisfactory solutions in more cases than other
systems (i.e. other systems fail to find any satisfactory solutions), or that the solutions found are
better? If faster, does this mean in fewer generations or fewer computing cycles? If more cases,
over what space of cases is this judgement being made?

Nevertheless, a degree of evolvability (in all of these senses) is necessary in an evolutionary
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Figure 5.1: A fitness landscape in a very simple example situation. Here evolution has control
over only two parameters, being able to adjust each of them between zero and one. There are two
peaks in fitness, at (0.15, 0.6) and (0.6, 0.3). This graph illustrates a potential problem in the use
of genetic algorithms: if evolution tends to move ‘uphill’ on a fitness landscape, it may settle on
solutions around the lower local maximum at (0.15, 0.6) and be unable to ‘escape’ through a lower
fitness region toward the global maximum at (0.6, 0.3). Many of the considerations in designing a
fitness function are concerned with creating a landscape which does not contain many such local
maxima. It is believed that landscapes over higher dimensional spaces tend to result in fewer local

maxima than those in low-dimensional ones such as this.
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system if any interesting or useful solutions are to be found at all. In a sense, this thesis may
be viewed as the story of an attempt to design an evolvable system for producing developmental
robots. Where that is the case, the goal is usually to produce agents that are better at a given task,
rather than exhibiting faster or more reliable evolution.

5.1.5 Studying evolved individuals

In many cases, the products of an evolutionary process are useful in themselves (for example when
evolution is used to design items as diverse as computer programs (Koza, 1991), bus routes (Chien
et al., 2001) or aircraft wings (Mcllhagga et al., 1996)), but, as suggested in section 5.1.1, it is also
useful for generating artifacts that are the result of a relatively unbiased process but which have
certain properties.

For example, it may be of interest to a cognitive scientist to examine the inner workings of
a robot controller which has been evolved to cause a robot to perform a behaviour that has some

cognitive significance. The goals of this thesis are along these lines.

5.2 Continuous-time recurrent neural networks

A neural network is a system that is formed of many interacting simple computational units, called
neurons, each of which takes input from other neurons (or from the input to the system) and applies
a non-linear function to that input before producing a single numerical output, which is passed to
other neurons and/or is passed on as an output of the system. The values passed between neurons
are weighted by multiplying by a value associated with a link between the pair of neurons in
question.

These systems were developed as analogues of the operation of real networks of neurons in
the brains of humans and animals, but they have very serious limitations as models of true brain
function. Nevertheless, neural networks remain important, since, although they may be imple-
mented in the form of computer programs, they tend to produce results of a different character
from those of ordinary computer programs. For example, they may be ‘trained’ (by adjusting the
weights based on the previous behaviour of the network) to classify normally difficult inputs such
as sounds or pictures in a similar way to the way a human would classify them. They may also be
used to control the behaviour of robots.

Continuous-time recurrent neural networks (CTRNNS) are a class of neural networks intro-
duced into the field of evolutionary robotics by Beer (1996) but in use previously in the field of
neuroscience. While many types of neural network are non-temporal computing devices, CTRNNs
explicitly include temporal factors since each neuron acts as a leaky integrator, so that input in-
creases its activation, or cell potential, which then gradually regresses back towards its rest value
over time.

Beer showed that neural networks of this kind are capable of performing behaviours of interest
in understanding cognition of which non-temporal neural networks are not capable. He explained
that this is the case because a temporal network allows the robot’s behaviour to depend not only
on its immediate circumstances but also on the history of its interaction with its environment.

Neurons in a continuous-time recurrent neural network (CTRNN) are governed by the follow-

ing equations:
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Figure 5.2: An example of the behaviour of a neuron in a CTRNN. The neuron begins with a
cell potential of 5, which quickly drops towards zero. Between 20 and 25 time units it receives a
constant sensory input of -4, which causes its cell potential to decrease. After 25 time units the
sensory input is removed, and the neuron regresses back towards zero. The time constant of this
neuron is 2. The firing rate of the neuron is shown for each cell potential value. This is constrained

by its equation to be within [0 : 1].

Wi o= —yi+ Yy wizj+Si (6.1
J

1
4 = 1+ e~ 0itb)) (5-2)

where Y- ; denotes the sum over all neurons j connected to neuron i, y; € [—8 : 8] is the cell potential,
T; € [1 : 2] the time constant and b; € [—5 : 5] the bias of neuron i, wj; € [=5 : 5] is the weight of
the connection from neuron j to neuron i, S; € [0 : 1] is the amount of sensory input to neuron i
and z; € [0 : 1] is the firing rate of neuron ;.

A graph giving an example of how the activation of a neuron varies over time is shown in
figure 5.2.

The CTRNN controllers used in this work have a limited range of time constants (in the range
[1:2]) that restricts them to short term dynamics. Since the developmental processes may operate
over longer timescales, this produces a clear separation between the roles of the two mechanisms.
The controllers used in part two are based on the CTRNN design, but since the simulation time step
that is used is relatively large, they do not approximate well the behaviour of a system following

these equations exactly.



cnaplter o. vietnods 41

Other details and structures of the controllers used in this thesis vary across different experi-

ments. They are described in sections 6.2.2 and 8.2.2.

5.3 Minimally cognitive behaviour

The CTRNN controllers described in the previous section have been developed to deal with a class
of behaviours Beer describes as minimally cognitive. These are behaviours which are simplified
as far as possible while still containing elements of interest for those studying cognition. Beer

defines these minimally cognitive systems as:

“The simplest possible agent-environment systems that raise issues of genuine cogni-
tive interest.” (Beer, 1996)

Crucial to this approach is the application of deep analysis to evolved controllers in order to

understand how they work. Beer and his colleagues work with

“...agents whose capabilities are both rich enough to explore cognitive behaviour yet
simple enough to be tractable to evolution and analysis.” (Slocum et al., 2000)

They believe that by simplifying agents and behaviours to their bare essential features it may
be possible to begin understanding how they work, and they see this work in the context of a long

tradition of reductionist methodologies in science:

“We believe that such simpler idealised models can serve as ‘frictionless planes’ in
which basic theoretical principles of the dynamics of agent-environment systems can
be worked out.” (Slocum et al., 2000)

For example, Slocum et al. (2000) investigated the generation of ‘pointing’ behaviour, where
a simulated robot was required to move an opaque arm to catch an object which it could sense
using an array of ray sensors (designed to be similar to infrared distance sensors in real robots).
The robot’s controller received inputs from the ray sensor, and from the arm giving its current
position, and moved the arm by providing outputs which specified the torque applied to the arm
in the clockwise and anticlockwise directions. This experiment was designed to investigate the
mechanisms that can bring about a correlation between a robot’s behaviour and the properties of
an object external to it, whilst discriminating between stimuli produced by its own behaviour and
those produced by external objects. Figure 5.3 illustrates this experiment.

Of course, decisions about which behaviours are of cognitive interest are always subjective,
and in the course of this thesis it may be seen that a need was identified to move onto agent-
environment systems with higher complexity than some of those used by Beer and his colleagues
in order to investigate the kinds of behaviour which are of interest in the study of developmental
systems. There is inevitably a tension in a reductionist methodology between the drive for simplic-
ity and the need to preserve vital factors - Beer’s agents may just barely be described as embodied
and situated, but more complex models have greater capacity to fulfil the meanings of those words.
Beer and his colleagues also remove noise from their simulations in an attempt to make them more
tractable for analysis. However, some schools of thought (Jakobi, 1998) suggest that the use of

noise is crucial in evolutionary systems, not only to evolve more complex systems (which are
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Figure 5.3: An agent performing a minimally cognitive behaviour. The agent must move its arm
to ‘point’ at the moving object, distinguishing between sensory input generated by its own arm

and by the object. Figure adapted from (Slocum et al., 2000).

perhaps of greater cognitive interest), but also in order to understand natural behavioural systems,
which, of course, evolve and develop in noisy circumstances.

Two of the experiments used in part one of this thesis to investigate developmental robots
are replications of two of Beer’s minimally cognitive behaviours, and all of the other experiments
share a similar philosophy of reducing unnecessary complexity to lay bare a behaviour of cognitive
interest. However, compromises have been made between simplicity and the need for certain
features to be present in order to understand different phenomena: agents capable of movement
in two dimensional environments are used in order to increase the variety of available outcomes,
and noise is used to aid evolution and investigate its role in evolving robust controllers. The
experiments in this thesis are designed to facilitate the crucial process of deep analysis of the
generated controllers in order to advance understanding of how such systems can work in practice.

Such analyses are undertaken in several cases.

5.4 Statistics

Many of the results that are presented in chapters 7 and 9 involve several evolutionary runs per-
formed under a range of different conditions. Often it is interesting to attempt to find evidence that
two sets of evolutionary runs performed under different conditions result in different outcomes. In
order to do this, a number (usually 10 or 20) of runs was performed under each set of conditions,
and a measure of the fitness of the evolved agents was compared with the same measure for the
runs performed under different conditions.

The measure that was used for most of the results discussed was an approximation of the
fitness of the fittest agent present in the last generation of the evolutionary run. This was found by
evaluating each agent in the last generation for 100 lifetimes, and taking its average fitness. The
score of the agent with the highest score by this measure was taken to be the fitness of the entire

run. In this way a single fitness score is obtained for each evolutionary run.
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In order to compare two different sets of conditions each evolutionary run is taken to be a
sample from a population of all possible runs under those conditions, and the two series of samples
for the different conditions are compared. In general there is no reason to assume that the data
are normally distributed, so the Mann-Whitney non-parametric test was used to test whether the
differing conditions have an effect on the outcome. In this case the null hypothesis is that the data
are drawn from identically-distributed populations. This test uses the U distribution.

The test used is two-tailed, since there is no a priori reason to assume that one set of conditions
will necessarily produce fitter agents.

Where p values are supplied, they represent the probability under the relevant assumptions of
generating the data given that the two populations have equal medians. This means that a low
p value suggests that it is likely that the different sets of conditions have a material impact on
the evolutionary process, making the likely fitness of evolved agents different under the different
conditions. For the purposes of this thesis if p < 0.05 the result is considered significant, and if
p < 0.01 it is considered highly significant.

Having outlined the methods in use throughout the thesis, the next chapter explains the moti-

vations and specific methods used in the first piece of experimental work.



Chapter 6

Part 1 - Chemical-guided growth networks

The methods described in chapter 5 form the basis upon which this work builds. Since the goal
here is to learn about development, a developmental system that may be evolved was designed.
This system consists of a simple robot controlled by a controller that exhibits development. This
controller is an adaptation of a CTRNN, with added features that form a separate ‘layer’ of dynam-
ics which alter the number and connection of neurons, allowing it to grow from a small number
of ‘seed’” neurons into a network that successfully controls the robot, performing several required
behaviours.

Inspiration for the design of these controllers was taken from several aspects of development
in natural systems, including the use of chemical gradients, spatial organisation, a single genotype
for all the neurons, and dynamic alteration of structure dependent on both environmental stimuli
and genetic factors.

Section 6.1 describes the reasoning behind the design of these controllers, and section 6.2
describes the detail of that design, along with the robot morphologies, environments and methods

used.

6.1 Motivation

Networks of real neurons in animals develop in very complex ways, and there are a large number
of phenomena one might hope to model in order to achieve some of the expected advantages
of development discussed in chapter 4. This section outlines some of the phenomena that have

provided inspiration for the design of chemical-guided growth networks.

Growth and change during lifetime In order for the growth process to be analogous to the growth
process in real organisms, it goes on during the lifetime of the robot, and is affected by its be-
haviour and sensory experience. This allows the developmental process to contribute to the flexi-
bility of the robot’s behavioural repertoire by facilitating its adaptation to changing circumstances.
Chemical-guided growth networks provide a mechanism by which the experience of the robot may
have anything from a small effect on development through to a completely crucial effect.

Temporal and spatial factors Clearly natural behaviour is generated within the constraints of

time and space. It has been convincingly argued (Beer, 1996) that introducing temporal factors
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(internal state and recurrency) into controllers allows for a greater variety of cognitively interesting
behaviours to be generated. Similarly, controllers featuring spatial analogues have proved useful
for behaviour generation (Husbands et al., 1998). Chemical-guided growth networks model a
physical space in which neurons grow and interact.

Single genotype for all neurons In biological systems the genetic material in each cell is identical.
Much past work has allocated separate sections of the genotype to different parts of the controller.
This is justified in terms of different genes being expressed in different cells, but this is a dramatic
simplification of the real situation. The system described here allows differential expression of
different parts of what is genuinely one genotype. This method offers the additional advantage
that the number of neurons may be varied without the need for a corresponding change in the
length of the genotype. This aspect makes chemical-guided growth networks potentially highly
scalable.

Chemical gradients The mechanism by which different neurons express different parts of the
genotype is based on the levels of various chemicals at its location. This feature is inspired by the
use of chemical gradients in real developmental systems to push cells down different developmen-
tal trajectories. Chemical-guided growth networks simulate the presence of chemical gradients
in the space in which the neurons exist. Since the chemical gradients used have properties such
as neurons which are close together tending to be similar, and potential repeating structures of
neurons in different areas, the controllers have potential to produce scalable and modular neural

networks.

Regulation of neuron growth The controllers presented contain the concept of self-regulation of
neuron growth using a system loosely inspired by Nerve Growth Factor. The growth of new neu-
rons is suppressed after a certain number of neurons have been grown from a particular parent
neuron. This provides a direct mechanism which may be used by evolution to construct develop-
mental systems that stabilise after a certain period of time.

The system as a whole is designed to be an incremental addition to the well-known CTRNN
model (section 5.2). By building the system on a model already relatively well understood in the
field, the results should be easier to understand and compare with related work.

While previous work, such as that described in section 2, may have provided examples of
developmental systems incorporating some of the mechanisms described above, it is believed that
the combination of all these elements together and using then in an agent-based robotics scenario
is a novel innovation, offering the potential for investigation into developmental phenomena not

accessible to models with more limited scope.

6.2 Methods

The robots, environments and tasks described here are replications and extensions of work by Beer
(1996). They are designed to allow the study of minimally cognitive behaviour (section 5.3).

In parallel with the experiments using developing robots, replications of Beer’s experiments
using CTRNN controllers on the tasks used were undertaken, in order to provide a means of

comparison of the developmental robots with the non-developmental ones.
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Figure 6.1: The minimal simulation robot in its environment.

6.2.1 Robot and environment

The robot, which is depicted in the diagrams as a circle, but which for the purposes of the ex-
periments detailed here, does not have a body, has a number of distance sensors of length 220
protruding from its upper side in a fan shape covering an angular range of /6 radians. It exists at
the bottom of a rectangular environment of width 400 and height 275, and its movement is con-
strained to be horizontal with the vertical co-ordinate of its centre being constant at 15 units above
the bottom of the environment. This setup is illustrated in figure 6.1.

The robot’s horizontal velocity is determined by the following equation:

x = 5(m,—my) (6.1)

where m, and m; are the activations of the right and left motors respectively, both € [0 : 1].

If the robot’s centre horizontal position x becomes < 0 it is immediately reset to 0 and similarly
if it becomes > 400 it is reset to 400.

The activation of each sensor is determined by the minimum distance from the centre of the
robot to an object intersecting the sensor ray. Each sensor ray is 220 units long, and if the ray
does not intersect any object, its activation is zero. If it does intersect an object, its activation is as
follows:

d
S = 10— = 6.2
7 (6.2)

where d is the distance to the closest point of intersection. Thus, S € [0 : 10].
In the experiments different objects fall from the top of the environment towards the bottom,

and the robot interacts with them in different ways. The two shapes of object are circles of diameter
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30, and ‘diamonds’ - squares with sides of length 30, rotated so that each side is at 45° to the
horizontal. In the multiple discrimination experiments circles are of random diameter taken from
a uniform distribution over the range [25 : 35] and diamonds have side lengths taken from the range
[21:31].

The sensor inputs are fed into neurons in the controller (described in section 6.2.2). Uniformly

distributed noise of 10% is applied to the sensor and motor outputs at each time step.

6.2.2 Controller

In all cases the robot’s controller is based on a continuous-time recurrent neural network which
uses neurons with internal state, their activity decaying over time. Experiments were performed
with ordinary CTRNN controllers, and with developmental controllers which add new features
onto the CTRNN model. The equations governing the behaviour of neurons are given in equations
5.1 and 5.2. For the orientation task, both dynamic and non-dynamic CTRNN controllers were
used, where dynamic means the time constant of each neuron is allowed to be within the range [1 :
2] and non-dynamic means the time constants were all fixed at a value of 1. In the discrimination
task only dynamic CTRNNs were used. There is no noise added to neuron cell potentials or firing
rates.

The constraint of neuron time constants to a small range is designed to allow the neuron activ-
ity to be viewed as the behaving controller, constrained to operate over relatively small timescales,
while the actions of neuron and synapse growth make changes over longer timescales, meaning
they are more likely to be naturally described as part of the developing controller.

The y values from those equations are initialised to 0 and the integration is approximated using
the forward Euler method with a step size of 0.1. Each neuron is either bound to one sensor, or no
Sensors.

The developmental networks are formed by allowing a CTRNN network to grow during the
lifetime of a robot, dependent on its experience of its environment. In order to allow this to happen
the CTRNN model has been expanded in several ways.

In this expansion process, an attempt has been make to strike a balance between biological
inspiration and pragmatic assumptions about what kind of controllers will evolve to generate useful
behaviours in a reasonable time.

In some of the experiments described below, the development process is not constrained to
be symmetrical and thus produces asymmetric controllers. This is an important difference from
the controllers used in Beer’s (1996) work. In other experiments the developmental system is
constrained to be symmetrical, but variations entering the system through noise and sensory expe-
rience mean that asymmetrical controllers occur. In every case the standard CTRNN controllers
are constrained to be symmetrical.

The chemical guided growth network consists of a two-dimensional space of size 1 x 1 (the
units are arbitrary). Certain areas of the space correspond to the robot’s sensors (neurons within
those areas receive input from the corresponding sensor) and certain areas correspond to motors
(the sum of the firing rates of neurons in these areas produces the activation of the corresponding
motor) as illustrated in figure 6.2. The controller is seeded at the beginning of the robot’s life with

one neuron in each sensor region. Neurons have radius 0.05 or 0.1.
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Figure 6.2: The controller is a two-dimensional space with two chemical gradients over it, and

specific sensor and motor regions.
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Figure 6.3: The robot’s genotype defines a mapping for each neuron from its activation, the chem-

ical levels at its location, and the current time, to its properties.

There are two chemical gradients across the space, running horizontally and vertically. When
a neuron is created, the levels of chemicals locally, a time input, and the parent neuron’s cell
potential (if it has a parent) serve as inputs to genotype mapping functions the output of which
provide the new neuron’s time constant, bias, and energy. The shape of those genotype mapping
functions is defined by the genotype.

The growth of a new neuron is determined by two factors. First the originating neuron must
have enough energy to be able to grow a child, and second its internal measure of whether to
produce offspring (its ‘growth sum’) must be above a threshold.

The growth sum is zero when a neuron is born, and is altered according to the value specified
at each time step by the relevant section of the genotype acting on the current chemical levels, the
time, and the neuron’s cell potential.

If the neuron has enough energy and its growth sum goes over the threshold, another neuron is
grown and the parent neuron’s energy is reduced. The new neuron’s distance from its parent and
the angle at which it grows are found by applying the relevant part of the genotype to the chemical
levels and cell potential of the parent neuron and the time.

The parent neuron is linked by a synapse to the child neuron. The strength of this synapse is
determined by another section of the genotype acting on the conditions of the parent neuron.

If a neuron is about to grow in a position where it will overlap with another neuron (in the two-
dimensional space they inhabit) then a new neuron is not grown and the would-be parent simply
grows a new synapse to the neuron already at that position, if there is not already such a synapse.
All neurons are the same, fixed size, although this size was varied from experiment to experiment.

The genotype mapping functions are designed to approximate arbitrary functions. There are 7
properties determined in this way for each neuron: bias, time constant, energy, growth increment,
direction of growth, distance of growth and synapse weight. The genotype is shared by all neurons
in the controller and its size is the same for any number of neurons. The relationship between the
genotype, its inputs, and the properties of neurons is illustrated in figure 6.3.

The time input is calculated as follows:

x = 0.540.5sin(0.1) (6.3)
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where ¢ is the time elapsed since the birth of the robot.

The functions used as genotype mapping functions in the experiments take a number of forms,
all designed to be easily manipulable into whatever shape the evolutionary process requires to
achieve the desired developmental trajectory.

The first form of genotype mapping function is a sum of sines:

N,

= VY () sin(ag 0%+ ai5)) (6.4)

i=1j=1

P

where p is a property of the neuron, the a; ; are genetically-determined values, x; is the local
concentration of chemical i or the time input or the cell potential, N, is the number of inputs (2
chemicals + 1 for time + 1 for cell potential) and N, is a constant value of 10. The use of a function
of this form is inspired by the Fourier Transform: for sufficiently large values of N a function of
this form may approximate any continuous function.

In this case the genotype is a list of 840 real values, since 7 x N, X Ny x 3 = 840. The 7 occurs
because there are 7 properties: bias, time constant, energy, growth increment, direction of growth,
distance of growth and synapse weight.

The second form of the genotype mapping function is a polynomial of order 3:

p = Z a; j kXX jXp + Z b; jxix;+ chx, (6.5)
i, k=1 i,j=1
where p is a property of the neuron, a; j, b; j and c; are genetically-determined values, x; is the
local concentration of chemical i or the time or the cell potential and N, is the number of inputs (2
chemicals + 1 for time + 1 for cell potential).

The third form of the genotype mapping function involves interpolating a grid of explicitly-
provided values evenly distributed within the input space. The value at each grid point is provided
by the genotype, and the interpolation is linear. Further description of the benefits of this form of
function and the details of its use may be found in section 7.1.3.

For all of the above functions, the genotype may be thought of as defining a vector function,
taking 4 inputs (chemical 1, chemical 2, time and cell potential) and having 7 outputs. In some of
the experiments below, the time input was not included.

These functions, the first taking a similar form to a Fourier transform, the second being a gen-
eral polynomial, and the third being a direct interpolation, provide different types of flexibility for
the genotype to determine the shape of the vector functions it defines. They are all designed to
provide sufficient flexibility, and smooth enough transitions between function shapes over parame-
ter changes, to allow evolution to search the space of possible vector functions to find those which
generate the required behaviour in the agent. The use of different functions reflects the fact that
very little is known about what types of flexibility might be useful, and so a variety was chosen to
allow the most appropriate one to be used in each situation.

The time input is present to allow the developmental process to guarantee that at least one
input will vary over time, even, for example, in a neuron linked to a sensor which receives no

sensory input, and has no incoming synapses. With no time input, such a neuron may only grow a



Cnaplter 0. rart 1 - Cnemicait-guiraea growltn neiworks Jl

Figure 6.4: The orientation experiment. An object falls at one of various different speeds and

angles toward the robot, which must orientate itself to that object.

single child neuron, since the angle and distance at which such a child would grow would be fixed.
When a time input is introduced, a neuron may grow several child neurons at different locations

even with no change in sensory or synaptic input.

6.2.3 Genetic algorithm

A generational, asexual genetic algorithm using rank selection with elitism on a population size of
30 or 50, with real-valued genotypes was used. In CTRNNs mutation was performed by adding
a random displacement vector whose direction was uniformly distributed on the M-dimensional
hypersphere and whose magnitude was a Gaussian random variable with mean O and variance 1
(Beer, 1996). In developmental networks mutation involved using one or both of two mutation
methods: adding a random displacement vector as above but with variance 0.05 and randomising

selected values on the genotype.

6.2.4 Orientation task

The orientation task tests the ability of robots to orientate themselves to circular objects falling at
different angles and speeds from the top of the environment towards the bottom. This task is of
interest since orientation is required as a prerequisite for many other behaviours.

Fitness for a single presentation is awarded as follows:

d
F, = 1—— 6.6
p W (6.6)

where d is the distance between the robot and the circle at the end of the presentation and W is the

width of the environment (i.e. the maximum possible distance).
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The robot has 5 distance sensors, and circles fall at velocities of (-5, 5), (-2, 2.5), (-1, 1.66),
(-2, 5), (-0.2, 1), (1, 5), (1, 2.5), (3, 5), (4, 5), (1, 1) per simulated second, with the robot being
evaluated in all 10 situations for every trial, with its controller reset before each circle falls.

In the CTRNN trials the robots have controllers consisting of five input neurons fully con-
nected to two motor neurons.

The final fitness of a robot is found by combining fitnesses for each presentation as follows:

F = 0.45f,+0.45f,+0.1f, 6.7)

where f,, is the mean fitness over the presentations and f,, is the fitness achieved in the worst
(lowest fitness) presentation.

In CTRNN controllers f. is always equal to 1, and in developmental controllers f. is equal
to the mean (over the lifetimes) of the quantity x/W, where x is the horizontal position of the
rightmost neuron in the controller at the end of the robot’s lifetime and W, is the width of the
controller space. So robots are rewarded for growing from the seed neurons on the left towards
the motor region on the right.

There is no noise on the sensors, motors or neurons, and neurons are of size 0.05.

The sum of sines genotype mapping function was used for this task, and the time input was
not present, reducing the length of the genotype to 630 values. A population size of 50 was
selected, with elitist fraction of 20%, and mutation of the developmental networks involved the
randomisation operation only, randomising 5 values from the genotype of 630 within their allowed
ranges.

This experiment is designed to shed light on open question 1 of section 4.2.

6.2.5 Discrimination task

The discrimination task requires robots to distinguish between different falling objects on the
basis of their shape. This behaviour is a simple form of classification behaviour. The robots have
7 distance sensors.

In the CTRNN trials there are 7 input neurons fully connected to 5 inter-neurons which are
themselves fully interconnected, and fully connected to the 2 output neurons.

There is no noise on the sensors, motors or neurons, and neurons are of size 0.05.

Each trial consists of 20 single-presentation lifetimes between each of which the robot’s con-
troller and position are reset. Objects are dropped from 10 positions equally spaced between the
point 50 units to the left of the robot and 40 units to the right, at a speed of 3 units per simulated
second. At each position a circle and a diamond are dropped in separate presentations. A small
random offset (€ [—1 : 1]) is added to the horizontal position of the object at the beginning of each
presentation.

(Note that these conditions are slightly different from those used by Beer, where circles are
dropped at slightly different positions from diamonds. This change was made to the setup to
overcome problems with the different positions being used to distinguish objects, rather than their
shape.)

The fitness of a robot in a single presentation is awarded as follows:
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Figure 6.5: The discrimination experiment. An object (either a circle or a diamond) falls vertically
at one of several possible positions, and the robot must catch circles and avoid diamonds. Note
that circles and diamonds fall separately, and are shown together here merely to illustrate the fact

that either may fall.

) 6.8)

P { 1- % when the object is a circle
b b when the object is a diamond

where d is the distance between the robot and the object at the end of the presentation (clipped to
be < D) and D is a maximum distance of 200 units.

The fitness of a robot over several presentations is calculated with a bias towards the worst
presentation, and with additional fitness coming from the controller (as in the orientation task):

F = 08f,+0.1f,+0.1f, (6.9)

where f,, is the mean fitness over the presentations, f,, is the fitness achieved in the worst (lowest
fitness) presentation and f. is the controller fitness as defined in the previous section.

The sum of sines genotype mapping function was used for this task, and the time input was
not present. A population size of 50 was selected, with an elitist fraction of 20%, and mutation
of the developmental networks involved the randomisation operation only, randomising 5 values
from the genotype of 630 within their allowed ranges.

This experiment is designed to shed light on open question 1 of section 4.2.

6.2.6 Multiple discrimination task

Robots with chemical-guided growth networks evolved for the discrimination task as described in

the previous section were unable to perform the task more than once in their lifetime. In order
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to evolve developmental robots capable of discriminating many objects in a lifetime, the multiple
discrimination task was developed. This task presents the robot with several objects sequentially
during one lifetime, and fitness is awarded for correctly discriminating all of them. This was
evolved for developmental networks only, since CTRNNSs evolved for the discrimination task were
able to perform this task trivially (see section 7.1.3).

There is 10% noise on both sensors and motors, and neurons are of size 0.1. Additionally, the
size of the falling objects is varied, as described in section 6.2.1.

A fitness evaluation consists of 8 lifetimes, each of which consists of 8 falling objects, the first
2 of which are ignored.

To calculate fitness, a measure of correlation is used. Three possible conditions are identified.
First, if a robot’s centre is within 10 units of the centre of the object at the end of a presentation, it
is deemed to have caught the object. Second, if its centre is more than 20 units away from that of
the object, it is deemed to have avoided it. Otherwise it is deemed to have done neither.

Over a lifetime of 6 evaluated presentations, the robot accumulates several scores: the number
of circles it caught, the number of diamonds it caught, the number of circles it avoided, the number
of diamonds it avoided, and the number of times it did neither. From these it is possible to calculate
the following values: N,,: the number of times it caught a circle, C,p.,: the number of times
it caught either a circle or a diamond, C: the number of circles that were dropped, Nomerhing, the
number of times it either caught or avoided, whether or not that action was correct, and N, the
number of evaluated presentations in the lifetime.

Its fitness is calculated as follows:

Nccorr - Ceitherc )
N 6.10
f B (C(Nmmething - C) ( )

where

Nsomelhing
= — 6.11
p N (6.11)

is a penalty term to prevent neither catching nor avoiding being a good strategy, and the rest of the
formula measures the correlation between the robot’s behaviour and the required behaviour.

This value is clipped to be > 0.

The grid genotype mapping function was used for this task, and the time input was included.
A population size of 30 was selected, with 10% elitist fraction, and mutation of the developmental
networks involved both the randomisation and displacement vector operations. Randomisation
involved taking each value on the genotype independently, and randomising it with probability
0.3%.

This task was performed trivially by robots with CTRNN controllers evolved for the ordinary
discrimination task (see section 7.1.3) and only robots with chemical-guided growth controllers
were evolved specifically for this task.

This experiment is designed to shed light on open questions 1 and 4 of section 4.2.

The following chapter details the results of the above experiments and provides analysis and

discussion of these results.



Chapter 7

Part 1 - Results, Analysis and Discussion

7.1 Results

7.1.1 Orientation task

For the orientation task 20 evolutionary runs of 2000 generations each were performed with each
of the two CTRINN controller types, and another 20 runs were performed with the developmental
controllers. The best dynamic CTRNN run produced an individual that scored 82% of the maxi-
mum possible fitness. 8 of the 20 developmental controller runs scored more highly than this, and
the best developmental run scored a fitness of 98%. The non-dynamic CTRNN controllers scored
much lower fitness.

Individual robots from the ends of both the dynamic CTRNN runs and the developmental
runs, when observed, clearly perform the orientation behaviour. The developmental controllers
are able to react faster since their controller structure is more specialised, and they achieve greater
accuracy. The non-dynamic controllers often fail to orientate themselves to the object since when
it moves out of sensor range they stop moving.

The fitness graphs of the best CTRNN run and the best developmental run are shown in figure
7.1. The mean fitnesses of the three controller types over 20 evolutionary runs are shown in figure
7.2, and detailed fitnesses are shown in table 7.1 and illustrated in figure 7.3. Histograms of the
scores are shown in figure 7.4.

The Mann-Whitney test shows that there is significant evidence to suggest that the chemical-
guided growth networks perform better than dynamic CTRNNs, which in turn perform better than
the non-dynamic CTRNNs (chemical-guided growth vs. dynamic CTRNN p = 0.0018, chemical-
guided growth vs. non-dynamic CTRNN p = 1.5 x 10~!!, dynamic vs. non-dynamic CTRNN
p=15x10""1,

7.1.2 Discrimination task

In the discrimination experiments 10 evolutionary runs of 2000 generations each were performed
with the CTRNN controllers, and another 10 runs were performed with the developmental con-

trollers.
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Figure 7.1: Fitness vs. generation. The best fitness achieved with a developmental controller in

the orientation experiment far out-performed the best achieved by a CTRNN.
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Figure 7.2: Orientation task: Each robot from the population at generation 2000 of each of the 20

evolutionary runs performed for chemical-guided growth networks, dynamic CTRNNs and non-

dynamic CTRNNs was evaluated over 100 lifetimes. The mean fitness of the best performing

robot (over the 100 lifetimes) from each population was taken as the score for that evolutionary

run, and the bars in the figure above show the mean score over 20 evolutionary runs for each type

of controller.
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Controller Mean Fittest robot

Chemical-guided growth network | 0.79 | 0.92 0.92 098 0.87 0.74
094 0.83 090 0.87 0.59
073 094 048 0.80 0.60
055 064 0.82 095 0.67
Dynamic CTRNN 0.63 | 0.50 045 0.82 046 0.78
054 048 046 0.75 0.80
078 0.79 0.79 0.50 0.78
048 0.48 0.79 045 0.80
Non-dynamic CTRNN 032 032 032 033 033 033
033 033 032 032 033
032 032 033 032 032
032 032 032 032 033

Table 7.1: Orientation task: The highest fitnesses achieved using different controller types. Each
experiment was run 20 times, and the mean fitness over 100 lifetimes of the best individual from
generation 2000 of each of the runs is shown in the right column, with the mean of these values

shown to their left.
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‘D Chemical-guided growth network [ll Dynamic CTRNN []Non-dynamic CTRNN

Figure 7.3: Orientation task: Fitnesses of the fittest robot from generation 2000 of each of the 20
evolutionary runs performed with each controller type. The scores are sorted in descending order

to aid comparison. Exact values are shown in table 7.1.
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Figure 7.4: Orientation task: Histograms of the fitness scores shown in table 7.1. Where a column

is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean fitness
was € (0.55:0.6].

Controller Mean Fittest robot

Chemical-guided growth network | 0.75 | 0.71 0.71 0.71 0.72 0.73
076 0.76 0.78 0.79 0.79
Dynamic CTRNN 0.86 | 077 0.79 0.80 0.82 0.85
0.85 0.86 0.92 096 1.00

Table 7.2: Discrimination task: The highest fitnesses achieved using different controller types.
Each experiment was run 10 times, and the mean fitness over 100 lifetimes of the best individual
from generation 2000 of each of the runs is shown in the right column, with the mean of these

values shown to their left.

The developmental controllers performed reasonably well, with the best robots, when exam-
ined manually, clearly correctly discriminating in approximately 75% of the presentations. How-
ever, CTRNN controllers performed better at this task, with the best controllers correctly discrim-
inating in approximately 90% of the presentations.

The mean fitnesses of the three controller types over 20 evolutionary runs are shown in figure
7.5, and detailed fitnesses are shown in table 7.2 and illustrated in figure 7.6. Histograms of the
scores are shown in figure 7.7.

The Mann-Whitney test shows that there is strong evidence to suggest that the chemical-guided
growth networks perform worse than the dynamic CTRNNs (p = 1.3 x 10™%).

7.1.3 Multiple discrimination task

As may be seen from figure 7.8, CTRNN controllers evolved for the ordinary discrimination task
were able to perform the multiple discrimination task without modification. When it was evolved,
each lifetime consisted of a single presentation, but here the robot behaved for 8 lifetimes each
consisting of 8 presentations (either a falling diamond or a circle). It is clear from this figure that
the robot moves towards the centre at the end of most of the circle presentations, and away from
the centre at the end of all diamond ones, showing that it performs discrimination behaviour.
Since this task appears to be trivial for CTRNN controllers evolved for the previous task,

evolution was only performed for chemical-guided growth controllers.
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Figure 7.5: Discrimination task: Each robot from the population at generation 2000 of each of
the 10 evolutionary runs performed for chemical-guided growth networks and dynamic CTRNNs
was evaluated over 100 lifetimes. The mean fitness of the best performing robot (over the 100
lifetimes) from each population was taken as the score for that evolutionary run, and the bars in

the figure above show the mean score over 10 evolutionary runs for each type of controller.
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Figure 7.6: Discrimination task: Fitnesses of the fittest robot from generation 2000 of each of the
10 evolutionary runs performed with each controller type. The scores are sorted in descending

order to aid comparison. Exact values are shown in table 7.2.
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Figure 7.7: Discrimination task: Histograms of the fitness scores shown in table 7.2. Where a
column is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean
fitness was € (0.55 : 0.6].
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Figure 7.8: The behaviour of a robot with a CTRNN controller evolved to perform the ordinary

discrimination task but here behaving in the multiple discrimination environment. Each figure

shows the difference between the horizontal position of the robot and the falling object over time.

The behaviour of the robot in presentations containing a circle are shown in the top figure, and its

behaviour in those containing a diamond are shown in the bottom figure.
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The multiple discrimination task proved to be much more difficult to evolve for chemical-
guided growth controllers than originally expected. Some possible reasons for this are discussed
in section 7.3. Eventually, the behaviour was evolved, but a significant amount of adjustment and
‘tweaking’ was required.

First, an alternative genotype mapping function (see section 6.2.2) was used. A process of
trial and error resulted in the discovery that directly encoding a 4 x 4 x 4 x 4 grid of values and
interpolating between them appeared to produce the best results. Thus the function that was used

is as follows:

p = Y A(l1-d/D) (7.1)

i
where the A; are genetically set values at the corners of the grid hypercube containing the point x
whose co-ordinates are the 4 inputs (chemicals 1 and 2, time and cell potential), d; is the Euclidean
distance from x to the ith corner, and D = 2 is the distance from one corner to the opposite corner
of the hypercube.

The use of this more direct encoding seemed to make the controllers more evolvable in rela-
tively small tasks like this, but is impractical for more complex tasks due to the fact that the number
of genetically encoded numbers increases very rapidly with the granularity of outputs required.

Second, the controllers were constrained to be symmetrical by altering the chemical gradient
of chemical 2 so that it was symmetrical in the line dividing the controller space horizontally
across the middle and reversing the angle of growth of any neuron growing from a neuron below
that line. This meant that given symmetrical input the controller would grow symmetrically. With
asymmetrical input, however, asymmetrical structures were allowed (and likely to occur).

Adding symmetry to the development process made it much easier for evolution to generate
symmetrical structures in the controller. Since the task being used required entirely symmetrical
behaviour, this encouragement to generate appropriate structures allowed evolution to find good
solutions more quickly. It also prevented evolution from becoming trapped in a local maximum of
simply moving in one direction or the other without reference to sensor input. This behaviour had
previously been a common outcome.

Third, two presentations were added at the beginning of the lifetime which were not evaluated.
This gave the robot time to develop freely without evolutionary pressure to settle quickly on a
(potentially suboptimal) solution.

Fourth, incremental evolution was used. The robot was initially evolved in a situation where
the objects were dropped directly above its starting position, with a uniform random offset of +1.
This was continued for 5,000 generations, and then for the next 10,000 generations the random
offset was gradually increased to +50. Note also that relatively very large numbers of generations
were required to evolve robots able to perform this task.

Finally, and probably most importantly, a highly specialised fitness function was developed
that rewarded robots for correct behaviour, but strictly did not reward incorrect behaviour that
could lead to a local maximum. This was achieved by measuring the mathematical correlation
between the robot’s behaviour and its required behaviour.

By using this fitness function, many of the local maxima which were previously being found

by evolution were avoided. However, this meant that the evaluation of robots was extremely harsh:
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Figure 7.9: The maximum fitness achieved in each generation during the first 50 generations of
an evolutionary run of developmental neural network controllers evolving to perform the multiple

discrimination task.

populations could often evolve with a fitness of almost zero for 50 or more generations, essentially
using random search to find a strategy that satisfied such stringent requirements. This situation is
demonstrated in figure 7.9.

By using all of these strategies, robots which can perform the task well (achieving a fitness
score greater than 0.5) are evolved in approximately 40% of evolutionary runs. The fitness graph
of the best run is shown in figure 7.10. Interestingly, the evolved solutions seem to use very small
neural networks with very fast development near the beginning of the robot’s lifetime. These
networks are largely unaffected by the robot’s experience. This is not unexpected since the task
does not require sensitivity to the conditions in the environment.

Whilst these results were hard to come by, it seems that by allowing evolution to choose the
number of neurons and connections in the controller, novel, efficient solutions to the discrimination
problem have been found. For example, the best evolutionary run produced robots with controllers
consisting of only 9 neurons (7 inputs and 2 outputs). These controllers appear to use subtle
features of the dynamics of rapid scanning over the point of the diamond as opposed to the edge
of the circle to flip itself into one of two dynamic attractors leading to either catching or avoiding
behaviour. One of these controllers is illustrated in figure 7.11. In contrast, the CTRNN controllers

usually used to solve this problem have 14 neurons (7 inputs, 5 inter-neurons and 2 outputs).

7.2 Analysis

A detailed analysis of an evolved robot performing the discrimination task was performed (note

this is the single discrimination task rather than multiple). This analysis sheds light on the way
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Figure 7.10: The fitness of the fittest individual in the population of robots with developmental

neural network controllers evolving to perform the multiple discrimination task.

evolution interacts with the developmental process, and highlights some of the problems that must

be overcome if complex controllers are to be generated through developmental systems.

7.2.1 Behaviour

Overview The evolved robot performs the behaviour successfully: over 10000 random trials the
robot’s mean fitness was 88% of the maximum possible.

Soon after the lifetime begins, the robot moves to the left regardless of whether a circle or a
diamond is present in its environment. Later in its lifetime the robot’s trajectory is affected by the
shape of the object. If a circle is present, it doubles back, moving to the right at the appropriate
speed to make contact with the object. Conversely, if a diamond is present, the robot continues its
leftward motion, or comes to a halt at a good distance, thus producing the desired behaviour.

When a diamond is dropped to the far right of the robot, it avoids it by moving rapidly to the
right, overshooting the object and avoiding it on its right-hand side.

Figure 7.12 shows the position of the robot plotted against time in two trials - firstly where
a circle is falling and secondly where a diamond is falling. Here the circle and diamond fall at
the same position and produce different behaviour in the robot. The trajectories are very similar
for the first 36 seconds of simulated time, but they diverge after this moment. The 35-37 second

region appears to be a critical moment for the robot.

Dependence on object diameter The details of the design of the robot and environment are de-
signed to be a replication of Beer’s (1996) discrimination experiments. These details include a
difference in the maximum width of the circle and the diamond, since the former has a diameter
of 30, whereas the latter has a side length of 30.
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Figure 7.11: The controller of the fittest individual in the last generation of the best evolutionary
run. This controller contains a very small number of neurons compared with other solutions to the
same problem which typically contain 14 (Beer, 1996). Solid lines represent positive links and

dotted lines represent negative links. A thicker line represents a stronger link.
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Figure 7.12: The horizontal position of the robot when either a circle or a diamond is present. The
horizontal line shows the position of the object (circle or diamond). The behaviour is identical
until a crucial point at around 30 seconds when the two situations diverge.

The robot performs ‘scanning’ behaviour with the initial leftward movement, and this together
with the observations of Beer in examining CTRNNs engaging in the identical task (Beer, 2004)
led to the hypothesis that the maximum width of the object may be a determining factor in the
behaviour of the robot. This hypothesis was tested using the following two experiments.

First, the robot’s behaviour was examined when it encountered circles of radius 18.4 units,
giving them the same width as the maximum width of the diamond in the original experiment.
Over 10000 trials, the mean fitness (where fitness was awarded for catching circles) was 7% of the
maximum, meaning that the robot consistently avoided the large circles.

Second, the behaviour with smaller diamonds was studied. Diamonds with sides of length 18.4
were used, giving them the same maximum width as the width of the circle in the original experi-
ment. Over 10000 trials, the mean fitness (where fitness was awarded for avoiding diamonds) was
30% of the maximum, meaning that the robot consistently caught the small diamonds. The higher
fitness here is due to the fact that any slight imperfection in the catching behavior was rewarded,
whereas if the robot avoids a circle by more than the maximal margin it receives a score of zero.

The initial hypothesis appears to be supported by these observations. It appears that the maxi-
mum width of the object is crucial to the discrimination process in this robot.

Critical period Observation of the behaviour and controller structure of the robot led to the
hypothesis that there is a critical period early in its life that determines the behaviour it performs.
This hypothesis was tested by presenting the robot with an object that abruptly changes shape
during its lifetime, either from a circle to a diamond or vice-versa (this experiment was inspired
by (Beer, 2004)). The time at which the switch occurred was varied, and the catching or avoiding

performance was measured. The results are shown in figure 7.13, which shows that after a certain
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Figure 7.13: The mean fitness (over 10000 random trials) of the robot when the falling object is
‘switched’ part-way through its descent. The robot is awarded fitness for catching objects that
begin as circles (later changing into diamonds) and for avoiding those that begin as diamonds (and
become circles). The horizontal line indicates the mean fitness over 10000 random trials of the
robot when no swap takes place. This graph shows that there is a critical development period for
this robot.

amount of time the development of the robot is fixed into a specific trajectory even if the shape
presented to it is changed.

Potential neural correlates of this behavioural observation are discussed in the next section.

7.2.2 Neural mechanisms

The robot has seven sensor neurons (numbered O to 6), and grows several other neurons during
its lifetime, a maximum of two of which are functionally involved in the discrimination behaviour
(neurons 7 and 8).

The robot’s strategy is executed as follows: depending on the conditions leading up to the
critical point (35-37secs) the robot becomes either a ‘move-left’ robot or a ‘catch’ robot. After

this critical phase its behaviour is fixed.

‘Default’ behaviour: ~When it encounters no objects during its lifetime, the robot’s ‘default’ be-
haviour is to move left for the first 30 simulated seconds, and then to move right for the remaining
60, ending up a little way to the right of its starting position. This behaviour is generated by two
newly-grown neurons linked from various sensor neurons.

After 17 seconds neuron 7 is grown. Its parent neuron is neuron 6, which corresponds to the
furthest right sensor. As shown in figure 7.14 (Left), this neuron grows into the influence region
of motor 1. A positive link from neuron 6 to neuron 7 and a near-zero bias means that the firing

rate of neuron 7 is high, and the motor is active, causing the robot to move leftwards.
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Figure 7.14: The robot’s controller after 17 seconds (Left) and 31.5 seconds (Right) when neither

a circle nor a diamond is present in the environment.

After 30 seconds, neuron 8 is grown into the influence region of motor 0. Its parent is neuron
4, and the link is a negative one. Neuron 8 has a positive bias, and this means its firing rate is at
a medium level. Now both motors are active, but the robot is still moving slowly leftward since
motor 1 is more strongly active.

Very soon after this (at 31.5 seconds), a new link is formed from neuron 4 to neuron 7. This is
a negative link which quickly reduces the cell potential and hence the firing rate of neuron 7. This
in turn reduces the activation of motor 1 and the robot moves back towards the right for the rest of

its lifetime. This situation is shown in figure 7.14 (Right).

When a circle is present: When the robot encounters a circle, its behaviour is similar to that
described above, except that the growth of neuron 8 is delayed until the critical region between 35
and 37 seconds. Neuron 8 still grows into the region of influence for motor 0, which, combined
with a negative link from neuron 4 to neuron 7, causes the robot to move right and catch the
circle. A further negative link from neuron 1 to neuron 7 strengthens this effect. The exact timings
of growth and the firing rates of the new neurons determine the speed of rightward movement,
causing the robot’s trajectory to coincide with that of the circle when it reaches the bottom of the
environment.

This behaviour is qualitatively similar at all of the different positions from which the circle

may be dropped into the environment.

When a diamond is present: When the robot encounters a diamond, the behaviour is a little dif-
ferent. During the critical region, instead of growing a new neuron from neuron 4, the direction of
growth is such that neuron 4 ‘tries’ to grow a neuron at the same location as neuron 7, and instead
a negative link is formed to this neuron. This, along with a further negative link from neuron 1 as
in the previous section, slows the leftward movement (halting it in some circumstances), but since
the region of influence of motor 0 does not contain any neurons, the robot does not move back to
the right, but stays on the left of the object, avoiding it.
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Figure 7.15: The potential direction in which a neuron will grow from neuron 4, if a neuron grows
at this time. During the critical period, 35-37 seconds, the values are similar for the situation when

a circle is present and when a diamond is present.

When the diamond falls at more than 30 units to the right of the robot, its behaviour is different.
In these cases it avoids the diamond by passing underneath it and finishing to its right. This occurs
because growth of neuron 7 is suppressed, preventing the initial leftward movement, and so when
neuron 8 grows the robot’s rightward movement carries it comfortably beyond the diamond.

7.2.3 Morphogenetic mechanisms

The crucial factor in determining the behaviour of the robot is what angle is chosen for the growth
of neuron 8 from neuron 4. When a circle is present, this neuron is grown at an angle of -0.14
radians (slightly above the horizontal, towards the influence region of motor 0), whereas when a
diamond is present it grows at 0.27 radians (below the horizontal, towards neuron 7 in the influence
region of motor 1).

Figure 7.15 shows that the potential direction in which any neuron will be grown from neuron
4 is very similar in both cases during the crucial period. The variation in actual direction is caused
by a slight difference in the timing of growth. This is controlled by the ‘growth sum’ variable,
whose value in the circle and diamond cases is shown in figure 7.16.

Thus the method that evolution has found to differentiate between the two shapes is to allow
the longer time of exposure to sensory input that is experienced when a diamond is present (due
to its larger diameter) to cause a delay in the growth of a neuron. This delay means that the angle
of growth is different, and the different location of the resulting neuron produces the observed
behaviour.

The specific mechanism works by using the link between sensory input and cell potential.

Figure 7.17 shows the cell potential y of neuron 4 in the cases when a circle or a diamond is
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Figure 7.16: The growth sum of neuron 4 over the robot’s lifetime. When the growth sum reaches
1, anew neuron or link is grown, and the growth sum is reset to zero. Note that with a diamond the
crucial 3rd growth event is later than with a circle. This causes the growth direction to be different,

and produces the behaviour described in the text.

present. It shows that the cell potential is at 1.6 (the value produced by this level of sensory input)
for a longer period between 28 and 40 seconds when there is a diamond than when there is a circle.
Figure 7.18 shows the amount by which the growth sum of neuron 4 is increased at each time step,
for some values of its cell potential. The important values of cell potential are O (the cell potential
is normally at 0) and 1.6 (during the critical period 28-40 seconds the cell potential jumps to 1.6).
By looking up these values on figure 7.18 it may be seen that the increment when cell potential is
0 is 0.1 and when cell potential is 1.6 it is -0.02. Thus, the increase in growth sum is slowed by a
longer period with cell potential at 1.6, which is caused by the longer sensory exposure associated
with the presence of a diamond.

The development in the special case when a diamond falls to the far right of the robot’s start
position is slightly different. In this case the link from neuron 6 to neuron 7 is negative rather
than positive, suppressing the activation of neuron 7, and preventing motor 1 from being activated.
Now when neuron 8 is grown the activation of motor 0 is sufficient to move the robot quickly to
the right, avoiding the object by passing under it. The difference in weight is again controlled by
the timing of neuron growth - this time that of neuron 7. The weight of a new connection from
neuron 6 is similar at any given moment for the situation when a diamond or circle are dropped at
the same position, but in the diamond case the growth of neuron 7 is delayed until 30.6 seconds
(when the weight is -0.67) whereas in the circle case it grows after 17.3 seconds (when the weight
is 2.75).
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Figure 7.17: The cell potential of neuron 4 over the robot’s lifetime when either a circle or a

diamond is present in the environment.
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Figure 7.18: A function defined by the genotype giving the amount by which neuron 4’s growth
sum (the value that triggers new neuron growth when it reaches a threshold) is increased at a time
step, against the cell potential of neuron 4. The values shown are for time fixed at 0, but in fact

they are the same for all times.
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7.2.4 Conclusions

The description above is dominated by events where neurons and synapses grow, rather than by the
interactions of neuron activations and inter-neuron dynamics. The developmental system, which
was conceived as a means of generating a CTRNN-like dynamical system that would control the
robot, is actually being used as a direct control mechanism.

This result emphasises the tendency of evolution to use the most immediate, direct means
of obtaining fitness available. If developmental systems are to be produced which operate as
generators of lower-level dynamical systems (and gain the potential benefits of these two-tier
systems), ways must be found either of preventing the developmental process from taking part in
direct control, or of encouraging development to produce useful neural structures that will perform
the control function more effectively that the developmental system itself.

It is interesting to note in the analysis that a crucial interaction in the production of the required
behaviour is the effect of a kind of regulatory gene - the growth increment - on the action other
genes which control the timing of growth. The growth sum is regulated by suppression of the
growth increment in order to control the timing of the growth of a neuron. It has been observed
that regulatory genes often have highly influential effects in developmental systems (Gould, 1977),

and in this situation that appears to be the case.

7.3 Discussion

The controllers described in this chapter were designed to explore the potential benefits of de-
velopment for designing useful robots and for increasing our understanding of the interactions
between evolutionary and developmental processes. Since they combine many of the factors be-
lieved to be pivotal in developmental mechanisms in natural systems, such as spatial separation,
chemical gradients, a single genotype for all neurons, scalability and growth in complexity over
time, and since they have been shown to be amenable to evolution of successful behaviour in some
benchmark experiments, they may prove useful in future research.

None of the tasks looked at here offer any real advantage to controllers which allow long-
term change, so it might be expected that the additional complexity of developmental controllers
would put them at a disadvantage, and some difficulty was encountered, but it was indeed shown
to be possible to evolve the chemical-guided growth controllers to perform standard behaviours
successfully. Even in the task which presented the most difficulty for the evolutionary process, the
multiple discrimination task, when successful, the networks did find a very good solution which
was subtle and effective and used only a small number of neurons.

After a description of some of the phenomena observed in section 7.3.1, sections 7.3.2, 7.3.3
and 7.3.4 look into some of the reasons for the difficulty encountered in the more complex exper-

iments, and some of the lessons that have been learned.

7.3.1 Observations

A number of interesting interactions and dynamics arose in the evolved solutions to the tasks

described above. These fall into several categories:
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Default paths In nature developmental processes are often understood by describing a ‘default’
path which development will follow unless disturbed by a perturbation. For example, in humans

it is widely believed that,

“Femaleness results from the absence of any masculinizing genetic factor or hormone
acting during the critical period of differentiation.” (Sizonenko, 2003)

Of course, this kind of situation may only be spoken of informally since the definitions of
words like ‘disturbed’ and ‘perturbation’ in a developmental context are problematic (Oyama,
2000) (it is difficult to say from what the process has been disturbed).

Similarly to these natural situations, it was found that when no object was present in the en-
vironment, the development of the single-presentation discriminating robot continued to perform
a ‘default’ behaviour similar in character to that performed in response to a circle. So it might be
said that the presence of a diamond in the environment perturbed the default behaviour and pushed
the robot into an alternative dynamics, causing it to avoid the object.

Chemical gradients The use of chemical gradients in the model provided the possibility of mod-
ular neural structures emerging, including collections of similar neurons in similar areas, and
repeated patterns of neurons in different areas of the controller. Such phenomena were not fre-
quently observed in the work described here, but when the chemical gradients were altered to be
symmetrical, symmetrical neural structures were observed.

It is likely, if the shapes of chemical gradients themselves were under genetic control, and
repeated patterns were allowed, that many more modular neural structures would be observed.
This would realise one of the predicted advantages of using developmental over more traditional
ones: modularity is expected to be a necessary property of controllers capable of highly complex

behaviours.

Regulation of neuron growth The development of controllers in the experiments described did
stabilise over time, and in some cases the ‘energy’ system of the neurons, loosely inspired by Nerve
Growth Factor, was involved in that stabilisation, but some of the other dynamics made possible
by regulation of neuron growth and differentiation are not possible in the system as described.

There is significant potential for extending the exploration of this area in future work. By
continuing the analogy with Nerve Growth Factor in the model, allowing neurons to affect the
development and growth of nearby neurons, many interesting developmental dynamics might be
generated. For example, in a controller composed of two main types of neuron, if neurons were
to emit chemicals which tended to cause nearby neurons to turn into the other type, a kind of grid
could be generated, with alternating neuron types. A structure like this could be useful for many
different tasks, including visual or auditory signal-processing. By allowing many different neuron
types and feedback loops of chemical influence, it is possible that self-organising dynamics might
be generated which produced complex and organised neuron structures suitable for a variety of
different tasks.

Specialisation A potential advantage of the use of developmental controllers over CTRNNS is
that development allows the robot to specialise according to the environment in which it finds it-
self. Of course, in the tasks studied there is no real need for specialisation, but it did occur in some

cases. For example, as shown in figure 7.19 the same robot (in this case in the single-presentation
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Figure 7.19: The controller structures grown by a single robot under different environmental con-
ditions. The two structures at the top show the controller when circles are dropped at different
horizontal positions. The two at the bottom show what happens when diamonds are dropped. Cir-
cles must be caught and diamonds avoided. Sensor neurons (with which the controller is seeded

at the beginning of a lifetime) appear on the left, and motor neurons on the right.

discrimination task) developed different controller structures depending on the environmental con-
ditions. The behaviours exhibited by this robot are shown in figure 7.20.

While the tendency to specialise may have negatively impacted the performance of robots
in this simple task (due to problems with consistency), it seems likely that this feature will be

extremely useful when tackling more difficult and complex tasks.

Irreversibility As discussed in the previous section, the specialising behaviour of the analysed
agent involved the selection of a particular path of dynamics, which then stabilised. Since many
of the changes allowed in the developmental process in these controllers were irreversible, it is
difficult for them to instantiate complex dynamics such as rhythmic or self-organising systems
through the developmental system.

An interesting future extension of this work would be to allow the developmental processes
to be reversed (allowing the death of neurons and synapses). This might allow for more flexible
dynamics, and might provide a way for controllers to escape from over-specialised dynamics such

as those which led the analysed controller to become fixed in one particular behaviour pattern.
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Figure 7.20: The behaviour of the robot with the controller illustrated in figure 7.19. The two

paths at the top occur when circles are dropped at different horizontal positions. The two at the

bottom show what happens when diamonds are dropped. The horizontal line shows the horizontal

position of the falling object over time. The other line shows the position of the robot.
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7.3.2 A two-tier process

The difference between performing a task once per lifetime and performing it in a stable way
several times turned out to be much larger than expected. In a fixed-architecture controller, these
situations are virtually identical (in a situation such as this where neurons had relatively small time
constants), but in a developing controller they are completely different.

Performing a task once is a single-tier process of reacting to sensor input in a certain way.
In contrast, performing a behaviour in a stable manner over several presentations is a two-tier
process: initial development that stabilises, and produces the behaviour tier, which instantiates the
behaviour itself. These two tiers occur over different timescales, and direct selection is applied to
the lower behaviour tier, with the upper tier being indirectly selected only.

In order to investigate this problem further, evolution was used to evolve a simplified form of
orientation behaviour: simply moving left when an object appears on the left and right when it
appears on the right. It was found that even this behaviour was difficult to achieve in the system,
and a correlation-based fitness function similar to that described in section 6.2.6 was required. In
contrast, a hand-designed developmental controller for this task was designed quite easily which
grew a very simple neural network at the beginning of the robot’s lifetime.

Thus, the problem is not with the possibility of generating suitable controllers within the sys-
tem, but with finding a smooth path towards those controllers. Evolution tends to find the simplest
solution available, and a single-tier process is much simpler than a two-tier one. Using the ‘devel-
opmental’ (as intended) process as a form of direct control appears to be an isolated and attractive
local optimum in the fitness landscape. There appears to be no smooth evolutionary pathway link-
ing the one-tier approach to the two-tier one: this is unsurprising since they are of very different
characters dynamically.

In real animals this ‘bootstrapping’ problem is not encountered since the development pro-
cess is not an arbitrary system within which evolution must work, but an already-working system
which must merely be adapted by evolution. In the multiple discrimination task the problem was
overcome primarily by adding symmetry (this is discussed in section 7.3.4) and by introducing a
strongly tailored fitness function. This fitness function essentially only rewarded behaviour that
truly reflected the required solution, forcing evolution to search randomly until such a behaviour
was found, before optimising that behaviour. As will be seen in part two and beyond, the choice

of fitness function is crucial in overcoming the difficulties outlined in this section.

7.3.3 Navigating a rugged landscape

In addition to the inherent problems with a developmental system, some specific design features of
the chemical-guided controllers produced important effects, including a seemingly rugged fitness
landscape. Reducing the complexity of the mapping between genotype and behaviour by ‘refus-
ing’ to use the potential two-tier process and reducing it to one tier allowed evolution to mitigate
the effects of the instability of solutions in many areas of the fitness landscape.

Small changes in, for example the genotype mapping function which produces the angle of
growth of a new neuron, can cause a radical change in network structure (for example a neuron that
would have been linked to another pre-existing neuron now grows a new one instead) which can

have a corresponding catastrophic effect on the robot’s behaviour. Such catastrophic mutations are
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common in many areas of the landscape, and may account for some of the difficulty experienced
in evolving the required behaviour.

The ruggedness of the fitness landscape described above and the instability of networks un-
der mutation mean that there are few stable paths towards networks of large numbers of highly-
connected neurons. Such structures are rare in the fitness landscape anyway, but it appears they
are also located in isolated spikes, rather than being part of a coherent area of the landscape.

Even the successfully evolved controllers are simple in structure and use small numbers of
neurons.

The success of the more direct genotype mapping function is part of a more general learning
point from this work: that the level of indirection between genotype and phenotype can become
unmanageably large, and in such cases giving the genotype more direct control can be useful.
Developmental systems are likely often to encounter this problem, and careful thought must be
applied to reducing the complexity of the genotype-phenotype relationship to allow successful
evolution.

In addition to increasing evolvability, simplifying the process of mapping from genotype to
phenotype makes it easier to isolate features of the indirect encoding being studied. This is much
more difficult if there are several levels of indirection involved.

The issues discussed above highlight a major learning point from this work: that the specific
choices made in the design of a developmental network are crucial to its successful evolution. This
is a surprising result since it might have been imagined that evolution would find the advantages
and flexibilities inherent in any developmental system and exploit them to produce the required
behaviours. In fact, it seems that with some designs of developmental system, the potential advan-
tages of development are outweighed by the real disadvantages of much greater complexity, and

less easily navigable fitness landscapes.

7.3.4 Generating structure from a blank slate

In the evolution of behaviours and in specific studies into the properties of the chemical-guided
growth controllers, it was found to be surprisingly difficult to evolve useful neural structures, for
example clusters of highly-connected neurons. A large amount of the evolutionary and develop-
mental ‘effort’ seems to go into generating a basic structure of neurons connected in a useful way.
In most neural network models, this basic structure is available ‘for free’ since it is pre-specified.
In the brains of real animals, there is often no lack of raw materials to work with, so this constraint
appears to be unnecessary as well as unhelpful.

The challenge is to make it easy to construct such a structure while still avoiding pre-specification.
One approach is to provide the developmental process with ‘raw material’ in the form of neurons
connected by synapses, but without any genetic input into the specifics of the structure.

A major factor in the eventual successful evolution of the required behaviour was the addition
of symmetry to the controllers. This simple structural constraint actually makes the task signifi-
cantly easier (since the task is symmetrical, that aspect of the problem is essentially solved for the
robot), but it also helps to guide evolution down useful paths.

One of the familiar situations in attempts to evolve multiple discrimination was to find evolu-

tion stuck in a very poor local optimum of simply moving either left or right when either type of
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object was detected. This meant that a proportion of robots were lucky enough to receive a good
score. By constraining the controllers to be symmetrical, it becomes much harder not to react to
the position of the object, which provides a route for evolution to follow towards reacting to its
properties.

In general, it should not be underestimated how important symmetry can be for solving tasks
like this, and the comparison between the symmetrical controllers of Beer (1996) and the asym-
metrical ones described above is not entirely fair for this reason.

The importance of the need for pre-existing structure like connected neurons and symmetry
drives home the point that the specifics of a developmental system are crucial to its evolvability,
and to the forms evolved solutions take.

The next chapter describes how the conclusions above were applied in the design of a second

piece of experimental work.



Chapter 8

Part 2 - Synaptic growth and pruning networks

8.1 Motivation

The system described in part one displays some limitations exposed by the difficulty experienced
in evolving the chosen behaviours. Examination of the populations during evolution leads to the
conclusion that some of that difficulty comes from the fact that the controllers start ‘empty’ (with
few neurons and little pre-specified structure), and require the development process to ‘fill’ them
with useful structure.

This is a bootstrapping problem in that until some kind of useful structure is reliably present
in individuals, evolution is unable to adapt it to perform the required behaviours. In the controllers
of part one any structure that is built is quite sparse and unstable to mutations, so there is lit-
tle opportunity for evolution to modify the development process to optimise and innovate in the
system.

This constraint is not one that is present in natural systems. Often, there is an abundance of
structure to be worked with, and the challenge for development is to order it into useful forms.
As explained in section 3.3, some researchers believe that brains undergo a period of ‘exuberant
growth’ near the beginning of their development, and that the structures generated during that
period are later refined as they develop.

Therefore, a reasonable next step from the work described in part one is to study controllers
that are born with randomly-specified ‘raw material’ structure which may be refined. Controllers
that work in this way are described in section 8.2.2.

Section 4.1.3 outlines some of the potential advantages which may be gained by the use of de-
velopmental controllers for robots. Experiments which explore whether some of these advantages
are indeed gained by the chosen controllers are described in section 8.2.

The ongoing debate in the field of neuroscience between ‘selectionists’ and ‘constructivists’
is described in section 3.3. It concerns whether the development of brain structures takes place
mainly through random exuberant growth and activity-dependent pruning (selectionism) or through
activity-dependent growth and pruning (constructivism). The work described in this chapter has
some relevance to this debate, particularly the experiment described in section 8.2.14, and some

tentative conclusions are drawn in chapter 9.
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The controllers of part 2 were tested in many different environments, and on many different
tasks, and have been shown to be capable of generating successful behaviours in all the areas
studied. This emphasises the potential utility of these controllers as general-purpose controllers
capable of great flexibility. This flexibility means that they offer the potential to be useful in a
large number of different areas involving development, being used to ask and answer questions

about many different aspects of the interactions between development, evolution and behaviour.

8.1.1 From part one to part two

This work involves a model which is different from that used in part one in several ways. The
chemical-guided controller adds a great deal of complexity to the CTRNN model, and this com-
plexity makes it difficult not only to evolve complex behaviours, but also to analyse the behaviour
of the model in meaningful ways. Thus it is desirable to reduce the level of complexity, and to
replace some of it with better understood concepts such as the synaptic plasticity model intro-
duced by Floreano and Mondada (1998). The controllers described in part 2 are simpler and more
accessible to analysis than those described in part 1.

The spatial features of the controller have been removed, being replaced with a set of neurons
that may be connected in any way. This change solves a significant problem found in part one -
that high levels of connectivity were rare since it was difficult for neurons to ‘find’ other neurons
to connect to. In the system described in section 8.2, connections are either on or off, and there
is no need to seek out a neuron to which to connect. This allows for a very highly-connected
network which is more likely to exhibit complex dynamics such as feedback mechanisms and
self-organisation.

The most complex module of the system used in part one is the genotype mapping function.
This introduces a lot of uncertainty, both as to the role it plays in the evolutionary process, and
in terms of the significance it has for the difficulty of evolving the model. Although various
alternative mappings were tried, and some insight was gained into what kinds of mapping are
suitable, it was decided that direct specification of the required values in the genotype for the
model in part two would remove one level of indirection from the design and analysis processes,
which might be beneficial. The controllers of part 2 have a relatively direct genotype to phenotype
mapping while preserving the indirection in the area of interest: development from an unordered
towards an ordered state. This makes evolution easier, and focusses analysis on the phenomena of
interest.

Due to the clear utility of imposing a symmetrical structure on the controllers in part one, the
controllers designed for part two were designed from the beginning to be symmetrical.

In addition to the change to a new controller design, part two uses tasks of a different nature
from those studied in part one. In order for the potential benefits of developmental controllers to
be explored, the environment in which a robot acts must be complex enough to pose challenges
which require adaptation and absorption of environmental information. Furthermore, the abilities
of the robot itself must be complex and flexible enough to allow for different classes of action:
in particular, it was felt that the one-dimensional movement of robots performing the orientation
and discrimination tasks did not allow for enough possible outcomes to satisfy the need for several

different classes of outcome. Thus, a two-dimensional environment is used in part two, which the
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robot may explore and in which it may act with greater freedom.

The two controller types may be characterised as having certain advantages and disadvantages.
The advantages of the chemical guided growth controllers are the large number of ways in which
their design is inspired by real brains (such as the use of spatial location, growth from a small
to a large network, the neuron regulation loosely inspired by Nerve Growth Factor, and a single
genotype for all neurons) and their potential scalability to large numbers of neurons without a
corresponding increase in genotype length. Their disadvantages relate to the difficulty found in
evolving them to perform certain tasks, the uncertainty about the influence of different types of
genotype mapping function, the irreversibility of many of the changes which occur during devel-
opment, and the need to build complex dynamics from an initially very sparse system.

The disadvantages of the controllers of part 2 are that they do not share the scalability of the
first controllers, requiring more genetically-controlled parameters for each neuron added, and the
removal of several biologically-inspired features such as spatial locations and growth from a small
to a large network. The advantages of these controllers are that they may be evolved successfully
to perform many behaviours, they represent a simpler extension to CTRNNSs (allowing for more
complete analysis and introducing fewer assumptions and artefacts into the experiments) and,
inspired by the situation in developing animals, they allow the adaptation during development of
a complex system of dynamics from a less-ordered to a more-ordered state, rather than building
complex dynamics from an empty controller. The experiments described in this chapter were
performed with a relatively large simulation time step, making them inaccurate simulations of
true CTRNNs. However, they retain useful properties of CTRNNS s such as being smooth complex
dynamical systems which may be shaped by the evolutionary process.

8.1.2 Comparison between controller types

Much of the work in part two involves exploring the open questions outlined in section 4.2 about
the kinds of behaviour that may be generated by developmental controllers. In order to explore
these questions, three different controller types are evolved using identical environments and evo-
lutionary algorithms and the resulting evolved robots are studied.

The three controller types which are studied are CTRNN controllers with weighted inputs
(‘fixed’ controllers), CTRNN controllers with plastic learning rules on the synapses (‘plastic’ con-
trollers) and a new type of controller which is based on a CTRNN, with plastic synapses and addi-
tional rules for the growth and death of synapses (‘growth and pruning’ controllers). Both plastic
and growth and pruning controllers have the explicit capacity for two-tier, structural change, but
the growth and pruning controllers are capable of more radical changes in structure.

In all cases, the large simulation time step used means that the dynamics of these controllers
do not accurately match those of true CTRNNs. This does not affect their useful properties of
being smooth complex dynamical systems, shaped by the evolutionary process, and generally
exhibiting short-term dynamics (relative to the longer-term changes seen in the plastic and growth
and pruning controllers).

All of the controllers studied have the same number of neurons, which means that the more
complex controllers have larger numbers of genetically-controlled parameters than the less com-

plex ones. In this sense the comparison is thus ‘unfair’: more complex controllers may be neces-
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sary for good performance of complex tasks. However, this goes to the heart of the question being
asked: is the addition of this very specific kind of extra complexity beneficial for evolving better
controllers for complex tasks?

In one experiment, larger fixed controllers with longer time constants were used, to allow for a
more ‘fair’ comparison in order to address the specific question of whether particular mechanisms,
either explicitly developmental or not, tend to produce more robust controllers through evolution.

All of the evolutionary runs were performed with identical mutation systems, as described in
section 8.2.3, which might unfairly bias evolution towards one type of controller. However, the
mutation rates have been tuned to produce good results for all the controllers, and in general when
mutations rates are reasonable, this tends to affect mutation speed rather than the final fitness, and
since most runs were left for long enough for a reasonable amount of confidence that the maximum

fitness had been achieved, this is unlikely to have a significant effect on the final outcome.

8.2 Methods

The previous section describes the reasons behind the choices made in the design of the controllers

and environments used in part two. This section describes their design in detail.

8.2.1 Robot and environment

The tasks used in part two are based in a two-dimensional simulated environment and involve
controlling a wheeled robot.
The robot is circular, and navigates using two motors driving wheels on either side. Its direc-

tion is calculated as follows:

Ao r(Fl_Fr)
0 = T (8.1)

where 6 is the angle in radians in which the robot is facing, r € [3 : 7] is the radius of the robot
(randomly chosen at the beginning of each lifetime), and F; and F, € [0 : 0.5] are the forces exerted

by each motor (proportional to the motor activation). The formula for calculating F; and F,. follows:

F = 05 Zn:wiyi (8.2)
i=0
where F is either F; or F,, the w; are the weights of the synapses entering the motor and the y; are
the firing rates of the neurons or activations of sensors from which those synapses are connected.
At each time step uniformly distributed noise in [—0.05 : 0.05] is added to F and it is clipped to be
within [0 : 0.5].

Its speed is calculated as follows:

s = —09s+(F+F) (8.3)

These values are calculated using Euler integration with an integration step of 0.5.

The robot has several different types of sensor that were used in different experiments.
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Figure 8.1: A single directional goal sensor. The sensor points at an angle of 31t/8 from the robot’s
direction of facing, and its activity depends on the location of the goal. If the goal is close and
is placed in the direction of facing of the sensor, the activation is high. If it is far away or is in a
different direction, the activation is low.

A directional goal sensor is illustrated in figure 8.1. When the robot has these sensors, it has
two of them, pointing in directions _%“ and %’” relative to the direction of facing of the robot.
The activity of one of these sensors is inversely proportional both to the angular distance between
the sensor’s direction and the direction to the goal, and the distance of the goal from the robot.

Activation is calculated as follows:

a = ang.dist (8.4)

=S

where ang = l—ni/2 and dist = 1— (8.5)

where A is the absolute angular difference between the direction of facing of the sensor and the
line between the sensor and the goal (clipped to be < %), L = 200 is the range of the sensor, and D
is the Euclidean distance between the sensor and the goal (clipped to be < L). It should be noted
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Figure 8.2: The robot’s ray distance sensors. Activation of each sensor is inversely proportional

to the distance to the first point of intersection of a ray with an object in the environment.

that these sensors were only used in the phototaxis experiments, and were not present in other
experiments.

Distance sensors similar to those used in part one (section 6.2.1) were used, whose activation
is proportional to how close to the robot the sensor beam is intersected. The formula for activation

of one of these sensors follows:

d
S = 10<1_Z> (8.6)

where d is the distance to the closest point of intersection of an object with this sensor, clipped to
be < L and L is the length of the sensor, equal to either 100 or 200. Thus, S € [0 : 10].

Also available are signal sensors, which have a constant activation of 1.0, except when the
signal is turned on, when they have a constant activation of 9.0.

All sensor activations are subject to uniformly distributed noise in [—1 : 1] and are clipped to
be within [0 : 10].

The environment contains structures such as corridor walls that are formed of lines that may
be detected by ray distance sensors, and that cause a collision if one of the four compass points
on the robot’s circular body crosses these lines. If such a collision occurs, the robot’s velocity is

altered as follows:
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Figure 8.3: If one of the compass points on the agent’s body collides with a wall it receives an
impulse which pushes it away at half of its velocity in the relevant dimension away from the point
of collision.

vy = 0.5|v,| if the collision is on the left

vy = —0.5|v,| if the collision is on the right 87
vy = 0.5|vy| if the collision is on the bottom

vy = —0.5|vy| if the collision is on the top

where v, and vy, are the robot’s speed in the horizontal and vertical directions respectively.
This system offers rudimentary collision detection that works reasonably well in practice with-

out costing a great deal in computational complexity. It is illustrated in figure 8.3.

8.2.2 Controller

The ‘growth and pruning’ controller is designed to satisfy the motivations outlined in section 8.1.
As in part one this controller is an extension of the CTRNN design to allow structural change to
occur during the lifetime of the robot.

A slightly different network structure was used with the difference from part one that sensors
and motors are seen as separate nodes in the network, with weighted synapses connecting them
to and from the neurons. This allows each sensor to influence more than one neuron, and each
neuron to be influenced by more than one sensor. The equation for the activation of a neuron is a

slight variation on that given in equation 5.1:

T = —yit Y Wiz (8.8)
J



cnaplter o. rart <z -oynapltic growlin dna pruning neiworks o0

where here the z; refer to the firing rates of neurons connected to neuron i and the activations of
sensors connected to this neuron by weighted inputs. }; denotes the sum over all neurons and
sensors j connected to neuron i, y; € [—8: 8] is the cell potential, T; € [1 : 2] the time constant, and
wiji € [=5:5] is the weight of the connection from neuron or sensor j to neuron i. When z; refers
to a neuron it is calculated as shown in equation 5.2. When z; in equation 8.8 refers to a sensor it
equals the activation of that sensor divided by 10.

These values are calculated using Euler integration with an integration step of 0.5. Since a
CTRNN simulated using this integration step diverges quickly from the behaviour of one with a
smaller integration step, the CTRNNs described here should be regarded as dynamical systems
under genetic control, rather than accurate simulations of CTRNN dynamics. Experiments were
performed with smaller integration steps, and the results were found to be very similar to those
performed here. This integration step was chosen due to the time constraints involved in running
large numbers of repetitions of experiments under many different sets of conditions.

At each step the change in neuron cell potential is subject to uniform noise in [—0.01 : 0.01].

In part two, following from the benefits of symmetric controllers found in part one, the con-
trollers are constrained to be symmetric. This constraint applies to the genetically-set properties
of the neurons and synapses, but the development process is free to follow paths leading to non-
symmetrical configurations (and, since sensory input and noise are rarely symmetrical, it often
does).

Activations and firing rates of the neurons in the controllers change according to the above
equation. In addition to the processes of the CTRNN-based model, further processes act, produc-
ing weight change and growth and death of synapses. In some cases the network is initialised with
only some of its synapses alive.

The networks used contain 6 fully interconnected neurons, with several input sensor units fully
connected to the neurons and two output motor units fully connected from the neurons. The term
“fully connected’ means that potential synapses, either living or dead, exist between all the units.

Dead synapses do not pass any activation from the presynaptic to the postsynaptic neuron.

Weight change The synaptic weights in the neural network change according to the following

rule:

w = o(Ax+By+Cxy) (8.9)

where A, B and C are genetically-set values, x is the firing rate of the presynaptic neuron, y is
the firing rate of the postsynaptic neuron, and o is a directional damping factor (Di Paolo, 2003)

defined as follows:

(8.10)

o = J1ows itw>0
] w8 if w<0

This damping factor constrains the weight to be within [—8 : 8] and tends to produce weight
distributions which are widely spread over the possible range rather than collected at its bound-

aries.
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Synapse growth and death In addition to the A, B and C values mentioned above, each synapse
has 8 genetically-determined values XG1, XG», YG1, YGy, XDy, XD,, YD and Y D, that define
the ranges of pre- and postsynaptic neuron firing rates that cause growth and death. Each of these
values is in the range [-8:8]. Thus, the probability of a given synapse growing between two neurons

(when one is not already present) during a simulated second is:

A ifx€e[XG:XG dyelYG,:YG
P(grow) = x€XGy: XG andy € v Y G (8.11)
0 otherwise
and the probability of a living synapse dying during a second is:
if x € [XD;: XD dye|YD,:YD
paiey — { M X [. 1:XD;]andy € [YD; : YD) 8.12)
0 otherwise

where x and y, as above, are the pre- and postsynaptic neural firing rates respectively. The values A
and u are fixed for the course of each evolutionary run, but were varied between runs to investigate

the utility of synapse growth and death for evolving behaviour.

Network initialisation ~ At the beginning of the robot’s lifetime, the network is initialised in a
state designed to be analogous to the state of a real brain after a ‘period of exuberant growth’ at
the beginning of its lifetime. Thus, initially, each pair of neurons N, N, has a probability of y of
being connected by a synapse N; — N, and a probability of y of being connected by a synapse
N, — Nj. Similarly, each potential link between a sensor input and a neuron and between a neuron
and an motor output has a probability of 7y of actually containing a live synapse. The value of ¥
was fixed within any evolutionary run but was varied in different experiments between 50% and
100%. In the following chapter, evolutionary runs performed with 7y set to 90% are labelled as
‘Growth and Pruning 90’ while runs with 7y set to 100% are labelled as ‘Growth and Pruning 100,
and others are labelled similarly.

All synapses begin with a random weight in the range [—8 : 8]. Therefore, the developmental
process cannot rely on either the existence of any specific synapse or its weight at the beginning of
the robot’s lifetime. Evolution must use the growth and death rules with the weight change rules
to produce the required behaviour.

The experiments involve comparisons with fixed and plastic neural network controllers. The
fixed controllers, which have a maximum of one input per neuron, use the above CTRNN equation,
with fixed weight values and all connections alive. The plastic controllers are identical to the full
growth and pruning controllers except that all synapses are alive and there is no possibility of
growth or death of synapses.

In one experiment 2 further controller types were used, referred to as ‘medium fixed’ and
‘large fixed.” These controllers are similar to the fixed controllers, except consisting of 18 and
28 neurons respectively, instead of 6 (as in the normal fixed controllers), and allowing for longer
time constant ranges. The number of neurons was chosen in order to result in a genotype which
is similar in length to that of the growth and pruning controllers, to allow comparison of different
ways of using a similar-length genotype. The time constants of neurons in these controllers were

given by the following formula:
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t = 10Xlog0(150) (8.13)

where X is a genetically-set value in [0 : 1]. Thus, T € [I : 150] and a randomly chosen value
of X is more likely to produce a small 7 than large, allowing for fine tuning of short time constants
as well as potentially very long time constants. The length of experiments in which this controller
was used was 150 time units, meaning that the temporal range of these controllers was allowed
to span the full lifetime of the robot, as is the case with semi-permanent changes in growth and

pruning controllers such as the growth or death of a synapse.

8.2.3 Genetic algorithm

A generational, asexual genetic algorithm using rank selection with elitism (10% elitist fraction)
on a population size of 30 is used, with fixed-length real-valued genotypes.

Genotypes for the growth and pruning controllers contain values for the bias and time constant
of each neuron as well as 11 values per synapse, encoding the 3 coefficients used in the learning
rule and the 8 range boundaries used in the synapse growth and death rules (see section 8.2.2 for
details). This gives a genotype of length 534.

In fixed controllers genotypes simply encode the bias and time constant of each neuron and
the weight of each connection. This gives a genotype length of 108 for the standard 6-neuron fixed
controllers with, and 560 for the large 28-neurons ones.

In plastic controllers genotypes encode the bias and time constant of each neuron and 3 learn-
ing rule coefficients (all connections are alive in both cases). This gives a genotype length of
300.

Mutations are performed treating the real-valued genotypes as homogeneous vectors. A mu-
tation consists of the addition of a random displacement vector whose direction is uniformly dis-
tributed on the M-dimensional hypersphere and whose magnitude is a Gaussian random variable
with mean O and variance 0.5 (Beer, 1996), followed by a randomisation step where each value

may be randomised between its maximum and minimum values with probability 0.6%.

8.2.4 Phototaxis task

The first task to which these controllers were applied was the phototaxis task. This task involves
a robot with two directional goal sensors. It is required to approach the goal and stay as close as
possible to it.

The robot receives fitness for being close to the goal. The goal is placed at a distance in the
range [80 : 120] away from the robot at a random angle in [0 : 27) at the beginning of its lifetime. If
the robot moves to within 15 units of the goal, the goal is re-placed relative to the robot in the same
way. The trial ends when the time limit, chosen randomly from the range [200 : 400] simulated
seconds, is up.

Fitness is awarded as follows:

T
;= Bos(-w | (1——>dt (8.14)
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Figure 8.4: Phototaxis task: the robot must approach the goal using its two directional goal sensors.

where d is the instantaneous distance between the robot and the goal and D is the initial distance,
and T is the length of the lifetime. The integral is approximated in the simulation using a discrete

sum over all time steps. BO is a bonus score for touching the goal (and causing it to move):

500
BO = T" (8.15)

where 7 is the number of times the robot hit the goal during the lifetime.

m measures the integrated difference between motor activations, encouraging the robot not to

move in spirals (D1 Paolo, 2003).

0.125 T
m = — (m; —m,)dt (8.16)
T Jo
where m is the instantaneous activation of the left motor and m, is that of the right motor. The
integral is approximated in the simulation using a discrete sum over all time steps.

The fitness of the robot for a trial consisting of 5 lifetimes is given by:

F, = 0.5f,+0.5f, (8.17)

where f;, is the mean fitness over 5 lifetimes and f,, is the worst fitness achieved.

This task was evolved for growth and pruning 50, plastic and fixed controllers, as well as the
special growth and pruning 95* controllers explained in section 8.2.12. The values of A and u
(equations 8.11 and 8.12) were both set to 0.2. Each evolutionary run was allowed to proceed for
1000 generations, and 20 evolutionary runs were performed for every controller type.

This experiment is designed to shed light on open question 1 of section 4.2.
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Figure 8.5: Corridor following task: the robot must navigate towards the end of the corridor

without hitting the walls.

8.2.5 Corridor following task

The corridor following task is somewhat more complex than phototaxis but still involves mainly
reactive control. The robot begins its lifetime at the end of a corridor and is required to move along
it, avoiding coming into contact with the walls. The corridor is made up of 3 segments along which
the robot must travel upwards, leftwards and upwards respectively. This scenario is illustrated in
figure 8.5.

For this task the robot is equipped with an array of 6 ray distance sensors equally spaced over
an angle of Z, of length 200. Each corridor segment is of length € [50 : 250] and width € [20 : 40]
chosen randomly, independently for each segment, at the beginning of the robot’s lifetime. The
robot begins its lifetime facing a random direction within [—7 : 7t) of the upward direction at a
position whose x and y co-ordinates are within [—5 : 5] of the point half of the corridor width
above the bottom of the first corridor segment, and half of the corridor width from each side.

If the robot’s circular body comes into contact with the corridor wall it undergoes a collision
as described in section 8.2.1.

Fitness is awarded by setting a series of invisible goals at each corner of the corridor. At the
beginning of the robot’s lifetime a goal (which is not detectable by the robot’s sensors) is placed
at the centre of the corridor on the first corner. The robot is awarded fitness for approaching this
goal, and if it comes within 30 distance units the robot receives a fitness bonus and the goal is
moved to the next corner. The same process is applied to the second corner, and finally the goal is
placed at the end of the corridor, where it stays for the remainder of the robot’s lifetime.

A fitness penalty is applied if the robot hits a corridor wall. Its final fitness is multiplied by the
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following value:

1—-h
= <0 (8.18)

where / is the number of collision events that occurred during the robot’s lifetime, capped to be
<=500. Thus if the robot hits a wall more than 500 times in its lifetime it scores zero, and
otherwise its fitness is reduced for each collision that occurs.

In order to deal with the different dynamics of evolving to approach the first goal verses evolv-
ing to continue from that goal along the corridor, the fitness function is divided into two parts. If
the robot never reaches the first goal, its lifetime lasts for 300 units of time, and its fitness is given
by:

T d
F = 0.0IP/ (1——>dt (8.19)
0 D

where T = 300 is the length of the lifetime, d is the final distance of the robot from the first goal
and D is the initial distance of the robot from the first goal. The integral is approximated in the
simulation using a discrete sum over all time steps.

However, if the robot does reach the first goal, its lifetime lasts for 200 time units from the

moment of reaching that goal, and its fitness is calculated as follows:

F = P(BO—F/t1 (1—%) dt) (8.20)

where #j is the time when the first goal was reached, | = 79+ 200 is the end of the lifetime, d is the
distance of the robot from the current goal, D is the initial distance from the goal when the goal

was last moved, and BO is the bonus fitness for reaching goals:

1
BO = (;?" (8.21)

where n is the number of times the robot reached a goal during the lifetime (including reaching
the first goal), and 7' is the full length of the lifetime, including the time before the first goal was
reached. The integral is approximated in the simulation using a discrete sum over all time steps.

The fitness of the robot over a trial consisting of 4 lifetimes is simply the mean of each of the
4 lifetime fitnesses achieved.

This task was evolved for growth and pruning 90 and 100, plastic and fixed controllers. The
values of A and u (equations 8.11 and 8.12) were both set to 0.2. Each evolutionary run was
allowed to proceed for 1000 generations, and 10 evolutionary runs were performed for every
controller type.

This experiment is designed to shed light on open question 1 of section 4.2.



cnaplter o. rart 2z -oynapltic growlin dna pruning neiworks >4

8.2.6 Predictable change task

As discussed in section 4.1.3, developmental processes may make it easier to design robots that
can adapt to predictable changes in their environment, morphology or required behaviour. This
task requires the robot radically to change its behaviour during its lifetime, and tests whether
developmental controllers may be evolved to undergo such a change successfully.

The task involves following a corridor for the first portion of the robot’s life, and then when
the end of the corridor is reached, the robot must change its behaviour from corridor-following to
begin to approach a goal. In this case (in contrast to the phototaxis task) the robot can only sense
the goal using its ray distance sensors. The goal appears as a small solid block which registers
in the robot’s sensors in the same way as the walls of the corridor. Thus the robot must change
the nature of its behaviour from avoiding walls to approaching blocks when it detects that it has
reached the end of the corridor.

The dimensions of the corridor are the same as in the previous section, but the robot’s lifetime
is extended by 600 time units when it reaches the first goal (i.e. 1| =y + 600 in equation 8.20),
rather than 300 as in that section. When the goal at the top of the last corridor section is reached
(the robot comes with 30 units of it), the goal moves to be within a square block whose side
length is taken from a uniform distribution € [5 : 15]. The block is located with x co-ordinate
€ [—-100 : 100] from the robot’s x co-ordinate and y co-ordinate € [25 : 225] from the robot’s y
co-ordinate (i.e. at least 25 units above the end of the corridor). When this goal is reached, the
walls of the corridor are removed from the environment, and the goal is re-placed with x and y co-
ordinates within [—100 : 100] of the robot’s position, and the corridor walls are removed from the
environment. Each time the goal is reached, it is re-placed in the same way. This task is illustrated
in figure 8.6.

If the robot does not reach the first goal (at the end of the first corridor segment) it receives
fitness as in equation 8.19. If it does reach the goal, its fitness is calculated as in equation 8.20,

using a larger fitness bonus:

2
BO = STO" (8.22)

where n is the number of times the robot reached a goal during the lifetime (including reaching
the first goal), and 7' is the full length of the lifetime, including the time before the first goal was
reached.

The fitness bonus is awarded both for reaching invisible goals within the corridor and for
reaching the visible goals after the end of the corridor is reached. The final fitness of a robot is its
mean fitness over 4 lifetimes.

20 evolutionary runs were performed for the growth and pruning 100 controllers, 20 for the
plastic controllers, and 20 for fixed controllers. The values of A and u (equations 8.11 and 8.12)
were both set to 0.2. Each run consisted of 2000 generations.

One additional set of 20 runs was performed, which featured the growth and pruning con-
trollers, but under selection pressure for change to occur in the controller during the crucial period
when the robot emerges from the end of the corridor (these controllers were labelled growth and
pruning 100*). Fitness was awarded to these robots as follows:
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Figure 8.6: Predictable change task: The diagram on the left shows the robot while it is navigating
along the corridor. The diagram on the right shows the robot approaching the goal. After the first

goal has been found, the corridor walls disappear.

F = CP (BO—I— /[l (1 - %) dt) (8.23)

where all the variables are the same as those in equation 8.20, with the addition of the C, which is
defined as:

changed

C = 05+
total

(8.24)

where changed is the number of synapses which have changed state (from alive to dead or from
dead to alive) between the moment when the robot reaches the second goal and the end of its
lifetime, and total is the number of synapses in the controller of the robot. changed is capped to
be < rotal /2, which means that C € [0 : 1]. The integral is approximated in the simulation using a
discrete sum over all time steps.

These additional runs were performed to investigate whether the additional selection for change
in these controllers can guide evolution toward better solutions, but encouraging it to separate the
roles of synapses to take part in either the corridor following or the phototaxis task, rather than
producing a single unified controller which performs both tasks.

This experiment is designed to shed light on open questions 1, 2, 3 and 4 of section 4.2.
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Figure 8.7: T maze task: The robot must go the end of the corridor and turn either left or right
according to the signal it receives. The signal is active when the centre of the robot is within the

grey area, above 25% of the corridor length and below 75%.

8.2.7 T maze task

The T maze task (introduced by Jakobi (1997)) provides a basis for several more complex tasks. It
is of a higher complexity than phototaxis and corridor following, since it is relatively non-reactive.
The robot begins at the end of a corridor and receives a signal as it moves up the corridor. When
it reaches the top it must turn left or right depending on the signal it received earlier in its lifetime.
Figure 8.7 illustrates this situation.

The corridor dimensions are randomly chosen from uniform distributions. The vertical cor-
ridor is of length € [140 : 160] and width € [25 : 35] and the horizontal corridor is of length
€ [180 : 220] and width € [25 : 35]. The horizontal corridor is centred over the vertical one, so the
left and right sections are of identical length.

The robot is equipped with 6 ray distance sensors of length 100 and two signal sensors for left
and right. If the robot is required to turn left, its left signal sensor is turned on whenever the vertical
co-ordinate of its centre is within 25% and 75% of the height of the vertical corridor. Similarly
when it is required to turn right its right sensor is turned on. The robot needs to remember the
signal it has received and act on it when it reaches the end of the corridor. When the robot reaches
the point 90% of the vertical corridor’s height from its base, it is re-placed at the same vertical
position in the middle of the corridor (with a random offset of [—1 : 1]) at a random orientation
within [—0.2 : 0.2] radians of the vertically-upward direction. This prevents the robot from using
its position or orientation as memory of the signal it received.

The robot has 150 time units in which to approach the goal which is in either the left or right
corridor (depending which way the robot is required to go), in the middle, half of the corridor

width from the end. Fitness is awarded for moving closer to the goal, as follows:
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D—d

where D is the robot’s initial distance from the goal and d is its final distance from the goal (after
150 time units). P is a penalty term for hitting corridor walls, given by equation 8.18.

When the 150 time units are completed, the robot enters a new maze at the starting position.
Each robot encounters 4 such mazes during its lifetime, in one of 4 possible sequences: LRLR,
RLRL, LLRR or RRLL (where L indicates a maze with a left signal where the robot is required
to turn left and R indicates a maze with a right signal where the robot is required to turn right).
Its fitness for a lifetime is the mean of its fitness in each maze, and its overall fitness is the mean
fitness over 4 lifetimes covering each possible sequence.

This task was evolved for growth and pruning 90 and 100, plastic and fixed controllers, as well
as the special growth and pruning 95* controllers explained in section 8.2.12. The values of A and
U (equations 8.11 and 8.12) were both set to 0.2. Each evolutionary run was allowed to proceed
for 2000 generations, and 20 evolutionary runs were performed for every controller type.

This experiment is designed to shed light on open questions 1 and 4 of section 4.2.

8.2.8 Double T maze task

The double T maze is illustrated in figure 8.8. In this task the robot must respond to two different
signals within a maze, taking two turns in the more complex doubly-divided maze based on the
signals it receives to its left and right signal sensors.

At the beginning of the maze the goal is placed at one end of the horizontal corridor segment
(vertically in the middle of the corridor, half of the corridor width from the end). The end it is
placed at matches the signal that will be provided to the robot when it enters the ‘signal active’
zone between 25% and 75% of the vertical corridor height. When the robot reaches 90% of the
corridor height it is replaced at the middle and rotated as described in section 8.2.7. It does not
undergo such a movement at either end of the horizontal corridor.

When the robot comes within 30 units of the goal, it is moved to one of the four end points of
the maze (half the corridor width from the end, in the centre horizontally). The end it is moved
to matches the signal it receives in the ‘signal active’ zone of the horizontal corridor, so, for
example if the robot receives a signal on its right sensor during its journey through the left portion
of the horizontal corridor, it is required to turn right, so the goal is placed at the top of the left
corridor segment. Similarly, if the robot receives a right signal when it is in the right section of the
horizontal corridor, the goal is placed at the bottom end of the right-hand vertical corridor.

Fitness for the navigation of one maze is awarded as follows:

D—d
F = BO+P<—D ) (8.26)

where D is the robot’s initial distance from the goal and d is its final distance from the goal. BO is

the bonus fitness it receives for hitting the first goal:

250
BO = T” (8.27)




cnaplter o. rart 2z -oynapltic growlin dna pruning neiworks >0

Signal active

L

Signal active
.

Figure 8.8: Double T maze task: the robot must navigate a maze taking two turns by following
the signals applied to its left and right signal sensors. The signal in the horizontal corridor is only

applied if the robot takes the correct turn in the vertical corridor.
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where 7 is the number of times it reached the first goal (either zero or one) and 7" = 250 is the
length of time allocated to each maze. P is the penalty for hitting walls as defined in equation 8.18.

The fitness of the robot over a lifetime is the mean of its fitness in each maze, and the final
fitness is the mean of the lifetime fitnesses over four lifetimes each being one of the orderings
(LL,LR,RR,RL), (LR,RR,LL,RL), (RR,LL,LR,RL) or (RL,LL,RR,LR) with LR meaning turn left
then right and the other symbols having the corresponding meanings.

This task was evolved for growth and pruning 90 and 100, plastic and fixed controllers. The
values of A and u (equations 8.11 and 8.12) were both set to 0.2. Each evolutionary run was
allowed to proceed for 1000 generations, and 10 evolutionary runs were performed for every
controller type.

This experiment is designed to shed light on open questions 1, 4 and 5 of section 4.2.

8.2.9 Learning task

The learning task takes place within the T maze scenario, but the robot is expected to navigate
several mazes using only one signal. In the first maze it encounters, a signal is provided to specify
whether it should turn left or right, but it then encounters 3 more mazes in succession in which it
is required to turn in the same direction. No signal is provided in these last 3 mazes, and the robot
is required to remember the original signal received throughout its lifetime. This task dramatically
increases the length of time over which the robot’s memory must operate.

The fitness of the robot in a maze is the same as in section 8.2.7 (equation 8.25), where the
goal is placed in the same position in each maze encountered during a lifetime. The robot’s fitness
for a lifetime is found by taking the mean of its fitness in each of the 4 mazes it encounters, and its
final fitness is taken to be the mean of its fitness over 4 lifetimes: 2 starting with a left signal and
2 with a right signal.

This task was evolved for growth and pruning 90 and 100, plastic and fixed controllers. Each
evolutionary run was allowed to proceed for 2000 generations, and 20 evolutionary runs were
performed for every controller type.

This experiment is designed to shed light on open questions 1, 4 and 5 of section 4.2.

8.2.10 Re-learning task

The re-learning task is identical to the learning task except that the robot is required to change
its behaviour after having performed it several times. It is often found in learning situations that
robots may become ‘stuck’ in a certain behaviour after performing some learning, making them
incapable of adapting to new challenges. This task tests the ability of the developmental robots to
reconfigure themselves to a new situation even after having learned another behaviour and become
settled in it.

The lifetime of the robot in this task consists of eight mazes. In the first maze the robot receives
a signal, which it must remember and apply for that maze and the following three. During the fifth
maze the robot receives another signal (which may or may not be the same as the original one)
and for this and the following three mazes it must remember and apply that signal.

The fitness of a robot for any given maze is the same as in equation 8.25, with the goal placed

in the left or right-hand corridor depending on where the robot is required to go. The lifetime
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Figure 8.9: Flexibility task: the robot must respond to a difference in its environment (a wider
vertical corridor) by changing its behaviour - in this environment the meaning of the signal is
reversed. Here the light-bulb symbol represents the side on which the robot receives a signal, and

the cross represents the location of the goal.

fitness of the robot is the mean over all eight mazes, and the final fitness of the robot is the mean
over four lifetimes, covering the possible sequences LL, RR, LR, RL (where L indicates a maze
with a left signal followed by three mazes with no signal where the robot is required to turn left,
and R indicates a maze with a right signal followed by three mazes with no signal where the robot
is required to turn right).

This task was evolved for growth and pruning 100, plastic and fixed controllers. The values
of A and u (equations 8.11 and 8.12) were both set to 0.2. Each evolutionary run was allowed to
proceed for 2000 generations, and 40 evolutionary runs were performed for every controller type.

This experiment is designed to shed light on open questions 1, 4 and 5 of section 4.2.

8.2.11 Flexibility task

One potential advantage of developmental agents discussed in section 4.1.3 is that they may be
good at dealing with different initial conditions, and altering their behaviour to suit the environ-
ment within which they find themselves.

The flexibility task tests the ability of robots with the developmental controllers to perform
different behaviours depending on the type of environment in which they are placed. This task
takes place within the T maze context, where the robot is required to follow the signal under some
circumstances and do the opposite of the signal in others. The different circumstances depend on
the width of the vertical corridor of the maze.

If the robot finds itself in a vertical corridor whose width is within the normal [25 : 35] range,
it is awarded fitness exactly as in section 8.2.7, being required to turn left when a left signal is
received, and right when a right signal is received. However, if it finds itself in a vertical corridor
whose width is much wider (in the range [95 : 105)), it is awarded fitness for doing the opposite:
turning right when a left signal is received, and left when a right signal is received. This situation
is illustrated in figure 8.9.

During any lifetime, the robot only encounters either normal corridors, or wide corridors,
but never both, since this task is designed to test the development of different behaviours when
different environmental conditions prevail at birth.

The robot encounters four mazes during each lifetime, and its fitness for a lifetime is the mean
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fitness over the four mazes. The robot’s overall fitness is the mean of its fitness in each of the eight
possible sequences of mazes, LRLR, RLRL, LLRR, RRLL, Irlr, rlrl, llrr, rrll where L indicates a
normal corridor width with a left signal, R indicates a normal corridor width with a right signal,
I indicates a wide corridor with a left signal and r indicates a wide corridor with a right signal. R
and L have the goal placed on the same side as the signal and r and 1 have it placed on the opposite
side.

This task was evolved for growth and pruning 90 and 100, plastic and fixed controllers. The
values of A and u (equations 8.11 and 8.12) were both set to 0.2. Each evolutionary run was
allowed to proceed for 2000 generations, and 20 evolutionary runs were performed for every
controller type.

This experiment is designed to shed light on open questions 1, 4 and 6 of section 4.2.

8.2.12 Robustness to disruptions tests

For this section the performance of evolved robots in response to various disruptions is tested
in order to understand whether the developmental controllers are robust to unexpected changes,
as might be expected from the arguments outlined in section 8.1. Several disruptions are applied
across a variety of robots evolved for two of the tasks described in previous sections, on robots with
plastic and fixed controllers as well as growth and pruning 90 controllers and a modified growth
and pruning controller, labelled 95*, which has a 0.95 probability of any synapse being alive at
the beginning of the robot’s lifetime, and an additional factor designed to improve robustness:
in every second each live synapse has a probability of 0.001 of dying spontaneously, and each
dead synapse has the same probability of re-growing spontaneously. This adaptation is designed
to force the controller to be constantly re-adapting itself to maintain the correct behaviour, which
may cause it to be in a constant state of dynamic change which might make it better at adapting
successfully to unexpected disruptions.

No further evolution is involved: robots generated by evolution under normal circumstances
are tested for their performance in altered scenarios.

The disruptions are tested on the best robots evolved in each evolutionary run described in
sections 8.2.4 (phototaxis) and 8.2.7 (T maze). The tests involve testing each robot generated
from each of 10 runs for each task over 100 lifetimes under the altered conditions and finding its
fitness score. The following sections describe the disruptions which are applied.

This experiment is designed to shed light on open questions 1, 4, 7 and 8 of section 4.2.

Overactive left motor

Robots were tested with the ‘overactive left motor’ disruption which meant that their left motor
applied more force for the same level of activation than it applied during evolution. The right
motor was unaffected, so the motion of the robot was governed by the following adapted versions

of the equations in section 8.2.1:

. r(XF—F)
6 5 (8.28)

§ = —095+(XF+F) (8.29)
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This disruption tested the capacity of robots to adapt to a large alteration in their actuation which
modified the character of their motion. It was applied from birth for the entire lifetime of the robot.

The severity of this disruption, denoted by X, was varied, being set at 2, 3 and 4 in different
tests.

Altered angle between sensors

The ‘altered angle between sensors’ disruption involved changing the angles over which the robot’s
sensors were spread either making them closer together, or further apart, keeping their directions
symmetrical.

In the unaltered phototaxis task the two sensors were spread over an angle of 37“, and in the
unaltered T maze task they were spread over 5. In both cases tests were made at angles of 0.3,
0.4m, 0.97 and 7.

This disruption tested the capacity of robots to adapt to a change in their sensory environment
which did not radically alter the character of the response to stimuli (for example, in the phototaxis
task, if the goal was on the left of the robot, the left sensor was still more actively stimulated) but
altered the actual levels of stimulation in a given lifetime significantly, and altered the relationships
between the sensors, making their output more or less correlated depending on whether the angle
has been increased or decreased. This disruption was applied from birth for the entire lifetime of
the robot.

Sensors rotated relative to motors
The ‘sensors rotated relative to motors’ disruption caused the robot’s sensors to be rotated relative
to its direction of facing, while the angle between the sensors remained constant.

In the phototaxis experiments, the robot performed under normal circumstances for 300 units
of time, and for the next 300 time units the sensors began to rotate until at time unit 600 they
had rotated to their full extent. The robot then lived for another 600 units of time, and its fitness
evaluation was based only on its behaviour during the final 300 time units of its life. In the T maze
task the robot’s sensors were rotated at the beginning of its lifetime.

The angles of rotation tested were 0.157%, 0.257 and 0.357 radians, where a value of zero
denotes the sensors in their normal positions.

This disruption tested the ability of robots to adapt to potentially misleading information about
the direction of objects in its environment, and in the case of the phototaxis task, it tested this in a

situation where time was allowed for adaptation to occur.

Sensor inversion

‘Sensor inversion’ refers to the swapping of the robot’s sensors, so that sensors which previously

faced to the left of the robot were changed to face to its right at the same angle, and vice-versa.
This disruption, applied at the moment of birth, tested the ability of the robot to adapt to a

radical shift in the relationships between its sensory experience, its motor output and its behaviour.

8.2.13 Robustness in larger fixed networks
As will be seen in section 9.1.9, the growth and pruning controllers performed well in some of
the robustness tests. In order to investigate further the reasons for this success, a further 20 evo-

Iutionary runs were performed for the T maze task using each of the ‘medium fixed’ and ‘large
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fixed” controllers described in section 8.2.2. The large fixed controllers have a similar number
of genetically-set parameters to the growth and pruning controllers, and the capacity for long
time constants, giving them a similar temporal range. This allows for comparison of the methods
of controller generation without bias being introduced by the introduction of different genotype

lengths or timescales over which they may retain state.

8.2.14 Synapse growth verses death comparison

In order to investigate the relative influences of growth and death, the ability of evolution to pro-
duce fit robots for the phototaxis and T maze tasks under different levels of synaptic growth and
death were performed. The parameters A and u from equations 8.11 and 8.12 were varied over
different evolutionary runs, and the fitness of the best robot from each run was measured. These
trials used growth and pruning 100 controllers.

For each type of controller, 20 evolutionary runs were performed for each of the 25 combina-
tions of possible values of A and u of 0,0.025,0.05,0.075 and 0.1, making a total of 500 runs per
controller, each one for 1000 generations. All members of the last generation of each run were
evaluated accurately (by taking the mean fitness over 100 lifetimes) and the fittest individual from
that generation was selected.

The final fitness score for each combination of A and u was calculated by taking the mean
fitness of the fittest individuals in all 20 of the runs performed for that combination.

This experiment is designed to shed light on open question 9 of section 4.2.

The following chapter details the results of the above experiments and provides analysis and
discussion of these results.



Chapter 9

Part 2 - Results, Analysis and Discussion

9.1 Results

9.1.1 Phototaxis task

All controller types evolved to perform the phototaxis task successfully.

Figure 9.1 shows a summary of the mean of the 20 fitnesses achieved for each controller type,
evaluating the best robot from the last generation of each evolutionary run over 100 lifetimes. The
detailed results are tabulated in table 9.1 and illustrated in figure 9.2. Histograms of these results
are shown in figure 9.3.

The fixed controllers achieved the highest fitness in this task , with plastic controllers doing
well and the two growth and pruning controllers performing less well. However the growth and
pruning controllers do perform phototaxis, turning rapidly towards the goal and approaching it
directly: the lower fitness score is due slower movement, especially near the beginning of the
lifetime.

The Mann-Whitney test shows that there is significant evidence to suggest that the fixed con-
trollers perform better than the plastic (p = 1.7 x 10719), growth and pruning 95% (p = 1.1 x 10~7)
and growth and pruning 50 (p = 1.8 x 10~%) controllers, and that the plastic controllers per-
form better than the growth and pruning 95% (p = 1.5 x 10~!'!) and growth and pruning 90
(p = 3.9 x 1078) controllers. There is no evidence from this test to suggest a difference in perfor-
mance between the two types of growth and pruning controller (p = 0.54).

9.1.2 Corridor following task

All controller types except growth and pruning 90 evolved to perform the corridor following task
successfully in some cases, but some of the runs of each controller type failed to evolve. When
an evolutionary run failed, the robots were often able to navigate the first two corridor sections,
but could not reliably make the final right turn to move up the last vertical section (this outcome
happened in each of the growth and pruning 90 runs). The successful robots move quickly along
each corridor section and make each turn, avoiding contact with the walls.

Figure 9.4 shows a summary of the mean of the 10 fitnesses achieved for each controller type,

evaluating the best robot from the last generation of each evolutionary run over 100 lifetimes. The
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Figure 9.1: Phototaxis task: Each robot from the population at generation 1000 of each of the 20

evolutionary runs performed for growth and pruning 50, growth and pruning 95*, plastic and fixed

controllers was evaluated over 100 lifetimes. The mean fitness of the best performing robot (over

the 100 lifetimes) from each population was taken as the score for that evolutionary run, and the

bars in the figure above show the mean score over 20 evolutionary runs for each type of controller.

Controller Mean Fittest robot

Growth and Pruning 50 322 | 3.00 299 258 3.14 3.17
353 373 271 325 2.64
358 388 285 378 3.83
235 3.69 295 3.09 3.75

Growth and Pruning 95* | 3.09 | 3.22 2.22 3.31 3.19 3.01
307 299 291 337 371
334 263 298 3.02 3.36
224 302 339 313 3.64

Plastic 377 1393 389 3.62 3.69 3.60
386 4.10 385 3.63 3.64
367 360 377 387 3.74
376 392 3.68 3.68 397

Fixed 425 | 432 435 421 445 450
427 394 425 442 4.17
411 443 426 4.00 4.12
4.00 423 428 451 4.19

Table 9.1: Phototaxis task: The highest fitnesses achieved using different controller types. Each

experiment was run 20 times, and the mean fitness over 100 lifetimes of the best individual from

generation 1000 of each of the runs is shown in the right column, with the mean of these values

shown to their left.
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Figure 9.2: Phototaxis task: Fitnesses of the fittest robot from generation 1000 of each of the 20

evolutionary runs performed with each controller type. The scores are sorted in descending order

to aid comparison. Exact values are shown in table 9.1.
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CIFixed |

Figure 9.3: Phototaxis task: Histograms of the fitness scores shown in table 9.1. Where a column

is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean fitness

was € (0.55:0.6].
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Figure 9.4: Corridor following task: Each robot from the population at generation 1000 of each
of the 10 evolutionary runs performed for growth and pruning 90, growth and pruning 100, plastic
and fixed controllers was evaluated over 100 lifetimes. The mean fitness of the best performing
robot (over the 100 lifetimes) from each population was taken as the score for that evolutionary
run, and the bars in the figure above show the mean score over 10 evolutionary runs for each type

of controller.

detailed results are tabulated in table 9.2 and illustrated in figure 9.5. Histograms of these results
are shown in figure 9.6.

The Mann-Whitney test shows that there is significant evidence to suggest that the fixed con-
trollers perform better than the growth and pruning 90 ones (p = 0.0028). Due to the high variabil-
ity of the results for other controller types, there is no evidence from this test to suggest differences
between them (growth and pruning 90 vs. plastic p = 0.20, growth and pruning 90 vs. growth and
pruning 100 p = 0.061, growth and pruning 100 vs. plastic p = 0.80, growth and pruning 100 vs.
fixed p = 0.39, plastic vs. fixed p = 0.17).

9.1.3 Predictable change task

All controller types evolved successfully to perform the predictable change task, although the
worst performers in terms of fitness were the growth and pruning controllers when put under
additional selective pressure to undergo change at the time when the behaviour of the robot is
required to change. The best performers were the plastic controllers, followed closely by the fixed
and growth and pruning controllers.

Figure 9.7 shows a summary of the fitnesses achieved for each controller type. Growth and
pruning with selection for change is marked as ‘Growth and Pruning 100*’. The fitnesses shown
are the mean bonus fitness received by the robot (BO in equation 8.22) over 100 lifetimes, since
the final fitness scores are reduced in the situation where there is additional selection for change in
the controller. Bonus fitness is an accurate measure of how well the robot does at this task, since it

is proportional to the number of times it reached a goal during its lifetime. The detailed results are
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Controller Mean Fittest robot

Growth and Pruning 90 0.30 [ 034 021 030 035 0.22
026 030 030 034 0.32

Growth and Pruning 100 | 0.67 | 1.17 0.26 1.08 0.27 0.46
0.51 1.11 1.10 0.39 0.33

Plastic 0.56 | 0.16 0.61 020 0.70 1.25
0.63 0.79 0.55 0.30 045

Fixed 0.80 | 0.70 1.07 056 036 1.26
0.35 130 129 0.74 032

10

Table 9.2: Corridor following task: The highest fitnesses achieved using different controller types.

Each experiment was run 10 times, and the mean fitness over 100 lifetimes of the best individual

from generation 1000 of each of the runs is shown in the right column, with the mean of these

values shown to their left.
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Figure 9.5: Corridor following task: Fitnesses of the fittest robot from generation 1000 of each of

the 10 evolutionary runs performed with each controller type. The scores are sorted in descending

order to aid comparison. Exact values are shown in table 9.2.

o

-
1
PRI NNNNNNNNNNNNNY

T T T T T T T
5 04 045 0s 055 06 0.65 07 075

\@ Growth and Pruning 90 [H Growth and Pruning 100 [l Plastic

[ Fixed|

Figure 9.6: Corridor following task: Histograms of the fitness scores shown in table 9.2. Where a

column is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean
fitness was € (0.55 : 0.6].
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Figure 9.7: Predictable change task: Each robot from the population at generation 2000 of each
of the 20 evolutionary runs performed for growth and pruning with selection for change (‘Growth
and Pruning 100*’), normal growth and pruning, plastic and fixed controllers was evaluated over
100 lifetimes. The mean bonus fitness of the best performing robot (over the 100 lifetimes) from
each population was taken as the score for that evolutionary run, and the bars in the figure above

show the mean score over 20 evolutionary runs for each type of controller.

tabulated in table 9.3 and illustrated in figure 9.8. Histograms of these results are shown in figure
9.9.

The behaviour of the robots was similar in each case, turning towards the top of the first
corridor and navigating along the three corridors avoiding touch walls and turning quickly at each
corner. When the end of the last corridor was reached the robots used a strategy of moving forward
and rotating slowing until a goal was seen when they approached it quite directly, before beginning
to rotate again to find the new goal when the goal was reached. Where performance was less good,
the rotating strategy tended to result in an error where the robot moved around the outside of the
maze, rather than approaching the goal.

Applying the Mann-Whitney test to examine the evidence for a difference between the growth
and pruning controllers with and without selection for change in the controller gives p = 0.02.
This provides evidence that the addition of this selection pressure has a detrimental effect on the
expected final fitness. Applying the same test to compare the data for normal growth and pruning,
plastic and fixed controllers provides no evidence to suggest that their median performances are
different (growth and pruning vs. plastic, p = 0.41, growth and pruning vs. fixed, p = 0.72, plastic
vs. fixed, p = 0.44).

9.1.4 T maze task

The T maze task consistently evolved very successfully for all the controller types except fixed.
The fixed controllers were good at the task when they successfully evolved, but approximately half
of the runs resulted in poorer controllers. The mean fitnesses are illustrated in figure 9.10, while

the results of individual runs are shown in table 9.4 and illustrated in figure 9.11. Histograms of



r>. rart 2 - Kesulls, Andlysis ana pDiscussion  1Uo6

Controller Mean Fittest robot

Growth and Pruning 100* | 1064 | 1405 492 1240 948 1478
1290 1220 990 1938 1160
1330 1302 1140 832 628
1295 658 690 615 622
Growth and Pruning 100 1363 | 2108 1272 1732 1365 742
1532 2125 1788 1318 1782
1370 1108 1238 1182 915
1128 702 1835 1235 778
Plastic 1438 | 1188 692 1410 1165 1472
1410 1335 1848 1995 775
750 1420 1920 1790 1855
1508 758 2082 1778 1610
Fixed 1349 | 1658 1890 1310 1280 1658
1460 1400 1390 970 1365
1612 752 746 742 450
1342 1802 1460 1512 2182

Table 9.3: Predictable change task: The highest bonus fitnesses achieved using different controller
types. Each experiment was run 20 times, and the mean bonus fitness over 100 lifetimes of the
best individual from generation 2000 of each of the runs is shown in the right column, with the
mean of these values shown to their left. Here ‘Growth and Pruning 100*’ indicates robots under
selection for change within the controller, and ‘Growth and Pruning 100’ indicates normal growth

and pruning robots.

2250 —
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1750 4
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1250 4 O A8 Ol | A
1000 7l
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N
<

1A A A 4

L

‘@ Growth and Pruning 100* [] Growth and Pruning 100 [l Plastic [l Fixed‘

Figure 9.8: Predictable change task: Bonus fitnesses of the fittest robot from generation 2000 of
each of the 20 evolutionary runs performed with each controller type. The scores are sorted in

descending order to aid comparison. Exact values are shown in table 9.3.
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Figure 9.9: Predictable change task: Histograms of the fitness scores shown in table 9.3. Where a
column is labelled e.g. 500, it shows how many evolutionary runs resulted in robots whose mean
fitness was € (250 : 500].

Controller Mean Fittest robot

Growth and Pruning 90 0.85 | 0.82 094 0.85 0.88 0.79
0.84 0.81 0.88 0.86 0.84
Growth and Pruning 100 | 0.85 | 0.58 0.87 0.86 0.92 091
091 095 090 0.74 0091

Plastic 0.89 1093 092 0.88 0.84 0.88
095 086 091 090 0.87
Fixed 0.79 |1 096 0.65 064 0.69 0.69

090 0.69 090 0.89 0.93

Table 9.4: T maze task: Comparison of the highest fitnesses achieved in the T maze task using
different controller types. Each experiment was run 10 times, and the mean fitness over 100
lifetimes of the best individual from generation 1000 of each of the runs is shown in the right

column, with the mean of these values shown to their left.

the results are shown in figure 9.12.

The better fixed runs, and all of the runs for other controllers produced robots which con-
sistently navigate the corridor quickly, without collisions with the walls and turn in the required
direction. The poor fixed runs tend to react differently to different signals, usually failing to make
a correct turn in one direction (sometimes simply slowing instead), yet succeeding in the other.

Applying the Mann-Whitney test to examine the evidence for a difference between the growth
and pruning 90 controllers and plastic ones gives p = 0.04. This provides evidence that the plastic
controllers may be expected to perform better than the growth and pruning 90 ones in this task.
Applying the same test to compare the data for growth and pruning 100, plastic and fixed con-
trollers provides no evidence to suggest that their median performances are different (growth and
pruning 100 vs. plastic p = 0.80, growth and pruning 100 vs. fixed p = 0.35, plastic vs. fixed
p = 0.25). This test also provides no evidence to suggest that the growth and pruning 90 con-
trollers are better than the fixed ones (p = 0.80) or that growth and pruning 100 are better than
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Figure 9.10: T maze task: Each robot from the population at generation 1000 of each of the 10
evolutionary runs performed for growth and pruning 90, growth and pruning 100, plastic and fixed
controllers was evaluated over 100 lifetimes. The mean fitness of the best performing robot (over
the 100 lifetimes) from each population was taken as the score for that evolutionary run, and the

bars in the figure above show the mean score over 10 evolutionary runs for each type of controller.
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Figure 9.11: T maze task: Fitnesses of the fittest robot from generation 1000 of each of the 10
evolutionary runs performed with each controller type. The scores are sorted in descending order

to aid comparison. Exact values are shown in table 9.4.
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Figure 9.12: T maze task: Histograms of the fitness scores shown in table 9.4. Where a column is
labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean fitness was
€ (0.55:0.6].

growth and pruning 90 (p = 0.19).

9.1.5 Double T maze task

The double T maze task evolved very successfully for the plastic controllers and growth and prun-
ing 100, and was less successful for the growth and pruning 90 controllers. The fixed controllers
were good at the task when they successfully evolved, but several of the runs resulted in poor
controllers. The mean fitnesses are illustrated in figure 9.13, while the results of individual runs
are shown in table 9.5 and illustrated in figure 9.14. Histograms of the results are shown in figure
9.15.

The better fixed runs, and all of the plastic and growth and pruning 100 runs produced robots
which consistently navigate the maze quickly, without collisions with the walls and turn in the
required direction at both junctions. The poor fixed runs respond correctly to some signals and
appear to ignore others. The growth and pruning 90 controllers behave erratically, performing the
task well in most lifetimes, but occasionally becoming stuck always turning the same way, or not
moving quickly enough along the corridor to reach the end.

The Mann-Whitney test shows that there is strong evidence for a difference in performance
between the growth and pruning 90 controllers and plastic ones (p = 0.0015), between the two
different growth and pruning controllers (p = 7.6 x 107>) but no evidence for a difference between
growth and pruning 100 and plastic (p = 0.85). Applying the same test provides no evidence for
differences between growth and pruning 90 and fixed controllers (p = 0.28), between plastic and

fixed controllers (p = 0.35) or between growth and pruning 100 and fixed (p = 0.22).

9.1.6 Learning task

In this task the plastic and growth and pruning 100 controllers outperformed the growth and prun-
ing 90 and fixed controllers by a large margin. Growth and pruning 90 controllers performed
particularly badly: the low scores were a combination of inconsistent, erratic behaviour, slow
movement and, in some cases, not reacting to the signal in any recognisable way. Some mid and
low-performing fixed controllers appeared to ignore the signal completely, turning left or right

at random. Most of the plastic and growth and pruning 100 controllers performed the task con-
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Figure 9.13: Double T maze task: Each robot from the population at generation 1000 of each of
the 10 evolutionary runs performed for growth and pruning 90 growth and pruning 100, plastic
and fixed controllers was evaluated over 100 lifetimes. The mean fitness of the best performing
robot (over the 100 lifetimes) from each population was taken as the score for that evolutionary
run, and the bars in the figure above show the mean score over 10 evolutionary runs for each type

of controller.

Controller Mean Fittest robot

Growth and Pruning 90 125 | 1.37 123 144 1.19 1.37
1.27 1.14 1.15 1.07 127
Growth and Pruning 100 | 1.71 | 1.75 1.89 131 1.72 1.74
.77 177 173 1.74 1.70

Plastic 165 | 126 179 1.8 1.80 1.71
1.70 1.69 177 175 1.24
Fixed 144 | 1.35 094 192 093 1.32

1.11 153 158 1.83 1.90

Table 9.5: Double T maze task: Comparison of the highest fitnesses achieved in the double T maze
task using different controller types. Each experiment was run 10 times, and the mean fitness over
100 lifetimes of the best individual from generation 1000 of each of the runs is shown in the right
column, with the mean of these values shown to their left.
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Figure 9.14: Double T maze task: Fitnesses of the fittest robot from generation 1000 of each of
the 10 evolutionary runs performed with each controller type. The scores are sorted in descending

order to aid comparison. Exact values are shown in table 9.5.
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Figure 9.15: Double T maze task: Histograms of the fitness scores shown in table 9.5. Where a
column is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean
fitness was € (0.55 : 0.6].
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Figure 9.16: Learning task: Each robot from the population at generation 2000 of each of the 20
evolutionary runs performed for growth and pruning 90, growth and pruning 100, plastic and fixed
controllers was evaluated over 100 lifetimes. The mean fitness of the best performing robot (over
the 100 lifetimes) from each population was taken as the score for that evolutionary run, and the

bars in the figure above show the mean score over 20 evolutionary runs for each type of controller.

sistently well, moving quickly up the vertical corridor and turning in the correct direction every
time.

These results are summarised in figure 9.16, with details provided in table 9.6 and figure 9.17.
A histogram showing the distributions of the results is shown in figure 9.18.

Testing for differences between each of the controller types using the Mann-Whitney test
shows strong evidence that there is a difference in performance between the growth and prun-
ing 100 and 90 variations (p = 1.5 x 10~!1), the growth and pruning 100 and fixed controllers
(p = 2.1 x 1079), the plastic and growth and pruning 90 controllers (p = 9.9 x 10~?), the plas-
tic and fixed controllers (p = 3.7 x 10™*) and the growth and pruning 90 and fixed controllers
(p=5.4x 10~?). There is no evidence from this test for a difference between the growth and

pruning 100 and plastic controllers (p = 0.62).

9.1.7 Re-learning task

The required behaviour evolved very successfully for this task using both the growth and pruning
and plastic controllers. The fixed controllers were less consistently successful. Figure 9.19 gives
an indication of the fitness of the best individuals that evolved using the different types of con-
troller, showing the mean of the fitnesses of the best controllers over 40 runs for each controller
type.

Table 9.7 shows the results in more detail, and figure 9.20 shows the values, sorted in de-
scending order, from that table in graphical form. The plastic and growth and pruning controllers
perform better than the fixed controllers, and at a similar level to each other.

The Mann-Whitney test shows that there is strong evidence that the plastic and growth and

pruning controllers perform better than the fixed ones on this task (for growth and pruning vs.
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Controller Mean Fittest robot

Growth and Pruning 90 049 | 055 045 047 047 0.52
0.50 046 049 049 054
0.49 0.51 051 054 053
047 047 045 044 046

Growth and Pruning 100 | 0.85 | 0.81 0.85 0.70 0.84 0.86
093 096 0.78 0.83 0.82
0.81 0.88 0.87 0.86 0.89
0.89 0.80 0.86 0.93 091

Plastic 0.83 | 090 0.85 0.89 0.87 0.86
0.75 0.88 0.88 046 0.85
0.80 0.79 0.78 0.88 0.82
0.86 0.92 0.88 0.86 0.73

Fixed 0.64 | 055 081 059 059 0.62
0.59 0.61 0.59 0.57 0.51
0.60 094 091 0.58 0.86
0.61 0.63 057 054 0.53

1o

Table 9.6: Learning task: The highest fitnesses achieved using different controller types. Each

experiment was run 20 times, and the mean fitness over 100 lifetimes of the best individual from

generation 2000 of each of the runs is shown in the right column, with the mean of these values

shown to their left.
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Figure 9.17: Learning task: Fitnesses of the fittest robot from generation 2000 of each of the 20

evolutionary runs performed with each controller type. The scores are sorted in descending order

to aid comparison. Exact values are shown in table 9.6.
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Figure 9.18: Learning task: Histograms of the fitness scores shown in table 9.6. Where a column

is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean fitness
was € (0.55:0.6].
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Figure 9.19: Re-learning task: Each robot from the population at generation 2000 of each of the 40
evolutionary runs performed for growth and pruning, plastic and fixed controllers was evaluated
over 100 lifetimes. The mean fitness of the best performing robot (over the 100 lifetimes) from
each population was taken as the score for that evolutionary run, and the bars in the figure above

show the mean score over 40 evolutionary runs for each type of controller.
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Controller Mean Fittest robot

Growth and Pruning 100 | 0.76 | 0.87 0.85 0.78 0.82 0.57
093 0.81 0.78 0.87 0.96
0.83 091 093 0.88 0.83
0.85 0.86 0.86 0.88 0.82
0.59 0.73 0.66 0.69 0.76
0.63 0.81 072 0.81 0.55
0.58 090 0.82 0.55 0.61
0.63 0.56 059 047 0.72
Plastic 0.76 | 085 0.75 0.87 0.81 0.87
0.81 0.82 077 0.84 0.83
0.61 0.73 093 0.71 0.90
0.86 0.87 0.87 0.86 0.80
0.77 0.85 0.72 0.36 0.86
0.64 075 075 071 0.82
0.80 0.77 0.50 0.66 0.51
0.80 0.78 0.76 0.63 0.77
Fixed 0.60 | 0.87 0.59 059 055 0.88
0.56 0.58 0.61 0.60 0.96
0.61 0.57 070 0.61 0.58
0.71 0.55 0.61 056 0.37
0.64 0.50 0.57 0.56 0.61
0.59 0.50 0.53 0.53 0.51
0.52 053 059 061 0.62
0.58 0.60 0.53 050 0.62

Table 9.7: Re-learning task: Comparison of the highest fitnesses achieved in the re-learning task
using different controller types. Each experiment was run 40 times, and the mean fitness over
100 lifetimes of the best individual from generation 2000 of each of the runs is shown in the right
column, with the mean of these values shown to their left.
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Figure 9.20: Re-learning task: Fitnesses of the fittest robot from generation 2000 of each of the 40

evolutionary runs performed with each controller type. The scores are sorted in descending order

to aid comparison. Exact values are shown in table 9.7.
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Figure 9.21: Re-learning task: Histograms of the fitness scores shown in table 9.7. Where a

column is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean
fitness was € (0.55 : 0.6].
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Figure 9.22: Flexibility task: Each robot from the population at generation 2000 of each of the 20
evolutionary runs performed for growth and pruning, plastic and fixed controllers was evaluated
over 100 lifetimes. The mean fitness of the best performing robot (over the 100 lifetimes) from
each population was taken as the score for that evolutionary run, and the bars in the figure above

show the mean score over 20 evolutionary runs for each type of controller.

fixed p = 8.4 x 10~7 and for plastic vs. fixed p = 1.0 x 10~3). The same test does not provide any

evidence that the growth and pruning controllers perform better than the plastic ones (p = 0.98).
Some of the robots described in this section are analysed in detail in section 9.2 in an attempt

to understand how the required behaviour is generated by the different controller types and thus

explain the differences in performance.

9.1.8 Flexibility task

The required behaviour evolved successfully for this task using the growth and pruning 100, plastic
and fixed controllers. The growth and pruning 90 controllers were much less successful. Figure
9.22 gives an indication of the fitness of the best individuals that evolved using the different types
of controller, showing the mean of the fitnesses of the best controllers over 20 runs for each
controller type.

Table 9.8 shows the results in more detail, and figure 9.23 shows the values, sorted in descend-
ing order, from that table in graphical form. Histograms of the data are shown in figure 9.24.

The Mann-Whitney test shows that there is strong evidence for a difference in performance
between the growth and pruning 90 controllers and all the other controllers (p < 6.0 x 10~* in
each case). The same test provides no evidence for any differences between the other controller
types (growth and pruning 100 vs. plastic p = 0.90, growth and pruning vs. fixed p = 0.65, plastic
vs. fixed p = 0.68).

9.1.9 Robustness to disruptions tests

In the phototaxis task with no disruption, the robots with fixed controllers performed best, fol-

lowed by the plastic controllers, with the two types of growth and pruning following. When the
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Controller Mean Fittest robot

Growth and Pruning 90 0.63 | 067 0.60 0.65 0.60 0.66
0.57 0.62 0.61 0.63 0.65
0.67 0.83 059 0.64 0.70
0.60 0.62 0.60 0.56 0.60
Growth and Pruning 100 | 0.81 | 0.90 0.77 0.83 0.80 0.70
0.86 0.53 0.84 0.75 0.87
092 0.70 0.85 0.86 0.88
0.86 0.89 0.84 0.82 0.80
Plastic 0.81 | 082 086 0.84 091 0.76
0.81 0.88 090 0.89 0.89
0.80 0.77 0.84 0.54 0.67
0.86 0.68 0.87 0.88 0.79
Fixed 0.79 1093 0.60 0.68 094 0.87
0.85 0.87 0.61 0.83 094
091 091 0.57 093 0.90
091 0.59 0.64 0.65 0.73

Table 9.8: Flexibility task: Comparison of the highest fitnesses achieved in the re-learning task
using different controller types. Each experiment was run 20 times, and the mean fitness over
100 lifetimes of the best individual from generation 2000 of each of the runs is shown in the right

column, with the mean of these values shown to their left.
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Figure 9.23: Flexibility task: Fitnesses of the fittest robot from generation 2000 of each of the 20
evolutionary runs performed with each controller type. The scores are sorted in descending order

to aid comparison. Exact values are shown in table 9.8.
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Figure 9.24: Flexibility task: Histograms of the fitness scores shown in table 9.8. Where a column
is labelled e.g. 0.6, it shows how many evolutionary runs resulted in robots whose mean fitness
was € (0.55:0.6].

disruptions were applied, as may be seen in figure 9.25, performance degraded quite uniformly,
with no real advantage appearing to fall to the growth and pruning controllers over the others, and
no advantage to plastic over fixed.

In the more complex T maze task with no disruptions the growth and pruning 95* controllers
performed very badly, and the growth and pruning 90 controllers performed significantly less
well than the plastic and fixed ones (growth and pruning 90 vs. plastic p = 1.1 x 107>, growth and
pruning 90 vs. fixed p = 0.05). The medium fixed controllers performed best, scoring significantly
higher than growth and pruning 90 (growth and pruning 90 vs. medium fixed p = 2.663e —07), as
did the large fixed controllers (growth and pruning 90 vs. large fixed p = 1.3 x 1075).

However, when the disruptions were in force, the growth and pruning 90 controllers appeared
to experience smaller degradations in performance than the plastic, fixed, medium fixed and large
fixed ones. In the disruptions involving altered motor output, the growth and pruning 90 controllers
moved from being significantly worse than fixed ones to significantly better (left motor times 2
p = 0.015, times 3 p = 0.012, times 4 p = 0.0029). They were also significantly better than
medium fixed controllers (left motor times 2 p = 1.3 x 107, times 3 p = 1.3 x 107>, times 4 p =
2.0 x 107°) and large fixed controllers (left motor times 2 p = 3.3 x 1073, times 3 p = 3.0 x 1079,
times 4 p=4.7"").

As may be seen in figure 9.26, the degradation in performance of the growth and pruning
90 controllers was less than that of the plastic, fixed and large fixed controllers in most of the

disruptions.

9.1.10 Synapse growth verses death comparison

The final fitness of each combination of A and u values (from equations 8.11 and 8.12) in the
growth and pruning 50 controllers performing the phototaxis task is shown in figure 9.27. It
may be observed that while the probability of death of synapses appears to have little effect on
the fitness of the fittest individual, the probability of growth appears to affect the outcome quite
considerably.
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Figure 9.25: Phototaxis robustness: the mean fitness of robots performing phototaxis with different
disruptions applied. The best robots from each of 10 evolutionary runs were chosen and evaluated
without evolution with different disruptions applied. The mean fitness of the robot in each situation
over 100 runs was found, and combined with the mean fitnesses for the other runs to provide an
overall mean shown here. N denotes the performance of robots under normal conditions - as they
were evolved. The LM2, LM3 and L.M4 disruptions had the robot’s left motor causing twice, three
times or four times as much force as normal. The RS015, RS025 and RS035 disruptions had the
robot’s sensors rotated by 0.157, 0.257 and 0.35% radians relative to normal. SS03, SS04, SS09
and SS10 refer to the sensors being spread over angles of 0.3w, 0.4%, 0.9 and w. SI refers to

inversion of the sensors.
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Figure 9.26: T maze robustness: the mean fitness of robots performing the T maze task with dif-
ferent disruptions applied. The best robots from each of 10 (20 for large and medium fixed) evolu-
tionary runs were chosen and evaluated without evolution, with different disruptions applied. The
mean fitness of the robot in each situation over 100 runs was found, and combined with the mean
fitnesses for the other runs to provide an overall mean shown here. N denotes the performance
of robots under normal conditions - as they were evolved. The LM2, LM3 and LM4 disruptions
had the robot’s left motor causing twice, three times or four times as much force as normal. The
RS015, RS025 and RS035 disruptions had the robot’s sensors rotated by 0.157w, 0.25% and 0.357
radians relative to normal. SS03, SS04, SS09 and SS10 refer to the sensors being spread over

angles of 0.3m, 0.4w, 0.9 and ®. SI refers to inversion of the sensors.
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Figure 9.27: Mean fitness over 10 evolutionary runs of the fittest individual in the population after
1000 generations of the phototaxis task under differing levels of probability of growth (A) and
death (u) of synapses when pre- and postsynaptic neuron firing rates were inside genetically-set
ranges. Low likelihood of synapse death appears to have little effect on final fitness, whereas low

likelihood of synapse growth has a negative effect.
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Figure 9.28: Mean fitness over 10 evolutionary runs of the fittest individual in the population after
1000 generations of the T maze task under differing levels of probability of growth (A) and death
(u) of synapses when pre- and postsynaptic neuron firing rates were inside genetically-set ranges.
Differing levels of synapse growth and death appear to have little effect on final fitness.

If synapse growth is quite unlikely or impossible, the fitness achieved is lower than if synapse
growth is more likely. Observation of the evolved solutions suggests that the networks are con-
verging onto fixed configurations of important weights, so any weights which are missing from
that scheme must be grown at or near the beginning of the robot’s lifetime.

In contrast, even if synapse death is impossible, good fitnesses may be achieved. This may be
because synapse weight can still be suppressed to near zero, having the same effect as the death
of that synapse, and because the effect of weights unneeded in the fixed configuration mentioned
above may be small since their initial weights are random so they may often cancel out each other’s
effects.

The final fitness of each combination of A and u values (from equations 8.11 and 8.12) in the
growth and pruning 100 controllers performing the T maze task is shown in figure 9.28. Here it
appears that the probability of growth and death have little effect on final fitness.

In this task the robots possessed growth and pruning 100 controllers, all of whose synapses
were alive at the beginning of the lifetime. This means that the effect found in the phototaxis
task where low growth rates caused difficulty growing needed synapses was not found here, since
all synapses were available unless they died during the robot’s lifetime. It appears to offer no
fitness advantage to be able to growth new synapses, or remove unneeded ones: this may be
because all synapses are already available at the beginning of the lifetime, and because reducing
the connection strength to near-zero has a similar effect to synapse death.
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9.2 Analysis

In this section the behaviour, controller and developmental process of a robot with a growth and
pruning 100 controller is examined in an attempt to shed light on the kinds of developmental
process that may be generated by artificial evolution, and the kinds of dynamical system that may
be constructed at the end of such a developmental process.

The robot under examination performs the re-learning task (see section 8.2.10 for a description
of this task) with very high accuracy, achieving a mean fitness of 0.96 over 100 lifetimes. Its
behaviour, controller and developmental pathways are examined in the following sections.

9.2.1 Behaviour

Observation of the robot, and the high fitness score it achieves, makes it clear that in terms of
turning left or right at the appropriate times its behaviour is essentially perfect: over 100 lifetimes
consisting of 25 of each of the scenarios LL, RR, LR, RL (section 8.2.10) it turns down the correct
corridor segment in every maze it encounters.

The robot begins by orienting itself to face up the vertical corridor. Occasionally it does this
by performing a full turn, but usually it turns immediately upward. It then moves quickly up the
corridor, staying well away from the walls, near the centre. In mazes where it is required to turn
left it tends to drift slightly to the right of the middle of the corridor, and in the opposite situation
it drifts to the left.

When the robot reaches the T at the top of the vertical corridor it is moved to the centre and
placed at a random orientation (facing generally upwards). It immediately turns in the direction of
the goal and moves down the centre of the horizontal corridor in the required direction. When it
encounters the end of the corridor it slows quickly to stop very close to the goal, usually reaching
that point just as its time runs out.

During mazes where a signal is provided for the robot it slows slightly while the signal is
active. When there is no signal present its progress is at a near-constant speed.

Several tests were performed to find out how the robot reacts to situations it did not encounter
during evolution.

It is of interest to know whether the robot’s ‘memory’ is trained to last for the time period used
in evolution only (4 mazes) or whether it represents quite a permanent change in the dynamics of
the controller. This was tested by presenting the robot with a series of mazes, starting with a left
signal and then 19 mazes containing no signal. The robot continues to turn left in every maze, and
when evaluated for 100 of these 20-maze lifetimes its mean fitness is 0.92, which is a very good
score for this task. This suggests the robot’s memory persists for much longer than was required
during evolution.

In some cases when a behaviour is evolved its generation may be dependent on the specific
details of the environment in which it is evolved. It is possible that the robot’s ability to ‘re-learn,’
modifying its behaviour when a different signal is received, is dependent on the timing of that
signal, since this adaptation was only required during evolution after 4 mazes of one type had
been experienced. A timing dependency might be during one maze, or over several of them.

The possibility of a dependency on timing during a single maze was tested by placing the robot

into an environment with a longer vertical corridor - twice the length of those encountered during
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evolution, in which the signal, when present, was only present in the lower section, for the same
distance as in the original experiments. This meant the robot needed to navigate an extra length of
vertical corridor, keeping its learning of the signal received intact, and turn at a later time in the
correct direction. A longer time limit (300 simulated seconds instead of 150) was set to allow the
robot time to reach the top of the corridor and make a turn. The robot is moderately successful in
this scenario, normally making the correct turn, but occasionally making the wrong one, especially
in the last of 4 mazes. It scores a mean fitness of 0.59 over 100 lifetimes.

Timing dependency over multiple mazes was tested using a lifetime consisting of a maze with a
left signal, followed by one with a right signal, followed by another left and continuing alternating
the signal and required direction every time, continuing for 20 mazes. The robot navigates this
situation very successfully, receiving a mean fitness of 0.95 over 100 lifetimes.

The nature of the attractor states in the robot’s behaviour might result in it becoming set into
a particular pattern even when no specific trigger is received. This was studied by examining the
behaviour when no signal at all is present. In this scenario the robot turns the first time at random,
and from then often turns the same way for some or all of its lifetime. However, it is prone to
change direction after several mazes in some cases. This implies that the initial random choice
moves the robot into a controller-behaviour-environment attractor that has similar consequences
to the dynamics caused by the receipt of a signal, but which is less stable, being disrupted in a few
cases by the random elements of the simulation environment.

The overall picture of the robot’s behaviour presented by these studies is of two very well-
defined possible behavioural outcomes: the robot, even when it is performing badly, never stops,
turns back or performs any behaviour except moving to the end of the vertical corridor and turning
either left or right. These outcomes are stable to various different perturbations, most notably a

longer vertical corridor section before the turn is made.

9.2.2 Controller

The behaviour described in the previous section is generated by a growth and pruning network
consisting of inputs, output and neuron nodes joined by synapses whose weights may change and
which may grow or die according to the interaction of genetically-set rules with node activations.
Figure 9.29 shows a diagram of such a controller.

In order to understand how the behaviour is generated, it is useful to lesion elements of the
controller and find how this affects the behaviour of the robot.

Table 9.9 shows the results of removing various combination of neurons from the controller.
The neuron numbers are those shown in figure 9.29.

From the data in the table it seems reasonable to suggest that neurons 0 and 1 appear to have no
impact on the robot’s behaviour, while neurons 2 and 3 may be mainly involved with the learning
behaviour (since their removal leaves wall-avoidance and movement intact), while neurons 4 and
5 may be responsible for wall-avoidance and movement. Of course, the interactions are likely to
be much more complex than this in practice, but working within this framework may be helpful in
understanding how the behaviour is generated.

The controller contains 96 synapses, so exhaustively disabling different combinations of them

and testing their fitness would be very computationally intensive. An alternative approach is to
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Figure 9.29: A growth and pruning controller. The sensors are fully connected to all of the neurons,

which are fully interconnected, and fully connected to the outputs. Genetically-defined neuron and

synapse properties are symmetrical about the dotted vertical line, but the developmental process

and neuron activations are free to proceed asymmetrically.

Missing neurons(s) | Fitness | Behaviour

Oorl 0.96 | Indistinguishable from normal

2o0r3 0.50 | Always turns one way (still moves and avoids walls)
4or5 0.51 Always turns one way, or occasionally simply circles.
Oand 1 0.95 | Indistinguishable from normal

2 and 3 0.28 | Moves upwards slowly, not appearing to respond to signal
4 and 5 0.08 | No movement

Table 9.9: Lesioning neurons: the performance of the re-learning robot when one or two neurons

are removed.
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Figure 9.30: The standard deviations of the final synaptic weights of the robot’s controller over 50

lifetimes containing different combinations of left and right signals.

attempt to reason about their roles by examining their behaviour during the robot’s lifetime. A
factor that might provide useful information about a synapse is whether or not it tends to settle to a
steady value while the robot is behaving. By running the robot for many lifetimes and examining
the synaptic strengths at the end of each one it may be possible to find which ones tend to enter
steady states.

The robot was run for 50 lifetimes each consisting of different combinations of the possible
signals LL, LR, RL and RR. At the end of each lifetime the synapse strengths were recorded, and
finally a calculation of the standard deviation of each final synaptic strength value was found. A
dead synapse was defined to have a strength of zero for the purposes of this statistic. Figure 9.30
shows the standard deviation of each synapse.

As may be seen from the figure, many of the weights have near-zero standard deviation, indi-
cating that they normally settle to a particular value or die. The synapses with high variance consist
of those which are essentially random, their strength not having a major effect on the behavioural
outcome, and those which change according to the changing situations in which the robot finds
itself.

If the robot is allowed to live for 100 standard lifetimes with all synapses with a standard
deviation greater than 0.1 disabled, it scores an average fitness of 0.34, but on observation it
appears to be performing wall avoidance and movement, albeit less well than the unaltered robot.
It also appears to ignore the signal, suggesting that the signal reception and retention behaviour
involves some of the variable synapses.

As a means of obtaining information on how the robot receives and remembers the signal, the
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Figure 9.31: The difference in synaptic strengths during one lifetime after a left signal and a right

signal.

state of the controller before and after the receipt of the second signal was recorded. The ‘LR’
scenario was used, where the robot receives a left signal in the first maze and must turn left for
this and the next three, before receiving a right signal and being required to turn right for this and
the last three mazes. The state of the robot’s controller was recorded after 150 simulated seconds
(at the end of the first maze, which contained the left signal), and 750 seconds (at the end of the
fifth maze, which contained the right signal). Figure 9.31 shows the absolute differences between
synapse strengths at these two moments.

Combining the previous hypothesis that the signal response and retention system relies on
synapses that have a high variability with this new information about synapses that change in
response to a change in signal, it may be that the crucial synapses are contained in the intersection
of the sets of highly variable synapses and those that change in response to a change in the signal
in the lifetime.

Taking these synapses, making the arrangement symmetrical and adding others as seemed ap-
propriate, a process of trial and error was undertaken to find a reasonably minimal set of synapses
that performed the task adequately. The final set chosen is illustrated in figure 9.32. It contains
synapses that connect all neurons to the motors, the middle four sensors to neurons 4 and 5, and
fully interconnects neurons 2, 3, 4 and 5.

The robot with only these synapses enabled received a mean fitness of 0.5 over 100 runs and
when observed performs the require behaviour, albeit more slowly than the robot with a complete
controller.

Examination of this robot performing the behaviour reveals how it works. When a signal is
present, the synapse connecting the signal sensor to the opposite neuron (2 or 3) becomes negative,

which, combined with the input from the signal sensor, reduces the activation of that neuron to
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Figure 9.32: The controller used for the analysis of the re-learning task. Some of the synapses were

disabled, leaving the ones shown above. The robot was still able to perform the task reasonably

well using only these synapses.
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Figure 9.33: The cell potentials of neurons 2 and 3 throughout a lifetime consisting of 8 mazes.
When neuron 2 is active, neuron 3 is suppressed, and vice-versa. The switch takes place when a

signal is received telling the robot to start going the other way.

near its minimum value. This activity causes the synapse linking the neuron to the opposite motor
to die, ensuring that neurons 2 and 3 only influence motor activity indirectly, through neurons 4
and 5. Once the controller is in this state, the low activation of this neuron persists, although it
regresses towards a more moderate low value. This persistence is caused by negative reciprocal
links between neurons 2 and 3, each of which has positive reciprocal links with the other neuron on
its side (2 with 4 and 3 with 5). This means that when one of 2 and 3 becomes negative, the other
becomes positive and the feedback loop with the other neuron on its side maintains this activation,
suppressing the activity of the opposite pair.

Figure 9.33 shows the activity of neurons 2 and 3 over the course of a single lifetime consisting
of one left signal maze followed by three no signal mazes, then one right signal and three no signal
ones.

Neurons 4 and 5 have very low biases, and always have low activations, but strong positive
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synaptic links to the opposite motors mean that they strongly influence the motor activations when
they change state. Sensors are linked to both neurons 4 and 5, with negative links to the opposite
neuron and positive links to the one on the same side. This combined with opposite links from 4
and 5 to the motors generates a simple wall-avoidance and movement system (corridor following)
that is quite robust, and overrides any influence from the signals when sensor input is unbalanced.

When sensor input is balanced (as when the robot is at the decision point), the relatively slight
difference in steady states of neurons 2 and 3 causes the robot to turn to the right when neuron 2 is
low and to the left when neuron 3 is low. Once a small turn has been made the corridor following
system completes the turn and continues the movement.

The key to the ‘memory’ of the robot is the dynamic balance between neurons 2 and 3 -
when a signal is received it shifts one of these to become negatively activated, allowing the other
to become positive, shifting into the alternative attractive state. This system is subservient to a
simple corridor following strategy, only coming into play when the sensor activity is balanced.

The controller is produced through the developmental system, but does not use either synaptic
plasticity or synapse growth and pruning to implement the memory system. The next section looks

at how the behaviour described is produced through the developmental system.

9.2.3 Development

Almost all of the synapses mentioned in the above section have genetically defined death rules that
are impossible to fulfill. This is achieved by setting the values from equation 8.12 to impossible
values (i.e. XD; > XD, or YD > YD;). This allows the robot to rely on the presence of these
synapses. A small number of other synapses not mentioned above are removed at the beginning of
the lifetime. Removal of synapses provides a convenient way to exclude a synapse from disrupting
a useful dynamical system.

A crucial synapse death occurs when the signal is received. When a right signal is received,
the synapse connecting neuron 2 to motor 1 is killed due to the low activation of neuron 2. This
occurs because this synapse has XD1 = 0.03, XD2 = 0.57, YD1 = 0.31, YD2 = 0.71, and here
neuron 2 is X, and its activity only drops within the range [0.03 : 0.57] when the signal suppresses
it down to this level. Without removing this synapse, a direct link from neuron 2 to the motors
is maintained, meaning that the memory system could influence the robot’s movement directly,
rather than being only an indirect influence through neuron 4. Similarly, when a left signal is
received the opposite synapse is killed.

Most synaptic weights for the important synapses simply settle at £5, with the exception of

those linking the signal sensors to neurons 2 and 3, which have an equation of change as follows:

W= o—0.72x+0.19y + —0.72xy) 9.1)

This is equation 8.9 with the genetically-set values for this synapse shown. When x becomes
positive due to the signal activation, and y is relatively near zero, this is negative, causing the
synapse to become negative, and in turn reducing the activation of the neuron.

Thus most of the controller structure is encoded through the plasticity and growth and death
processes in reasonably straightforward ways, but in a few places the relationship is a little more

complex.
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9.3 Discussion

All of the different controller types were able to evolve to perform the simpler tasks, although the
growth and pruning controllers often performed worse than the plastic and fixed controllers, possi-
bly due to the extra overhead of development being required, and the noise involved in beginning
a lifetime with a random selection of synapses intact.

In the more complex tasks, the developmental controllers did better, outperforming the fixed
controllers in several environments, and performing at least as well as the plastic controllers.
However, the controllers which started with only 90% of their synapses alive showed no advantage
in any of the tasks except when tested for robustness to disruptions.

It is clear that all of the tasks designed to utilise the extra developmental properties of the
growth and pruning controllers were in fact possible to perform very well with the plastic con-
trollers, and many of them were also possible with fixed controllers.

It has been shown that the explicit developmental process of the growth and pruning controllers
tends to produce controllers which are significantly more robust than standard fixed controllers in
the face of certain disruptions. This is true even when the comparison is made between controllers
with similar numbers of free parameters under evolutionary control, and with similar ranges of
temporal behaviour. Discussion of possible explanations for this outcome are discussed in the
next chapter.

The idea that growth and pruning of synapses may be useful in tasks such as the predictable
change and flexibility tasks appears to have lost credibility from these results, and the idea that
selection for change in the controllers on the predictable change task would be useful appears to
have been contradicted, as has the idea that the introduction of spontaneous growth and death of
synapses would make the evolved robots more behaviourally robust.

In terms of the tests for how useful growth and death of synapses are relative to each other,
only tentative conclusions may be drawn. In the experiment which used growth and pruning 50
controllers where the robot began its lifetime with many synapses missing, increasing the proba-
bility of growth was found to increase the mean fitness of robots evolved, but in the experiment
with a more complex task but using growth and pruning 100 controllers, increasing growth proba-
bility appeared to have no effect on mean fitness. In both cases, increasing the probability of death
of synapses appeared to have no effect.

Discussion of these and other issues may be found in the following chapter, along with some
conclusions and suggestions for further avenues of research arising from both pieces of experi-

mental work.



Chapter 10

Discussion

This thesis describes the motivations, methods and results of an attempt to design an evolvable
developmental controller system useful for practical robot design and for the investigation of de-
velopmental phenomena.

Two different developmental controller systems were designed, evolved in different environ-
ments, and studied along with more commonly-used neural network systems, including plastic
networks, which also explicitly implement developmental processes. The second developmental
system was designed incorporating the lessons learned from working with the first.

The purposes of this work were to design tools useful in the study of developmental systems,
and to learn about development. Section 10.1 describes the tools developed and their applicability,
and section 10.2 outlines what has been learnt about each of the open questions explored.

Several issues of interest were raised by the problems encountered and the results found during
the course of design and experimental work. Some of these are discussed further in sections 10.3
and 10.4.

Finally, section 10.5 looks at what conclusions may be drawn, and draws out the most impor-

tant guidelines and advice for those considering continuing work in this area.

10.1 Development of tools

In the course of this work it has become clear that evolving developmental systems is not as
straightforward as it might appear. In addition to the controllers developed (summarised in section
10.1.1), several techniques have been developed and lessons have been learned that may be of use
to researchers intending to investigate further in this area. A selection of these techniques and

methods is put forward in section 10.1.2.

10.1.1 Developmental Controllers
Chemical-guided growth networks

The controllers of part 1, chemical-guided growth networks, incorporate many ideas which may

not have seen together before in evolutionary robotics studies of development.
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The ideas of a single genotype for all units, spatial locations in controller space, chemical
gradients affecting growth behaviour, influence of an agent’s experience on its development and
performance of behaviours of potential cognitive interest were combined in a single model.

The design is relatively simple to implement, and is readily modifiable to serve different ex-
perimental purposes, as exhibited by the variations described in terms of the addition of a ‘clock’
timer into the developmental process, and the use of different genotype mapping functions in
different experiments.

Because the controllers, if the developmental process is frozen at any moment in their be-
haviour, behave exactly like the relatively well-understood CTRNN controllers frequently used in
evolutionary robotics, they offer the chance to examine developmental phenomena in the context
of a familiar system with dynamics that may be understood. (Note that the simulation time step
in part one is adequate to simulate CTRNNSs with a reasonable degree of accuracy, unlike the time
step in part two.)

Thus it is hoped that variations on the theme of these controllers, possibly addressing some of
the drawbacks found (e.g. the difficulty of building structure from a blank slate) may be useful in
future studies of developmental systems within evolutionary robotics.

Synaptic growth and pruning networks

The controllers of part 2, being born partially out of the lessons learned in part 1, represent very
practical tools for the study of developmental systems in many different contexts. They maintain
many of the advantages of the controllers developed for part 1, crucially including the influence of
experience on development and their basis in CTRNN networks, extended only where necessary
to allow for developmental phenomena to be made explicit.

As may be seen by the wide variety of experiments which were performed, these controllers
may successfully be evolved to generate many different behaviours. This rich variety of potential
dynamics opens up the possibility of addressing many different questions in research into devel-
opmental systems. Since the controllers may be evolved to perform any of a large number of
different tasks, it is likely that the behaviour required to investigate a phenomenon of particular
interest may well be evolved in feasible time, allowing study of the way a developmental system
can generate the behaviour of interest, and how it is affected by variations and changes of different
characters.

The mechanism of synapse growth and pruning allows for many different experiments which
might cast light on the equivalent phenomena in natural systems. The experiments investigating
the relative importance of growth and death of synapses (section 8.2.14) are an example of the
kinds of work which may be performed.

The flexibility of these controllers for performing varying experiments not only in terms of
different environments and required behaviours but also in terms of the conditions and properties
of the developmental system itself are demonstrated through the experiments into the influence
of noise in the developmental system on robustness (section 8.2.12) and the usefulness of selec-
tion for particular developmental phenomena (in this case change at a specific time) in terms of

producing particular behaviours (section 8.2.6).
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10.1.2 How to evolve developmental systems

As outlined in section 4.1 there are many reasons why it might be useful to be able to evolve
developmental systems: from expectations of the engineering uses for modularity and adaptability
to pure scientific interest in the kinds of processes which produce useful systems. This section
outlines some of the pitfalls and lessons learned during this thesis about how to evolve these

systems in practice.

Recognise that it is not easy

There is a temptation when using evolution to design systems to assume that the evolutionary pro-
cess is able to deal effectively with new complexity no matter where and how it is applied. In fact,
certain types of structure and behaviour are much more easy to evolve than others. Developmental
systems add a further level of abstraction between the behaviour being required and the genotype
producing it, and this makes the task of designing a fitness landscape producing a smooth path
between unfit and fit individuals much more complex. This extra complexity means that evolution
may more easily become trapped in areas of low fitness unanticipated by the experimenter, and
therefore a great deal more attention is needed to design an appropriate fitness landscape.

The problems encountered in the work described (and the solutions to some of those prob-
lems) have shown that the specific details of the developmental process have a radical effect on
how easily a given behaviour may be produced in a robot using a genetic algorithm. Often the rel-
evant details involve the fact that evolving developmental systems may settle on a behaviour that
bypasses the capability for structural change, or uses that structural change directly to produce be-
haviour, instead of setting up a two-tier system with behaviour being generated by structure which
is itself produced through development.

The pressure to act in a direct, one-tier manner may be quite strong in some cases. For ex-
ample, a single evolutionary run of the developmental controllers from part one was performed
for the multiple discrimination task, without the element of the fitness fitness function reward-
ing correlation between the robot’s behaviour and required behaviour, over the course of 20,000
generations, and eventually a moderately high fitness score was achieved. When the evolved so-
lution was examined, it became clear that small differences in the starting positions of circles and
diamonds! were being used to discriminate, and the shape of each object was ignored. It turned
out that the developmental system was growing neurons according to the positions of objects -
a one-tier process - rather than growing a neural network which performed the discrimination.
The evolved solution was extremely subtle (and highly sensitive to variation or noise) and cer-
tainly more complex than the evolved solutions found when the correlation element was added to
the fitness function, and the difference between starting positions of objects was removed. This
demonstrates the powerful effect of allowing evolution to start along a path through the fitness
landscape which involves single-tier behaviour when two-tier behaviour is required.

One way in which the developmental process could have been prevented from taking this
single-tier path might be to limit the developmental processes to work only over long timescales,
preventing them from producing effective short-term behaviours. In this work, this was avoided
since it was expected that interesting phenomena would be encountered through fast action of

'In this experiment circles were positioned at locations -50, -40, 30, ... whereas diamonds were positioned at loca-
tions -45, -35, -25, .. .relative to the robot’s starting position, as described in Beer (1996).
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the development process, and these phenomena would be prevented from occurring if any ‘speed
limit’ were imposed on the system. Examples of the kinds of phenomena expected include phase
transitions in self-organising systems and rapid but long-lasting reactions to short-term stimuli.
However, this kind of restriction may well be appropriate in studies not concerned with such high
speed dynamics.

Thus, in order successfully to evolve developmental robots it must be recognised that simply
inserting an arbitrary system of structural change is not enough: the system must be an appropri-
ate one for the types of development and behaviour required, and the type of evolutionary process
through which it is generated. It must also provide as direct a mapping as possible between the
genotype and the quantity being selected for, either by decreasing indirection within the devel-
opmental process or by selecting directly for specific developmental outcomes. To achieve these
aims the designer must make every effort to understand the problem domain before designing the
system to fit not only the outcome but also the intermediate stages in both the evolutionary and
developmental processes. Furthermore, he or she must anticipate the need to modify the system
as designed to explore ways of allowing it to evolve in the directions intended.

The following sections outline some of the areas that should be given attention when designing
developmental systems to evolve behaviours of non-trivial complexity.

Structure

A crucial element in the successful evolution of the developmental controllers studied in this thesis
is the imposition of structure on the system. In some cases this involves fixing specific factors (such
as the use of symmetry) and in other cases it involves supplying non-specific (random) structure
which is used as raw material for the developmental process to work with.

The imposition of symmetry on the controllers of part one is required to allow the robots
to evolve to perform the multiple discrimination task. Without symmetry in the developmental
process, the task of developing a symmetrical controller (which is very useful in a symmetrical
environment) is difficult, since it requires symmetry in the genetic values. If the robot mutates so
that one half of its controller has a structure that could successfully perform the task, but the other
half is different, its ability to perform the task may not be increased at all by the ‘correct’ half.
Often each step in the evolutionary process must be stumbled upon simultaneously for both the
left and right sides of the robot. This adds yet another degree of indirection between genotype and
behaviour, and in the work performed for part one this indirection combined with the inherently
indirect processes of development to prevent successful evolution within in a reasonable time
without symmetry.

Of course, if for example the evolution of developmental symmetry is the matter under exam-
ination, it is important not to impose this constraint on the system being studied. However, here
the evolution of a system with a fixed developmental process is being studied, and it makes sense
to model that process as having symmetry where it may be useful for the task and environment
being studied.

Another example of the advantages of imposing structure on the system is the fact that the
layout of the neural networks in the growth and pruning networks is fixed, with each synapse able
to grow or die, but without the need for neurons to ‘find’ each other in order to connect as in

part one. This kind of situation is an example of how imposing structure can reduce the level of
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indirection involved in the genotype-behaviour relationship.

Other examples of structures that might be useful to impose on controllers include forcing
neural networks to be scale-free (since scale-free networks are found very commonly in nature
and have been found to have very useful properties), and adding constraints to the weights of
synapses entering a neuron to cause synapses to compete for the resources provided by neurons.

An important feature of the design of the controllers for part two is the imposition of ran-
dom structure which may be manipulated by the developmental process. This structure allows
development to channel existing activity towards a desired state, rather than generating entirely
new structure through which activity may flow. This idea was introduced as an abstraction of the
idea of the ‘exuberant growth’ of neural structure which may occur in animals before the structure
which has grown is re-formed under environmental influence.

The success of the growth and pruning 100 controllers over the 90 variants demonstrates the
importance to the success achieved in part two of this insight about providing structure which may
then be manipulated during evolution.

It is important to note that the imposition of structure (especially specific structure like sym-
metry) normally represents a trade-off between the ability to evolve a solution and the addition of
extra assumptions. Any structure that is forced upon the developmental process, or supplied to it
when the robot is born, is an instantiation of a set of assumptions on the part of the experimenter.
This trade-off is familiar to practitioners of genetic algorithm techniques since the evolution of
complex outcomes often involves the imposition of specific constraints on the paths evolution
may take. In all such cases, caution is advisable to ensure that the expected outcome is not being
programmed in through the assumptions being made.

The explicit method through which the evolutionary process may be ‘instructed’ by the ex-
perimenter is the fitness function. The next section looks at how the evolutionary process may be

influenced to follow useful paths using fitness, rather than structural constraints.

Fitness functions

The evolution of a discriminating robot using the chemical-guided networks demonstrates the
importance of the fitness function in the process of evolving developmental systems. The fitness
function must be used to shape the landscape navigated by evolution so that it leads towards good
solutions. This can mean using powerful, highly specific fitness functions to ensure only ‘correct’
behaviour is rewarded (as in the case of the discriminating robot), and it can also involve the use
of domain-specific knowledge to guide evolution down useful paths.

This domain-specific knowledge may involve understanding of the kinds of intermediate solu-
tion that will be useful stepping stones towards successful evolution (biasing the fitness function
to encourage evolution towards these solutions) as well as knowledge of the kinds of structures
that are expected in the controller, as was attempted in the predictable change task.

An interesting addition to this idea is that if a solution works in a certain way, it may be
expected to fail under certain specific circumstances. If working in that way is required, or is
assumed to be a useful stepping stone in the evolutionary process, it could be useful to reward
the robot for failing under these specific circumstances. A reward for failure might seem counter-

intuitive, but actually what is happening is a narrowing of the fitness function, strengthening its
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ability to disassociate potentially good solutions from evolutionary cul-de-sacs?.

The use of specialised fitness functions to evolve successful behaviours is, of course, simply
another way of imposing structure on the system, and as such is subject to the same caveats about
introducing assumptions into the model as all the ideas discussed in the previous section.

The results of evolving robots for the predictable change task are an example of some of the
dangers of this approach: an assumption was made about the kind of controller that would be good
at this task, and the fitness function used to encourage such controllers to develop, but in fact this
requirement was not useful and produced robots less capable of performing well.

There are many possibilities for what controller attributes might be selected on, and examples
include high connectivity (which was used in some of the preliminary work for the growth and
pruning controllers, and found to be very useful when connectivity is low), lower connectivity,
basic functionality (e.g. connecting sensors to motors in part one), sensory-motor loops, scale-
free networks and symmetrical controllers or behaviour.

It is difficult to know which attributes might be useful to select for until the evolutionary
process has been observed, and it becomes clear how it must be altered to avoid certain pitfalls
and climb the slopes. This emphasises the need for researchers to expect to adapt continually the
models and requirements, responding to the issues which only become clear when the evolutionary
process is better understood.

The use of selection for connecting sensors to motors in chemical growth controllers provided
clear advantages, and selection for high connectivity in growth and pruning controllers showed
definite advantages in situations where the robot’s lifetime began with fewer than 100% of its
synapses in place, and despite the fact that the predictable change task with selection for change in
the controller did not result in better controllers, it remains the view of the author that selection for
properties of the internal structure of the controller along with external behaviour will be crucial
in the successful evolution of two-tier structural change developmental controllers in the future.

There is a symmetry here between the desire for two-tier structure in the controller and the
need for a two-tier fitness function to encourage that structure to form. It seems that there is
a need to re-learn the lesson that evolution only evolves the minimal necessary solution to any
problem, and if it is to be forced to produce complex multi-level structures it must be pushed and

pulled in the right directions at all levels, not merely the behavioural one.

Summary
It is possible that the use of development to generate significantly better controllers than more
fixed schemes is simply beyond the current level of understanding in evolutionary robotics. In
general in this work it was found that developmental controllers are harder to evolve than fixed
ones in situations where the development may be of no use, and do not perform significantly better
until the tasks become quite complex. Perhaps when the field moves on to studying much more
complex tasks the use of development will need to be commonplace, but for the moment its use
needs to be justified to ensure it is the right choice.

It is notable that developmental controllers were found to be more robust in certain situations
than more fixed ones when perturbed by unexpected disruptions. It appears that in some circum-

stances, starting from a small or random starting point and generating structural elements can

2The author is grateful to Ezequiel Di Paolo for suggesting this idea.
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provide behavioural robustness to unexpected disruptions ‘for free’ even when the robots are not
evolved to deal with such situations.

If in the future a truly robust developmental process can be designed that exhibits canalisation
without being inflexible, brittle or unevolvable, it may be possible that this process will allow us
to evolve more complex systems due to the scope for modularity, symmetry and adaptability, but
given the current state of understanding, developmental systems add a new level of complexity
to the process, and often the potential gains are difficult to realise. The complexity added is not
simply in terms of a numerical increase in the number of variables evolved (since in principle this
does not make evolution harder if good solutions are distributed in the same way) but an increase
in the number of levels of abstraction between genotype and behaviour, which can easily lead into
local fitness maxima from which it is difficult to escape.

In the analyses of evolved robots, regulatory and meta processes were found to be crucially
important (particularly see the timing of the growth of a neuron in section 7.2.3), but they are also
the biggest cause of indirection of the link between fitness and genotype, so need to be handled
very carefully. It may be that it is vital to allow regulatory genes to exist since they seem to be
very powerful. On the other hand, allowing them too much power may lead to many evolutionary
blind alleys where the developmental or regulatory process controls the robot instead of building a
lower tier of dynamics which performs the control. This result fits with the ideas of Gould (1977),
who discusses the importance of regulatory genes in the developmental process, especially in their
control of the timing of developmental events.

Thus, contrary to the expectations of the author, development is not the easy solution to the
‘glass ceiling’ of complexity which appears to have been hit in the domain of evolving CTRNNS,
but it may one day become the difficult solution to a difficult problem. Howeyver, it is worth noting
that the idea that this type of process will provide a solution is still based on intuition rather than
solid fact. The work in this thesis provides a little evidence for this idea, since the developmen-
tal controllers perform better on more complex tasks, but it is still possible that development is
a necessary extra problem that nature has managed to work around, rather than a good way to
gain scalability or adaptability. Artificial evolution may need to find its own ways to gain these
advantages and generate more complex behaviour.

It is hoped that the ideas presented above will provide, along with the specifics of the design
of controllers and experiments, a set of tools in terms of ways of thinking, techniques and ‘rules
of thumb’ which may be useful to researchers looking into the area of evolving developmental

systems.

10.2 Exploring open questions

In this section, each open question enumerated in section 4.2 is examined in the light of the ex-

ploratory evidence collected by experimentation.

1. May developmental systems be evolved to generate simple behaviours using today’s methods?
It has been shown through all of the experiments described in this thesis that it is feasible to
evolve controllers containing explicit developmental mechanisms to perform simple behaviours.

However, as may be seen especially in the work of part 1, it does appear to be more difficult to
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evolve these controllers than those without this addition. Some possible explanations for this, and

possible solutions, were discussed in the previous section.

2. Can developmental systems handle predictable changes in required behaviour

better than non-developmental ones?

No evidence has been found to support the idea that developmental controllers may be evolved to
perform better in situations requiring predictable changes in behaviour. The predictable change
experiment (section 9.1.3) showed no statistically significant difference in performance between
the three controller types growth and pruning, plastic and fixed.

The performance of both behaviours was well within the capabilities of the fixed controllers,
and the addition of the ability to alter network properties and structure did not lead to improve-
ments in final fitness achieved. Examination of the behaviour of the robots suggests that the
fixed controllers did not undergo significant change in dynamics at the point in which a different
behaviour was required, but simply embodied a strategy which responded correctly to the two dif-
ferent stimuli of being enclosed in a corridor and being in open space. It is possible that if a task
were contrived which did not allow for such a reactive strategy (since the immediate sensory input
was similar in both parts of the task), the potential benefits of the addition of a developmental

mechanism might have been seen.

3. Will developmental systems selected for change in the controller at the time at which
behavioural change is required evolve more successfully to exhibit that change?
The results of the predictable change task (section 9.1.3) provided no evidence to support the idea
that a modified fitness function encouraging controller change at the time in a robot’s lifetime
when behavioural change was required could be beneficial to the final fitness achieved. In fact, the
robots evolved under these conditions were shown to achieve a lower fitness than those evolved
under normal conditions.

It appears that many good strategies for this task involved no controller change, or only a
small amount of controller change, and by ‘distracting’ evolution, causing it to pursue strategies

involving large amounts of change, the fitness achieved was reduced.

4. May developmental systems be evolved to perform tasks that are too

complex for any non-developmental system?

The growth and pruning and plastic controllers did not achieve higher fitness than fixed controllers
in most of the tasks. They did achieve higher fitness in two experiments (learning, section 9.1.6
and re-learning, section 9.1.7), showing that the additional mechanisms provided were beneficial,
but since both controller types had more free parameters and were more easily able to preserve
state over much longer timescales (an ability particularly relevant to these tasks), it is not possi-
ble to come to any conclusion as to whether the explicitly developmental character of the added
dynamics was relevant to the success achieved. In fact, it is likely that a fixed controller con-
taining a larger number of neurons (giving it a comparable number of free parameters) and with
long time constants would have been able to achieve fitnesses comparable with those achieved by
the growth and pruning and plastic controllers. This conjecture is supported by the high fitness
achieved evolving such a controller in the T Maze task in order to test robustness (section 9.1.9).

It is a matter for speculation as to whether there are tasks which would be better addressed by
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controllers containing explicit developmental systems, but in the tasks chosen here it appears that
development provides little benefit.

In order to explore fully this question, one would have to examine the space of all possible
non-developmental controllers and show that there was a developmental controller which out-
performed all of them in a particular task. A first step in this process is offered here through the

examination of a single example of each type of controller.

5. Are developmental controllers more capable of performing learning

tasks than non-developmental ones?

As outlined in the above section, the two learning experiments (sections 9.1.6 and 9.1.7) showed
higher fitness for the developmental controllers, but this result may be explained by the greater
complexity and long temporal scales of these controllers, rather than their developmental abilities.
Thus little or no evidence was found to support the idea that developmental controllers are more

capable of performing learning tasks than non-developmental ones.

6. Are developmental controllers more able to produce different behaviours depending on

the type of environment with which they are faced?

The flexibility experiment (section 9.1.8) showed that in the task used controllers with additional
developmental capacities performed no better in terms of final fitness than fixed controllers. No
evidence was found to support the idea that developmental controllers are more able to produce
different behaviours in different environments.

Since the task chosen was found to be well within the capabilities of the fixed controllers,
despite the fact that two different behaviours were required depending on the circumstances, there
was no real opportunity for the developmental controllers to show the benefits (if any) of the ability
to generate entirely different behaving controllers under different circumstances. It is possible that
if each of the two tasks were complex enough to use the full capacity of the fixed controllers, the
developmental controllers might have shown themselves capable of performing better, but in this
case, as in that of the question involving learning, there is no guarantee even if that were so that

larger fixed controllers with longer time constants would not perform equally as well.

7. Are developmental controllers more robust to previously unencountered
change than non-developmental ones?
The robustness experiments (section 9.1.9) provide evidence to suggest that developmental con-
trollers may be more robust than their more static counterparts in some circumstances. The idea
behind this question is that since the robot must construct its controller at the beginning of its
lifetime, and since that construction process may be affected by the robot’s experience, a coupling
might be formed between the successful performance of behaviour and the successful formation
of the controller. This coupling could lead to the modification of the controller structure generated
in cases of previously unencountered change, producing stable behaviour despite that change.
Such a coupling appears to have been generated in the experiments performed, causing the
developmental controllers to exhibit significantly greater robustness than the small and medium
fixed controllers, plastic controllers, and large fixed controllers with comparable complexity and
temporal range. An interesting prediction from this result is that, since this coupling already occurs

in some cases, it must be relatively easy to achieve, and therefore it seems likely that if robustness
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were selected for in developmental controllers, encouraging the coupling to occur in more cases,
they might respond better to such selection than fixed controllers, widening further the fitness gap
between such controllers and fixed ones, even in the case where the fixed controllers, too, were
selected for robustness. This is an interesting potential avenue for future research.

8. Are developmental controllers evolved to be robust to noise in the developmental process more
robust to previously unencountered change than those evolved in more predictable conditions?

It was expected that reducing the reliability of individual elements (by allowing spontaneous
growth and death of synapses with the growth and pruning 95* controllers, in the robustness exper-
iment of section 9.1.9) might have encouraged more flexible, holistic strategies where development
produced redundant mechanisms that continue to perform the correct behaviour even in disrupted
conditions, but although moderately successful controllers for simple tasks were evolved, the ex-
pected robustness was not observed - these controllers were little more robust than fixed or plastic
networks, if at all, and their degraded performance even in the unaltered task prevented them from
entering consideration as a viable alternative.

No evidence was found to support the idea that robustness to unreliability or noise in a con-
troller encourages robustness in behaviour. It is possible that the noise introduced was simply too
extreme to be overcome by the evolutionary process in this case. It would be interesting to exam-
ine the effects on robustness of introducing a range of different noise levels into the developmental

process, and this might be an interesting route for further work.

9. Will controllers whose development involves mainly guided pruning of structure be more
successful than those whose development involves mainly guided growth?

By comparing the final fitness of growth and pruning controllers evolved with differing levels of
synapse growth and death (section 9.1.10), it was found, in one of the two experiments, that in
controllers some of whose synapses are dead at the beginning of the lifetime, synaptic growth is
important, whereas death is relatively unimportant. Thus there is some reason to suppose that the
idea that controllers involving mainly guided pruning of structure perform more successfully than
those involving mainly guided growth may not be correct. This provides very weak support for
the constructivist view of brain development which emphasises the role of guided growth of brain
structure.

The constructivist viewpoint suggests that brain structures in real animals are generated through
guided growth of brain material. The first experiment in the synapse growth verses death compari-
son, using growth and pruning 90 controllers and a simple phototaxis task, offers some encourage-
ment for the holders of this view since it shows that in this situation guided, experience-dependent
growth of artificial synapses can result in useful controllers being generated. Furthermore, it shows
that variation in the levels of synapse death do not appear to affect the outcome of evolution in
terms of the mean fitness of the best generated individuals.

It appears that in both the phototaxis and T maze experiments synapse death was not very
useful for generating controllers for robots. This could be for a number of reasons: first, it is
possible to recreate the effect of synapse death by reducing connection strength to zero, so any
robot requiring the removal of a particular synapse may simply use a plasticity rule to reduce
its strength instead. Second, it was observed that many ‘useless’ synapses were not removed
during development: synapses that appeared to play no part in the behaviour, and whose strengths
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varied widely over different lifetimes, even in identical environments, often did not die. This
may be because if such synapses are allowed to have uncontrolled, ‘random’ values, their effects
are generally balanced by those of other random synapses, and the overall effect on behaviour is
minimal. Robots certainly seem able to behave effectively in the presence of such synapses.

This presents an interesting question for the proponents of selectionism: is the removal of brain
material useful for generating behaviour in animals? There are several possible ways in which
it might be useful. In situations involving competition between synapses for limited resources,
useful structures may emerge more frequently than in the situation simulated in these tests, where
synapse death did not imply an extra capacity for the growth of another synapse. Also, removal of
brain elements in real animals may simply arise from a need to save energy.

This work suggests some interesting further lines of enquiry. It would be useful to investigate
the question discussed above concerning where death of brain elements could be useful. One idea,
that competition between synapses produces useful structures, could be explored by comparing
robots whose synapses compete for finite resources (perhaps limiting the total strength of all the
synapses feeding into a neuron) with those whose synapses may take any strength. If the compet-
itive system results in higher mean fitnesses, there may yet be reason to explore further the ideas
behind the question which heads this section.

Another line for future work lies in modelling more explicitly the systems proposed by the two
viewpoints. This could mean a system in which all synaptic growth is spontaneous and random,
and all death is guided by the genotype and neuron activity (approximating the situation suggested
by selectionists) being compared with a system in which all growth is guided and death is either
random, or also guided (approximating the situation suggested by constructivists). The case of
both being guided is the one which has been treated in this thesis.

Of course, all of these tests, and those proposed, at best may only show in principle which
types of system can produce useful behaviours, and offer no guidance as to what actually happens
in real animals. If one way of generating controllers is shown to be vastly superior to another, this
may provide some guidance as to what might be expected to have evolved in nature, but as with
all this work, the comparisons being drawn between natural and artificial systems are extremely
abstract and general, and many assumptions must be made in order to apply the findings in one

situation to the realm of the other.

10.3 Further discussion

The issue of where development may be useful in evolutionary robotics is discussed in section
10.3.1, and the specific conclusions that may be drawn from the failure of the growth and pruning

90 controllers to evolve good solutions are discussed in section 10.4.

10.3.1 Where is development useful?

In practical terms, for the artificial evolution of robots capable of performing simple behaviours,
where might it be useful to incorporate a developmental control mechanism? Certainly there are
some situations in which such mechanisms may be beneficial.

The developmental controllers studied in parts one and two were successfully evolved to per-

form relatively complex tasks, sometimes evolving to a greater competence than fixed controllers.
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The first observation is that although in some cases these developmental systems appeared diffi-
cult to evolve, the barriers were not insurmountable: despite the reservations described in section
10.1.2, it is practical to study simple developmental systems using contemporary genetic algorithm
techniques and technology.

The chemical-guided growth networks performed admirably on the orientation and discrimi-
nation tasks, but in the most difficult task they showed a tendency to over-specialise. However,
given strong constraints on the controller and fitness function, it was possible to evolve robust and
elegant solutions for the multiple discrimination task. This task requires a complex behaviour,
but one that involves responding to immediate sensory input rather than using internal state, not a
situation that might be expected to show the benefits of a controller capable of long term structural
change. Indeed, this task evolves more easily with a simpler, more reactive controller, but the
developmental system is capable of generating an appropriate controller under the right circum-
stances.

The problems of complexity, indirection, over-specialisation and building structure from a
blank slate experienced in part one were addressed in the design of the growth and pruning con-
trollers used in part two. These controllers (in their ‘Growth and Pruning 100’ form) were success-
fully evolved to perform a variety of tasks, starting with a simple phototaxis task, moving through
corridor following to tasks involving maintenance of internal state.

In the simpler tasks there was no clear advantage for developmental controllers, and the dis-
advantages of needing to grow synapses before being able to guarantee their presence meant that
the growth and pruning 90 controllers performed poorly on most of the tasks. Also, in some of
the more complex environments, notably the flexibility and predictable change tasks, the fixed
controllers performed very well, and no significant difference in fitness was found between them
and the developmental controllers.

In the re-learning task, the plastic and developmental controllers significantly outperformed
the fixed ones, and the advantages of the potential for structural change of the developmental
controllers, which had slowed their progress in simpler tasks, enabled them to perform as well as
the plastic controllers in this more complex task. However, since the fixed controllers were limited
to a smaller number of free parameter and shorter timescales, this conclusion does not suggest that
fixed networks, given longer timescales and more free parameter, would not perform as well as
the growth and pruning and plastic controllers. In this case, the fixed controllers may well evolve
dynamics which also might be described as ‘developmental.’

If the trend of growth and pruning controllers’ performance improving with task complexity
were found to continue, it might be possible that even more complex tasks, involving long-term
storage of state which is subject to change under certain circumstances, would evolve to a higher
fitness with the growth and pruning controllers than with the plastic. However, it is worth noting
that the growth and pruning controllers that were most successful were the growth and pruning
100 variety, which are quite similar to plastic networks - if no growth or death occurs they are
identical - and it may be that the ability to remove and add synapses is not useful for performing
this kind of task. The analysis made of a robot performing the re-learning task shows that, at least
in this case, the capacities to remove and add synapses were not used a great deal, and where they

were used they did not serve a particularly complex purpose. Circumstances under which growth
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and death may be more useful, for example in competitive situations, are discussed in section 10.2.

The developmental controllers performed better than fixed ones in some of the tests of ro-
bustness to disruptions. In this case it was shown that even fixed controllers with an equivalent
number of free parameters and the capacity to have long term dynamics did not behave as robustly
as growth and pruning controllers. If this feature can be exploited it will be extremely useful for
designing robots which need to preserve stable behaviours in the face of unexpected changes in
their bodies or environments.

It was surprising how well the fixed controllers evolved to perform the tasks, even those in-
volving high levels of adaptivity such as the predictable change and flexibility tasks. The plastic
controllers also performed well above expected levels. It seems that structural change (in terms of
growth and death of synapses) is not crucial to perform tasks at this complexity level.

A further potential advantage of the developmental and plastic controllers was that they evolved
much more consistently than the fixed ones in several of the tasks. The histograms of final fit-
nesses found for the fixed controllers showed that they were often distributed widely, with some
runs reaching very high fitness and others failing to evolve adequate solutions. In contrast, the
fitness scores of the plastic and developmental controllers were more consistent, clustered near
to the higher fitness end of the distribution. In a situation where it was important to evolve an
adequate solution using a single evolutionary run, a developmental or plastic controller might well
be a good choice even for a simple reactive task. However, it is likely that part of the explana-
tion for this phenomenon is the larger number of free parameters under evolutionary control in
the two more developmental controller types. It is often observed that increasing the number of
free parameters can tend to smooth the path through evolutionary space. Thus, using larger fixed
controllers might have the same effect in this case.

104 Growth and Pruning 90

The ‘Growth and Pruning 90’ controllers failed to reach the same fitness as the other controller
types in several of the tasks. These controllers involved a greater developmental burden since
each synapse had a good chance of being dead when the robot’s lifetime began. Thus in order to
behave in a consistent way the robot needed to grow any missing synapses before modifying their
weights as required. This process introduces a great deal of noise into the fitness evaluation, since,
for example, if the robot begins its life with a crucial synapse connecting a sensor to a neuron
missing, and there is no current sensory input, it may be difficult to guarantee that the appropriate
sensory input will be experienced, which is needed to trigger growth from a growth rule that is
not 100% optimised to grow under all sensory circumstances. In this case the robot is unlikely to
respond correctly to the sensory input for some time, until it experiences the right situation for that
synapse to grow.

It is possible that if these controllers had been evaluated over more lifetimes this noise factor
might have been reduced sufficiently to allow more effective evolution. If this were the case some
of the advantages of re-constructing the controller in every lifetime might have been realised,
including a possible greater flexibility to variations in the environment.

The failure in many tasks of the growth and pruning 90 controllers to perform as well as the

plastic and fixed controllers is a further demonstration of the difficulty involved in building up
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structure from fewer to more elements. It seems likely that the problem of bootstrapping in this
situation, outlined in detail in section 8.1 will continue to be a major issue for those wishing to

evolve developmental systems.

10.5 Conclusions and future directions

This work was undertaken in order to develop experimental tools to be used in the study of devel-
opment, and to answer some specific questions about developmental phenomena.

The unexpected difficulty encountered in evolving controllers capable of simple behaviours
means that the tools developed cover not only specific controllers types and evolutionary tech-
niques, but also explanations and ideas which may help future researchers to circumvent some of
the problems and challenges encountered.

Most of the questions addressed warrant a great deal of further investigation, but it is hoped
that this work demonstrates that these questions are open to investigation using current techniques
and methodologies. No doubt the tentative conclusions reached here will quickly be revealed as
naive as best, but they may provide stepping-off points for others to continue learning.

Several important avenues for the continuation of this work have been discussed in the preced-
ing sections, including some concrete proposals for further experiments. It is hoped that if these
avenues are followed, the goals of this work may be further advanced.

It is possible that in order to reap all of the benefits seen in biological developmental sys-
tems research must move beyond the information-transfer paradigm of neo-Darwinian genetic
algorithm research altogether. The ideas discussed in section 3.2 about the need to remove the
conceptual separation between genotype and phenotype may need to be taken on board into the
models that are used, and the problem of evolving from a random starting point rather than from
a point where the accumulated benefits of a canalised developmental system are already in place
need to be addressed.

How to move beyond these methods and paradigms is an extremely difficult question, and not
one that is addressed in this thesis, but it is a question that must be addressed if the goal of under-
standing development to any extent is ever to be reached. Possible directions which may be useful
are contained in the work of Macinnes (2005), who is looking at evolving ‘functional circles’ (self-
extinguishing sensory-motor-behaviour loops) rather than more abstract fitness measures, and has
also developed successful theory and methods for incremental evolution which may eventually
provide the field with the capacity to deal with evolutionary histories rather than isolated genetic
algorithm runs.

The most important principle in the design of developmental systems discovered through this
work is that evolution and development appear to work better by optimising pre-existing complex
structures, even if they are highly disordered, than working to construct new structures needed for
a particular purpose. This principle has been put into practice and shown to have a strong positive
effect on the evolution of developmental systems. It is hoped that this idea will be developed in
the future into a well-defined theory which may be rigorously tested, and, if found to be correct,

applied to improve the design of artificial developmental systems in the future.
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