Reinforcement Learning

In the following chapter, sections 2.1 through to 2.8 are essentially a review of the
book: ““Reinforcement Learning” by Sutton and Barto (1998). The book provides a
lucid, comprehensive and consistent account of the theory and its history, and in the
author’s opinion represents the best introduction to the subject. This chapter also
draws significantly on an authoritative reinforcement learning survey by Kaelbling
et al. (1996).

The main topics of the thesisare now reviewed in this and the two subsequent chapters.
This chapter isdevoted to the history, theory and practical application of reinforcement
learning, while the main purpose of chapter 3 is to introduce neural networks as an
implementational paradigm. Both these sections provide the foundation for chapter
4 which concludes the introductory material by reviewing existing work on the rein-
forcement learning of real-valued functions, with an emphasis on different approaches
to representing the action space.

15

2.1 History

Historically there are two main strands that contribute to the field of reinforcement
learning: animal psychology and Dynamic Programming.

Animal learning is traced to Thorndike (1911), who suggested that an animal, given a
choice of responsesin a given situation, would when encountering that same situation
again, be more likely to reproduce an action that resulted in satisfaction, and lesslikely
to reproduce one that resulted in dissatisfaction. Thisintuitiveideawas also devel oped
by Pavlov (1927), and is commonplace in modern psychology.

In the late 1950s the phrase optimal control was used to describe a technique for min-
imising a measure of a dynamic system’s performance. Bellman developed a func-
tional equation — now called the Bellman equation — for calculating the value func-
tion of a dynamic system. The process of solving a set of these equations, either
analytically or incrementally in order to first estimate the values of the various states
of the system, and then derive a policy for maximising the expected return over thelife
of the system developed into the field of Dynamic Programming (Bellman, 1957), and
today represents the theoretical grounding of all RL techniques.

It was not until the early 1980s that Barto, Sutton, Watkins and others began defining
modern reinforcement learning, uniting the strands, clarifying the theory and, impor-
tantly, distinguishing the field from supervised learning, thereby giving RL its own
identity and its own place in the machine learning literature.

2.2 Introduction

The intuition behind reinforcement learning (RL) is very simple — an agent learns
for itself how to maximise a reinforcement signal from its environment by trial and
error exploration of different actions in different situations. If the signal is designed
toyield high reward at goal states, and low reward in situations that are to be avoided,
then in learning to maximise that signal, the agent will hopefully also learn how to
achieve its goals. Unlike supervised learning, where the desired output is presented

along with the input, in RL only the value of an action is provided, and the agent itself
is responsible for discovering and selecting appropriate actions based on the relative
strengths of these values.

The standard example of a simple RL problem is the n-armed bandit where one of n
levers must be pulled at each time-step, with each lever yielding areward according to
afixed distribution. Imagine being in a situation with two levers and one hundred pulls
to make. How would you maximise your reward? Clearly one strategy involves trial
and error sampling until sufficient confidenceis held in the belief that onearmyieldsa
higher expected reward than the other, at which point only that arm should be pulled.
Each arm could be tried just once, and then the one yielding greatest reward pulled
thereafter, but this does not alow for an unlucky sample. If the reward distributions
of the two arms are similar and you still have many goes left, it makes sense to take
a larger number of samples (of both levers) to be sure you get the most out of the
remainder of the game. Conversely, on the 100th go, the only sensible thing to do is
pull the lever with the highest expected reward according to your experience so far.

Pulling the arm whichis believed to yield the best result is known as exploiting the cur-
rent knowledge. But in order to be confident about that knowledge, all options must
first be explored (evenif they initially appear likely to be worse) in case the new infor-
mation uncovers greater reward in the long run. This is known as the explore/exploit
dilemma since on the one hand exploration is necessary to uncover reliable informa-
tion, but on the other hand exploitation is necessary to make the most of that informa-
tion, and they cannot both be performed at the same time. It obviously makes sense to
explore more at the beginning of atrial when the information gained will be of most
use, and to exploit at the end when the cost of exploring will tend to outweigh the ben-
efits of the new information gained. In most practical applications, optimal solutions
to thisdilemma are not known, but some commonly used strategies will be introduced
shortly. For adiscussion of bandit problems, see Narendra and Thathachar (1989).

The n-armed bandit problem is actually a special case of the more general RL prob-
lem, as there is only one state that the system can be in — namely that of being faced
with pulling one of the arms. From this single state there are a number of actions with
each action corresponding to pulling one of the arms. In the more general problem,

the system can be in any one of a number of states with the optimal action depending
on the state. An example isthe game of noughts-and-crosses in which each board po-
sition can be thought of as a state of the problem, and in which there are nine actions
— one for each square of the grid. Not all actions will be available in each state, and
of course different actions will be preferred in different states. A system for selecting
an action to take in each state is referred to as the policy. For example, one (unrec-
ommended) policy for noughts-and-crosses would be to always take the top-left most
square available.

2.3 Markov Decision Processes

It is convenient to consider the environment as a Markov Decision Process (MDP), an
example of which is shown in figure 2.1. The system has four states (one of which
happens to be aterminal state making it afinite horizon MDP), and two actions. The
states are numbered 1 to 4, and the actions labelled al and a2. In each state, the
two actions will take the system into a new state with a fixed probability which is
indicated to the right of the colon for each transition. In the context of the RL problem,
each state transition also yields a reward as a scalar value. It is easy to imagine the
noughts-and-crosses example drawn and labelled like figure 2.1. In this case there
would be 3° = 19683 states, nine actions, =7 x 2 = 252 terminal states, and the
transition probability from each state under each action would be unity since the game
IS deterministic.

In the rest of this section, it isassumed that the environment is represented by an MDP.
This will imply that each state contains sufficient information so that the probability
of moving to any next state, s’, and receiving any reward, r, is the same given the
current state and action information as if given the entire state-action-reward history
of the environment. This can be expressed by the following equality, which defines the
Markov property:

INot all of these would be valid board positions.

al:0.75

Figure 2.1: A simple Markov Decision Process consisting of four states and two actions.

P(st41 =951 =r|st,at) = P(St+1 =, re1 = rst, &, e, St—1, 81, -1, - - ,50,20)
2.1)

for al sty1, i1, and state-action-reward histories, where s; is the state at timet, a; is
the action taken at timet, and r; isthe reward received in moving to state s;.

This assumption ensuresthat at each state, the agent has sufficient information to make
a perfectly informed decision given the boundaries of the particular problem. In the
noughts-and-crosses example, coding the board positions as states results in a game
with the Markov property because a complete board position contains all the salient
information for winning a game. But coding a maze with states corresponding to “left
corner”, “right corner”, “corridor” does not yield an MDP because escaping a maze
requires at least an implicit knowledge of location which cannot usually be inferred
from the immediate surroundings. However, if a state history is maintained so that
the escapee can remember the types of previous junctions, then it may be possible to
localise, but this then corresponds to a different MDP in which the states are n-tuples
of the old “left/right/corridor” states. Of course if the states are coded as particular
corners and corridors, then it is an MDP because there is as much information in a
single state as in an entire state history (with respect to escaping the maze). The maze
is an example of a deterministic process since one assumes transitions between states
will occur with probabilities zero or one (although of course one could easily contrive
an examplewhere they do not). An example of amore general, non-deterministic MDP
is encountered shortly in figure 2.2.

Note that even though an agent may have access to sufficient information so that
the Markov property is satisfied, an inability to perceive that information (perhaps
through impoverished sensing apparatus) may lead to the agent effectively facing a
non-Markovian decision process. Thisisreferred to as perceptual aliasing.

2.4

Thebasics

The standard reinforcement problem is defined using the following elements:

Set of states

A set of discrete and distinct states, S, corresponding to the learning agent’s per-
ception of the states of its environment. A state could be a board game position,
avector of robot sensor readings, a position within a maze etc.

Set of actions
A set of discrete actions, A, available to the agent. Not every action need be
availablein every state.

Policy
The policy, =, dictates which actions are to be taken in each state. Policies may
be stochastic.

Reward function

The real-valued reward function, R, maps states, state-action pairs or state-
action-state tuplesto reward values. Reward values may be positive, negative, or
zero indicating no reward. The reward function is usually unknown to the agent,
and must first be explored and then exploited.

Value function

The value function, V, is a central idea to RL techniques and maps each state
to a measure of the value of that state. The value of a state is taken to reflect
the expected accumulated reward from that state on. V is usually taken to refer
to the actual value function, while V refers to the estimated value function. V™

refers to the value function under some policy, ©t, whileV * refers to the optimal
value function — i.e. the value function under the optimal policy.

e Mode of environment
The environment model, which may or may not be known to the agent, predicts
the behaviour of the environment by mapping state-action-nextstate tuples to
probabilities. The environment model is provided by T (s,a,s’) which returns
the probability of moving to state s’ after taking action a in state s, for al s, a,s’.

The environment model is provided in the form of atransition function, T, from
state-action-nextstate tuples to probabilities.

This outlines the basic RL context that was introduced in figurel.l. The additional
constraint has been added that the environment model behaves as an MDP.

At each time-step an agent moves from one state to another by taking one of its avail-
able actions, and in so doing receives a scalar reward. The question is, against what
measure should the agent’s behaviour be optimised? One answer isto attempt to max-
imise the sum of all expected future reward, up to areceding finite horizon:

E <i rt) (2.2)

t=0

where h isthe horizon and r; isthe reward received from the environment at timet after
an action istaken.? 3 This return hasto be ‘ expected’ because of the stochastic nature
of the environment. It isnot assumed for examplethat an action guarantees a particular
state transition, only a probability of that transition. If atask isof finite length, aswith
the two-armed bandit example earlier, then this approach may be adequate, but since

2An dternativeis the fixed finite horizon in which the reward is summed all the way up to the fixed
end of thetrial.

3Strict statistical notational convention dictates that uppercase R is used to denote the random vari-
able representing reward inside an expectation. However, for consistency, the notation adopted here and
throughout is that of Kaelbling et a. (1996) and Sutton and Barto (1998).

we may not wish to make such an assumption, a more common value to attempt to
maximiseis the discounted return:

E (i ytrt> (2.3)

t=0

where 0 < y < 1 is called the discount factor. The idea behind (2.3) is that rewards
are exponentially decayed as they become more and more distant and this ensures a
finite sum, even on an indefinitely long training episode. There is aso an intuitive
appeal in trying to maximise immediate reward more than distant reward. In thisway,
vy effectively setsthe horizon.

The value function, V™, is defined as (2.2) or (2.3) for each state, based on the infor-
mation provided by the reward function following that state given a policy, =. The
aim of reinforcement learning is to discover an optimal policy, *, which maximises
(2.2) or (2.3). If the environment model is known explicitly in terms of the transition
probabilities and the reward function, then it may be feasible to analytically solve for
the value function under the optimal policy, to givefirst V* and then ©*. However, in
many cases the environment model is not known, and a solution must be approximated
by an iterative sampling method. This thesisis concerned exclusively with problems
where the environment is not known.

2.5 Dynamic Programming

Assuming that (2.3) is the value we wish to maximise, and therefore first estimate, the
value function, V, can be expressed by the Bellman equation (Bellman, 1957):

Vi(s)= > n(s,a) > T(s,as) [R(s,a,s’) + W) (2.4)

acA s'eS

where nt(s,a) is the probability of taking action a in state s under policy &, T (s,a,s’)
is the probability of s’ being the successor state of s following action a (i.e. the state-
transition function), andR(s, a,s’) isthereward elicited from the environment by taking
action a in state' s and ending up in state s’.4

The Bellman equation, which can be viewed as a recursive definition of equation 2.3,
asserts that the value of state s under policy m is the result of summing, for each ac-
tion and each possible successor state, the expected reward of that transition plus the
discounted value of that successor state.

For a suitable RL problem, this yields a set of simultaneous equations, one for each
state, which can be solved to yield the value function V™. The following example
is taken straight from Sutton and Barto (1998) (pg 71): Consider the grid world of
figure 2.2a in which each sguare is a state from which the agent may choose one of
the following actions: “up”, “down”, “left” or “right”. Each of these actions takes the
agent to the appropriate neighbouring state and yields no reward except that attempting
to move off the grid results in no movement and a reward of -1, and any action taken
in states A or B resultsin amove to A’ or B’ with rewards of +10 and +5 respectively.
Figure 2.2b shows the value of each state, as calculated by equation 2.4, for the policy
inwhich each actionisequally likely in each state, and with the discount factor, y= 0.9.
The negative values of edge squaresin the lower half of the grid reflect the probability
of the agent stumbling off the grid at these points. States A and B have high values,
as do their neighbours, because of the potential for achieving the +5 or +10 rewards.
However, the value of state A is dlightly diminished by both its proximity to the lower
edge of the grid via the special state transition A — A’, and also the distance of the
inevitable successor state, A’, from the rewarded states A and B.

Each valueisthe expected discounted reward from that state onwards for the equiprob-
able policy. However, what we are more interested in is the optimal policy, ©*, which
guarantees the greatest possible future reward. Equation 2.5 shows the Bellman opti-
mality equation for V *, which yields the expected return of each state if the best possi-
ble action is always taken. In the same way as before, a set of simultaneous equations

4We use R for the reward function (from state-action tuples), and ry to denote the reward at a partic-
ular time, t.

A B 33|88|44|53|15 22124/22|19|18 —> Rt 3
V1% |us|so|2s[1slos| |20 |22|20(18].] [F 4] He e
[1e? 01/07|07]04 04 |18|20|18 16|14 |# |4 [4 b ¢

-10[-04|-04{-0612| |16|18 16|14 |13 $
A -19(-13]-12|-14|-20 14|16 | 14 | 13| 12 %: 4 :_fjj‘:jj
a) Grid World b) V'V eqa oV”* e

Figure 2.2: Application of the Bellman equations. Reproduced with permission from (Sutton and
Barto, 1998)(pg. 170).

— one for each state — can be solved to yield V *.

V*(s) = max Y T(s.a,9) [R(s,a,s’) + W) (2.5)

s'eS

This equation is very similar to the previous Bellman equation except that instead
of considering all possible actions from state s, only the action that maximises the
future return is used. Figure 2.2c showstheV * values for each state calculated using
(2.5), and figure 2.2d shows the optimal policy, *, which can be generated by always
selecting an action that maximisesthe right hand side of (2.5) for the current state. The
optimal policy happensto prescribe movesthat takes the system into state A as quickly
as possible (unless avoiding state B in the process would require a detour).

However, solving n simultaneous equations in n unknowns where n is the number of
states scales with O(n®) and soon becomes too expensive. Dynamic Programming
alleviates this problem by changing the Bellman equation into an update rule that can
be applied iteratively, one state at atime:

Viia(s) = Y n(s,a) ¥ T (s,a,5) [R(s, a,s) +yvk(s’)] (2.6)

a

where Vy isthe value function at the k" iteration. Note that Vg should be initialised to
finite values.

For some policy, &, Vi is updated at every state using the previous values of Vi_1.
The reason successive approximations improve the accuracy is that fresh information
is being injected by the term R(s,a,s’) during each iteration. It can be shown that Vi
convergesto V™ ask — < (Bellman, 1957), and calculating V™ by iteratively updating
the value function in thisway is called iterative policy evaluation.

Now, based on V7, it is possible to improve the policy to take advantage of the ap-
proximated value function. For example, in figure 2.2(b), knowing V "Eaual suggests
a number of improvements to w in which the higher value states are preferentially
sought. In practice, this can be achieved by setting (s,a) = 1 for the a € A that max-
imises Y¢ T (s,a,5')[R(s,a,s") + WT(s')], and setting n(s,a) = O elsewhere. Thisis
called policy improvement and is guaranteed to yield a better policy, 7/, if one exists.

But this now means that the value function is based on an out of date policy and needs
to be recomputed to reflect the new improved policy, 7’. In thisway, by repeatedly per-
forming iterative policy evaluation followed by policy improvement, better and better
policies are found converging on the optimum policy, ©*, and a corresponding opti-
mum value functionV *. Thisis called policy iteration, and forms the theoretical basis
of al practical RL techniques.

Equation (2.6) was an iterative version of the Bellman equation of (2.4). Similarly, the
Bellman optimality equation of (2.5) can also be expressed as an iterative update rule:

Vira(s) =max ¥ T(s.a,5') [R(5,a,5) + () (2.7)

which also directly converges to V* without the need to maintain an explicit policy.
This corresponds to the previous update rule in which the policy is effectively updated
immediately rather than waiting for policy evaluation to converge. It is also possible
to update Vi, 1(S) on statesin any order, and providing each stateis continualy visited

and never left unchanged indefinitely, convergenceis still guaranteed ask — oo.

The principle behind policy iteration is that information about all rewards is passed
around the system so that the value of each state eventually accurately reflectsitsin-
trinsic worth to the agent with respect to the expected return.

2.6 Monte Carlotechniques

Dynamic Programming requiresthat acomplete model of the environment be knownin
terms of the state transition probabilities, T (s,a,s’), and thereward function, R(s, a,s’).
In practice thisinformation is unlikely to be available, and so the Monte Carlo method
isintroduced.

Trials are now required to be finite, so a guarantee is required that a terminal state of
the MDP will be reached sooner or later. As with Dynamic Programming, the Monte
Carlo approach aims to generate increasingly accurate estimates of the value function.
Unlike Dynamic Programming however, where V (s) is recursively updated using the
value function at other states, Monte Carlo techniques update V (s) towards the actual
reward received from state s until the end of the trial. So the value function for a given
policy, m, can be written as:

trial end

V“(sT)zE{ Y rt\n,sT} (2.8)

t=T

where T is the time at which state s is first encountered. Note that because the trid
is restricted to being finite, (2.2) is now being used instead of (2.3) as the quantity to
maximise. However, it is still common to discount:

trial end

V“(sT):E{ 3 kt_Trt\n,sT} (2.9)

t=T

V™(s) can be calculated by running N trials, and for the first visit to state s (at time T)
during trial k, calculating the value:

R kK = 2 It (210)

Then (2.8) is approximated by the Monte-Carlo first visit estimate:

N
~ Zn:lR n

V7 (s) N

(2.12)

with convergenceas N — oo,

But there are two important implications of not having an environment model. Thefirst
is that the value function is no longer sufficient for finding an optimal policy because
even if the agent knows which the best states are, it does not know how to get there
from the current state without the state transition function, T (s,a,s’). For this reason,
instead of estimating the value of statesusingV (s), estimates are made of the values of
state-action pairs using the action value function (also action function), Q(s,a).®> The
theory is the same as before with limgyia1s—.. Q™ (s,a) =E(Total reward from taking
action a in state s to the end of that trial, under) except that now a state transition
functionisimplicitly built into the action value function. Making apolicy optimal with
respect to Q™ is now simply a matter of always choosing the action that maximises
Q™(s,a) at each state s. Thisisknown asagreedy policy. Thisthen becomest’, which
inturn isevaluated by Q™ and s0 policy iteration continuesin the usual way.

However, the second important implication of not having an environment model is that
the issue of exploration must now be addressed. The agent is now responsible for
sampling its own environment, whereas before the environment details were provided
explicitly. So now, rather than updating the policy so that the action that maximises

5This formulation pre-empts Q-learning, which is introduced shortly.

Q™(s,a) is always chosen, ©’ is instead formed by usually choosing the action that
maximises Q™(s,a) while occasionally selecting one of the other actions. This bal-
ances exploration and exploitation. These are known as e-soft policies because each
available action has a non-zero probability of being taken. One common e-soft pol-
icy isto select the currently preferred action with probability 1 — e+ fﬂ and al other
actions with probability ‘—/’i|, for some small value of €. Thisis known as an e-greedy
policy. A similar but smoother approach isto select actions according to a Boltzmann
distribution of their corresponding action values:

eQ(s)/T

Pla) = Shen €QER)/T

(2.12)

With e-soft exploration, convergence to the optimal policy is once again assured pro-
viding the policy convergesto pure greedy. Thisiseasily achieved by reducing € or the
temperature parameter, T, to zero. This ensures a shift from exploration to exploita-
tion.

The advantage of Monte Carlo techniques of not requiring an environment model will
turn out to be decisive not only when the environment is unknown, but also when
T(s,a,s) or R(s,a,s’) are known implicitly but difficult to calculate explicitly. See
Sutton and Barto (1998)(pg 113) for an example. A disadvantage of having to im-
plicitly model the environment by making the domain of the action value function
state-action pairs rather than just states, is that the action function must now be stored
and updated at many more indices (by afactor of |A|).

2.7 Temporal Differencelearning

Like Dynamic Programming, Temporal Difference methods (Sutton, 1988) update the
value function based recursively on other estimates, making the approach suitable for
infinite horizon tasks and on-line, interactive learning. But like Monte Carlo methods,
no model of the environment is necessary. Temporal Difference learning thus captures

the best of both worlds, and for this reason dominates the standard account. As usual,
theaimisto estimate the value of astatein terms of (2.3).% Temporal Difference learn-
ingisso called because V; (s) (note that we now useV because we are now dealing with
an estimate of the value function.) is updated based on the difference between V;(s)
and V;(s'), where s’ is the state encountered immediately after s. The basic Temporal
Difference update ruleis:

Vesa(s) =Vk(s) + o[{r +9k(s)} Vi (s)| (2.13)

which is applied immediately after receiving reward r for moving from state s to s’.
The expression in the curly brackets corresponds to the contents of the square brackets
in (2.7), and represents the target of the update. Thisis just a recursive formulation
of (2.3). Therest of (2.13) moves the current estimate \7t(s) towards this target by an
amount proportional to the learning rate, 0 < a0 < 1.

Providing each state is continually visited under some policy, wr, and the learning and
exploration rates are annealed to zero according to the constraints of (2.14), then V (s)
will converge on the familiar return of (2.3) for that state, and thereforeV will converge
to V™. In essence, this is the approach used in the backgammon player of Tesauro
(1994).

(2.14)

g\g
=3
I
8
2
o
g\g
=3
e
A
8

2.7.1 Sarsa

As has aready been seen with the Monte Carlo method, if an environment model is
not available, the value function, V, isinsufficient for improving the policy. Therefore,

6Equation (2.3) is being used again because non-finite MDPs are now being considered.

in the Sarsa algorithm of Rummery and Niranjan (1994) the action value function, Q,
isagain requisitioned to give the Temporal Difference update rule:

QFi1(s,8) = Qf(s.a) + o[{r +1Qf (s, a)} — Qf (s, a) (2.15)

where a’ isthe next action to be performed from state s’ according to the current policy,
.

The theory is a ssimple extension of Dynamic Programming, based on Bellman equa-
tionsfor Q™ and Q*.” Following the discussion so far, we can see that the repeated up-
date of Q™(s,a) towards (r +yQ™(s',a’)) based on sample experience will yield (2.3),
for the current policy.

Given Q™, the policy can then be improved to exploit this information in exactly the
same way as the Monte Carlo method — by choosing the action a in state s that max-
imises Q™(s,a). Through policy iteration, Q™ converges to Q* and &t to &*, providing
as usual that the environment is modelled as an MDP, the learning rate satisfies (2.14),
all states are visited infinitely often in the infinite limit (using an e-soft policy for ex-
ample), but that exploration is eventually reduced to zero (see Singh et a. (2000) for
convergence proof). Note that following the discussion of policy iteration, there isno
need to wait for Q™ to converge on Q™ before updating rt. In fact, here &t is effec-
tively updated after every single update to Q simply because &t is based on the current
Q —values. This particular Temporal Difference method is called Sarsa because the
update rule uses s,a,r,s’ and a’(Sutton, 1996). This and the following technique are
referred to as bootstrapping because, unlike Monte Carlo, estimates of expected return
are updated largely towards other estimates which themselves are based on further
estimates etc.

7See Sutton and Barto (1998) for these equations. They are similar to the Bellman equations already
encountered, and do not add anything to this particular discussion.

2.7.2 Q-Learning

Sarsaisactually aminor and recent adaption to one of the most theoretically important,
and most popular RL methods known as Q-learning (Watkins, 1989), which uses the
update rule:

G, (5.2) = OF(s,8) + o[{r+max@F(s,a)} - Gfs.a)] (219)

Thisisidentical to Sarsa except that when considering the next state-action transition,
the action a’ is chosen that will maximise the next Q-value as opposed to choosing a’
according to the current policy. This means that the policy being evaluated is closer
to the optimal policy for the current Q-function (i.e. with no exploration) even though
the policy being used for control may still be involved in exploration. Sarsa effec-
tively models its own exploration as part of the dynamics of the environment, while
Q-learning does not. Modelling the exploration may be useful if such exploration can
profoundly affect the reward (see Sutton and Barto (1998), page 150 for an example).

Q-learning is shown to converge to an optimal policy under the usual assumptions
(Watkins and Dayan, 1992), and it remains the most popular reinforcement learning
algorithm because no model of the environment is required, it is intuitive, easy to
implement, and can be run interactively with updates made immediately, as and when
statesarevisited. Thesefeatures make the algorithm suited to awide variety of learning
tasks. For example, Araujo and Grupen (1996) use Q-learning in a foraging task to
map states to high level behaviours which are generated beforehand. Digney (1996)
uses nested Q-learning to build hierarchical control structures for use in a grid-world
environment. A particularly celebrated example of this Temporal Difference method is
found in Mahadevan and Connell (1991), where arobot learns to find and push boxes
within a behaviour based framework. Q-learning is also employed in Crites and Barto
(1996), where an extension of the algorithm is used to discover a policy for efficiently
dispatching lifts to minimise waiting times.

28 TD(\)

To round the theory off neatly, the Monte Carlo and Temporal Difference methods can
be shown to be special cases of amore general formalism, TD(A) (Watkins, 1989).

In Monte Carlo methods, the value of each state is updated towards the actual reward
received from the first visit to that state to the end of the episode. In the Temporal
Difference algorithm, the value function is estimated recursively in the sense that it
is updated towards the immediate actual reinforcement plus the discounted estimated
value of the next state (or state-action pair). TD(A) is a more general algorithm which
provides smooth control over the degree to which actual returns and estimated returns
are blended to produce the target towards which the value function is updated.

Recall that in (2.13), V (s) was updated towards the 1-step corrected return, but just as
plausible are the 2-step, 3-step or n-step returns:

1-step return = r + W (s
2-step return = r +yr’ + Y2\7 (s")
3-stepreturn =r +yr’' + ’er" + ,Y3\7 (s"

where s,s',s” ... is the sequence of states as they are visited, and r,r',r” ... isthe se-
guence of rewards received on entering these states. If the trial length is finite, and
n large enough to reach the end of each trial, then the n-step return is just a non-
bootstrapping target as used in the Monte Carlo algorithm. Hence there exist arange
of methods with Monte Carlo at one extreme and basic Temporal Difference at the
other. It is a simple matter to combine these two extremes in a continuous manner by
updating V (s) towards a weighted sum of n-step returns:

R1+AR2+A°R3+ ...+ A" IR, (2.17)

for 0 < A < 1 (note the distinction between A and y!), where Ry, is the mt"-step return
from state s. Since the weights of the n-step returns should sum to unity (for n = o) in
order to respect the estimate of (2.3), an appropriate normalisation factor isintroduced
so that (2.17) becomes:

(1—A)R1+ (1= MAR2+ ...+ (1= A)A IR (2.18)

The term, A, is the continuous parameter referred to in TD(A), which in its limits of
zero and one represents 1-step Temporal difference and Monte Carlo methods respec-
tively. Although this may seem like a rather contrived way of combining actual and
estimated returns, it actually represents the theory underpinning an intuitively appeal-
ing and popular set of algorithms defined by the use of eligibility traces (Watkins,
1989). Such agorithms maintain a record of recently visited states and use this his-
tory to accelerate the passing of reward information across the value or action func-
tion. Versions of this agorithm also exist for Q-learning and Sarsa in the form of
Q(A) (Watkins, 1989; Peng, 1993; Peng and Williams, 1996) and Sarsa(A) (Rummery,
1995) respectively. See Tesauro’'s backgammon player (Tesauro, 1992, 1994) for an
application of TD(A). See Sutton (1996) for an application of Sarsa(A) and Araujo and
Grupen (1996) for an application of Q(A) to simulated robot control.

Although there is no principled analysis available, Sutton (1996) concludes that 0 <
A < 1islikely to be optimal with A = 0 and A = 1 empirically performing relatively
poorly. In his backgammon application, Tesauro reports that: “...A appeared to have
amost no effect on the maximum obtainable performance, although there was a speed
advantage to using large values of A [corresponding to Monte Carlo]”. Jaakkola et al.
(1994), amongst others, have provided a convergence proof for TD(A).

Although a number of variants and extensions to the above algorithms have been pro-
posed, the previous section provides as much history and theoretical background asis
interesting and relevant to thisthesis. Thereader isreferred to Sutton and Barto (1998)
and Kaelbling et al. (1996) for a more thorough treatment. The focus now movesfrom
the theory to the practice.

A brief notational comment is required at this stage. In the remainder of this thesis
when we talk about ‘Q-values we will be referring to the estimated Q-values — i.e.
the function, Q. However, to simplify notation, we will omit the superscript and re-
fer to estimates simply by using the function, Q. We will also adopt the simplifying
notational convention of omitting the policy superscript, since there will always be an
implicit assumption that we are estimating expected return for the current policy, and
not the optimal policy. Furthermore, the term *Q-value’ will be used to refer to any
estimate of expected return for state-action pairs.

2.9 Practical reinforcement learning

The theory provides the following: An iterative, incremental and interactive method
that guarantees convergence of the value function, V, to either (2.2) or (2.3), under the
assumptions that the environment is modelled as an MDP, every state is continually
visited, and the learning and exploration rates are annealed appropriately. The value
function, V, estimates the values of states of the MDP, which requires that the basic
value function update rule (2.13) makes use of an explicit environment model. If the
environment model is unknown, then the value function, V, is replaced by the action
function, Q, which estimates the value of each state-action pair. Now the environ-
ment model isimplicitly learned as part of the action function. By interleaving policy
evaluation and policy improvement, an optimal policy is guaranteed to be found.

2.9.1 Theassumptions

In practice the MDP assumption can rarely be met, since in many applications the sen-
sory information fails to uniquely identify the state of the environment. This problem
of perceptual aliasing, in which states are confused with each other, is exactly why
escaping a maze is difficult, even for us. In general, the complexity and uncertainty of
the real-world will make it impossible to satisfy the MDP assumption. Also note that
this assumption is left unsatisfied when the environment is modelled as an MDP, but
when this model is dynamic. If the state transition probabilities and reward function
change over time, as may well be the case in area-world problem, then convergence

to such a moving target cannot be guaranteed.

The assumption that each state (or state-action pair) is continually visited can be sat-
isfied by always maintaining an appropriate amount of exploration (as discussed in
section 2.6). The convergence proof effectively requires that each stateisvisited anin-
finite number of times. In practice, trials must be of finite length, and some states may
suffer particularly from under exposure, resulting in inaccurate value estimates. How-
ever, since the algorithms outlined above are interactive or on-line, the most frequently
visited states will conveniently tend to have the most accurate value estimates.

The assumption of appropriate learning and exploration rates is easily satisfied in the
limit of infinite trial length by the conditions of (2.14). However, in the finite case,
finding a suitable set of learning rates that maximise performanceis an empirical chal-
lenge.

Having established that, in practice at least, the criteria for convergence cannot be
satisfied, the question now arises as to how well these algorithms perform when the
assumptions are not met. Happily, the answer appears to be quite well. By choosing
a suitable state representation the task can be made as close to an MDP as possible.
Incorporating previous sensory data can also help to reduce the problem of perceptual
aliasing. Judicious selection of the exploration rate can allow the assumption of con-
tinuoudly visited statesto be at least partialy satisfied, and in any case, the interactive
nature of the algorithm suggests that accuracy will tend to reflect the exposure and
therefore the relevance of different parts of the environment. The empirical selection
of asuitable set of learning parameters also seems to be reasonably straightforward in
the majority of cases. In addition, some evidence has been presented that other param-
eters, such as A, may not have a huge impact on performance, and that satisfactory if
not optimal valueswill be easy to find.

2.9.2 Delayed rewards

Mataric (1997) identifies two main problems that need to be addressed in reinforce-
ment learning. The first is that of delayed rewards, or more generally, credit assign-

ment. Although the theory provides a guarantee of optimality for infinite length trials
(or an infinite number of finite trials), many practical applications, such as those in-
volving physical robots for example, may be very restricted with respect to the number
of environment samples that can be made. For thisreason it is important that reward
information propagates around the value function as quickly as possible. As an il-
lustration of the problem, in Tesauro’s backgammon application, TD-Gammon, the
reinforcement of all states was zero except for the final state of a won game at which
point the reward was one. Thisis beautifully ssmple, and requires a minimum amount
of prior game knowledge, but hundreds of thousands or millions of complete games
were needed to allow the reward of won games to propagate back to the early game
states.

Mataric (1994, 1997) addresses the issue of delayed rewards by introducing progress
estimators which provide a handcrafted continuous reward function which augments
the reward information that is received at goal states. For example, a progress esti-
mator might provide an estimate of the distance of an agent from a goal in a robot
navigation problem. Progress estimators address the more general RL aim, identified
by Kaelbling et al. (1996), of making the reward signal aslocal as possible. Breaking a
task up into subtasks or a control system into behaviours, with each task or behaviour
having its own reward function, is another approach to reducing the time between an
action being taken and reward for that action being received (see M ahadevan and Con-
nell (1991); Mataric (1994, 1997) for some examples). Tesauro’s backgammon player
exemplifies the problem of delayed rewards since the only information from the en-
vironment always comes on transition to a terminal state of the MDP. Attempting to
provide as rich areward signal as possible is an important part of encoding a task for
an RL solution. Caution is advised though. Supplying handcoded intermediary signals
to shape the learning process may result in the wrong behaviour being accidentally
reinforced. Note that in the backgammon example, maximising the (rather weak) re-
ward signal was guaranteed to maximise playing ability given enough training time.
But consider what might have happened by ‘enriching’ the reward signal by a progress
estimator designed to reward intermediate game positionsthat were mistakenly judged
by an expert to be strategically advantageous.

Although this thesis is not directly concerned with delayed rewards, the issue is en-

countered at a number of points throughout the thesis. It isintroduced here largely for
compl eteness.

2.9.3 Largestate spaces, and generalisation

The second of the two major problems facing RL application identified by Mataric
(1997) is the possibility of large or continuous state or action spaces. Consider again
the backgammon example, in which there are about 10%° distinct board positions, and
therefore the same number of states. Representing the value of each board position
explicitly is clearly impossible, so Tesauro used backpropagation to train aneural net-
work to approximate the function, V. Note that because the environment model is
known (in terms of the available successors to the current state), the value function
V is sufficient for learning an optimal policy. The algorithm used is actually TD(A),
but (2.13) also characterises the approach. However, at each state, instead of atable
entry for V (s) being updated, the network is trained towards the pair (1,0), where |
is the input vector corresponding to the current board position, s, and O is the target
inside the curly brackets (of 2.13). Because of the way the experiment was set up®,
the value function approximated by the network effectively mapped each board po-
sition to the probability of winning from that board position. Optimising the policy
was then achieved by simply selecting the move from alist of legal possibilities that
lead to the state with highest V (s) according to the network. No exploration was built
into the move selection because the dice throws themsel ves were considered to gener-
ate enough noise®. The system was trained against itself, so alarge number of games
could be played.

Generalising over the state space using a non-linear function approximator yielded ex-
cellent results for TD-Gammon, with the system learning to play backgammon to club
standard. By hand-coding salient board features into the representation at each state,
performance was improved to rival the world’s best players. A pleasing addendum is
that some of the opening playslearned by TD-Gammon went on to change the opening
theory of the game.

8No discounting took place and recall that the reward was zero in all states except won positions,
whereit was one.

9The reader could refer to http:/www.funcom.com/lang en/lang en/games/backgammon/rules.html
for an explanation of the game.

Practical RL

Generalisation RL Theory

. J

Figure 2.3: The independent relationship between RL and Generalisation theory. The diagram em-
phasisesthe point at which RL finishes, and wherethe responsibility for scaling RL primarily resides. In
particular, alack of ability in dealing with large or continuous state spacesis not an inherent problem of
the RL theory itself. The latter provides a clear set of results within a clearly defined set of boundaries.
The sophistication and potential applicability of RL is not limited by the theory, but by the techniques
with which the theory is combined.

However, afourth criterion for guaranteed convergence that has only been implicit so
far in this chapter, is that the value or action function be represented explicitly as a
lookup table. This drives another wedge between RL theory and its practical applica-
tion since large or continuous state spaceswill in general preclude this condition being
met. Effective generalisation over large or continuous state and action spaces is the
key issue facing real-world applications of RL, and thisis the main focus of this the-
Sis, particularly with respect to generalising over continuous action spaces. Although
the lookup table assumption has resulted in further violation of the theory by practical
considerations, at least Tesauro’s TD-Gammon experiment suggests that we can still
expect good performance providing appropriate generalisation techniques are used.

2.10 Generalisation techniques

In considering appropriate techniques for generalisation, the bridge has been crossed
from the field of RL to the domain of statistics. Using a multi-layer perceptron to
approximate the value function is only one approach to generalisation but any existing
statistical technique for generalisation is a potential candidate for use on complex RL
problems. Figure 2.3 illustrates the intended relationship.

An entire review of al generalisation techniques is clearly well beyond the scope of

thisthesis, but a representative sample will be considered shortly, as well as at various
other placesin thethesis. Therefore, to avoid duplication, only the briefest overview is
given here and the reader is asked to accept areview of this subject asit is uncovered
piece by piece according to the logical progression of the thesis.

2.10.1 Tiling the state space

Consider arobot learning problem in which there are two sensors each of which can
take a value in the continuous range [0, 1]. The state space can then be represented as
the unit square, and the task becomes one of dividing this space up into regions, with
each region representing a discrete state of the standard RL problem. Deciding on the
size, shape and number of these regions beforehand will generally be difficult, and the
most obvious approach of using a high resolution grid superimposed over the entire
space will result in an excessive number of states, particularly as the dimensionality of
the space increases.

An dternative is to tile the space with overlapping regions, with each region corre-
sponding to a hand-coded ‘feature’. Then any particular state can be characterised by
the set of features in which it appears. This particular approach is called tile-coding
and is also referred to as the Cerebellar Model Articulation Controller (CMAC) be-
cause it models Cerebellar functionality (Albus, 1975). Thisis a specific instance of
a broader set of basic generalisation techniques described as coarse-coding, in which
state and action spaces are carved up in advance. A second instance of a coarse-coding
algorithm is the memory-based function approximator where a continuous Q-function
isrepresented as a set of prototypical Q-values. The Q-value of any point in the state-
action space is approximated by a suitable combination of the surrounding prototype
Q-values, scaled for example by the distance between each prototype and the point
in the state-action space being evaluated. Updating the Q-value of an arbitrary point
in the continuous state-action space can be achieved by altering the prototype values
according to their relevance, and if there happen to be no prototypes suitably close to
the current position then one can be spontaneously created. Coarse-coding approaches
potentially suffer from the fact that generalisation is not adaptive. For example, in
standard memory-based function approximators, the prototype positions are fixed. See

Santamariaet al. (1997) for a description and comparison of coarse-coding techniques.

Another simple approach to generalisation used by Mahadevan and Connell (1991) in
their famous box pushing robot application isto represent each state explicitly (in their
case the state space was discrete), but to update not only Q(s,a) for the current state
and action, but also Q(s’,a) for al s’ € S within a fixed Hamming distance of s. This
makes updating the Q-function over a large state-space more tractable. However, in
this example, the only way each state could be represented explicitly was by perform-
ing hand-coded dimensionality reduction on the robot’s vector of sensor readings.

2.10.2 Dynamic generalisation

A more appealing approach isto construct categories on-line, based on and in response
to theinput data. One approach, which isconsidered at length throughout thisthesis, is
to use Kohonen's Self-Organising Map (SOM) (Kohonen, 1987) to model the distribu-
tion of the input data. In the case of the two dimensional state space considered above,
a SOM could be trained towards the two-dimensional sensory vectors generated by the
robot. Each unit of the map would then be usable as a discrete state in the standard
RL problem, with the SOM dynamically discretising the space with a variable reso-
lution that reflects the robot’s exposure to different parts of the environment. In work
that is considered later in section 4.4, Sehad and Touzet (1994) and Touzet (1997)
use a SOM to map the combined state-action-reward space. While the approach is
favourably compared with a number of other representationa techniques for a robot
learning problem, the comparison is not detailed enough to conclude anything other
than that the SOM is an interesting and potentially effective approach. The use of a
Kohonen map to generalise over continuous state and action spaces is discussed and
analysed at length during the course of thisthesis.

In asimilar vein, the k-means clustering technique (see Lloyd (1982)) could be used,
or the Adaptive Resonance Theory network of Carpenter and Grossberg (1987b) which
adopts a more constructive approach to the plasticity/stability tradeoff. Li and Svens-
son (1996) choose an ART network over a Kohonen network to represent the state
space in arobot navigation problem. Their decision is based on the perceived inability

of the latter to operate simultaneous learning and operation phases. However, results
from chapter 5 suggest that this conclusionisinvalid.

A dynamic approach adopted in Chapman and Kaelbling (1991) utilises decision trees
inwhich aninitially small number of states covering theentire space areiteratively split
into smaller and smaller regions until each region behaves consistently with respect to
the reward signal. This approach benefits from considering the reward information as
well as the input data in generating categories, but it may not be suited to dynamic
environments since the splitting is a one way process that could potentially result in
too many regions being created.

In all these approaches, the emphasis is on dissecting the state space so that the value
or action function can be maintained as a look-up table. Note that it is possible to
perform the category construction and reinforcement learning processes in parallel,
providing it is accepted that the categories underpinning the RL algorithm will change
during learning. Tolerating moving states makes a further mess of the theory, but in
practice such systems may still work well providing appropriate consideration is given
to relative learning rates. Thisissueis considered in more detail in chapter 6.

2.10.3 Backpropagation

Other techniques directly approximate either the value function, or even the policy
itself, thus side-stepping the need to maintain an explicit value function. Tesauro’'s
TD-Gammon made effective use of the backpropagation agorithm to train the weights
of amulti-layer perceptron (MLP) to perform powerful non-linear generalisation over
the state-space. Similarly motivated is the Complementary Reinforcement Backprop-
agation Algorithm (CRBP) of Ackley and Littman (1990), in which a binary reward
signa (intended to indicate whether the action is ‘right’ or ‘wrong’) is used to train
a backpropagation network directly towards appropriate state-action pairs (see section
4.7. The approach is adopted by Ziemke (1996) in another robot |earning problem to
map robot sensors directly to optimally rewarded motor outputs. The scalability of
CRBP is not clear, since the reward and outputs are binary. There is also no explicit
interpretation of the action function which means the system operates as a black box.

The use of backpropagation is considered in more detail in chapter 8. Of particular
interest isits relative robustness to the curse of dimensionality. For example, the input
vectors of TD-Gammon had 198 dimensions!

2.10.4 Other techniques

A range of other techniques could also be conceived for generalising over the input
space including the use of Radial Basis Networks (Powell, 1987), the GTM algorithm
(Bishop et al., 1998), or an auto-associative MLP. A number of ad hoc techniques
have al so been suggested, such as the clustering algorithm of Mahadevan and Connell
(1991) in which Q-values are grouped according to proximity in state-space and simi-
larity with respect to the reward under each action. One interesting aspect of that work
isthat the state space is effectively decomposed differently for each action.

A complete comparison of these generalisation techniqueswith respect to thefull range
of reinforcement problems would be impossible. Different approaches will be more
appropriate than others in different applications. A discussion of the applicability of
some of these techniques with respect to specific problem features is given in chapters
6 and 8. In the meantime a number of relevant issues can be identified. For example,
is generalisation adaptive or fixed? Isit linear or non-linear, supervised or unsuper-
vised? Is the generalisation performed with respect to the reward function, the input
data, both or neither. Also, arelevant question for non-stationary environmentsis how
the tradeoff between plasticity and stability is addressed. A key distinction consid-
ered in chapter 8 is whether the representation of the state-space is local, as in the
case of the Kohonen map for example, or distributed as in a backpropagation network.
This may have implications when considering non-stationary environments, high di-
mensional state spaces, maintaining multiple actions, interpreting behaviour, and di-
agnosing faults. Other considerations include the resources required by the algorithm,
the robustness and complexity of the algorithm, and potential for parallelisation, all of
which may be particularly relevant in interactive domains such as robot learning. The
consequences of pathological behaviour are also relevant. For example, what are the
implications of getting stuck in alocal minimum when using backpropagation, or pro-
ducing twisted maps when using a SOM. All of these issues are encountered at various
points throughout the thesis.

2.11 Summary

The theoretical foundations of reinforcement learning have been presented along with
an account of the evolution of the most popular agorithms, including TD(A) and Q-
learning. Although in practice al of the assumptions required to guarantee conver-
gence of Tempora Difference methods may be violated, performance is empiricaly
found to be robust and good performance is usually achieved.

The problems of delayed rewards and continuous or prohibitively large state and action
spacesare not faillingsof RL itself, but areinherent difficultiesof the complex problems
being addressed. The solution is not to say that RL is inadequate so let us invent
something else, but instead to specifically addressthese issues, and indeed thisiswhere
much of the current research lies.

For any of the difficulties named above, or just because of an inadequate reinforcement
signal, some problems may turn out to be too hard to solve using just the components
of RL considered so far. In these more interesting cases a number of other ideas may
need to be considered. As Kaelbling et al. (1996) note, almost all the advanced and
interesting applications of RL utilise some form of innately specified knowledge about
the task, be it cleverly crafted state representations (for example (Tesauro, 1994)),
built-in behaviours (Maes and Brooks, 1990), reflexes (Li, 1999), pre-specified coor-
dination of learning modules (Mahadevan and Connell, 1991), handcrafted progress
estimators (Mataric, 1994, 1997), inbuilt heuristics for exploring actions (Wedel and
Polani, 1996), and any number of assumptions about the nature of the reinforcement
signal, or the environment model.

It is generally assumed that we are born with many innately specified tendencies, but
that we also perfect our skills by increasing our knowledge of the world through trial
and error interaction with our environment (Karmiloff-Smith, 1995). Looking to the
animal world for inspiration yields other ideas including learning through imitation
(see Hayes and Demiris (1994), and Price and Boutilier (2000) for RL-based imita-
tion learning) and shaping (see Dorigo and Colombetti (1994) for an RL example)
where an animal is trained incrementally on successively harder and harder versions
of the task. With respect to domain specific learning, Gallistel et a. (1991) observe

that animals have strong predispositions to learning certain kinds of associations. For
example, a pigeon can be trained to peck a button for a food reward, but not to flap
itswings. Conversely, it may be trained to flap its wings to avoid a shock, but not to
peck. It is easy to see how biasing the kinds of associations that may be made in this
way can greatly ssimplify the learning process. Even human development seems very
constrained with certain things being learned at very specific times and being subject
to specific constraints, prerequisites and processes (Karmiloff-Smith, 1995).

All this indicates that although we cannot expect to solve all problems by RL alone,
the technique has still established itself as a valuable tool for our hardest endeavours.
Designing RL-based solutionsto interesting problems goesfar beyond just picking one
of the theoretical approaches plus a suitable set of parameters. It isthe art of perform-
ing appropriate generalisation, maximising the information in the reward signal, and
knowing how to bring al available information to bear on the problem, that transforms
the theoretical and well understood foundations into a set of practical and exciting
techniques.

