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Reinforcement Learning

In the following chapter, sections 2.1 through to 2.8 are essentially a review of the

book: “Reinforcement Learning” by Sutton and Barto (1998). The book provides a

lucid, comprehensive and consistent account of the theory and its history, and in the

author’s opinion represents the best introduction to the subject. This chapter also

draws significantly on an authoritative reinforcement learning survey by Kaelbling

et al. (1996).

The main topics of the thesis are now reviewed in this and the two subsequent chapters.

This chapter is devoted to the history, theory and practical application of reinforcement

learning, while the main purpose of chapter 3 is to introduce neural networks as an

implementational paradigm. Both these sections provide the foundation for chapter

4 which concludes the introductory material by reviewing existing work on the rein-

forcement learning of real-valued functions, with an emphasis on different approaches

to representing the action space.
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2.1 History

Historically there are two main strands that contribute to the field of reinforcement

learning: animal psychology and Dynamic Programming.

Animal learning is traced to Thorndike (1911), who suggested that an animal, given a

choice of responses in a given situation, would when encountering that same situation

again, be more likely to reproduce an action that resulted in satisfaction, and less likely

to reproduce one that resulted in dissatisfaction. This intuitive idea was also developed

by Pavlov (1927), and is commonplace in modern psychology.

In the late 1950s the phrase optimal control was used to describe a technique for min-

imising a measure of a dynamic system’s performance. Bellman developed a func-

tional equation — now called the Bellman equation — for calculating the value func-

tion of a dynamic system. The process of solving a set of these equations, either

analytically or incrementally in order to first estimate the values of the various states

of the system, and then derive a policy for maximising the expected return over the life

of the system developed into the field of Dynamic Programming (Bellman, 1957), and

today represents the theoretical grounding of all RL techniques.

It was not until the early 1980s that Barto, Sutton, Watkins and others began defining

modern reinforcement learning, uniting the strands, clarifying the theory and, impor-

tantly, distinguishing the field from supervised learning, thereby giving RL its own

identity and its own place in the machine learning literature.

2.2 Introduction

The intuition behind reinforcement learning (RL) is very simple — an agent learns

for itself how to maximise a reinforcement signal from its environment by trial and

error exploration of different actions in different situations. If the signal is designed

to yield high reward at goal states, and low reward in situations that are to be avoided,

then in learning to maximise that signal, the agent will hopefully also learn how to

achieve its goals. Unlike supervised learning, where the desired output is presented
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along with the input, in RL only the value of an action is provided, and the agent itself

is responsible for discovering and selecting appropriate actions based on the relative

strengths of these values.

The standard example of a simple RL problem is the n-armed bandit where one of n

levers must be pulled at each time-step, with each lever yielding a reward according to

a fixed distribution. Imagine being in a situation with two levers and one hundred pulls

to make. How would you maximise your reward? Clearly one strategy involves trial

and error sampling until sufficient confidence is held in the belief that one arm yields a

higher expected reward than the other, at which point only that arm should be pulled.

Each arm could be tried just once, and then the one yielding greatest reward pulled

thereafter, but this does not allow for an unlucky sample. If the reward distributions

of the two arms are similar and you still have many goes left, it makes sense to take

a larger number of samples (of both levers) to be sure you get the most out of the

remainder of the game. Conversely, on the 100th go, the only sensible thing to do is

pull the lever with the highest expected reward according to your experience so far.

Pulling the arm which is believed to yield the best result is known as exploiting the cur-

rent knowledge. But in order to be confident about that knowledge, all options must

first be explored (even if they initially appear likely to be worse) in case the new infor-

mation uncovers greater reward in the long run. This is known as the explore/exploit

dilemma since on the one hand exploration is necessary to uncover reliable informa-

tion, but on the other hand exploitation is necessary to make the most of that informa-

tion, and they cannot both be performed at the same time. It obviously makes sense to

explore more at the beginning of a trial when the information gained will be of most

use, and to exploit at the end when the cost of exploring will tend to outweigh the ben-

efits of the new information gained. In most practical applications, optimal solutions

to this dilemma are not known, but some commonly used strategies will be introduced

shortly. For a discussion of bandit problems, see Narendra and Thathachar (1989).

The n-armed bandit problem is actually a special case of the more general RL prob-

lem, as there is only one state that the system can be in — namely that of being faced

with pulling one of the arms. From this single state there are a number of actions with

each action corresponding to pulling one of the arms. In the more general problem,
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the system can be in any one of a number of states with the optimal action depending

on the state. An example is the game of noughts-and-crosses in which each board po-

sition can be thought of as a state of the problem, and in which there are nine actions

— one for each square of the grid. Not all actions will be available in each state, and

of course different actions will be preferred in different states. A system for selecting

an action to take in each state is referred to as the policy. For example, one (unrec-

ommended) policy for noughts-and-crosses would be to always take the top-left most

square available.

2.3 Markov Decision Processes

It is convenient to consider the environment as a Markov Decision Process (MDP), an

example of which is shown in figure 2.1. The system has four states (one of which

happens to be a terminal state making it a finite horizon MDP), and two actions. The

states are numbered 1 to 4, and the actions labelled a1 and a2. In each state, the

two actions will take the system into a new state with a fixed probability which is

indicated to the right of the colon for each transition. In the context of the RL problem,

each state transition also yields a reward as a scalar value. It is easy to imagine the

noughts-and-crosses example drawn and labelled like figure 2.1. In this case there

would be 39 = 19683 states1, nine actions, 9!
5!4! × 2 = 252 terminal states, and the

transition probability from each state under each action would be unity since the game

is deterministic.

In the rest of this section, it is assumed that the environment is represented by an MDP.

This will imply that each state contains sufficient information so that the probability

of moving to any next state, s′, and receiving any reward, r, is the same given the

current state and action information as if given the entire state-action-reward history

of the environment. This can be expressed by the following equality, which defines the

Markov property:

1Not all of these would be valid board positions.
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Figure 2.1: A simple Markov Decision Process consisting of four states and two actions.

P(st+1 = s′,rt+1 = r|st ,at) = P(st+1 = s′,rt+1 = r|st,at ,rt,st−1,at−1,rt−1, . . . ,s0,a0)
(2.1)

for all st+1, rt+1, and state-action-reward histories, where st is the state at time t, at is

the action taken at time t, and rt is the reward received in moving to state st .

This assumption ensures that at each state, the agent has sufficient information to make

a perfectly informed decision given the boundaries of the particular problem. In the

noughts-and-crosses example, coding the board positions as states results in a game

with the Markov property because a complete board position contains all the salient

information for winning a game. But coding a maze with states corresponding to “left

corner”, “right corner”, “corridor” does not yield an MDP because escaping a maze

requires at least an implicit knowledge of location which cannot usually be inferred

from the immediate surroundings. However, if a state history is maintained so that

the escapee can remember the types of previous junctions, then it may be possible to

localise, but this then corresponds to a different MDP in which the states are n-tuples

of the old “left/right/corridor” states. Of course if the states are coded as particular

corners and corridors, then it is an MDP because there is as much information in a

single state as in an entire state history (with respect to escaping the maze). The maze

is an example of a deterministic process since one assumes transitions between states

will occur with probabilities zero or one (although of course one could easily contrive

an example where they do not). An example of a more general, non-deterministic MDP

is encountered shortly in figure 2.2.
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Note that even though an agent may have access to sufficient information so that

the Markov property is satisfied, an inability to perceive that information (perhaps

through impoverished sensing apparatus) may lead to the agent effectively facing a

non-Markovian decision process. This is referred to as perceptual aliasing.

2.4 The basics

The standard reinforcement problem is defined using the following elements:

• Set of states

A set of discrete and distinct states, S, corresponding to the learning agent’s per-

ception of the states of its environment. A state could be a board game position,

a vector of robot sensor readings, a position within a maze etc.

• Set of actions

A set of discrete actions, A, available to the agent. Not every action need be

available in every state.

• Policy

The policy, π, dictates which actions are to be taken in each state. Policies may

be stochastic.

• Reward function

The real-valued reward function, R, maps states, state-action pairs or state-

action-state tuples to reward values. Reward values may be positive, negative, or

zero indicating no reward. The reward function is usually unknown to the agent,

and must first be explored and then exploited.

• Value function

The value function, V, is a central idea to RL techniques and maps each state

to a measure of the value of that state. The value of a state is taken to reflect

the expected accumulated reward from that state on. V is usually taken to refer

to the actual value function, while V̂ refers to the estimated value function. V π
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refers to the value function under some policy, π, while V ∗ refers to the optimal

value function — i.e. the value function under the optimal policy.

• Model of environment

The environment model, which may or may not be known to the agent, predicts

the behaviour of the environment by mapping state-action-nextstate tuples to

probabilities. The environment model is provided by T (s,a,s ′) which returns

the probability of moving to state s′ after taking action a in state s, for all s,a,s′.

The environment model is provided in the form of a transition function, T , from

state-action-nextstate tuples to probabilities.

This outlines the basic RL context that was introduced in figure1.1. The additional

constraint has been added that the environment model behaves as an MDP.

At each time-step an agent moves from one state to another by taking one of its avail-

able actions, and in so doing receives a scalar reward. The question is, against what

measure should the agent’s behaviour be optimised? One answer is to attempt to max-

imise the sum of all expected future reward, up to a receding finite horizon:

E

( h

∑
t=0

rt

)
(2.2)

where h is the horizon and rt is the reward received from the environment at time t after

an action is taken.2 3 This return has to be ‘expected’ because of the stochastic nature

of the environment. It is not assumed for example that an action guarantees a particular

state transition, only a probability of that transition. If a task is of finite length, as with

the two-armed bandit example earlier, then this approach may be adequate, but since

2An alternative is the fixed finite horizon in which the reward is summed all the way up to the fixed
end of the trial.

3Strict statistical notational convention dictates that uppercase R is used to denote the random vari-
able representing reward inside an expectation. However, for consistency, the notation adopted here and
throughout is that of Kaelbling et al. (1996) and Sutton and Barto (1998).
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we may not wish to make such an assumption, a more common value to attempt to

maximise is the discounted return:

E

( ∞

∑
t=0

γ t rt

)
(2.3)

where 0 ≤ γ < 1 is called the discount factor. The idea behind (2.3) is that rewards

are exponentially decayed as they become more and more distant and this ensures a

finite sum, even on an indefinitely long training episode. There is also an intuitive

appeal in trying to maximise immediate reward more than distant reward. In this way,

γ effectively sets the horizon.

The value function, V π, is defined as (2.2) or (2.3) for each state, based on the infor-

mation provided by the reward function following that state given a policy, π. The

aim of reinforcement learning is to discover an optimal policy, π∗, which maximises

(2.2) or (2.3). If the environment model is known explicitly in terms of the transition

probabilities and the reward function, then it may be feasible to analytically solve for

the value function under the optimal policy, to give first V ∗ and then π∗. However, in

many cases the environment model is not known, and a solution must be approximated

by an iterative sampling method. This thesis is concerned exclusively with problems

where the environment is not known.

2.5 Dynamic Programming

Assuming that (2.3) is the value we wish to maximise, and therefore first estimate, the

value function, V , can be expressed by the Bellman equation (Bellman, 1957):

V π(s) = ∑
a∈A

π(s,a) ∑
s′∈S

T (s,a,s′)
[
R(s,a,s′)+ γV π(s′)

]
(2.4)
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where π(s,a) is the probability of taking action a in state s under policy π, T (s,a,s ′)
is the probability of s′ being the successor state of s following action a (i.e. the state-

transition function), and R(s,a,s′) is the reward elicited from the environment by taking

action a in state s and ending up in state s′.4

The Bellman equation, which can be viewed as a recursive definition of equation 2.3,

asserts that the value of state s under policy π is the result of summing, for each ac-

tion and each possible successor state, the expected reward of that transition plus the

discounted value of that successor state.

For a suitable RL problem, this yields a set of simultaneous equations, one for each

state, which can be solved to yield the value function V π. The following example

is taken straight from Sutton and Barto (1998) (pg 71): Consider the grid world of

figure 2.2a in which each square is a state from which the agent may choose one of

the following actions: “up”, “down”, “left” or “right”. Each of these actions takes the

agent to the appropriate neighbouring state and yields no reward except that attempting

to move off the grid results in no movement and a reward of -1, and any action taken

in states A or B results in a move to A′ or B′ with rewards of +10 and +5 respectively.

Figure 2.2b shows the value of each state, as calculated by equation 2.4, for the policy

in which each action is equally likely in each state, and with the discount factor, γ = 0.9.

The negative values of edge squares in the lower half of the grid reflect the probability

of the agent stumbling off the grid at these points. States A and B have high values,

as do their neighbours, because of the potential for achieving the +5 or +10 rewards.

However, the value of state A is slightly diminished by both its proximity to the lower

edge of the grid via the special state transition A → A′, and also the distance of the

inevitable successor state, A′, from the rewarded states A and B.

Each value is the expected discounted reward from that state onwards for the equiprob-

able policy. However, what we are more interested in is the optimal policy, π∗, which

guarantees the greatest possible future reward. Equation 2.5 shows the Bellman opti-

mality equation for V ∗, which yields the expected return of each state if the best possi-

ble action is always taken. In the same way as before, a set of simultaneous equations

4We use R for the reward function (from state-action tuples), and r t to denote the reward at a partic-
ular time, t.
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Figure 2.2: Application of the Bellman equations. Reproduced with permission from (Sutton and
Barto, 1998)(pg. 170).

— one for each state — can be solved to yield V ∗.

V ∗(s) = max
a ∑

s′∈S

T (s,a,s′)
[
R(s,a,s′)+ γV ∗(s′)

]
(2.5)

This equation is very similar to the previous Bellman equation except that instead

of considering all possible actions from state s, only the action that maximises the

future return is used. Figure 2.2c shows the V ∗ values for each state calculated using

(2.5), and figure 2.2d shows the optimal policy, π∗, which can be generated by always

selecting an action that maximises the right hand side of (2.5) for the current state. The

optimal policy happens to prescribe moves that takes the system into state A as quickly

as possible (unless avoiding state B in the process would require a detour).

However, solving n simultaneous equations in n unknowns where n is the number of

states scales with O(n3) and soon becomes too expensive. Dynamic Programming

alleviates this problem by changing the Bellman equation into an update rule that can

be applied iteratively, one state at a time:

Vk+1(s) = ∑
a

π(s,a)∑
s′

T (s,a,s′)
[
R(s,a,s′)+ γVk(s′)

]
(2.6)
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where Vk is the value function at the kth iteration. Note that V0 should be initialised to

finite values.

For some policy, π, Vk is updated at every state using the previous values of Vk−1.

The reason successive approximations improve the accuracy is that fresh information

is being injected by the term R(s,a,s′) during each iteration. It can be shown that Vk

converges to V π as k → ∞ (Bellman, 1957), and calculating V π by iteratively updating

the value function in this way is called iterative policy evaluation.

Now, based on V π, it is possible to improve the policy to take advantage of the ap-

proximated value function. For example, in figure 2.2(b), knowing V πEqual suggests

a number of improvements to π in which the higher value states are preferentially

sought. In practice, this can be achieved by setting π(s,a) = 1 for the a ∈ A that max-

imises ∑s′ T (s,a,s′)[R(s,a,s′) + γV π(s′)], and setting π(s,a) = 0 elsewhere. This is

called policy improvement and is guaranteed to yield a better policy, π′, if one exists.

But this now means that the value function is based on an out of date policy and needs

to be recomputed to reflect the new improved policy, π′. In this way, by repeatedly per-

forming iterative policy evaluation followed by policy improvement, better and better

policies are found converging on the optimum policy, π∗, and a corresponding opti-

mum value function V ∗. This is called policy iteration, and forms the theoretical basis

of all practical RL techniques.

Equation (2.6) was an iterative version of the Bellman equation of (2.4). Similarly, the

Bellman optimality equation of (2.5) can also be expressed as an iterative update rule:

Vk+1(s) = max
a ∑

s′
T (s,a,s′)

[
R(s,a,s′)+ γVk(s′)

]
(2.7)

which also directly converges to V ∗ without the need to maintain an explicit policy.

This corresponds to the previous update rule in which the policy is effectively updated

immediately rather than waiting for policy evaluation to converge. It is also possible

to update Vk+1(s) on states in any order, and providing each state is continually visited
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and never left unchanged indefinitely, convergence is still guaranteed as k → ∞.

The principle behind policy iteration is that information about all rewards is passed

around the system so that the value of each state eventually accurately reflects its in-

trinsic worth to the agent with respect to the expected return.

2.6 Monte Carlo techniques

Dynamic Programming requires that a complete model of the environment be known in

terms of the state transition probabilities, T (s,a,s′), and the reward function, R(s,a,s′).
In practice this information is unlikely to be available, and so the Monte Carlo method

is introduced.

Trials are now required to be finite, so a guarantee is required that a terminal state of

the MDP will be reached sooner or later. As with Dynamic Programming, the Monte

Carlo approach aims to generate increasingly accurate estimates of the value function.

Unlike Dynamic Programming however, where V (s) is recursively updated using the

value function at other states, Monte Carlo techniques update V (s) towards the actual

reward received from state s until the end of the trial. So the value function for a given

policy, π, can be written as:

V π(sT ) = E
{ trial end

∑
t=T

rt |π,sT

}
(2.8)

where T is the time at which state s is first encountered. Note that because the trial

is restricted to being finite, (2.2) is now being used instead of (2.3) as the quantity to

maximise. However, it is still common to discount:

V π(sT ) = E
{ trial end

∑
t=T

λt−T rt |π,sT

}
(2.9)
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V π(s) can be calculated by running N trials, and for the first visit to state s (at time T )

during trial k, calculating the value:

R k =
trial end

∑
t=T

rt (2.10)

Then (2.8) is approximated by the Monte-Carlo first visit estimate:

V π(s) ≈ ∑N
n=1 R n

N
(2.11)

with convergence as N → ∞.

But there are two important implications of not having an environment model. The first

is that the value function is no longer sufficient for finding an optimal policy because

even if the agent knows which the best states are, it does not know how to get there

from the current state without the state transition function, T (s,a,s′). For this reason,

instead of estimating the value of states using V (s), estimates are made of the values of

state-action pairs using the action value function (also action function), Q(s,a). 5 The

theory is the same as before with limtrials→∞ Qπ(s,a) =E(Total reward from taking

action a in state s to the end of that trial, under π) except that now a state transition

function is implicitly built into the action value function. Making a policy optimal with

respect to Qπ is now simply a matter of always choosing the action that maximises

Qπ(s,a) at each state s. This is known as a greedy policy. This then becomes π′, which

in turn is evaluated by Qπ′
and so policy iteration continues in the usual way.

However, the second important implication of not having an environment model is that

the issue of exploration must now be addressed. The agent is now responsible for

sampling its own environment, whereas before the environment details were provided

explicitly. So now, rather than updating the policy so that the action that maximises

5This formulation pre-empts Q-learning, which is introduced shortly.



28 C H A P T E R 2. REINFORCEMENT LEARNING

Qπ(s,a) is always chosen, π′ is instead formed by usually choosing the action that

maximises Qπ(s,a) while occasionally selecting one of the other actions. This bal-

ances exploration and exploitation. These are known as ε-soft policies because each

available action has a non-zero probability of being taken. One common ε-soft pol-

icy is to select the currently preferred action with probability 1− ε + ε
|A| and all other

actions with probability ε
|A| , for some small value of ε. This is known as an ε-greedy

policy. A similar but smoother approach is to select actions according to a Boltzmann

distribution of their corresponding action values:

P(a) =
eQ(s,a)/T

∑b∈A eQ(s,b)/T
(2.12)

With ε-soft exploration, convergence to the optimal policy is once again assured pro-

viding the policy converges to pure greedy. This is easily achieved by reducing ε or the

temperature parameter, T , to zero. This ensures a shift from exploration to exploita-

tion.

The advantage of Monte Carlo techniques of not requiring an environment model will

turn out to be decisive not only when the environment is unknown, but also when

T (s,a,s′) or R(s,a,s′) are known implicitly but difficult to calculate explicitly. See

Sutton and Barto (1998)(pg 113) for an example. A disadvantage of having to im-

plicitly model the environment by making the domain of the action value function

state-action pairs rather than just states, is that the action function must now be stored

and updated at many more indices (by a factor of |A|).

2.7 Temporal Difference learning

Like Dynamic Programming, Temporal Difference methods (Sutton, 1988) update the

value function based recursively on other estimates, making the approach suitable for

infinite horizon tasks and on-line, interactive learning. But like Monte Carlo methods,

no model of the environment is necessary. Temporal Difference learning thus captures
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the best of both worlds, and for this reason dominates the standard account. As usual,

the aim is to estimate the value of a state in terms of (2.3).6 Temporal Difference learn-

ing is so called because V̂t(s) (note that we now use V̂ because we are now dealing with

an estimate of the value function.) is updated based on the difference between V̂t(s)
and V̂t(s′), where s′ is the state encountered immediately after s. The basic Temporal

Difference update rule is:

V̂t+1(s) = V̂t(s)+α
[
{r + γV̂t(s′)}−V̂t(s)

]
(2.13)

which is applied immediately after receiving reward r for moving from state s to s′.
The expression in the curly brackets corresponds to the contents of the square brackets

in (2.7), and represents the target of the update. This is just a recursive formulation

of (2.3). The rest of (2.13) moves the current estimate V̂t(s) towards this target by an

amount proportional to the learning rate, 0 < α < 1.

Providing each state is continually visited under some policy, π, and the learning and

exploration rates are annealed to zero according to the constraints of (2.14), then V̂ (s)
will converge on the familiar return of (2.3) for that state, and therefore V̂ will converge

to V π. In essence, this is the approach used in the backgammon player of Tesauro

(1994).

∞�

t=0

α(t) = ∞ and

∞�

t=0

α(t)2 ≤ ∞ (2.14)

2.7.1 Sarsa

As has already been seen with the Monte Carlo method, if an environment model is

not available, the value function, V , is insufficient for improving the policy. Therefore,

6Equation (2.3) is being used again because non-finite MDPs are now being considered.
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in the Sarsa algorithm of Rummery and Niranjan (1994) the action value function, Q,

is again requisitioned to give the Temporal Difference update rule:

Q̂π
t+1(s,a) = Q̂π

t (s,a)+α
[
{r + γQ̂π

t (s′,a′)}− Q̂π
t (s,a)

]
(2.15)

where a′ is the next action to be performed from state s′ according to the current policy,

π.

The theory is a simple extension of Dynamic Programming, based on Bellman equa-

tions for Qπ and Q∗.7 Following the discussion so far, we can see that the repeated up-

date of Q̂π(s,a) towards (r + γQ̂π(s′,a′)) based on sample experience will yield (2.3),

for the current policy.

Given Qπ, the policy can then be improved to exploit this information in exactly the

same way as the Monte Carlo method — by choosing the action a in state s that max-

imises Qπ(s,a). Through policy iteration, Qπ converges to Q∗ and π to π∗, providing

as usual that the environment is modelled as an MDP, the learning rate satisfies (2.14),

all states are visited infinitely often in the infinite limit (using an ε-soft policy for ex-

ample), but that exploration is eventually reduced to zero (see Singh et al. (2000) for

convergence proof). Note that following the discussion of policy iteration, there is no

need to wait for Q̂π to converge on Qπ before updating π. In fact, here π is effec-

tively updated after every single update to Q̂ simply because π is based on the current

Q− values. This particular Temporal Difference method is called Sarsa because the

update rule uses s,a,r,s′ and a′(Sutton, 1996). This and the following technique are

referred to as bootstrapping because, unlike Monte Carlo, estimates of expected return

are updated largely towards other estimates which themselves are based on further

estimates etc.

7See Sutton and Barto (1998) for these equations. They are similar to the Bellman equations already
encountered, and do not add anything to this particular discussion.
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2.7.2 Q-Learning

Sarsa is actually a minor and recent adaption to one of the most theoretically important,

and most popular RL methods known as Q-learning (Watkins, 1989), which uses the

update rule:

Q̂π
t+1(s,a) = Q̂π

t (s,a)+α
[
{r + γmax

a′
Q̂π

t (s′,a′)}− Q̂π
t (s,a)

]
(2.16)

This is identical to Sarsa except that when considering the next state-action transition,

the action a′ is chosen that will maximise the next Q-value as opposed to choosing a ′

according to the current policy. This means that the policy being evaluated is closer

to the optimal policy for the current Q-function (i.e. with no exploration) even though

the policy being used for control may still be involved in exploration. Sarsa effec-

tively models its own exploration as part of the dynamics of the environment, while

Q-learning does not. Modelling the exploration may be useful if such exploration can

profoundly affect the reward (see Sutton and Barto (1998), page 150 for an example).

Q-learning is shown to converge to an optimal policy under the usual assumptions

(Watkins and Dayan, 1992), and it remains the most popular reinforcement learning

algorithm because no model of the environment is required, it is intuitive, easy to

implement, and can be run interactively with updates made immediately, as and when

states are visited. These features make the algorithm suited to a wide variety of learning

tasks. For example, Araujo and Grupen (1996) use Q-learning in a foraging task to

map states to high level behaviours which are generated beforehand. Digney (1996)

uses nested Q-learning to build hierarchical control structures for use in a grid-world

environment. A particularly celebrated example of this Temporal Difference method is

found in Mahadevan and Connell (1991), where a robot learns to find and push boxes

within a behaviour based framework. Q-learning is also employed in Crites and Barto

(1996), where an extension of the algorithm is used to discover a policy for efficiently

dispatching lifts to minimise waiting times.
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2.8 TD(λ)

To round the theory off neatly, the Monte Carlo and Temporal Difference methods can

be shown to be special cases of a more general formalism, T D(λ) (Watkins, 1989).

In Monte Carlo methods, the value of each state is updated towards the actual reward

received from the first visit to that state to the end of the episode. In the Temporal

Difference algorithm, the value function is estimated recursively in the sense that it

is updated towards the immediate actual reinforcement plus the discounted estimated

value of the next state (or state-action pair). TD(λ) is a more general algorithm which

provides smooth control over the degree to which actual returns and estimated returns

are blended to produce the target towards which the value function is updated.

Recall that in (2.13), V̂ (s) was updated towards the 1-step corrected return, but just as

plausible are the 2-step, 3-step or n-step returns:

1-step return = r + γV̂ (s′)
2-step return = r + γr′ + γ2V̂ (s′′)
3-step return = r + γr′ + γ2r′′ + γ3V̂ (s′′′)
...

where s,s′,s′′ . . . is the sequence of states as they are visited, and r,r′,r′′ . . . is the se-

quence of rewards received on entering these states. If the trial length is finite, and

n large enough to reach the end of each trial, then the n-step return is just a non-

bootstrapping target as used in the Monte Carlo algorithm. Hence there exist a range

of methods with Monte Carlo at one extreme and basic Temporal Difference at the

other. It is a simple matter to combine these two extremes in a continuous manner by

updating V̂ (s) towards a weighted sum of n-step returns:

R1 +λR2 +λ2R3 + ...+λn−1Rn (2.17)
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for 0 ≤ λ ≤ 1 (note the distinction between λ and γ!), where Rm is the mth-step return

from state s. Since the weights of the n-step returns should sum to unity (for n = ∞) in

order to respect the estimate of (2.3), an appropriate normalisation factor is introduced

so that (2.17) becomes:

(1−λ)R1 +(1−λ)λR2 + ...+(1−λ)λn−1Rn (2.18)

The term, λ, is the continuous parameter referred to in T D(λ), which in its limits of

zero and one represents 1-step Temporal difference and Monte Carlo methods respec-

tively. Although this may seem like a rather contrived way of combining actual and

estimated returns, it actually represents the theory underpinning an intuitively appeal-

ing and popular set of algorithms defined by the use of eligibility traces (Watkins,

1989). Such algorithms maintain a record of recently visited states and use this his-

tory to accelerate the passing of reward information across the value or action func-

tion. Versions of this algorithm also exist for Q-learning and Sarsa in the form of

Q(λ) (Watkins, 1989; Peng, 1993; Peng and Williams, 1996) and Sarsa(λ) (Rummery,

1995) respectively. See Tesauro’s backgammon player (Tesauro, 1992, 1994) for an

application of TD(λ). See Sutton (1996) for an application of Sarsa(λ) and Araujo and

Grupen (1996) for an application of Q(λ) to simulated robot control.

Although there is no principled analysis available, Sutton (1996) concludes that 0 <

λ < 1 is likely to be optimal with λ = 0 and λ = 1 empirically performing relatively

poorly. In his backgammon application, Tesauro reports that: “...λ appeared to have

almost no effect on the maximum obtainable performance, although there was a speed

advantage to using large values of λ [corresponding to Monte Carlo]”. Jaakkola et al.

(1994), amongst others, have provided a convergence proof for T D(λ).

Although a number of variants and extensions to the above algorithms have been pro-

posed, the previous section provides as much history and theoretical background as is

interesting and relevant to this thesis. The reader is referred to Sutton and Barto (1998)

and Kaelbling et al. (1996) for a more thorough treatment. The focus now moves from

the theory to the practice.
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A brief notational comment is required at this stage. In the remainder of this thesis

when we talk about ‘Q-values’ we will be referring to the estimated Q-values — i.e.

the function, Q̂. However, to simplify notation, we will omit the superscript and re-

fer to estimates simply by using the function, Q. We will also adopt the simplifying

notational convention of omitting the policy superscript, since there will always be an

implicit assumption that we are estimating expected return for the current policy, and

not the optimal policy. Furthermore, the term ‘Q-value’ will be used to refer to any

estimate of expected return for state-action pairs.

2.9 Practical reinforcement learning

The theory provides the following: An iterative, incremental and interactive method

that guarantees convergence of the value function, V , to either (2.2) or (2.3), under the

assumptions that the environment is modelled as an MDP, every state is continually

visited, and the learning and exploration rates are annealed appropriately. The value

function, V , estimates the values of states of the MDP, which requires that the basic

value function update rule (2.13) makes use of an explicit environment model. If the

environment model is unknown, then the value function, V , is replaced by the action

function, Q, which estimates the value of each state-action pair. Now the environ-

ment model is implicitly learned as part of the action function. By interleaving policy

evaluation and policy improvement, an optimal policy is guaranteed to be found.

2.9.1 The assumptions

In practice the MDP assumption can rarely be met, since in many applications the sen-

sory information fails to uniquely identify the state of the environment. This problem

of perceptual aliasing, in which states are confused with each other, is exactly why

escaping a maze is difficult, even for us. In general, the complexity and uncertainty of

the real-world will make it impossible to satisfy the MDP assumption. Also note that

this assumption is left unsatisfied when the environment is modelled as an MDP, but

when this model is dynamic. If the state transition probabilities and reward function

change over time, as may well be the case in a real-world problem, then convergence
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to such a moving target cannot be guaranteed.

The assumption that each state (or state-action pair) is continually visited can be sat-

isfied by always maintaining an appropriate amount of exploration (as discussed in

section 2.6). The convergence proof effectively requires that each state is visited an in-

finite number of times. In practice, trials must be of finite length, and some states may

suffer particularly from under exposure, resulting in inaccurate value estimates. How-

ever, since the algorithms outlined above are interactive or on-line, the most frequently

visited states will conveniently tend to have the most accurate value estimates.

The assumption of appropriate learning and exploration rates is easily satisfied in the

limit of infinite trial length by the conditions of (2.14). However, in the finite case,

finding a suitable set of learning rates that maximise performance is an empirical chal-

lenge.

Having established that, in practice at least, the criteria for convergence cannot be

satisfied, the question now arises as to how well these algorithms perform when the

assumptions are not met. Happily, the answer appears to be quite well. By choosing

a suitable state representation the task can be made as close to an MDP as possible.

Incorporating previous sensory data can also help to reduce the problem of perceptual

aliasing. Judicious selection of the exploration rate can allow the assumption of con-

tinuously visited states to be at least partially satisfied, and in any case, the interactive

nature of the algorithm suggests that accuracy will tend to reflect the exposure and

therefore the relevance of different parts of the environment. The empirical selection

of a suitable set of learning parameters also seems to be reasonably straightforward in

the majority of cases. In addition, some evidence has been presented that other param-

eters, such as λ, may not have a huge impact on performance, and that satisfactory if

not optimal values will be easy to find.

2.9.2 Delayed rewards

Mataric (1997) identifies two main problems that need to be addressed in reinforce-

ment learning. The first is that of delayed rewards, or more generally, credit assign-
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ment. Although the theory provides a guarantee of optimality for infinite length trials

(or an infinite number of finite trials), many practical applications, such as those in-

volving physical robots for example, may be very restricted with respect to the number

of environment samples that can be made. For this reason it is important that reward

information propagates around the value function as quickly as possible. As an il-

lustration of the problem, in Tesauro’s backgammon application, TD-Gammon, the

reinforcement of all states was zero except for the final state of a won game at which

point the reward was one. This is beautifully simple, and requires a minimum amount

of prior game knowledge, but hundreds of thousands or millions of complete games

were needed to allow the reward of won games to propagate back to the early game

states.

Mataric (1994, 1997) addresses the issue of delayed rewards by introducing progress

estimators which provide a handcrafted continuous reward function which augments

the reward information that is received at goal states. For example, a progress esti-

mator might provide an estimate of the distance of an agent from a goal in a robot

navigation problem. Progress estimators address the more general RL aim, identified

by Kaelbling et al. (1996), of making the reward signal as local as possible. Breaking a

task up into subtasks or a control system into behaviours, with each task or behaviour

having its own reward function, is another approach to reducing the time between an

action being taken and reward for that action being received (see Mahadevan and Con-

nell (1991); Mataric (1994, 1997) for some examples). Tesauro’s backgammon player

exemplifies the problem of delayed rewards since the only information from the en-

vironment always comes on transition to a terminal state of the MDP. Attempting to

provide as rich a reward signal as possible is an important part of encoding a task for

an RL solution. Caution is advised though. Supplying handcoded intermediary signals

to shape the learning process may result in the wrong behaviour being accidentally

reinforced. Note that in the backgammon example, maximising the (rather weak) re-

ward signal was guaranteed to maximise playing ability given enough training time.

But consider what might have happened by ‘enriching’ the reward signal by a progress

estimator designed to reward intermediate game positions that were mistakenly judged

by an expert to be strategically advantageous.

Although this thesis is not directly concerned with delayed rewards, the issue is en-
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countered at a number of points throughout the thesis. It is introduced here largely for

completeness.

2.9.3 Large state spaces, and generalisation

The second of the two major problems facing RL application identified by Mataric

(1997) is the possibility of large or continuous state or action spaces. Consider again

the backgammon example, in which there are about 1020 distinct board positions, and

therefore the same number of states. Representing the value of each board position

explicitly is clearly impossible, so Tesauro used backpropagation to train a neural net-

work to approximate the function, V . Note that because the environment model is

known (in terms of the available successors to the current state), the value function

V is sufficient for learning an optimal policy. The algorithm used is actually T D(λ),
but (2.13) also characterises the approach. However, at each state, instead of a table

entry for V (s) being updated, the network is trained towards the pair (I,O), where I

is the input vector corresponding to the current board position, s, and O is the target

inside the curly brackets (of 2.13). Because of the way the experiment was set up8,

the value function approximated by the network effectively mapped each board po-

sition to the probability of winning from that board position. Optimising the policy

was then achieved by simply selecting the move from a list of legal possibilities that

lead to the state with highest V (s) according to the network. No exploration was built

into the move selection because the dice throws themselves were considered to gener-

ate enough noise9. The system was trained against itself, so a large number of games

could be played.

Generalising over the state space using a non-linear function approximator yielded ex-

cellent results for TD-Gammon, with the system learning to play backgammon to club

standard. By hand-coding salient board features into the representation at each state,

performance was improved to rival the world’s best players. A pleasing addendum is

that some of the opening plays learned by TD-Gammon went on to change the opening

theory of the game.
8No discounting took place and recall that the reward was zero in all states except won positions,

where it was one.
9The reader could refer to http:/www.funcom.com/lang en/lang en/games/backgammon/rules.html

for an explanation of the game.
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Practical RL

RL TheoryGeneralisation

Figure 2.3: The independent relationship between RL and Generalisation theory. The diagram em-
phasises the point at which RL finishes, and where the responsibility for scaling RL primarily resides. In
particular, a lack of ability in dealing with large or continuous state spaces is not an inherent problem of
the RL theory itself. The latter provides a clear set of results within a clearly defined set of boundaries.
The sophistication and potential applicability of RL is not limited by the theory, but by the techniques
with which the theory is combined.

However, a fourth criterion for guaranteed convergence that has only been implicit so

far in this chapter, is that the value or action function be represented explicitly as a

lookup table. This drives another wedge between RL theory and its practical applica-

tion since large or continuous state spaces will in general preclude this condition being

met. Effective generalisation over large or continuous state and action spaces is the

key issue facing real-world applications of RL, and this is the main focus of this the-

sis, particularly with respect to generalising over continuous action spaces. Although

the lookup table assumption has resulted in further violation of the theory by practical

considerations, at least Tesauro’s TD-Gammon experiment suggests that we can still

expect good performance providing appropriate generalisation techniques are used.

2.10 Generalisation techniques

In considering appropriate techniques for generalisation, the bridge has been crossed

from the field of RL to the domain of statistics. Using a multi-layer perceptron to

approximate the value function is only one approach to generalisation but any existing

statistical technique for generalisation is a potential candidate for use on complex RL

problems. Figure 2.3 illustrates the intended relationship.

An entire review of all generalisation techniques is clearly well beyond the scope of
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this thesis, but a representative sample will be considered shortly, as well as at various

other places in the thesis. Therefore, to avoid duplication, only the briefest overview is

given here and the reader is asked to accept a review of this subject as it is uncovered

piece by piece according to the logical progression of the thesis.

2.10.1 Tiling the state space

Consider a robot learning problem in which there are two sensors each of which can

take a value in the continuous range [0,1]. The state space can then be represented as

the unit square, and the task becomes one of dividing this space up into regions, with

each region representing a discrete state of the standard RL problem. Deciding on the

size, shape and number of these regions beforehand will generally be difficult, and the

most obvious approach of using a high resolution grid superimposed over the entire

space will result in an excessive number of states, particularly as the dimensionality of

the space increases.

An alternative is to tile the space with overlapping regions, with each region corre-

sponding to a hand-coded ‘feature’. Then any particular state can be characterised by

the set of features in which it appears. This particular approach is called tile-coding

and is also referred to as the Cerebellar Model Articulation Controller (CMAC) be-

cause it models Cerebellar functionality (Albus, 1975). This is a specific instance of

a broader set of basic generalisation techniques described as coarse-coding, in which

state and action spaces are carved up in advance. A second instance of a coarse-coding

algorithm is the memory-based function approximator where a continuous Q-function

is represented as a set of prototypical Q-values. The Q-value of any point in the state-

action space is approximated by a suitable combination of the surrounding prototype

Q-values, scaled for example by the distance between each prototype and the point

in the state-action space being evaluated. Updating the Q-value of an arbitrary point

in the continuous state-action space can be achieved by altering the prototype values

according to their relevance, and if there happen to be no prototypes suitably close to

the current position then one can be spontaneously created. Coarse-coding approaches

potentially suffer from the fact that generalisation is not adaptive. For example, in

standard memory-based function approximators, the prototype positions are fixed. See
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Santamaria et al. (1997) for a description and comparison of coarse-coding techniques.

Another simple approach to generalisation used by Mahadevan and Connell (1991) in

their famous box pushing robot application is to represent each state explicitly (in their

case the state space was discrete), but to update not only Q(s,a) for the current state

and action, but also Q(s′,a) for all s′ ∈ S within a fixed Hamming distance of s. This

makes updating the Q-function over a large state-space more tractable. However, in

this example, the only way each state could be represented explicitly was by perform-

ing hand-coded dimensionality reduction on the robot’s vector of sensor readings.

2.10.2 Dynamic generalisation

A more appealing approach is to construct categories on-line, based on and in response

to the input data. One approach, which is considered at length throughout this thesis, is

to use Kohonen’s Self-Organising Map (SOM) (Kohonen, 1987) to model the distribu-

tion of the input data. In the case of the two dimensional state space considered above,

a SOM could be trained towards the two-dimensional sensory vectors generated by the

robot. Each unit of the map would then be usable as a discrete state in the standard

RL problem, with the SOM dynamically discretising the space with a variable reso-

lution that reflects the robot’s exposure to different parts of the environment. In work

that is considered later in section 4.4, Sehad and Touzet (1994) and Touzet (1997)

use a SOM to map the combined state-action-reward space. While the approach is

favourably compared with a number of other representational techniques for a robot

learning problem, the comparison is not detailed enough to conclude anything other

than that the SOM is an interesting and potentially effective approach. The use of a

Kohonen map to generalise over continuous state and action spaces is discussed and

analysed at length during the course of this thesis.

In a similar vein, the k-means clustering technique (see Lloyd (1982)) could be used,

or the Adaptive Resonance Theory network of Carpenter and Grossberg (1987b) which

adopts a more constructive approach to the plasticity/stability tradeoff. Li and Svens-

son (1996) choose an ART network over a Kohonen network to represent the state

space in a robot navigation problem. Their decision is based on the perceived inability
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of the latter to operate simultaneous learning and operation phases. However, results

from chapter 5 suggest that this conclusion is invalid.

A dynamic approach adopted in Chapman and Kaelbling (1991) utilises decision trees

in which an initially small number of states covering the entire space are iteratively split

into smaller and smaller regions until each region behaves consistently with respect to

the reward signal. This approach benefits from considering the reward information as

well as the input data in generating categories, but it may not be suited to dynamic

environments since the splitting is a one way process that could potentially result in

too many regions being created.

In all these approaches, the emphasis is on dissecting the state space so that the value

or action function can be maintained as a look-up table. Note that it is possible to

perform the category construction and reinforcement learning processes in parallel,

providing it is accepted that the categories underpinning the RL algorithm will change

during learning. Tolerating moving states makes a further mess of the theory, but in

practice such systems may still work well providing appropriate consideration is given

to relative learning rates. This issue is considered in more detail in chapter 6.

2.10.3 Backpropagation

Other techniques directly approximate either the value function, or even the policy

itself, thus side-stepping the need to maintain an explicit value function. Tesauro’s

TD-Gammon made effective use of the backpropagation algorithm to train the weights

of a multi-layer perceptron (MLP) to perform powerful non-linear generalisation over

the state-space. Similarly motivated is the Complementary Reinforcement Backprop-

agation Algorithm (CRBP) of Ackley and Littman (1990), in which a binary reward

signal (intended to indicate whether the action is ‘right’ or ‘wrong’) is used to train

a backpropagation network directly towards appropriate state-action pairs (see section

4.7. The approach is adopted by Ziemke (1996) in another robot learning problem to

map robot sensors directly to optimally rewarded motor outputs. The scalability of

CRBP is not clear, since the reward and outputs are binary. There is also no explicit

interpretation of the action function which means the system operates as a black box.
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The use of backpropagation is considered in more detail in chapter 8. Of particular

interest is its relative robustness to the curse of dimensionality. For example, the input

vectors of TD-Gammon had 198 dimensions!

2.10.4 Other techniques

A range of other techniques could also be conceived for generalising over the input

space including the use of Radial Basis Networks (Powell, 1987), the GTM algorithm

(Bishop et al., 1998), or an auto-associative MLP. A number of ad hoc techniques

have also been suggested, such as the clustering algorithm of Mahadevan and Connell

(1991) in which Q-values are grouped according to proximity in state-space and simi-

larity with respect to the reward under each action. One interesting aspect of that work

is that the state space is effectively decomposed differently for each action.

A complete comparison of these generalisation techniques with respect to the full range

of reinforcement problems would be impossible. Different approaches will be more

appropriate than others in different applications. A discussion of the applicability of

some of these techniques with respect to specific problem features is given in chapters

6 and 8. In the meantime a number of relevant issues can be identified. For example,

is generalisation adaptive or fixed? Is it linear or non-linear, supervised or unsuper-

vised? Is the generalisation performed with respect to the reward function, the input

data, both or neither. Also, a relevant question for non-stationary environments is how

the tradeoff between plasticity and stability is addressed. A key distinction consid-

ered in chapter 8 is whether the representation of the state-space is local, as in the

case of the Kohonen map for example, or distributed as in a backpropagation network.

This may have implications when considering non-stationary environments, high di-

mensional state spaces, maintaining multiple actions, interpreting behaviour, and di-

agnosing faults. Other considerations include the resources required by the algorithm,

the robustness and complexity of the algorithm, and potential for parallelisation, all of

which may be particularly relevant in interactive domains such as robot learning. The

consequences of pathological behaviour are also relevant. For example, what are the

implications of getting stuck in a local minimum when using backpropagation, or pro-

ducing twisted maps when using a SOM. All of these issues are encountered at various

points throughout the thesis.
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2.11 Summary

The theoretical foundations of reinforcement learning have been presented along with

an account of the evolution of the most popular algorithms, including TD(λ) and Q-

learning. Although in practice all of the assumptions required to guarantee conver-

gence of Temporal Difference methods may be violated, performance is empirically

found to be robust and good performance is usually achieved.

The problems of delayed rewards and continuous or prohibitively large state and action

spaces are not failings of RL itself, but are inherent difficulties of the complex problems

being addressed. The solution is not to say that RL is inadequate so let us invent

something else, but instead to specifically address these issues, and indeed this is where

much of the current research lies.

For any of the difficulties named above, or just because of an inadequate reinforcement

signal, some problems may turn out to be too hard to solve using just the components

of RL considered so far. In these more interesting cases a number of other ideas may

need to be considered. As Kaelbling et al. (1996) note, almost all the advanced and

interesting applications of RL utilise some form of innately specified knowledge about

the task, be it cleverly crafted state representations (for example (Tesauro, 1994)),

built-in behaviours (Maes and Brooks, 1990), reflexes (Li, 1999), pre-specified coor-

dination of learning modules (Mahadevan and Connell, 1991), handcrafted progress

estimators (Mataric, 1994, 1997), inbuilt heuristics for exploring actions (Wedel and

Polani, 1996), and any number of assumptions about the nature of the reinforcement

signal, or the environment model.

It is generally assumed that we are born with many innately specified tendencies, but

that we also perfect our skills by increasing our knowledge of the world through trial

and error interaction with our environment (Karmiloff-Smith, 1995). Looking to the

animal world for inspiration yields other ideas including learning through imitation

(see Hayes and Demiris (1994), and Price and Boutilier (2000) for RL-based imita-

tion learning) and shaping (see Dorigo and Colombetti (1994) for an RL example)

where an animal is trained incrementally on successively harder and harder versions

of the task. With respect to domain specific learning, Gallistel et al. (1991) observe
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that animals have strong predispositions to learning certain kinds of associations. For

example, a pigeon can be trained to peck a button for a food reward, but not to flap

its wings. Conversely, it may be trained to flap its wings to avoid a shock, but not to

peck. It is easy to see how biasing the kinds of associations that may be made in this

way can greatly simplify the learning process. Even human development seems very

constrained with certain things being learned at very specific times and being subject

to specific constraints, prerequisites and processes (Karmiloff-Smith, 1995).

All this indicates that although we cannot expect to solve all problems by RL alone,

the technique has still established itself as a valuable tool for our hardest endeavours.

Designing RL-based solutions to interesting problems goes far beyond just picking one

of the theoretical approaches plus a suitable set of parameters. It is the art of perform-

ing appropriate generalisation, maximising the information in the reward signal, and

knowing how to bring all available information to bear on the problem, that transforms

the theoretical and well understood foundations into a set of practical and exciting

techniques.


