
Robust Non-linear Control through Neuroevolution

Faustino John Gomez

Report AI-TR-03-303 August 2003

inaki@cs.utexas.edu
http://www.cs.utexas.edu/users/nn

Artificial Intelligence Laboratory
The University of Texas at Austin

Austin, TX 78712

Copyright

by

Faustino John Gomez

2003

The Dissertation Committee for Faustino John Gomez
certifies that this is the approved version of the following dissertation:

Robust Non-linear Control through Neuroevolution

Committee:

Risto Miikkulainen, Supervisor

Bruce W. Porter

Raymond J. Mooney

Benjamin J. Kuipers

John M. Scalo

Robust Non-linear Control through Neuroevolution

by

Faustino John Gomez, B.A.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2003

Acknowledgments

I would first like to thank my advisor Risto Miikkulainen without whose encouragement
(insistence) this work would not have even begun. Equally crucial, my brother and best
friend, Oliver, and my family. Others: my Ph.D. committee, Stephanie Schoonover, Marty
and Coquis Mayberry, Jim Bednar, Yoonsuck Choe, Ken Stanley, Bobby Bryant, Gloria
Ramirez, Daniel Polani, los Fox-Bakers, Carlos (ostia!), Sonia Barreiro, Marta Lois, quen
mais...

I would also like to thank Eric Gullichsen of Interorbital Systems for his collabora-
tion and invaluable assistance in the rocket guidance project. Doug Burger and Hrishikesh
Murukkathampoondi for their help in setting up the SimpleScalar parameters, generating
the traces, and overall advice in the CMP project.

Lifelong inspiration: Ian Anderson, Martin Barre, Andy Latimer, Albert Camus,
Chuck Schuldiner (RIP), Keith Jarrett, Jan Garbarek, Woody Allen, Robert Fripp, Steve
Howe, Steve Morse.

This research was supported in part by the National Science Foundation under grants
IIS-0083776 and IRI-9504317, and the Texas Higher Education Coordinating Board under
grant ARP-003658-476-2001.

FAUSTINO JOHN GOMEZ

The University of Texas at Austin
August 2003

v

Robust Non-linear Control through Neuroevolution

Publication No.

Faustino John Gomez, Ph.D.
The University of Texas at Austin, 2003

Supervisor: Risto Miikkulainen

Many complex control problems require sophisticated solutions that are not amenable to
traditional controller design. Not only is it difficult to model real world systems, but often
it is unclear what kind of behavior is required to solve the task. Reinforcement learning
approaches have made progress in such problems, but have so far not scaled well. Neu-
roevolution, has improved upon conventional reinforcement learning, but has still not been
successful in full-scale, non-linear control problems. This dissertation develops a method-
ology for solving real world control tasks consisting of three components: (1) an efficient
neuroevolution algorithm that solves difficult non-linear control tasks by coevolving neu-
rons, (2) an incremental evolution method to scale the algorithm to the most challenging
tasks, and (3) a technique for making controllers robust so that they can transfer from sim-
ulation to the real world. The method is faster than other approaches on a set of difficult
learning benchmarks, and is used in two full-scale control tasks demonstrating its applica-
bility to real world problems.

vi

Contents

Acknowledgments v

Abstract vi

Contents vii

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1
1.1 Motivation . 1
1.2 Research Goals . 3
1.3 Approach . 4
1.4 Overview of Dissertation . 5

Chapter 2 Foundations 7
2.1 Control . 7
2.2 Reinforcement Learning . 10
2.3 Neuroevolution . 13

2.3.1 Artificial Neural Networks . 13
2.3.2 Genetic Algorithms . 16
2.3.3 Evolving Neural Networks . 17

2.4 Cooperative Coevolution . 18
2.4.1 SANE . 19

2.5 Shaping . 21
2.6 Controller Transfer . 22

2.6.1 Transfer in Evolutionary Robotics 22

vii

2.6.2 Transfer in Unstable Control Tasks 24

Chapter 3 Enforced Subpopulations 25
3.1 The ESP Algorithm . 25

3.1.1 Burst Mutation . 30
3.1.2 Adapting the Network Size . 31

3.2 Advantages of Segregating Neurons . 32

Chapter 4 Pole Balancing Comparisons 34
4.1 The Pole Balancing Problem . 34
4.2 Task Setup . 36
4.3 Pole Balancing Experiments . 37

4.3.1 Other Methods . 38
4.3.2 Balancing One Pole . 41
4.3.3 Balancing Two Poles . 44
4.3.4 Summary of Comparisons . 46

Chapter 5 Incremental Evolution 48
5.1 The Limits of Direct Evolution . 48
5.2 Experiments . 52

5.2.1 Experimental Setup . 52
5.2.2 Results . 53

5.3 Discussion . 55

Chapter 6 Controller Transfer 57
6.1 Learning the Simulation Model . 58
6.2 Evolving with the Model . 61
6.3 Transfer Results . 63
6.4 Evaluating Controller Robustness . 65
6.5 Analysis of Transfer Results . 69

Chapter 7 Prey Capture Task 73
7.1 Background and Motivation . 73
7.2 Prey Capture Experiments . 74

7.2.1 Simulation Environment . 75
7.2.2 Control Architecture . 76
7.2.3 Experimental Setup . 76

viii

7.3 Results . 78
7.4 Experimental Analysis . 81

7.4.1 Prey Capture Behavior . 81
7.4.2 Network Analysis . 82

7.5 Discussion . 83

Chapter 8 Dynamic Resource Allocation for a Chip Multiprocessor 85
8.1 Background and Motivation . 85
8.2 Design Challenges . 87
8.3 CMP Controller Experiments . 89

8.3.1 Simulation Environment . 89
8.3.2 Control Architecture . 90
8.3.3 Experimental Setup . 91

8.4 Results . 93
8.5 Discussion . 94

Chapter 9 Active Guidance of a Finless Rocket 95
9.1 Background and Motivation . 96
9.2 Stabilizing the Finless RSX-2 Rocket . 97
9.3 Rocket Control Experiments . 99

9.3.1 Simulation Environment . 99
9.3.2 Control Architecture . 101
9.3.3 Experimental Setup . 101

9.4 Results . 103
9.5 Discussion . 104

Chapter 10 Discussion and Future Directions 107
10.1 ESP . 107

10.1.1 Strengths and Limitations . 107
10.1.2 Probabilistic Subpopulations using Local Information 108
10.1.3 Probabilistic Subpopulations using Global Information 109
10.1.4 Large-Scale Parallel Implementation of ESP 109

10.2 Incremental Evolution . 110
10.2.1 Task Prediction . 111

10.3 Controller Transfer . 111
10.4 Applications . 112
10.5 Conclusion . 114

ix

Chapter 11 Conclusion 115
11.1 Contributions . 115
11.2 Conclusion . 117

Appendix A Pole-balancing equations 118

Appendix B Parameter settings used in pole balancing comparisons 120

Appendix C The prey movement algorithm 124

Bibliography 125

Vita 137

x

List of Tables

4.1 One pole with complete state information 42
4.2 One pole with incomplete state information 43
4.3 Two poles with complete state information 44
4.4 Two poles with incomplete state information 45

7.1 Prey capture performance of a lesioned network 83

xi

List of Figures

1.1 The RSX-2 Rocket of Interorbital Systems, Inc 1

2.1 Control . 8
2.2 Dimensions of environment complexity 9
2.3 Feedback Control . 10
2.4 The value function approach . 11
2.5 Neuroevolution . 13
2.6 Neural network architectures . 14
2.7 The crossover and mutation operators . 15
2.8 Fitness landscape . 16
2.9 Symbiotic, Adaptive Neuroevolution (color figure) 20

3.1 Neuron genotype encoding . 26
3.2 The Enforced Subpopulations method (ESP; color figure) 27
3.3 The ESP algorithm . 28
3.4 ESP algorithm subroutines . 29
3.5 Burst mutation . 30
3.6 Adapting the network size . 32
3.7 Evolution of specializations in ESP (color figure) 33

4.1 The double pole balancing system (color figure) 35
4.2 Neural network control of the pole balancing system (color figure) 36

5.1 A difficult fitness landscape . 49
5.2 Configuration space . 50
5.3 Incremental fitness landscapes . 51
5.4 Task scheduling rule for incremental pole balancing 52
5.5 Results for incremental vs. direct evolution 54

xii

5.6 Average increment P in short pole length 55

6.1 The model-based neuroevolution approach (color figure) 58
6.2 Model accuracy (color figure) . 60
6.3 State transitions . 63
6.4 Transfer results . 64
6.5 Examples of controller behavior on the robustness tests 66
6.6 Robustness results . 67
6.7 Comparison of controller behavior before and after transfer 69
6.8 Trajectory envelope . 71
6.9 Learning performance of ESP with increasing trajectory noise 72

7.1 The prey capture environment and the predator network 75
7.2 Prey capture parameters . 77
7.3 Prey capture configuration space . 78
7.4 Performance of direct and incremental evolution in the prey capture task . . 79
7.5 An example of prey capture behavior . 82

8.1 Memory hierarchy . 86
8.2 Controlling a Chip Multiprocessor . 88
8.3 Trace environment . 90
8.4 CMP control network . 91
8.5 Task parameters . 92
8.6 Control behavior . 93

9.1 The Interorbital Systems RSX-2 rocket . 95
9.2 Rocket dynamics . 97
9.3 The time-varying difficulty of the guidance task 98
9.4 RSX-2 rocket simulator . 100
9.5 Fin configurations . 100
9.6 Nueral network guidance . 101
9.7 Task parameters . 102
9.8 Burnout altitudes for different fin-size rockets with and without guidance . 103
9.9 Final altitudes for the unguided full-finned, guided quarter-finned, and fin-

less rockets . 104
9.10 Controller performance for the finless rocket 105

xiii

Chapter 1

Introduction

Figure 1.1: The RSX-2
Rocket of Interorbital Sys-
tems, Inc. Without fins the RSX-2

would be unstable. Developing

an active guidance system for a

finless version of the RSX-2 is a

challenging problem, and the subject

of chapter 9.

Many real world control problems are so com-
plex that designing controllers by conventional means
is either impractical or results in poor performance. Take,
for example, the problem of flying a rocket on a sta-
ble trajectory (figure 1.1). Rockets normally have fins
to provide passive guidance and keep them from tum-
bling, but fins add weight and drag, and the rocket will
fly much higher without them. A guidance system will
then be required to keep it flying on a straight path
(i.e. stabilizing the rocket). However, developing such
a guidance system is a difficult and expensive. This
dissertation provides a methodology for designing such
controllers automatically by evolving neural network
controllers using a method called Enforced SubPopu-
lations (ESP).

1.1 Motivation

For some relatively simple control problems, effective
or even optimal controllers can be designed by hand,
using classical feedback control theory. The household
thermostat is the classic example: provided the temperature outside the home does not
change rapidly, a simple linear control law will maintain the temperature inside close to a
desired level.

1

For most interesting real world problems, however, the situation is more compli-
cated because the environment is often highly non-linear. Non-linearity is a problem be-
cause modern controller design methods rely on linear mathematical models: first, a linear
model of the environment is constructed, then the controller is designed for the model and
implemented in the environment. Even if a strategy for solving a particular control task is
known in advance (i.e. what action should be taken in each state), the simplifying assump-
tions required to build a tractable (linear) model can limit the level of performance that can
be achieved. If we extend the thermostat example to a more general climate control system,
a linear controller will not be able to regulate the temperature adequately. The system con-
sists of many non-linear components (e.g. heating coils, fans, dampers) that interact, and
cannot be captured effectively using a linear model.

Non-linear models and controllers such as those based on neural networks can be
used to produce systems that can better cope with non-linearity (Miller et al. 1990; Suykens
et al. 1996), but a more fundamental problem exists when a satisfactory control strategy
is not known. In this case, the control task is not a matter of correctly implementing a
known strategy, but rather one of discovering a strategy that solves the task. For example,
imagine a robot whose mission is to navigate an office space collecting trash as efficiently
as possible while avoiding moving obstacles (e.g. people, chairs, and so on) that can impede
its progress or cause a collision. Performing one sequence of actions may cause the robot
to avoid one obstacle cleanly but hit another soon after. Another sequence of actions may
cause the robot to narrowly avoid collision with the first object, but allow it to avoid the
second one. In general, it is not possible to predict which action in each situation will
benefit the robot the most over the long run.

To solve problems where effective strategies are not easily specified, researchers
have explored methods based on reinforcement learning (RL; Sutton and Barto 1998). In-
stead of trying to pre-program a correct response to every likely situation, the designer
only provides a reward or reinforcement signal that is correlated with the desired behavior.
The controller or agent then learns to perform the task by interacting with the environ-
ment to maximize the reinforcement it receives. This way the actions that become part
of the agent’s behavior arise from, and are validated by, how they contribute to improved
performance.

In theory, RL methods can solve many problems where examples of correct behavior
are not available. They can also be used for tasks where control strategies are known. In
such cases, instead of trying to implement a known strategy, RL can be used to optimize a
higher level specification of the desired behavior (i.e. a cost function). Since RL places few
restrictions on the kind of strategy that can be employed, the learning agent can explore

2

potentially more efficient and robust strategies that would otherwise not be considered by
the designer, or be too complex to design.

Unfortunately, in practice, conventional RL methods have not scaled well to large
state spaces or non-Markov tasks where the state of the environment is not fully observable
to the agent. This is a serious problem because the real world is continuous (i.e. there
are an infinite number of states) and artificial learning agents, like natural organisms, are
necessarily constrained in their ability to fully perceive their environment.

Recently, significant progress has been made in solving continuous, non-Markov
reinforcement learning problems using methods that evolve neural networks or neuroevo-
lution (NE; Yamauchi and Beer 1994; Nolfi and Parisi 1995; Yao 1993; Moriarty 1997).
Instead of adapting a single agent to solve the task, a population of neural networks is
used to search the space of possible controllers according to the principles of natural se-
lection. A successful controller is evolved by allowing each member of the population to
attempt the task, and then selecting and reproducing those that perform best with respect
to a quantitative measure or fitness. NE has been used extensively to evolve simple mo-
bile robot navigation and obstacle avoidance behaviors, but it has not yet scaled to more
complex tasks or environments that require high-precision, non-linear control such as the
rocket guidance problem.

A critical issue that affects all controllers whether designed, learned, or evolved
is robustness. Controllers cannot be developed in actual contact with the system they are
meant to control because doing so is usually too inefficient, costly, or dangerous. Therefore,
they must be developed in a model or simulator of the environment, and then be transferred
to the real world. In order to apply neuroevolution to real world problems not only must
the method be powerful enough to evolve non-linear controllers in simulation, but also the
controllers must be robust enough to transfer to the real world. These are the main issues
this dissertation is intended to address.

1.2 Research Goals

The overall aim of this dissertation is to provide a methodology for applying neuroevolu-
tion to real-time control tasks. These tasks encompass a broad range of problems in process
control, manufacturing, aerospace, and robotics where the controller must continuously
monitor the state of the system and execute actions at short, regular intervals to achieve
an objective. While neuroevolution is applicable to other types of problems, from classi-
fication to more deliberative tasks such as game-playing, my contention is that real-time
control problems are those best suited for neuroevolution.

3

The main advantage of using neuroevolution in these tasks is that it allows the de-
signer to ignore details about the structure of the environment, and about how the task
should be solved. Instead of having to build an analytical model of the environment, all
that is needed is a simulator that can approximate its behavior, and provide a setting for
evaluating controllers. Therefore, the development process is greatly simplified by elim-
inating the need for a formal analysis of the environment. For systems that are currently
controlled by conventional designs, this means that NE can be used to optimize perfor-
mance by evolving non-linear controllers that do not make a priori assumptions about how
the task should be solved. The process will be demonstrated in this dissertation using the
pole balancing benchmark.

More significantly, NE can be employed to solve tasks for which there are currently
no satisfactory solutions, and encourage the exploration of new and more challenging con-
trol problems such as the finless rocket. Instead of having to use a strategy based on heuris-
tics or dictated by control theory, the designer only has to supply a scalar fitness measure
that quantifies the relative competence of all possible behaviors. This is usually easier to
determine than the correct strategy itself.

1.3 Approach

Applying artificial evolution to real world tasks involves two steps: first, a controller is
evolved in a simulator, and then the controller is connected to the physical system it is
intended to control. I claim that for this process to succeed, three components are essential:

1. An evolutionary algorithm that is capable of efficiently searching the space of con-
troller representations that are powerful enough to solve non-linear tasks.

2. A method for scaling the evolutionary algorithm for tasks that are too difficult to be
solved directly.

3. A technique to ensure that controllers are robust enough to transfer.

Each of these components is addressed in this dissertation. First, the Enforced Sub-
Populations algorithm is used to automatically design non-linear controllers. ESP is a neu-
roevolution method that is based on Symbiotic, Adaptive Neuroevolution (SANE; Moriarty
1997). Like SANE, ESP evolves network components or neurons instead of complete neu-
ral networks. However, instead of using a single population of neurons to form networks,
ESP designates a separate subpopulation of neurons for each particular structural location

4

(i.e. unit) in the network. The subpopulation architecture makes neuron evaluations more
consistent so that the neurons specialize more rapidly into useful network sub-functions.
An equally important side effect of accelerated specialization is that it allows ESP to evolve
recurrent networks. These networks are necessary for tasks that require memory, and can-
not be evolved reliably using SANE.

Second, an incremental evolution technique is presented which can be used with
any evolutionary algorithm to solve tasks that are too difficult to solve directly. Instead
of trying to solve a difficult task “head-on,” a solution is first evolved for a much easier
related task. In steps, the ultimate goal task is solved by transitioning through a sequence
of intermediate tasks of increasing difficulty.

Third, to learn how to perform transfer it must be studied in a controlled experi-
mental setting. The problem of transfer is studied by simulating the process of testing a
controller in the real world after it has been evolved in a simulator. I analyze two tech-
niques that use noise to make controllers more robust and prepare them for transfer by
compensating for inaccuracies in the simulator. Together, these three components form a
methodology that can be used to solve difficult non-linear control tasks.

1.4 Overview of Dissertation

The chapters are grouped into five parts: Introduction and Foundations (Chapters 1 and 2),
ESP (Chapter 3), Comparisons (Chapters 4, 5, and 6), Applications (Chapters 7, 8,
and 9), and Discussion and Conclusion (Chapters 10 and 11).

In Chapter 2, I lay the foundation for the three components of the method (ESP,
incremental evolution, and transfer) by providing background material on control, rein-
forcement learning, artificial evolution, shaping, and controller transfer.

Chapter 3 presents the core contribution of the dissertation, ESP. The three chapters
that follow (4, 5, and 6) each demonstrate a component of the method using the pole
balancing domain as a testbed. In Chapter 4, ESP is compared to a broad range of learning
algorithms on a suite of pole balancing tasks that includes difficult non-Markov versions.
This comparison represents the most comprehensive evaluation of reinforcement learning
methods that has been conducted to date, including both single-agent and evolutionary
approaches. ESP is shown to solve harder versions of the problem more efficiently than the
other methods.

In Chapter 5, incremental evolution is formally introduced and used to push further
the most difficult task from chapter 4, showing how gradually raising task difficulty can
dramatically improve the efficiency of ESP, and allow it to solve harder tasks than would

5

otherwise be possible.
The problem of transferring controllers to the real world is analyzed in Chapter 6.

While transfer has been studied in the mobile robot domain, this research is the first to look
at transfer in a high-precision unstable control problem.

In Chapter 7, ESP and incremental evolution are applied to an Artificial Life pursuit-
evasion task to demonstrate how ESP can be used to solve tasks that require short-term
memory. In Chapter 8, ESP is applied to the first of two real world applications, the
problem of managing the memory cache resources for a chip-multiprocessor. The second
application, in Chapter 9, is the stabilization of a finless version of the Interorbital Sys-
tems RSX-2 rocket mentioned in section 1.1. This is the most challenging task undertaken
in this dissertation, representing a scale-up to the full complexity of a real world control
problem.

Chapter 10 discusses the contributions and outlines some promising directions for
future work, and Chapter 11 concludes the dissertation.

Appendix A contains the equations of motion for pole balancing domain, Ap-
pendix B contains the parameter settings used by the various methods in chapter 4, and
Appendix C contains the equation of motion for the environment used in chapter 7.

6

Chapter 2

Foundations

This chapter provides the background material and literature review that relates to the three
components of the approach outlined above (ESP, incremental evolution, and controller
transfer). The first section discusses the basic concept of control and the standard engineer-
ing approach to solving common control tasks. The next four sections focus on learning
control, starting with general reinforcement learning methods, then focusing on neuroevo-
lution, neuroevolution based on cooperative coevolution, and finally Symbiotic, Adaptive
Neuroevolution, the method on which ESP is based. The next section covers shaping, the
concept underlying the incremental evolution approach used to scale ESP to difficult tasks.
The last section discusses the topic of controller transfer.

2.1 Control

This section serves to define many of the control concepts and terms used throughout the
dissertation. Control is a process that involves two components: an environment and a
controller (figure 2.1). At any given instant, the environment is in one of a potentially
infinite number of states s ∈ S ⊂ �n, and the dynamics of the environment are governed
by some arbitrary, unknown function f ,

st+1 = f(st, at), (2.1)

of the state st and the action at ∈ A ⊂ �m at time t, where S and A are known as the state-
space and action-space, respectively. The action is generated by the controller according
to:

at = π(ot), ot = h(st), (2.2)

7

actionobservation

Environment

Controller

Figure 2.1: Control. At regular intervals the controller receives information about the state of the
environment (i.e. an observation) and immediately outputs an action that potentially affects the next
state of the environment. The controller’s objective is to keep the environment on some desirable
trajectory.

where π is the control function or policy, and ot is the controller’s observation of the state.
The function h can be thought of as the controller’s sensory system; because some of
the state variables may not be measurable, and sensors are always noisy and of limited
resolution, the observation ot is generally an imperfect measurement of the state. Note
that although real systems are continuous in time, the discrete-time treatment used here is
more appropriate because controllers are almost always developed and implemented using
digital hardware.

An environment starting in some initial state s0 and acted upon by some policy,
follows a sequence of states or trajectory through the state space:

s0, s1, s2, . . . (2.3)

Let Ω be the set of all possible trajectories that can occur as a consequence of all possible
sequences of actions {at} starting in s0. The subset of Ω that is generated by a particular
controller will be referred to as the controller’s behavior. The behavior can contain more
than one trajectory because f ,π, or h may be stochastic. The objective of control is to find
a controller whose behavior solves a particular task. In this dissertation, task refers to a
pairing of a particular environment and objective. For example, a robot following a wall in

8

continuous
stochastic
partially observable
high−dimensional

non−linear
discrete

completely observable
low−dimensional

linear

deterministic

"DIFFICULT""EASY"

Figure 2.2: Dimensions of environment complexity. Environments that exhibit the properties
on the left are usually considered easier to control than environments exhibiting the properties on
the right. Non-linear environments are usually a problem for classical control theory, and con-
tinuous, high-dimensional, and partially observable environments cause problems for conventional
reinforcement learning methods. The focus of this dissertation will be primarily on “difficult” envi-
ronments.

an office space is clearly a different task from the robot collecting trash in the same office
space. Likewise, a robot collecting trash outdoors is performing a different task than a
robot pursuing the same objective in an office space.

The latter example is less intuitive because we tend to think of proficiency in a task
as a general competency. While the ultimate goal in many control problems is to pro-
duce controllers with such general behavior, it is often the case that a controller that can
accomplish an objective in one environment is not able to in another slightly different envi-
ronment. This definition is useful for the purpose of discussing both incremental evolution
(chapter 5) where a controller is evolved in a sequence of environments with the same ob-
jective, and transfer (chapter 6) where a controller evolved in a simulator may not be able
to accomplish the same objective in the real world due to inevitable differences between
the two environments.

One way to classify control tasks is by the complexity of their environments. Fig-
ure 2.2 lists several dimensions that are commonly used to describe environments. The
characteristics on the left are considered easy for controller development methods while
those on the right are found in most challenging control tasks in the real world. This dis-
sertation will focus primarily on tasks that exhibit “difficult” properties.

Almost all controllers in operation today are designed using methods derived from
classical control theory, most commonly linear feedback control (figure 2.3). For these
methods to work, a reference signal must be available that specifies the desired state of
the environment at each point in time. The controller is designed to track the reference

9

action

reference

+

−

error

Environment

Controller

Figure 2.3: Feedback Control. The controller outputs actions to try to minimize the error between
the state of the environment and an external reference signal that prescribes the desired trajectory of
the environment.

signal by minimizing the error between the signal and the actual state of the environment.
Feedback control can be very practical and effective provided that the environment is ap-
proximately linear and time-invariant (i.e. the dynamics do not change over time). Because
real world systems are rarely linear, modern control theory such as Adaptive control and
Robust control have focused on extending linear methods to environments that are non-
linear.

Although, non-linearity is a key issue in most control tasks, a more fundamental
problem exists when there is no reference signal. Instead, there is only a more high-level
specification of what the behavior should be. Problems that exhibit this characteristic are
known as reinforcement learning problems, and the most common method for solving them
is Reinforcement Learning discussed in next section.

2.2 Reinforcement Learning

Reinforcement learning refers to a class of algorithms for solving problems in which a se-
quence of decisions must be made to maximize a reward or reinforcement received from
the environment. At each decision point, the learning agent in state s ∈ S, selects an action
a ∈ A that transitions the environment to the next state s′ and imparts a reinforcement sig-

10

Policy

Value
Function

Agent

state action

reward

Environment

Figure 2.4: The value function approach. The agent is composed of a value-function and a
policy. The value function tells the agent how much reward can be expected from each state if the
best known policy is followed. The policy maps states to actions based on information from the
value function.

nal, r, to the agent. Starting with little or no knowledge of how to solve the task, the agent
explores the environment by trial-and-error gradually learning policy that leads to favorable
outcomes by associating reward with certain actions in each state it visits. This learning
process is difficult because, unlike in supervised learning tasks, the desired response in
each state is not known in advance. An action that seems good in the short run may prove
bad or even catastrophic down the road. Conversely, an action that is not good in terms of
immediate payoff may prove beneficial or even essential for larger payoffs in the future.

The best understood and widely used learning methods for solving control tasks
are based on Dynamic Programming (Howard 1960). These methods dominate this area
of research to such an extent that they have become nearly synonymous with the term
“reinforcement learning” (RL; Sutton and Barto 1998). Essential to RL methods is the
value function V (figure 2.4) which maps each problem state to its utility or value with
respect to the task being learned. This value is an estimate of the reward the agent can
expect to receive if it starts in a particular state and follows the currently best known policy.
As the agent explores the environment, it updates the value of each visited state according
to the reward it receives. Given a value function that accurately computes the utility of
every state, a controller can act optimally by selecting at each state the action that leads to
the subsequent state with the highest value. Therefore, the key to RL is finding the optimal

11

value function for a given task.

RL methods such as the popular Q-learning (Watkins 1989; Watkins and Dayan
1992), Sarsa (Rummery and Niranjan 1994), and TD(λ) (Sutton 1988) algorithms provide
incremental procedures for computing V that are attractive because they (1) do not require
a model of the environment, (2) can learn by direct interaction, (3) are naturally suited
to stochastic environments, and (4) are guaranteed to converge under certain conditions.
These methods are based on Temporal Difference learning (Sutton and Barto 1998) in
which the value of each state V (s) is updated using the value of the successive state V (s′):

V (s) := V (s) + α[r + γV (s′) − V (s)]. (2.4)

The estimate of the value of state s, V (s), is incremented by the reward r from transitioning
to state s′ plus the difference between the discounted value of the next state γV (s′) and
V (s), where α is the learning rate, γ is the discount factor and 0 ≤ α, γ ≤ 1. Rule 2.4
improves V (s) by moving it towards the “target” r + γV (s′), which is more likely to be
correct because it uses the real reward r.

In early research, these methods were studied in simple environments with few
states and actions. Subsequent work has focused on extending these methods to larger,
high-dimensional and/or continuous environments. When the number of states and actions
is relatively small, look-up tables can be used to represent V efficiently. But even with
an environment of modest size this approach quickly becomes impractical and a function
approximator is needed to map states to values. Typical choices range from local approxi-
mators such as the CMAC, case-based memories, and radial basis functions (Sutton 1996;
Santamaria et al. 1998), to neural networks (Lin 1993; Tesauro and Sejnowski 1987; Crites
and Barto 1996).

Despite substantial progress in recent years, value-function methods can be very
slow, especially when reinforcement is sparse or when the environment is not completely
observable. If the agent’s sensory system does not provide enough information to determine
the state (i.e. the global or underlying process state) then the decision process is non-
Markov, and the agent must utilize a history or short-term memory of observations. This is
important because a controller’s sensors usually have limited range, resolution, and fidelity,
causing perceptual aliasing where many observations that require different actions look the
same. The next section looks at an approach that is less susceptible to the problems outlined
here.

12

action

Neural Network

Algorithm
 Genetic

observation

Environment

fitness

Figure 2.5: Neuroevolution. Each chromosome is transformed into a neural network phenotype
and evaluated on the task. The agent receives input from the environment (observation) and propa-
gates it through its neural network to compute an output signal (action) that affects the environment.
At the end of the evaluation, the network is assigned a fitness according to its performance. The
networks that perform well on the task are mated to generate new networks.

2.3 Neuroevolution

Neuroevolution (NE) presents a fundamentally different approach to reinforcement learn-
ing tasks. Neuroevolution leverages the strengths of two biologically inspired areas of
artificial intelligence: Artificial Neural Networks and Genetic Algorithms. The basic idea
of NE is to search the space of neural network policies directly by using a genetic algorithm
(figure 2.5). In contrast to conventional ontogenetic learning involving a single agent, evo-
lutionary methods use a population of solutions. These solutions are not modified during
evaluation; instead, adaptation arises through the repeated recombination of the popula-
tion’s most fit individuals in a kind of collective or phylogenetic learning. The population
gradually improves as a whole until a sufficiently fit individual is found.

2.3.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are parallel distributed processors modeled on bio-
logical nervous systems (Haykin 1994). Neural Networks are composed of many simple
processing elements or neurons that are connected to form a layered structure. A network
(figure 2.6) receives information from the environment in the form of a vector x that ac-
tivates its input layer. This activation is then propagated to the next layer via weighted

13

...

...

... ...

...

Z
−1

Inputs

Outputs

Inputs

Outputs

(b)(a)

Hidden Layer

Figure 2.6: Neural network architectures. (a) A feedforward network. Information enters the
network through the input layer and activation is propagated forward to compute the output. There
are no feedback connections. (b) A recurrent network. The network has feedback connections that
provide it with information from previous activations.

connections or synapses. Each neuron in a non-input layer sums the weighted output from
all the units in the previous layer and then applies a non-linear squashing or threshold acti-
vation function. For a given input vector x, the output y of each unit j is computed by:

yj = ϕ

(∑
i

wijxi

)
(2.5)

Where wij is the weight from node i to node j, and ϕ is the sigmoid function 1
1+e−x .

ANNs can be feedforward with information flowing only from input to output or the they
can be recurrent and have feedback connections.

ANNs are a natural choice for representing controllers because of the following
properties:

• Universal function approximation. Neural Networks are capable of uniformly ap-
proximating any differentiable function (Cybenko 1989). This property is useful
because it allows neural networks to represent the high-dimensional, non-linear map-
pings that are required to solve complex control tasks.

• Generalization. Neural networks can generalize to novel input patterns. This means
that networks can be used as controllers in large state/action spaces without having
to expose them to all possible situations.

• Memory. Networks with feedback connections (figure 2.6b) can retain information
from previous input patterns and allow it to affect the current output. Such recurrent

14

crossover point

mutation

Child A

Child B

Parent B

Parent A

Figure 2.7: The crossover and mutation operators. Crossover produces two children from
two parents by cutting the parent chromosomes at a random crossover point and exchanging the
segments on either side of the of the cut. The two children are composed of genetic material ob-
tained from both parents. Mutation works by randomly changing one of the alleles in a child’s
chromosome.

networks can be used to solve non-Markov tasks where the correct output at time t

depends not only on the input at time t but also previous input patterns some unknown
distance in the past.

Neural networks cannot be designed by hand. Instead, they are trained with gradient-
descent algorithms such as backpropagation (Rumelhart et al. 1986) that use examples of
correct input/output behavior (i.e. training patterns). Any single-agent method that utilizes
neural networks to approximate a value-function or policy must contend with the stability-
plasticity problem (Carpenter and Grossberg 1987) where learning new patterns can cause
previously learned patterns to be forgotten. Also, gradient-descent algorithms are suscep-
tible local minima and notoriously slow and unreliable when used to train recurrent neural
networks (Bengio et al. 1994).

15

2.3.2 Genetic Algorithms

Genetic Algorithms (GAs; Holland 1975; Goldberg 1989) are a class of stochastic search
procedures founded on the principles of natural selection. Unlike conventional search
methods that iteratively improve a single solution, a GA maintains a set or “population”
of candidate solutions that sample the search space at multiple points. These solutions are
encoded as strings called chromosomes that represent the genotype of the solution. The
chromosomes are usually composed of a fixed number of genes that can take on some set
of values called alleles.

Following a process analogous to natural evolution, each genotype is transformed
into its phenotype and evaluated on a given problem to assess its fitness. Those genotypes
with high fitness are then mated using crossover and mutation at low levels to produce new
solutions or offspring. Figure 2.7 illustrates how crossover and mutation work. Crossover
produces two offspring from two parents by exchanging chromosomal substrings on either
side of a random crossover point—each offspring is a concatenation of contiguous gene
segments from both parents. When an offspring is mutated, one of its alleles is randomly
changed to a new value. By mating only the most fit individuals, the hope is that the
favorable traits of both parents will be transmitted to the offspring resulting in a higher
scoring individual, and eventually leading to a solution.

Because GAs sample many points in the search space simultaneously, they are less
susceptible to local minima than single solution methods, and are capable of rapidly locat-
ing high payoff regions of high dimensional search spaces. Figure 2.8, shows a hypothetical
fitness landscape to illustrate how a GA operates. The fitness of each individual in the pop-
ulation is represented by its position on the landscape. In a single solution method, if the
initial search point (the yellow circle) happens to fall in the neighborhood of a local max-
ima, the algorithm can become trapped because it has only local information with which
to make a next guess and improve the solution. Therefore, it will climb the gradient to-
wards the local maxima. In a GA, although some individuals (the red circles) may reside
near local maxima, it is less likely to get trapped because the population provides global
information about the landscape. There is a better chance that some individual will be near
the global maxima, and the genetic operators allow the GA to move the population in large
jumps to focus the search in the most fruitful regions of the landscape.

For these reasons, GAs are well suited for searching the space of neural networks.
Instead of training a network by performing gradient-descent on an error surface, the GA
samples the space of networks and recombines those that perform best on the task in ques-
tion.

16

fi
tn

es
s

search space

global maxima

local maxima

GA individual
single solution

Figure 2.8: Fitness landscape. The figure shows a hypothetical search space being searched by
both a single solution algorithm and a genetic algorithm. If the single solution algorithm’s initial
guess (yellow circle) is near a local maxima, it will climb the gradient and get stuck. In contrast,
the GA samples many points (red circles), and can therefore identify the region around the global
maxima more reliably.

2.3.3 Evolving Neural Networks

NE combines the generalization, function approximation, and temporal capabilities of arti-
ficial neural networks with an efficient parallel search method. The GA replaces unreliable
learning algorithms and allows adaptation in the absence of targets. By searching the space
of policies directly, NE eliminates the need for a value function and its costly computa-
tion. Neural network controllers map observations from the environment directly to actions
without explicitly assessing their utility.

For NE to work, the environment need not satisfy any particular constraints—it can
be continuous and partially observable. All that concerns a NE system is that there be an
effective way to evaluate the relative quality of candidate solutions. If the environment
contains sufficient regularity for a task to be solvable, and the phenotype representations
are sufficiently powerful, then NE can find a solution.

The recurrent neural network offers one such representation that is naturally suited
to continuous state/action spaces and tasks that require memory. By evolving these net-
works instead of training them, NE circumvents the many problems associated with recur-
rent network learning algorithms.

17

NE approaches differ from each other primarily by how they encode neural network
specifications into strings. I will therefore use this dimension to classify and discuss these
methods. In NE, a chromosome can encode any relevant network parameter including
synaptic weight values, number of hidden units, connectivity (topology), learning rate, etc.
The choice of encoding scheme can play a significant role in shaping the search space, the
behavior of the search algorithm, and how the network genotypes are transformed into their
phenotypes for evaluation.

There are two basic kinds of encoding schemes: direct and indirect. In direct encod-
ing, the parameters are represented explicitly on the chromosome as binary or real numbers
that are mapped directly to the phenotype. Many methods encode only the synaptic weight
values (Belew et al. 1991; Jefferson et al. 1991; Gomez and Miikkulainen 1997) while
others such as Symbolic, Adaptive Neuroevolution (SANE; Moriarty 1997) and Neuroevo-
lution of Augmenting Topologies (NEAT; Stanley and Miikkulainen 2002) evolve topology
as well.

Indirect encodings operate at a higher level of abstraction. Some simply provide
a coarse description such as delineating a neuron’s receptive field (Mandischer 1993) or
connective density (Harp et al. 1989), while others are more algorithmic providing growth
rules in the form of graph generating grammars (Kitano 1990; Voigt et al. 1993). These
schemes have the advantage that very large networks can be represented without requiring
large chromosomes.

ESP uses a direct encoding scheme that does not evolve topology. However, since
ESP evolves fully connected networks, virtually any topology of a given size can be rep-
resented by having some weights evolve to a value of zero. The experiments in chap-
ter 4, compare ESP (a direct fixed topology method) with NEAT, (a direct method that
evolves topology), and Cellular Encoding (CE; Gruau et al. 1996a,b, an indirect method
that evolves topology) on a difficult non-Markov task.

Whichever encoding scheme is used, neural network specifications are usually very
high-dimensional so that large populations are required to find good solutions before con-
vergence sets in. The next section reviews an evolutionary approach that potentially makes
the search more efficient by decomposing the search space into smaller interacting spaces.

2.4 Cooperative Coevolution

In natural ecosystems, organisms of one species compete and/or cooperate with many other
different species in their struggle for resources and survival. The fitness of each individual
changes over time because it is coupled to that of other individuals inhabiting the envi-

18

ronment. As species evolve they specialize and co-adapt their survival strategies to those
of other species. This phenomenon of coevolution has been used to encourage complex
behaviors in GAs.

Most coevolutionary problem solving systems have concentrated on competition
between species (Darwen 1996; Pollack et al. 1996; Paredis 1994; Miller and Cliff 1994;
Rosin 1997). These methods rely on establishing an “arms race,” with each species pro-
ducing stronger and stronger strategies for the others to defeat. This is a natural approach
in areas such as game-playing where an optimal opponent is not available.

A very different kind of coevolutionary model emphasizes cooperation. Coopera-
tive coevolution is motivated, in part, by the recognition that the complexity of difficult
problems can be reduced through modularization (e.g. the human brain; Grady 1993). In
cooperative coevolutionary algorithms the species represent solution subcomponents. Each
individual forms a part of a complete solution but need not represent anything meaningful
on its own. The subcomponents are evolved by measuring their contribution to complete
solutions and recombining those that are most beneficial to solving the task. Cooperative
coevolution can potentially improve the performance of artificial evolution by dividing the
task into many smaller problems.

Early work in this area was done by Holland and Reitman (1978) in Classifier Sys-
tems. A population of rules was evolved by assigning a fitness to each rule based on how
well it interacted with other rules. This approach has been used in learning classifiers
implemented by a neural network, in coevolution of cascade correlation networks, and in
coevolution of radial basis functions (Eriksson and Olsson 1997; Horn et al. 1994; Paredis
1995; Whitehead and Choate 1995). More recently, Potter and De Jong (1995) developed
a method called Cooperative Coevolutionary GA (CCGA) in which each of the species
is evolved independently in its own population. As in Classifier Systems, individuals in
CCGA are rewarded for making favorable contributions to complete solutions, but mem-
bers of different populations (species) are not allowed to mate. A particularly powerful idea
is to combine cooperative coevolution with neuroevolution so that the benefits of evolving
neural networks can be enhanced further through improved search efficiency. This is the
approach taken by the SANE algorithm, described next.

2.4.1 SANE

Conventional NE systems evolve genotypes that represent complete neural networks. SANE
(Moriarty 1997; Moriarty and Miikkulainen 1996a) is a cooperative coevolutionary system
that instead evolves neurons (i.e. partial solutions; figure 2.9). SANE evolves two dif-

19

NAS E

observation action

Feed−forward
Neural Network

Environment

fitness

Figure 2.9: Symbiotic, Adaptive Neuroevolution (color figure). The algorithm maintains two
distinct populations, one of network blueprints (left), and one of neurons (right). Networks are
formed by combining neurons according to the blueprints. Networks are evaluated in the task, and
the fitness is distributed among all the neurons that participated in the network. After all neurons
are evaluated this way, recombination is performed on both populations.

ferent populations simultaneously: a population of neurons and a population of network
blueprints that specify how the neurons are combined to form complete networks. Each
generation, networks are formed according to the blueprints, and evaluated on the task.

In SANE, neurons compete on the basis of how well, on average, the networks in
which they participate perform. A high average fitness means that the neuron contributes to
forming successful networks and, consequently, suggests that it cooperates well with other
neurons. Over time, neurons will evolve that result in good networks. The SANE approach
has proven faster and more efficient than other reinforcement learning methods such as
Adaptive Heuristic Critic, Q-Learning, and standard neuroevolution, in, for example, the
basic pole balancing task and in robot navigation and robot arm control tasks (Moriarty and
Miikkulainen 1996a,b).

SANE evolves good networks more quickly because the network sub-functions are
allowed to evolve independently. Since neurons are not tied to one another on a single
chromosome (i.e. as in conventional NE) a neuron that may be useful is not discarded if
it happens to be part of a network that performs poorly. Thus, more paths to a winning
solution are maintained. Likewise, bad neurons do not get “free rides” by being part of a
high scoring network. The system breaks the problem down to that of finding the solution
to smaller, interacting subproblems.

20

Evolving neurons instead of full networks also maintains diversity in the popula-
tion. If one type of neuron genotype begins to take over the population, networks will often
be formed that contain several copies of that genotype. Because difficult tasks usually re-
quire several different types of neurons, such networks cannot perform well; they incur low
fitness so that the dominant genotype is selected against, bringing diversity back into the
population. In the advanced stages of SANE evolution, instead of converging around a sin-
gle individual like a standard GA, the neuron population forms clusters of individuals that
perform specialized functions in the target behavior (Moriarty 1997). This kind of implicit
and automatic speciation is similar to more explicit methods such as fitness sharing that
reduce the fitness of individuals that occupy crowded regions of the search space (Mahfoud
1995).

A key problem with SANE is that because it does not discriminate between the
evolving specializations when it constructs networks and selects neurons for reproduction,
evaluations can be very noisy. This limits its ability to evolve recurrent networks. A neu-
ron’s behavior in a recurrent network depends critically upon the neurons to which it is
connected, and in SANE it cannot rely on being combined with similar neurons in any two
trials. A neuron that behaves one way in one trial may behave very differently in another,
and SANE cannot obtain accurate fitness information. Without the ability to evolve recur-
rent networks, SANE is restricted to reactive tasks where the agent can learn to select the
optimal action in each state based solely on its immediate sensory input. This is a serious
drawback since most interesting tasks require memory. The method presented in chapter 3,
ESP, extends cooperative neuroevolution to tasks that make use of short-term memory.

2.5 Shaping

There is a general consensus in the artificial learning and robotics communities that in order
to scale existing paradigms to significantly more complex tasks, some form of external bias
is needed to guide learning (Kaelbling et al. 1996; Perkins and Hayes 1996; Dorigo and
Colombetti 1998; Großmann 2001). Rather than trying to solve a difficult problem from
scratch with a single monolithic system, it is usually better to exploit any available knowl-
edge to decompose the problem into more accessible units. This may involve breaking the
problem down into subproblems, using a learning schedule, incorporating specific domain
knowledge, or some combination of the three. The general principal of structuring learning
to make tasks more feasible is often referred to as shaping.

A number of researchers have used shaping to make learning complex tasks tractable
(Colombetti and Dorigo 1992; Jacobs et al. 1991; Perkins and Hayes 1996; Singh 1992).

21

Typically, in these approaches the complex task is broken into simpler components or sub-
tasks that are each learned by separate systems (e.g. GAs or rule-bases) and then combined
to achieve the goal task. In incremental evolution, the technique presented in chapter 5, a
single system learns a succession of tasks. Such an adaptation process is similar to contin-
ual (or lifelong) learning (Elman 1991; Ring 1994; Thrun 1996), and motivated by staged
learning in real life where each stage of learning provides a bias or adaptive advantage for
learning the next, more advanced, stage. This approach is discussed in more detail and
tested in chapter 5, and used effectively to scale ESP in chapters 7 and 9.

2.6 Controller Transfer

Reinforcement learning requires a continuous interaction with the environment. In most
tasks, interaction is not feasible in the real world, and simulated environments must be
used instead. However, no matter how rigorously they are developed, simulators cannot
faithfully model all aspects of a target environment. Whenever the target environment is
abstracted in some way to simplify evaluation, spurious features are introduced into the
simulation. If a controller relies on these features to accomplish the task, it will fail to
transfer to the real world where the features are not available (Mataric and Cliff 1996).
Since some abstraction is necessary to make simulators tractable, such a “reality gap” can
prevent controllers from performing in the physical world as they do in simulation.

Studying factors that lead to successful transfer is difficult because testing poten-
tially unstable controllers can damage expensive equipment or put lives in danger. One
exception is Evolutionary Robotics (ER), where the hardware is relatively inexpensive and
the tasks have, up to now, not been safety critical in nature. Researchers in ER are well
aware that it is often just as hard to transfer a behavior as it is to evolve it in simulation, and
have devoted great effort to overcoming the transfer problem. Given the extensive body
of work in this field, the next subsection reviews the key issues and advances in transfer
methods in ER.

2.6.1 Transfer in Evolutionary Robotics

By far the most widely used platform in ER is the Khepera robot (Mondada et al. 1993).
Khepera is very popular because it is small, inexpensive, reliable, and easy to model due to
its simple cylindrical design. Typically, behaviors such as phototaxis or “homing” (Meeden
1998; Ficici et al. 1999; Jakobi et al. 1995; Lund and Hallam 1996; Floreano and Mondada
1996), avoidance of static obstacles (Jakobi et al. 1995; Miglino et al. 1995a; Chavas et al.

22

1998), exploring (Lund and Hallam 1996), or pushing a ball (Smith 1998) are first evolved
for a simulated Khepera controlled by a neural network that maps sensor readings to motor
voltage values. The software controller is then downloaded to the physical robot where
performance is measured by how well the simulated behavior is preserved in the real world.

Although these tasks (e.g. homing and exploring) are simple enough to be solved
with hand-coded behaviors, many studies have demonstrated that solutions evolved in ide-
alized simulations transfer poorly. The most direct and intuitive way to improve transfer
is to make the simulator more accurate. Instead of relying solely on analytical models,
researchers have incorporated real-world measurements to empirically validate the simu-
lation. Nolfi et al. (1994) and Miglino et al. (1995a) collected sensor and position data
from a real Khepera and used it to compute the sensor values and movements of the robot’s
simulated counterpart. This approach improved the performance of transferred controllers
dramatically by ensuring that the controller would experience states in simulation that ac-
tually occurred in the real world.

Unfortunately, as the complexity of tasks and the agents that perform them increases
enough, it will not be possible to achieve sufficiently accurate simulations, and a funda-
mentally different approach is needed. Instead of trying to eliminate inaccuracies from the
simulation, why not make the controllers less susceptible to them? For example, if noise
is added to the controller’s sensors and actuators during evaluation, the controller becomes
more tolerant of noise in the real world, and therefore less sensitive to discrepancies be-
tween the simulator and the target environment. The key is to find the right amount of
noise: if there is not enough noise, the controller will rely on unrealistically accurate sen-
sors and actuators. On the other hand, too much noise can amplify an irrelevant signal in
the simulator that the controller will then not be able to find in the real world (Mataric and
Cliff 1996). Correct noise levels are usually determined experimentally.

The most formal investigation of the factors that influence transfer was carried out
by Jakobi (1993; 1995; 1998). He proposed using minimal simulations that concentrate on
isolating a base set of features in the environment that are necessary for correct behavior.
These features need to be made noisy to obtain robust control. Other features that are not
relevant to the task are classified as implementation features which must be made unreliable
(random) in the simulator so that the agent can not use them to perform the task. This way
the robot will be very reliable with respect to the features that are critical to the task and
not be misled by those that are not. Minimal simulations provide a principled approach
that can greatly reduce the complexity of simulations and improve transfer. However, so
far they have only been used in relatively simple tasks. It is unclear whether this approach
will be possible in more complex tasks where the set of critical features (i.e. the base set)

23

is large or not easily identified (Watson et al. 1999).

2.6.2 Transfer in Unstable Control Tasks

While significant advances have been made in the transfer of robot controllers, it should
be noted that the robots and environments used in ER are relatively “transfer friendly.”
Most significantly, robots like the Khepera are stable: in the absence of a control signal
the robot will either stay in its current state or quickly converge to a nearby state due
to momentum. Consequently, a robot can often perform competently in the real world
as long as its behavior is preserved qualitatively after transfer. This is not the case with
a great many systems of interest such as rockets, aircraft, and chemical plants that are
inherently unstable. In such environments, the controller must constantly output a precise
control signal to maintain equilibrium and avoid failure. Therefore, controllers for unstable
systems may be less amenable to techniques that have worked for transfer in robots.

The only case of successful controller transfer in an unstable domain is, to my
knowledge, the work of Bagnell and Schneider (2001). They used a model-based pol-
icy search method to learn a hovering behavior for a small scale helicopter. While their
results are a very significant achievement, the hovering task was performed in an approx-
imately linear region of the state space where linear (PD) control could be used effec-
tively to stabilize the helicopter. Furthermore, the task that was learned is one that can
be solved by conventional engineering approaches (Eck et al. 2001) and supervised neural
networks (Buskey et al. 2002).

The transfer experiments in chapter 6 aim at providing a more general understanding
of the transfer process including challenging problems in unstable environments. Pole
balancing was chosen as the test domain for two reasons: (1) it embodies the essential
elements of unstable systems while being simple enough to study in depth, and (2) it has
been studied extensively, but in simulation only. This work represents the first attempt to
systematically study transfer outside of the mobile robot domain.

24

Chapter 3

Enforced Subpopulations

This chapter presents the core contribution of this dissertation, the Enforced SubPopula-
tions1 (ESP) algorithm. ESP, like SANE, is a neuron-level cooperative coevolution method.
That is, the individuals that are evolved are neurons instead of full networks, and a subset of
neurons are put together to form a complete network. However, in contrast to SANE, ESP
makes use of explicit subtasks; a separate subpopulation is allocated for each of the units
in the network, and a neuron can only be recombined with members of its own subpopu-
lation (figure 3.2). This way the neurons in each subpopulation can evolve independently,
and rapidly specialize into good network sub-functions. This specialization allows ESP to
search more efficiently than SANE, and also evolve recurrent networks.

Section 3.1 describes the ESP algorithm in detail, and section 3.2 discusses the
advantages of using subpopulations of neurons instead of a single population of neurons
(i.e. SANE).

3.1 The ESP Algorithm

ESP can be used to evolve any type of neural network that consists of a single hidden
layer, such as feed-forward, simple recurrent (Elman), fully recurrent, and second-order
networks. The networks are fully-connected, i.e. every unit in a layer is connected to
every unit in the next layer. The neuron chromosomes consist of a string of real numbers
that represent the synaptic weights. Figure 3.1 illustrates the correspondence between the
values in the genotype and the weights in the phenotype. Evolution in ESP proceeds as

1The ESP package is available at:
http://www.cs.utexas.edu/users/nn/pages/software/abstracts.html#esp-cpp

25

in network

... ...

...

...

c1 cI+O+HI+O+1ccI cI+2c2 cI+1 cI+O+2cI+O

cI+O+2

c1

c2

cI

I+2c
I+1c

cI+O+H

I+Oc
cI+O+1

Genotype

input connections output connections recurrent connections

Phenotype

other units

outputs
network

inputs
network

Figure 3.1: Neuron genotype encoding. The ESP genotypes encode the synaptic connection
weights, ci, of a single neuron as real numbers. The figure illustrates the mapping from genotype
(top) to phenotype (bottom). Each chromosome has I input connections, O output connections and
R connections from the other neurons in the network if the network is recurrent, where R is equal to
the number of subpopulations (network size), h. If the network is fully recurrent then the activation
of some of neurons serves as the network output and the output connections are not needed.

follows:

1. Initialization. The number of hidden units h is specified and h subpopulations of
n neuron chromosomes are created. Each chromosome encodes the input, output,
and possibly recurrent connection weights of a neuron with a random string of real
numbers.

2. Evaluation. A set of h neurons is selected at random, one neuron from each subpop-
ulation, to form the hidden layer of a network of the specified type. The network is
submitted to a trial in which it is evaluated on the task and awarded a fitness score.
The score is added to the cumulative fitness of each neuron that participated in the
network. This process is repeated until each neuron has participated in an average of

26

ESP

observation

Recurrent
Neural Network

action

Environment

fitness

Figure 3.2: The Enforced Subpopulations method (ESP; color figure). The population of neu-
rons is segregated into subpopulations shown here in different colors. Networks are formed by
randomly selecting one neuron from each subpopulation. As with SANE, a neuron accumulates
a fitness score by adding the fitness of each network in which it participated. This score is then
normalized and the best neurons within each subpopulation are mated to form new neurons.

e.g. 10 trials.

3. Check Stagnation. If the fitness of the best network found so far has not improved in
b generations burst mutation is performed. If the fitness has not improved after two
burst mutations the network size is adapted.

4. Recombination. The average fitness of each neuron is calculated by dividing its
cumulative fitness by the number of trials in which it participated. Neurons are then
ranked by average fitness within each subpopulation. Each neuron in the top quartile
is recombined with a higher-ranking neuron using 1-point crossover and mutation at
low levels. The offspring replace the lowest-ranking half of the subpopulation.

5. The Evaluation–Recombination cycle is repeated until a network that performs suf-
ficiently well in the task is found.

Steps 1, 2, 4, and 5 form the backbone of the algorithm. Step 3 incorporates two
features that are used in the event that ESP converges prematurely: burst mutation and the
adaptation of network size which are discussed in the next two sections. Figure 3.3 presents
basic the algorithm in pseudocode form. Figure 3.4 presents the subroutines used in step 3,
and the genetic operators.

27

h : number of subpopulations
n : number of neurons in each subpopulation
m : mutation rate, [0, 1]
b : number of generations before burst mutation is invoked

goal−fitness : the fitness value at which the task is considered solved
best−fitness : best fitness found so far

Si : subpopulation i, i = 1..h
N ∗ : the best network found so far

N (i) : the i-th neuron in network N
ηi,j : neuron j from Si, j = 1..n

ηi,j(k) : allele (weight) k = 1..l, of neuron ηi,j

———————————————————————————————————-

ESP(h, n,m, b)
1 while best−fitness < goal−fitness do
2 INITIALIZATION

3 create n random neurons for each subpopulation Si

4 EVALUATION

5 for trial ← 1 to n × 10
6 do for i ← 1 to h /* create random network */
7 do j ← RAND(n)
8 N (i) ← ηi,j

9 fitness ← EVALUATE(N) /* evaluate network */
10 for i ← 1 to h /* add fitness to each neuron */
11 do N (i) ← N (i) + fitness
12 if fitness > best−fitness /* save best fitness */
13 then best−fitness ← fitness
14 CHECK STAGNATION

15 if best−fitness has not improved in b generations
16 if this is the second consecutive time
16 then ADAPT-NETWORK-SIZE()
17 else BURST-MUTATE()
18 RECOMBINATION

19 for i ← 1 to h
20 sort neurons in Si by normalized fitness
21 do for j ← 1 to n/4 /* mate top quartile */
22 CROSSOVER(ηi,j , ηi,rand(j), ηi,j∗2, ηi,j∗2+1)
23 do for j ← n/2 to n /* mutate offspring */
24 MUTATE(m, ηi,j)

Figure 3.3: The ESP algorithm.

28

RNDCAUCHY() : Cauchy distributed noise generator
l : number of genes in the neuron chromosomes

threshold : the criteria for removing a subpopulation, [0, 1]
———————————————————————————————————-

CROSSOVER(η1, η2, η3, η4)
1 crosspoint ← RAND(l) /* select random crossover point */
2 for k ← 1 to l
3 if k < crosspoint /* exchange chromosomal segments */
4 then η3(k) ← η1(k)
5 else
6 η4(k) ← η2(k)

MUTATE(m, η)
1 if RAND(1.0) < m /* if neuron η is selected for mutation */
2 then η(RAND(l)) ← RNDCAUCHY() /* add noise to one of its weights */

BURST-MUTATE()
1 for i ← 1 to h /* for each subpopulation */
2 do for j ← 1 to n /* for each neuron in subpopulation Si */
3 do for k ← 1 to l /* add noise to each weight of best neuron */
4 do ηi,j(k) ← N ∗(i)(k)+RNDCAUCHY() /* assign it to ηi,j */

ADAPT-NETWORK-SIZE()
1 fitness ← EVALUATE(N ∗) /* get unlesioned fitness of best network */
2 for i ← 1 to h
3 do lesion N ∗(i) /* lesion each neuron in turn */
4 lesioned−fitness ← EVALUATE(N ∗) /* get its lesioned fitness */
5 if lesioned−fitness > fitness × threshold
6 then remove N ∗(i) /* decrement number of subpopulations */
7 delete subpopulation Si

8 h ← h − 1
9 if no neuron was removed
10 then h ← h + 1 /* increment number of subpopulations */
11 add a subpopulation Sh

Figure 3.4: ESP algorithm subroutines.

29

new neuronbest neuron

Figure 3.5: Burst mutation. When ESP stops making progress toward a solution, new sub-
populations are created by adding Cauchy-distributed noise to the neuron chromosomes of the best
network found so far. The large filled circles in the figure represent the neurons of the best network
for a hypothetical 2D space (l = 2). The smaller circles represent the neurons in each of the new
subpopulations after burst mutation is invoked. The new neurons are distributed in a region around
each of the best neurons.

3.1.1 Burst Mutation

The idea of burst mutation is to search for optimal modifications of the current best solu-
tion. When performance has stagnated for a predetermined number of generations, the best
network is saved and new subpopulations are created by adding noise to each of the neurons
in the best solution (figure 3.5). Each new subpopulation contains neurons that represent
differences from the best solution. Evolution then resumes, but now searching in a “neigh-
borhood” around the best previous solution. Burst mutation can be applied multiple times,
with successive invocations representing differences to the previous best solution.

Assuming the best solution already has some competence in the task, most of its
weights will not need to be changed radically. To ensure that most changes are small while
allowing for larger changes to some weights, ESP uses the Cauchy distribution to generate

30

the noise:

f(x) =
α

π(α2 + x2)
(3.1)

With this distribution 50% of the values will fall within the interval ±α and 99.9% within
the interval 318.3 ± α. This technique of “recharging” the subpopulations maintains di-
versity so that ESP can continue to make progress toward a solution even in prolonged
evolution.

Burst mutation is similar to the Delta-Coding technique of Whitley et al. (1991)
which was developed to improve the precision of genetic algorithms for numerical opti-
mization problems. Because the goal is to maintain diversity, the range of the noise is not
reduced on successive applications of burst mutation and Cauchy rather than uniformly
distributed noise is used.

3.1.2 Adapting the Network Size

ESP does not evolve network topology: as was described in section 2.3 fully connected
networks can effectively represent any topology of a given size by having some weights
evolve to very small values. However, ESP can adapt the size of the networks. When neu-
ral networks are trained using gradient-descent methods such as backpropagation, too many
or too few hidden units can seriously affect learning and generalization. Having too many
units can cause the network to memorize the training set, resulting in poor generalization.
Having too few will slow down learning or prevent it altogether. Similar observations can
be made when networks are evolved by ESP. With too few units (i.e. too few subpopula-
tions) the networks will not be powerful enough to solve the task. If the task requires fewer
units than have been specified, two things can happen: either each neuron will make only a
small contribution to the overall behavior or, more likely, some of the subpopulations will
evolve neurons that do nothing. The network will not necessarily overfit to the environ-
ment. However, too many units is still a problem because the evaluations will be slowed
down unnecessarily, and will be noisier than necessary because a neuron will be sampled
in a smaller percentage of all possible neuron combinations. Both of these problems result
in inefficient search.

For these reasons ESP uses the following mechanism to add and remove subpopu-
lations as needed: When evolution ceases to make progress (even after burst mutation), the
best network found so far is evaluated after removing each of its neurons in turn. If the
fitness of the network does not fall below a threshold when missing neuron i, then i is not
critical to the performance of the network and its corresponding subpopulation is removed.

31

Remove
subpop

Add
subpopESP

ESP
fitnessfitness

EnvironmentEnvironment

Figure 3.6: Adapting the network size.

If no neurons can be removed, add a new subpopulation of random neurons and evolve
networks with one more neuron (figure 3.6).

This way, ESP will enlarge networks when the task is too difficult for the current
architecture and prune units (subpopulations) that are found to be ineffective. Overall, with
growth and pruning, ESP is more robust in dealing with environmental changes and tasks
where the appropriate network size is difficult to determine.

3.2 Advantages of Segregating Neurons

Both ESP and SANE evolve neurons, but, as discussed in section 2.4.1, SANE cannot reli-
ably evolve recurrent networks. SANE does not make explicit use of the neuron specializa-
tions, and therefore it obtains noisy information about the utility of a particular neuron. In
contrast, ESP can evolve recurrent networks because the subpopulation architecture makes
the evaluations more consistent, in two ways: first, the subpopulations that gradually form
in SANE are already present by design in ESP. The species do not have to organize them-
selves out of a single large population, and their progressive specialization is not hindered
by recombination across specializations that usually fulfill relatively orthogonal roles in the
network.

Second, because the networks formed by ESP always consist of a representative
from each evolving specialization, a neuron is always evaluated on how well it performs
its role in the context of all the other players. In contrast, SANE forms networks that can
contain multiple members of some specializations and omit members of others. A neuron’s
recurrent connection weight ri will always be associated with neurons from subpopulation
Si. As the subpopulations specialize, neurons evolve to expect, with increasing certainty,
the kinds of neurons to which they will be connected. Therefore, the recurrent connections
to those neurons can be adapted reliably.

32

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

Generation 1

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

Generation 20

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

Generation 50

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

Generation 100

Figure 3.7: Evolution of specializations in ESP (color figure). The plots show a 2-D projection of
the neuron weight vectors after Principal Component Analysis (PCA) transformation. Each subpop-
ulation is shown in a different color. As evolution progresses, the subpopulations cluster into their
own region of the search space. Each subpopulation represents a different neuron specialization that
can be combined with others to form good networks.

Figure 3.7 illustrates the specialization process. The plots show the distribution of
the neurons in the search space throughout the course of a typical evolution. Each point
represents a neuron chromosome projected onto 2-D using Principal Component Analy-
sis. In the initial population (Generation 1) the neurons, regardless of subpopulation, are
distributed throughout the space uniformly. As evolution progresses, the neurons begin to
form clusters which eventually become clearly defined and represent the different special-
izations used to form good networks.

33

Chapter 4

Pole Balancing Comparisons

To evaluate how efficiently ESP can evolve effective controllers, this chapter compares ESP
to a broad range of learning algorithms on a sequence of increasingly difficult versions of
the pole balancing task. This scheme allows for methods to be compared at different levels
of task complexity, exposing the strengths and limitations of each method with respect to
specific challenges introduced by each succeeding task. Sections 4.1 and 4.2 describe the
domain and task setup in detail.

4.1 The Pole Balancing Problem

The basic pole balancing or inverted pendulum system consists of a pole hinged to a
wheeled cart on a finite stretch of track. The objective is to apply a force to the cart at reg-
ular intervals such that the pole is balanced indefinitely and the cart stays within the track
boundaries. This problem has long been a standard benchmark for artificial learning sys-
tems. For over 30 years researchers in fields ranging from control engineering to reinforce-
ment learning have tested their systems on this task (Schaffer and Cannon 1966; Michie
and Chambers 1968; Anderson 1989). There are two primary reasons for this longevity:
(1) Pole balancing has intuitive appeal. It is a continuous real-world task that is easy to
understand and visualize. It can be performed manually by humans and implemented on a
physical robot. (2) It embodies many essential aspects of a whole class of learning tasks
that involve temporal credit assignment. The controller is not given a strategy to learn,
but instead must discover its own from the reinforcement signal it receives every time it
fails to control the system. In short, it is an elegant artificial learning environment that is a
good surrogate for a more general class of unstable control problems such as bipedal robot
walking (Vukobratovic 1990), and satellite attitude control (Dracopoulos 1997).

34

Figure 4.1: The double pole balancing system (color figure). Both poles must be bal-
anced simultaneously by applying a continuous force to the cart. The system becomes more
difficult to control as the poles assume similar lengths and if the velocities are not provided
to the controller. The figure is a snapshot of a 3D real-time simulation. Demo available at
http://www.cs.utexas.edu/users/inaki/esp/two-pole-demo.

This long history notwithstanding, the relatively recent success of modern reinforce-
ment learning methods on control learning tasks has rendered the basic pole balancing
problem obsolete. It can now be solved so easily that it provides little or no insight about
a system’s ability. This is especially true for neuroevolution systems which often find so-
lutions in the initial random population (Moriarty and Miikkulainen 1996a; Gomez and
Miikkulainen 1997).

To make it challenging for modern methods, a variety of extensions to the basic
pole-balancing task have been suggested. Wieland (1991) presented several variations that
can be grouped into two categories: (1) modifications to the mechanical system itself, such
as adding a second pole either next to or on top of the other, and (2) restricting the amount
of state information that is given to the controller; for example, only providing the cart
position and the pole angle. The first category renders the task more difficult by introduc-
ing non-linear interactions between the poles. The second makes the task non-Markovian,
requiring the controller to employ short term memory to disambiguate underlying process
states. Together, these extensions represent a family of tasks that can effectively test algo-
rithms designed to solve difficult control problems.

The most challenging of the pole balancing versions is a double pole configuration
(figure 4.1), where two poles of unequal length must be balanced simultaneously. Even
with complete state information, this problem is very difficult, requiring precise control to
solve. When state information is incomplete, the task is even more difficult because the
controller must in addition infer the underlying state.

35

θ
2

output

input

(a) (b)

1
θ2 θ

2θθ1 1θ
long pole short pole long pole short polecart

xx
cart

x

Figure 4.2: Neural network control of the pole balancing system (color figure). At each time
step the network receives the current state of the cart-pole system (x, ẋ, θ1, θ̇1, θ2, θ̇2) through its
input layer. For the feed-forward networks (a) used in the Markov tasks (1a and 2a), the input layer
activation is propagated forward through the hidden layer of neurons to the output unit. For the
recurrent networks (b) used in the non-Markov tasks (1b and 2b), the neurons do not receive the
velocities (ẋ, θ̇1, θ̇2), instead they must use their feedback connections to determine which direction
the poles are moving. The feedback connections provide each neuron with the activation of the
other neurons from the previous time step. A force is applied to the cart according to the activation
of the output unit. For the single pole version the network only has inputs for the cart and long pole.

The sequence of comparisons presented below begins with a single pole version and
then moves on to progressively more challenging variations. The final task is a two-pole
version that involves perceptual aliasing due to incomplete state information. This task
allows controllers to be tested on perceptual aliasing not by isolating it in a discrete toy
environment, but by including it as an additional dimension of complexity in an already
difficult, non-linear, high-dimensional, and continuous control task. The next section de-
scribes the general setup that was used for all experiments in this chapter.

4.2 Task Setup

The pole balancing environment was implemented using a realistic physical model with
friction, and fourth-order Runge-Kutta integration with a step size of 0.01s (see Appendix
A for the equations of motion and parameters used). The state variables for the system are

36

the following:

x : position of the cart.
ẋ : velocity of the cart.
θi : angle of the i-th pole (i = 1, 2).

θ̇i : angular velocity of the i-th pole.

Figure 4.2 shows how the network controllers interact with the pole balancing en-
vironment. At each time-step (0.02 seconds of simulated time) the network receives the
state variable values scaled to [-1.0, 1.0]. This input activation is propagated through the
network to produce a signal from the output unit that represents the amount of force used
to push the the cart. The force is then applied and the system transitions to the next state
which becomes the new input to the controller. This cycle is repeated until a pole falls or
the cart goes off the end of the track. In keeping with the setup in prior work (e.g. Wieland
1991; Gruau et al. 1996a) the force is restricted to be no less than ±1/256 × 10 Newtons
so that the controllers cannot maintain the system in unstable equilibrium by outputting a
force of zero when the poles are vertical.

4.3 Pole Balancing Experiments

Many algorithms have been developed for solving reinforcement learning problems. How-
ever, to my knowledge there have been no comparisons that both span a cross-section of
current technology and address tasks of significant difficulty. The comparisons below are
intended to close this gap: they establish a ranking of various approaches with respect to
a challenging set of benchmark tasks. The tasks include the following four pole balancing
configurations of increasing difficulty:

1. One Pole

(a) Complete state information

(b) Incomplete state information

2. Two Poles

(a) Complete state information

(b) Incomplete state information

Task 1a is the classic one-pole configuration except that the control signal (i.e. ac-
tion space) is continuous rather than “bang-bang.” In 1b, the controller only has access to

37

2 of the 4 state variables: it does not receive the velocities (ẋ, θ̇). In 2a, the system now has
a second pole next to the first, making the state-space 6-dimensional. Task 2b, like 1b, is
non-Markov with the controller only seeing x, θ1, and θ2. Fitness was determined by the
number of time steps a network could keep both poles within a specified angle from vertical
and the cart between the ends of the track. A task was considered solved if a network could
do this for 100,000 time steps, which is equal to over 30 minutes in simulated time. All
simulations were run on a 600mHz Intel Pentium III.

4.3.1 Other Methods

ESP was compared to nine other learning methods in the pole balancing domain. The
first three are value-function methods for which I ran my own simulations. Q-MLP is my
implementation, and the two SARSA methods are implementations of Santamaria et al.
(1998), adapted to the pole balancing problem. The other five methods are policy search
methods. With the exception of SANE, CNE, and NEAT the results for these methods were
taken from the published work cited below. Data was not available for all methods on all
tasks: however, in all such cases the method is shown to be significantly weaker already in
a previous, easier task. The parameter settings for each method on each task are listed in
Appendix B.

Value Function Methods

The three value function methods each use a different kind of function approximator
to represent a Q-function that can generalize across the continuous space of state-action
pairs. Although these approximators can compute a value for any state-action pair, they
do not implement true continuous control since the policy is not explicitly stored. Instead,
continuous control is approximated by discretizing the action space at a resolution that is
adequate for the problem. In order to select the optimal action a for a given state s, a one-
step search in the action space is performed. The control agent selects actions according to
an ε-greedy policy: with probability 1 − ε, 0 ≤ ε < 1, the action with the highest value is
selected, and with probability ε, the action is random. This policy allows some exploration
so that information can be gathered for all actions. In all simulations the controller was
tested every 20 trials with ε=0 and learning turned off to determine whether a solution had
been found.

Q-learning with MLP (Q-MLP): This method is the basic Q-learning algorithm (Watkins
and Dayan 1992) that uses a Multi-Layer Perceptron (i.e. a feed-forward artificial
neural network) to map state–action pairs to values Q(s, a). The input layer of the

38

network has one unit per state variable and one unit per action variable. The output
layer consists of a single unit indicating the Q-value. Values are learned through gra-
dient descent on the prediction error using the backpropagation algorithm. This kind
of approach has been studied widely with success in tasks such as pole-balancing (Lin
and Mitchell 1992), pursuit-evasion games (Lin 1992), and backgammon (Tesauro
1992).

Sarsa(λ) with Case-Based function approximator (SARSA-CABA; Santamaria et al. 1998):
This method consists of the Sarsa on-policy Temporal Difference control algorithm
with eligibility traces that uses a case-based memory to approximate the Q-function.
The memory explicitly records state-action pairs (i.e. cases) that have been experi-
enced by the controller. The value of a new state-action pair not in the memory is
calculated by combining the values of the k-nearest neighbors. A new case is added
to the memory whenever the current query point is further than a specified density
threshold, td away from all cases already in the memory. The case-based memory
provides a locally-linear model of the Q-function that concentrates its resources on
the regions of the state space that are most relevant to the task and expands its cover-
age dynamically according to td.

Sarsa(λ) with CMAC function approximator (SARSA-CMAC; Santamaria et al. 1998):
This is the same as SARSA-CABA except that it uses a Cerebellar Model Articula-
tion Controller (CMAC; Albus 1975; Sutton 1996) instead of a case-based memory
to represent the Q-function. The CMAC partitions the state-action space with a set of
overlapping tilings. Each tiling divides the space into a set of discrete features which
maintain a value. When a query is made for a particular state-action pair, its Q-value
is returned as the sum of the value in each tiling corresponding to the feature con-
taining the query point. SARSA-CABA and SARSA-CMAC have both been applied
to the pendulum swing-up task and the double-integrator task.

Policy Search Methods

Policy search methods search the space of action policies directly without maintain-
ing a value function. In this study, all except VAPS are evolution based approaches that
maintain a population of candidate solutions and use genetic operators to transform this set
of search points into a new, possibly better, set. VAPS is a single solution (agent) method,
and, therefore, shares much in common with the value-function methods.

39

Value and Policy Search (VAPS; Meuleau et al. 1999) extends the work of Baird and
Moore (1999) to policies that can make use of memory. The algorithm uses stochastic
gradient descent to search the space of finite policy graph parameters. A policy graph
is a state automaton that consists of nodes labeled with actions that are connected by
arcs labeled with observations. When the system is in a particular node the action
associated with that node is taken. This causes the underlying Markov environment
to transition producing an observation that determines which arc is followed in the
policy graph to the next action node.

Symbiotic, Adaptive Neuro-Evolution (SANE; Moriarty 1997) described in section 2.4.1.

Conventional Neuroevolution (CNE) is my implementation of single-population Neu-
roevolution similar to the algorithm used in Wieland (1991). In this approach, each
chromosome in the population represents a complete neural network. CNE differs
from Wieland’s algorithm in that (1) the network weights are encoded with real in-
stead of binary numbers, (2) it uses rank selection, and (3) it uses burst mutation.
CNE is like ESP except that it evolves at the network level instead of the neuron
level, and therefore provides a way to isolate the performance advantage of coopera-
tive coevolution (ESP) over a single population approach (CNE).

Evolutionary Programming (EP; Saravanan and Fogel 1995) is a general mutation-based
evolutionary method that can be used to search the space of neural networks. Individ-
uals are represented by two n dimensional vectors (where n is the number of weights
in the network): 	x contains the synaptic weight values for the network, and 	δ is a
vector of standard deviation values of 	x. A network is constructed using the weights
in 	x, and offspring are produced by applying Gaussian noise to each element 	x(i)

with standard deviation 	δ(i), i ∈ {1..n}.

Cellular Encoding (CE; Gruau et al. 1996a,b) uses Genetic Programming (GP; Koza
1991) to evolve graph-rewriting programs. The programs control how neural net-
works are constructed out of “cell.” A cell represents a neural network processing
unit (neuron) with its input and output connections and a set of registers that contain
synaptic weight values. A network is built through a sequence of operations that
either copy cells or modify the contents of their registers. CE uses the standard GP
crossover and mutation to recombine the programs allowing evolution to automati-
cally determine an appropriate architecture for the task and relieve the investigator
from this often trial-and-error undertaking.

40

NeuroEvolution of Augmenting Topologies (NEAT; Stanley and Miikkulainen 2002) is
another NE method that evolves topology as well as synaptic weights, but unlike CE
it uses a direct encoding. NEAT starts with a population of minimal networks (i.e.
no hidden units) that can increase in complexity by adding either new connections or
units through mutation. Every time a new gene appears, a global innovation number
is incremented and assigned to that gene. Innovation numbers allow NEAT to keep
track of the historical origin of every gene in the population so that (1) crossover can
be performed between networks with different topologies, and (2) the networks can
be grouped into “species” based on topological similarity.

Whenever two networks crossover, the genes in both chromosomes with the same
innovation numbers are lined up. Those genes that do not match are either disjoint
or excess, depending on whether they occur within or outside the range of the other
parent’s innovation numbers, and are inherited from the more fit parent.

The number of disjoint and excess genes is used to measure the distance between
genomes. Using this distance, the population is divided into species so that indi-
viduals compete primarily within their own species instead of with the population
at large. This way, topological innovations are protected and have time to optimize
their structure before they have to compete with other species in the population.

4.3.2 Balancing One Pole

This task is the starting point for the comparisons. Balancing one pole is a relatively easy
problem that gives us a base performance measurement before moving on to the much
harder two-pole task. It has also been solved with many other methods and therefore serves
to put the results in perspective with prior literature.

Complete State Information
Table 4.1 shows the results for the single pole balancing task where the controller

receives complete state information. Although this is the easiest task in the suite, it is more
difficult than the standard bang-bang control version commonly found in the literature.
Here the controller must output a control signal within a continuous range.

None of the methods has a clear advantage if we look at the number of evalua-
tions alone. However, in terms of CPU time the evolutionary methods show remarkable
improvement over the value-function methods. The computational complexity associated
with evaluating and updating values can make value-function methods slow, especially in
continuous action spaces. With continuous actions the function approximator must be eval-

41

Method Evaluations CPU time (sec)
Q-MLP 2,056 53
SARSA-CMAC 540 487
SARSA-CABA 965 1,713
CNE 352 5
SANE 302 5
NEAT 743 7
ESP 289 4

Table 4.1: One pole with complete state information. Comparison of various learning methods
on the basic pole balancing problem with continuous control. Results for all methods are averages
of 50 runs.

uated O(|A|) times per state transition to determine the best action-value estimate (where A

is a finite set of actions). Depending on the kind of function approximator such evaluations
can prove costly. In contrast, evolutionary methods do not update any agent parameters
during interaction with the environment and only need to evaluate a function approximator
once per state transition since the policy is represented explicitly.

The notable disparity in CPU time between Q-MLP and the SARSA methods can
be attributed the superior efficiency with which the MLP is updated. The MLP provides
a compact representation that can be evaluated quickly, while the CMAC and case-based
memory are coarse-codings whose memory requirements and evaluation cost grow expo-
nentially with the dimensionality of the state space.

This task poses very little difficulty for the NE methods. However, NEAT required
more than twice as many evaluations as CNE, SANE, and ESP because it explores different
topologies that initially behave poorly and require time to develop. For this task the speci-
ation process is an overkill—the task can be solved more efficiently by devoting resources
to searching for weights only. The observed performance difference between CNE, SANE
and ESP is not statistically significant.

Incomplete State Information

This task is identical to the first task except the controller only senses the cart po-
sition x and pole angle θ. Therefore, the underlying states {x, ẋ, θ, θ̇} are hidden and
the networks need to be recurrent so that the velocities can be computed internally using
feedback connections. This makes the task significantly harder since it is more difficult
to control the system when the concomitant problem of velocity calculation must also be
solved.

42

Method Evaluations CPU time %Success
VAPS (500,000) (5days) (0)
Q-MLP 11,331 340 100
SARSA-CMAC 13,562 2,034 59
SARSA-CABA 15,617 6,754 70
CNE 724 15 100
NEAT 1523 15 100
ESP 589 11 100

Table 4.2: One pole with incomplete state information. The table shows the number of evalua-
tions, CPU time, and success rate of the various methods. Results are the average of 50 simulations,
and all differences are statistically significant. The results for VAPS are in parenthesis since only a
single unsuccessful run according to my criteria was reported by Meuleau et al. (1999).

To allow Q-MLP and the SARSA methods to solve this task, their inputs are ex-
tended to include the immediately previous cart position, pole angle, and action (xt−1, θt−1, at−1)
in addition to xt, θt, and at. This delay window of depth 1 is sufficient to disambiguate pro-
cess states (Lin and Mitchell 1992). For VAPS, the state-space was partitioned into unequal
intervals, 8 for x and 6 for θ, with the smaller intervals being near the center of the value
ranges (Meuleau et al. 1999).

Table 4.2 compares the various methods in this task. The table shows the number
of evaluations and average CPU time for the successful runs. The rightmost column is
the percentage of simulations that resulted in the pole being balanced for 106 time steps
(%Success).

The results for VAPS are in parenthesis in the table because only a single run was
reported by Meuleau et al. (1999). It is clear, however, that VAPS is the slowest method in
this comparison, only being able to balance the pole for around 1 minute of simulated time
after several days of computation (Meuleau et al. 1999). The evaluations and CPU time
for the SARSA methods are the average of the successful runs only. Of the value-function
methods Q-MLP fared the best, reliably solving the task and doing so much more rapidly
than SARSA.

ESP and CNE were two orders of magnitude faster than VAPS and SARSA, one
order of magnitude faster than Q-MLP, and approximately twice as fast as NEAT. The
performance of the three NE methods degrades only slightly compared to the previous task.
ESP was able to balance the pole for over 30 minutes of simulated time usually within 10
seconds of learning CPU time, and do so reliably.

43

Method Evaluations CPU time (sec)
Q-MLP 10,582 153
CNE 22,100 73
EP 307,200 —
SANE 12,600 37
NEAT 3,600 31
ESP 3,800 22

Table 4.3: Two poles with complete state information. The table shows the number of pole
balancing attempts (evaluations) and CPU time required by each method to solve the task. Evo-
lutionary Programming data is taken from Saravanan and Fogel (1995). Q-MLP, CNE, SANE,
NEAT, and ESP data are the average of 50 simulations, and all differences are statistically signifi-
cant (p < 0.001) except the number of evaluations for NEAT and ESP.

4.3.3 Balancing Two Poles

The first two tasks show that the single pole environment poses no challenge for modern
reinforcement learning methods. The double pole problem is a better test environment
for these methods, representing a significant jump in difficulty. Here the controller must
balance two poles of different lengths (1m and 0.1m) simultaneously. The second pole
adds two more dimensions to the state-space (θ2, θ̇2) and non-linear interactions between
the poles.

Complete State Information
For this task, ESP was compared with Q-MLP, CNE, SANE, NEAT, and the pub-

lished results of EP. Despite extensive experimentation with many different parameter set-
tings, the SARSA methods were unable to solve this task within 12 hours of computation.

Table 4.3 shows the results for the two-pole configuration with complete state infor-
mation.

Q-MLP compares very well to the NE methods with respect to evaluations, in fact,
better than on task 1b, but again lags behind ESP and SANE by nearly an order of magni-
tude in CPU time. ESP and NEAT are statistically even in terms of evaluations, requiring
roughly three times fewer evaluations than SANE. In terms of CPU time, ESP has a slight
but statistically significant advantage over NEAT.

Incomplete State Information
Although the previous task is difficult, the controller has the benefit of complete

state information. In this task, as in task 1b, the controller does not have access to the

44

Method Evaluations
Standard fitness Damping fitness

CE — (840,000)
CNE 76,906 87,623
NEAT 20,918 24,543
ESP 20,456 26,342

Table 4.4: Two poles with incomplete state information. The table shows the number of
evaluations for CNE, NEAT, and ESP using the standard fitness function (middle column), and
using the damping fitness function, equations 4.1 and 4.2 (right column). Results are the average
of 50 simulations for all methods except CE which is from a single run. All results are statistically
significant except for the difference between ESP and NEAT using the standard fitness function.

velocities, i.e. it does not know how fast or in which direction the poles are moving.
Gruau et al. (1996a) were the first to tackle the two-pole problem without velocity

information. Although they report the performance for only one simulation, their results are
included to put the performance of the other methods in perspective. SANE is not suited
to non-Markov problems and none of the value-function methods that were tested made
noticeable progress on the task after approximately 12 hours of computation. Therefore, in
this task, only ESP, CNE, NEAT, and the Cellular Encoding (CE) method are compared.

To accomodate a comparison with CE, controllers were evolved using both the stan-
dard fitness function used in the previous tasks and also the “damping” fitness function used
by Gruau et al. (1996a). The damping fitness is the weighted sum of two separate fitness
measurements (0.1f1 + 0.9f2) taken over a simulation of 1000 time steps:

f1 = t/1000, (4.1)

f2 =

⎧⎪⎪⎨⎪⎪⎩
0 if t < 100(

K∑t
i=t−100(|xi|+|ẋi|+|θi

1|+|θ̇i
1|)

)
otherwise,

(4.2)

where t is the number of time steps the pole was balanced, K is a constant (set to 0.75),
and the denominator in equation 4.2 is the sum of the absolute values of the cart and long
pole state variables, summed over the last 100 time steps of the run. This complex fitness
is intended to force the network to compute the pole velocities by favoring controllers
that can keep the poles near the equilibrium point and minimize the amount of oscillation.
Gruau et al. (1996a) devised this fitness because the standard fitness measure could produce
networks that would balance the poles by merely swinging them back and forth (i.e. without
calculating the velocities).

45

Table 4.4 compares the four neuroevolution methods for both fitness functions. To
determine when the task was solved for the damping fitness function, the best controller
from each generation was tested using the standard fitness to see if it could balance the
poles for 100,000 time steps. The results for CE are in parenthesis in the table because
only a single run was reported by Gruau et al. (1996a).

Using the damping fitness, ESP, CNE, and NEAT required an order of magnitude
fewer evaluations than CE. ESP and NEAT were three times faster than CNE using either
fitness function, with CNE failing to solve the task about 40% of the time.

The performance of ESP versus NEAT was again very similar. Both methods solved
the problem quickly and reliably. This is an interesting result because the two methods take
such different approaches to evolving neural networks. NEAT is based on searching for an
optimal topology, whereas ESP optimizes a single, general, powerful topology (i.e. fully
recurrent networks). At least in the difficult versions of the pole balancing task, the two
approaches are equally strong.

One significant practical difference between ESP and NEAT is the number of user
parameters that must be set. In ESP, there are five, whereas NEAT requires 23 (see Ap-
pendix B). Such simplicity may make ESP a more general method, allowing it to be adapted
more easily to other tasks. On the other hand, it is possible that topology optimization is
crucial in some domains. The relative advantages of these two approaches constitute a most
interesting direction of future study.

4.3.4 Summary of Comparisons

The results of the comparisons show that neuroevolution is more efficient than the value
function methods in this set of tasks. The best value function method in task 1a required an
order of magnitude more CPU time than NE, and the transition from 1a to 1b represented a
significant challenge, causing some of them to fail and others to take 30 times longer than
NE. Only Q-MLP was able to solve task 2a and none of the value function methods could
solve task 2b. In contrast, all of the evolutionary methods scaled up to the most difficult
tasks, with NEAT and ESP increasing their lead the more difficult the task became. While
these methods are roughly equivalent on the hardest tasks, ESP provides a simpler approach
with only a few user parameters.

While it is important to show that ESP can efficiently evolve controllers that work in
simulation, the purpose of doing so is to eventually put them to use in the real world. The
next two chapters will show that to do so (1) an incremental evolution approach is needed to
scale the evolutionary search to tasks that are too hard to solve directly, and (2) controllers

46

must be made robust enough to successfully make the transition from simulation to the real
world.

47

Chapter 5

Incremental Evolution

The experiments in chapter 4 demonstrated how ESP can be used to solve difficult control
problems efficiently. However, there will always be tasks that are too challenging for even
the most efficient NE system. In such cases, it may be possible to still make progress by
shifting the focus away from algorithm design to the task itself. If the task can be trans-
formed in a way that preserves its essential features while making the desired behavior
easier to evolve, then solving this transformed task can provide a springboard for solv-
ing the original task. This is the basic idea of the incremental evolution described in this
chapter.

Section 1.1 develops the basic concept of incremental evolution and explains how
the process guides evolution to solve otherwise intractable tasks. Section 1.2 presents ex-
periments that compare incremental evolution to conventional, direct evolution using the
most difficult task in chapter 4 (double pole balancing without velocity information). The
results demonstrate how tasks that cannot be solved directly may be solved efficiently by
decomposing the problem into a sequence of increasingly difficult tasks.

5.1 The Limits of Direct Evolution

Evolution is a process that relies on diversity to make progress—without sufficient variation
in the fitness of individuals, evolution cannot clearly identify promising regions of the
search space. However, variation alone is not enough: in order to solve a given task,
the most fit individuals need to be situated in a region of the search space that is near a
solution, and there must be a path from those individuals to a solution (i.e. a sequence
of genetic operations). If the percentage of the search space that constitutes a solution
is very small, and the fitness landscape very rugged, then the probability of producing

48

Fi
tn

es
s

solutions

Search space

individuals

Figure 5.1: A difficult fitness landscape. The curve represents the fitness value of each point
in a hypothetical 1-dimensional search space. The red circles are the individual members of the
population. Because the solutions represent only a small part of the search space and the fitness
landscape is rugged, the initial population may not sample the fitness near this region. As a result
the population converges prematurely to a local maxima.

such individuals in the initial random population will be low, and evolution will not make
progress. All individuals in the initial population perform poorly and the population gets
trapped in suboptimal regions of the fitness landscape during the early stages of evolution
(figure 5.1). Enlarging the population will make it more likely that fruitful regions of the
search space are sampled, but given the very high dimensionality of neural networks (i.e.
hundreds or even thousands of synaptic weights) a prohibitively large population may be
required in order to make progress.

One way to scale neuroevolution to tasks that are too difficult to evolve directly is
to begin by viewing the task we want to solve or goal task as a member of a family of
tasks. Each member of the family is parameterized by the free parameters in the environ-
ment, i.e. the variables that are not under the controller’s direct control (Mataric and Cliff
1996). For instance, in a robot navigation task the free parameters might consist of the size
and speed of moving obstacles, the maximum velocity of the robot, the amount of sensor
noise, etc. The space of all possible parameter settings is called the configuration space
of the problem (Schultz 1991). Each point in the space represents a specific case (config-
uration) of the conditions in which a controller can be evaluated. All configurations have
the same objective, but some configurations are more difficult than others to solve using
an evolutionary algorithm, i.e. some will require larger populations and more evaluations
than others (Figure 5.2). Returning to the robot navigation example: large, fast moving

49

obstacles are harder to navigate through than small, slower ones.

ob
st

ac
le

 s
iz

e

obstacle speed

diffi
culty

goal task

Figure 5.2: Configuration space. In this 2-D

configuration space for a hypothetical robot navigation

task, the difficulty increases with the free parameters,

obstacle size and speed. The goal task is in the most dif-

ficult region where obstacles are large and move quickly.

The normal, direct approach to evolv-
ing controllers is to evaluate the popula-
tion using the configuration that corre-
sponds to the conditions expected in the
real world. However, if this goal task
proves too difficult to solve directly, con-
figurations that may not be useful or even
possible in the real world can be used
during evolution as evaluation tasks to
make the goal task easier to solve.

Instead of evolving a solution to
the goal task directly, evolution starts in
a part of the configuration space that can
be solved more easily. Once this first
evaluation task, t1, is solved, it is up-
dated to a more difficult task, t2, that
is closer to the goal task in the config-
uration space. Therefore, evolution pro-
ceeds incrementally by solving a sequence
of evaluation tasks {t1, t2, t3, . . . , tn} that traverse the configuration space until the goal
task, tn, is solved.

For example, in figure 5.2, the goal task is in the most difficult part of the configura-
tion space. If this task is too difficult to solve directly, then evolution can be started some-
where in the “easy,” red region and then move through the increasingly difficult blue and
green regions until the goal is reached. Whenever incremental evolution is used throughout
this dissertation, the evaluation tasks are referred to by the notation ep1,...,pn , where each pi

is one of n free parameters of interest.
Each evaluation task provides a bias for solving the next task by situating the pop-

ulation on the gradient to the next solution. Figure 5.3 is a conceptual visualization of this
process. The goal task, tn, is too hard to solve directly because the solution set occupies
a small part of the search space and fitness drops steeply in the neighborhood around the
solution set. A very different situation exists in t1 (i.e. the initial task) where the solution
set is large and there is a gentle gradient in the fitness landscape leading to the solution set.
Evolution can more easily find this region because even if no individual is in the solution
set, individuals near the set will have higher than average fitness and drive the population

50

towards the solution region.

 t

t

t

t

sets
solution

search space

n

2

1

3

...

Figure 5.3: Incremental fitness land-
scapes. The figure illustrates, for a 1-

dimensional search space, how incremental evolu-

tion works by gradually reshaping the fitness land-

scape to guide the population toward a solution

to the goal task. The initial task, t1, provides an

easy target for evolution, which positions the pop-

ulation in the correct region to approach t2. Suc-

cessive tasks do the same until the goal task tn is

reached.

As tasks get more difficult, the solution set
becomes smaller, but because successive tasks
are related, each task positions the popula-
tion in a good region of the space to solve
the next task. For instance, individuals that
are situated on the gradient or in the solu-
tion set of t1 will have a good chance of also
being on the gradient leading to the solution
set of t2. Eventually, if the tasks are gener-
ated properly the goal task can be achieved.
However, if evolution is unable to make the
transition from ti to ti+1, then ti+1 is too
far away in the configuration space for the
amount of diversity in the population. In or-
der to continue making progress toward the
goal task in this event, either additional di-
versity must be introduced or ti+1 must be
brought closer to ti. Both of these mecha-
nisms are used in the incremental evolution
experiments below.

Note that in general the goal task will
not be a single point in the configuration space
but rather a set of configurations. This is
because the values of the free parameters in
the target environment are often not known
exactly or vary over time. Therefore, con-
trollers need to be evaluated in multiple tri-
als with different configurations to reduce
evaluation noise, and to ensure that the range
of conditions likely to occur in the target environment are covered. To keep the focus of this
chapter on the incremental evolutionary process, the experiments below use one configu-
ration (trial) per network evaluation. The problem of evolving robust controllers to ensure
successful transfer is left for chapter 6.

The next section demonstrates the power of incremental evolution by comparing it
to the direct approach in the pole balancing domain.

51

5.2 Experiments

An interesting aspect of the double pole system is that it becomes more difficult to control
as the poles assume similar lengths (Higdon 1963). When the short pole is more than half
the length of the long pole, the system is extremely delicate and requires a level of precision
that tests the limits of direct evolution. By keeping the length of the long pole constant, and
making the length of the short pole, l, a free parameter, the system provides a 1-dimensional
configuration space in which to study incremental evolution. Starting with l at a relative
easy value, the length of the shorter pole can be increased gradually until the desired goal
task is reached. The experiments in this section compare the performance of direct versus
incremental evolution in solving progressively harder versions of the non-Markov double
pole balancing task (i.e. task 2b in Chapter 4).

5.2.1 Experimental Setup

For the direct evolution experiments, the length of the short pole, l, was fixed throughout
the course of evolution. Eight sets of 50 simulations were run, each with a different value
of l, from 0.15 meters up to 0.5 meters in 0.05 meter increments. Each set will be referred
to by its corresponding evaluation task, el: e0.15, e0.2, e0.25, . . . , e0.5. All other parameters
settings for the pole balancing system were identical to those used in task 2b.

...
if current task el is solved

then l ← l+P

else if ESP is stagnant
then if P = Pmin

then terminate
else P ← P/2

l ← l−P

BURST-MUTATE()
...

Figure 5.4: Task scheduling rule for incre-
mental pole balancing.

For the incremental experiments,
50 simulations were run using the fol-
lowing rule to schedule the sequence of
tasks (figure 5.4): Evolution begins with
e0.1 as the initial evaluation task t1. If this
task is solved, the short pole is length-
ened by a predefined increment (P) to
generate the next evaluation task e0.1+P

or t2. If t2 is solved the short pole is
lengthened again yielding e0.1+2P , and so
on.

However, if along the way ESP
is unable make the transition from some
task ti to ti+1 after two burst mutations,
then P is halved and subtracted from the
length of the short pole. New subpopula-

52

tions are created by burst mutating around the solution to ti and evolution continues with
the new value for P . Tasks can be repeatedly simplified, with P decreasing monotonically,
until either a transition occurs or a lower bound Pmin is reached. If P ≤ Pmin, and ESP
cannot transition to the next task after two burst mutations or before the total number of
generations reaches 1000, then the simulation terminates.

The task schedule for incremental evolution can be illustrated best with an example.
Normally with this method the task differences are quite large at first. As the networks
move on to harder tasks, P tends to shrink, and more task transitions are required for a
given increase in the length of the short pole. For the initial value for P of 0.02 used in
these experiments, a typical evolution schedule might look like:

P=0.02︷ ︸︸ ︷
e0.1 → e0.12 → · · · → e0.30 → (e0.32)

↘
P=0.01︷ ︸︸ ︷

e0.31 → e0.32 → · · · → e0.35 → (e0.36)

↘
P=0.005︷ ︸︸ ︷

e0.355 → e0.36 → · · ·

where the parenthesis denote a task that could not be solved within two burst mutations,
and a diagonal arrow indicates that evolution has backtracked to an easier task.

5.2.2 Results

Figure 5.5 compares the performance of direct and incremental evolution. In plot (a), each
data point in the direct evolution curve is the average number of evaluations each set of
experiments required to solve its corresponding task, el. The incremental evolution curve
is the average evaluations required to solve each el starting with e0.1 and transitioning to
harder tasks according to the task scheduling rule (figure 5.4). Plot (b) shows the probability
of solving each task for the two approaches. The two curves in plot (a) stop at the value of
l that has less than a 0.2 probability in plot (b).

Direct evolution was only able to solve e0.4 20% of the time (i.e. with probability
0.2 in plot (b)), e0.45 once out of 50 runs, and could not solve e0.5. When the task is this
hard the population converges prematurely in a low payoff region of the search space. No
individual does well enough to guide the search, and ESP selects genotypes that are slightly
better than others in terms of the fitness scalar but are not necessarily any closer to the goal.

53

E
va

lu
at

io
ns

Incremental

Direct

Short pole length

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
ta

sk

Short pole length

Direct

Incremental

l l

0

20000

40000

60000

80000

100000

120000

140000

160000

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) (b)

Figure 5.5: Results for incremental vs. direct evolution. Plot (a) shows the average number of
evaluations required to solve each task for both the direct and incremental approaches. Each data
point is the average of those simulations in each set of 50 that were able to solve the task within
1000 generations. Plot (b) shows the probability of solving each task el within 1000 generations.
Incremental evolution can solve much harder tasks in significantly fewer evaluations.

In contrast, incremental evolution was always able to solve e0.44, and solved e0.5

with a probability of 0.96. Moreover, the approach was able to solve more difficult tasks
(up to e0.66) than were possible directly, and required 75% fewer evaluations to solve e0.4,
the hardest task solved with any reliability by direct evolution.

Each incremental evolution simulation used an average of 198 successful task tran-
sitions. Figure 5.6, shows the average value of P , the change in l, for each task. For the
first eleven task transitions P remained at its initial value of 0.02, always reaching e0.4

before decrementing P from its initial value. This means that after solving the initial task
e0.1 the short pole will be increased by 20% to e0.12. These changes to the environment
are significant: other approaches that have applied shaping to the easier double pole task
(with velocities) have incremented the short pole by only 1% (Wieland 1991; Saravanan
and Fogel 1995). After reaching e0.4, the average P drops sharply as the task assumes a
level of difficulty beyond that which could be solved reliably by direct evolution.

In summary, evolving incrementally allows ESP to solve more difficult tasks, it also
dramatically improves the efficiency with which tasks that are accessible to direct evolution
are solved.

54

Task

Sh
o

rt
 p

o
le

 in
c

re
m

e
n

t,
 P

 (
m

)

0

0.005

0.01

0.015

0.02

0.025

10 20 30 40 50 60 70 80 90 100

Figure 5.6: Average increment P in short pole length. The plot shows the value of P for
each task ti, averaged over the 50 incremental evolution simulation. Over about the first ten task
transitions, P remains at its initial value or 0.02 meters. As the short pole approaches 0.4 meters
in length, the task transitions become difficult. Consequently, P is adjusted automatically so that
successive tasks are closer together in the configuration space, allowing further transitions to be
made.

5.3 Discussion

Incremental evolution makes it possible to solve more complex tasks. This is not to say that
behaviors evolved incrementally cannot be evolved directly. Such behaviors are points in
the network weight space that, in principle, can be found by direct search. However, such
a search requires larger populations and more evaluations. Therefore, incremental evolu-
tion extends the range of tasks that can be solved with a given amount of computational
resources.

The gradual change to the fitness landscape in incremental evolution is related to
the process that occurs in competitive coevolution where the fitness landscape of one pop-
ulation is deformed by that of the other competing populations. That is, the fitness of an
individual in population A is coupled to that of its “opponents” in population B. If all goes
well, the landscapes adapt to promote better and better individuals on both sides. From the
perspective of an individual in one population, the task changes from one generation to the
next. This automatic scaling of the fitness function can be useful in domains such as game
playing where the opponent (i.e. the environment) is not known in advance and an optimal
opponent usually does not exist. However, incremental evolution allows the designer to use
available knowledge and intuition about the problem domain to guide evolution toward a

55

solution that is relevant to a set of specific operating conditions.
Although the most obvious application of the incremental approach is in scaling

evolutionary algorithms, it is not restricted to this purpose. With burst mutation, any neuro-
controller (whether trained or evolved) can provide a starting point for adapting an existing
behavior to new conditions or operational objectives.

56

Chapter 6

Controller Transfer

In the experiments conducted so far in chapters 4 and 5 , a controller was considered suc-
cessful if it solved the task during evolution in the simulator. That is, the simulation envi-
ronment used for training was also the target environment used to test the final solution. For
real-world tasks, these two environments are necessarily distinct because it is too time con-
suming to evaluate populations of candidate controllers through direct interaction with the
target environment. Moreover, interaction with the real system is not possible in many do-
mains where evaluating the potentially unstable controllers during evolution can be costly
or dangerous. Therefore, in order to apply NE (or other RL methods) to real-world con-
trol problems, controllers must be evolved in a model of the target environment and then
transferred to the actual target environment. In order to ensure that transfer is successful,
the controllers must be robust enough to tolerate discrepancies that may exist between the
simulation and target environments.

In this chapter, the problem of transferring controllers for unstable, non-linear sys-
tems is studied continuing with the non-Markov two-pole task (task 2b). However, instead
of using the analytical system (i.e. the differential equations in Appendix A) as the simu-
lation environment it is now the target environment, and the simulation environment is an
approximation of it.

Figure 6.1 shows the three steps that constitute our approach. First, the target envi-
ronment is modeled with a supervised neural network to produce a simulation environment
(step 1). Second, ESP uses the simulation environment to evolve a controller (step 2).
Third, this controller is transferred to the target environment (step 3). In the usual appli-
cation of this method, the target environment is the physical system, and nothing needs to
be known about it as long as its interaction with a controller can be observed. However, in
this study, by treating the analytical system as if it were the real two-pole system, controller

57

error

_
+

Environment
Target

MODEL

Φ (s,a)*
ESP

observation

fitness

observation

action

action

Φ

s s

(s,a)a

^

^

^

Environment
Target

Sensor
noise

noise
Trajectoryt+1 t

s

MODEL

1: Learn model 2: Evolve using model 3: Transfer controller

Figure 6.1: The model-based neuroevolution approach (color figure). Step 1: Learn a model of
the target environment; in this case, the double pole balancing system. The model (e.g. a supervised
neural network) receives the a state ŝ and an action a as its input and produces a prediction of
the next state Φ(s, a) as its output. The error between the prediction and the correct next state
Φ

∗
(s, a) is used to improve the prediction. Step 2: Evolve a controller using the model instead of

the target environment. The boxes labeled “trajectory noise” and “sensory noise” add uniform noise
to the signal passing through them. These noise sources make controllers more robust and facilitate
transfer. Step 3: Test the controller on the target environment. This methodology allows controllers
for complex, poorly understood dynamical systems to be evolved in simulation and then transferred
successfully.

transfer can be tested exactly with complete knowledge of the system. This way it is pos-
sible to systematically study conditions for successful transfer in a controlled setting and
gain insights that would be difficult to obtain from an actual transfer to a physical system.

Sections 6.1, 6.2, and 6.3 present steps 1, 2, and 3 of the method respectively. In
section 6.4 the robustness of transferred solutions is tested, and in section 6.5 the results of
the experiment are analyzed.

6.1 Learning the Simulation Model

The purpose of building a model is to provide a simulation environment so that evolution
can be performed efficiently. While it is possible to develop a tractable mathematical model
for some systems, most real world environments are too complex or poorly understood
to be captured analytically. A more general approach is to learn a forward model using
observations of target environment behavior. The model, Φ, approximates the discrete-

58

time state-transition mapping, Φ
∗
, of the target environment:

ŝt+1 = Φ
∗
δ(ŝt, at), ∀ŝ ∈ Ŝ, a ∈ A, (6.1)

where Ŝ is the set of possible states in the target environment, and ŝt+1 is the state of the
system time δ > 0 in the future if action a is taken in state ŝt. The function Φ

∗
is in general

unknown and can only be sampled. The parameter δ controls the period between the time
an action is taken and the time the resulting state is observed. Since the objective is to
control the system it makes sense to set δ to the time between control actions. Using Φ,
ESP can simulate the interaction with the target environment by iterating

st+1 = Φδ(st, π(st)), (6.2)

where π is the control policy and s ∈ S are the states of the simulator.
The modeling of the two-pole system followed a standard neural network system

identification approach (Barto 1990). Figure 6.1a illustrates the basic procedure for learn-
ing the model. The model is represented by a feed-forward neural network (MLP) that is
trained on a set of state transition examples obtained from Φ

∗
. State-action pairs are pre-

sented to the model, which outputs a prediction Φ(ŝ, a) of the next state Φ
∗
(ŝ, a). The

error between the correct next state and the model’s prediction is used to improve future
predictions using backpropagation.

The MLP is a good choice of representation for modeling dynamical systems be-
cause it makes few assumptions about the structure of Φ

∗
, except that it be a continuously

differentiable function. This architecture allows us to construct a model quickly using rel-
atively few examples of correct behavior. Furthermore, when modeling a real system these
examples can be obtained from an existing controller (i.e. the controller upon which we are
trying to improve).

A training set of 500 example state transitions was generated by sampling the state
space, Ŝ ⊂ �6, and action space, A ⊂ �, of the two-pole system using the Sobol se-
quence (Press et al. 1992), which distributes quasi-random points evenly throughout the 7
dimensional (Ŝ × A ⊂ �7) space. For each point (ŝ i, ai), ŝ ∈ Ŝ, a ∈ A, the next state
Φ

∗
δ(ŝ

i, ai) was generated with δ = 0.02 seconds (i.e. one time-step). The training set is then
{ ((ŝ i, ai), Φ

∗
δ(ŝ

i, ai)) }, i = 1..500. For clarity, hereafter δ is dropped from the notation as
it remains fixed.

The accuracy of the model was tested periodically during training on a separate test
set of 500 examples to determine how well it could generalize to state-action pairs not
found in the training set. We measured accuracy in terms of model error E:

E =
1

N

N∑
i=1

‖Φ∗
(ŝ i, ai) − Φ(ŝ i, ai)‖2, (6.3)

59

Pr
ed

ic
tio

n
 e

rr
or

3025

0.06

0.07

System

Model
0.008
0.005

0.010
0.025

0.002

Model error (E)

0.010

0 20 40 60 80 100

Time stepsTime steps

L
on

g
po

le
 a

ng
le

 (
ra

di
an

s)

0

0.01

0.02

0.03

0.04

0.05

0 40000 60000 80000 10000020000

0.15

0.1

0.05

0

−0.05

−0.1

(a) Local error (b) Prediction error

Figure 6.2: Model accuracy (color figure). Plot (a) shows the trajectory of the long pole angle
for the real system (target environment) and model M0.002 (simulation environment). A network is
controlling the real system and each time step the model is also fed the state and action to produce
a one-step prediction. The inset shows that the model is locally very accurate. Plot (b) shows the
prediction error for each model. The large errors seen at the beginning of the trial are due to the
high velocities of the poles swinging back and forth as the controller gradually stabilizes the system.
When velocities are high successive states are further apart and prediction errors are more likely.
Models with more error E have greater error in practice.

This is the average squared error in the model’s prediction across the entire test set
of N = 500 samples. The highest accuracy achieved was E = 0.002 using a network with
20 hidden units.

The model is global in the sense that a single function approximator is used to
represent Φ for the entire state space, but it is local in terms of its temporal predictions. If
the model is used to make predictions one time-step into the future, then the predictions will
be very accurate. That is, if we have two state trajectories, one generated by the system:

ŝ1, ŝ2, ŝ3, . . . , where ŝi+1 = Φ
∗
(ŝi, π(ŝi)), (6.4)

and the other by the model using the system states ŝi to make one-step predictions:

ŝ1, Φ(ŝ1, π(ŝ1)), Φ(ŝ2, π(ŝ2)), . . . , (6.5)

where π is the same policy in both equation 6.4 and 6.5, then the trajectories will be very
similar (figure 6.2a). However, as we shall see below, even these small local errors can
prevent successful transfer when the environment is unstable.

In order to study the effect of model error on transfer, the weights of the model
were saved at five points during training to obtain a set of models with different levels of

60

error: 0.002, 0.005, 0.008, 0.010, 0.025. Figure 6.2b shows the one-step prediction error
(i.e. ‖ŝt+1 − Φ(ŝt, at)‖) for each of the five models (M0.002, M0.005, M0.008, M0.010, M0.025,
where Me is a model with E = e) in a trial where the target environment is being controlled
successfully. The graph shows that E, the error based on the test set, is a reliable indicator
of the relative amount of prediction error that will actually be encountered by controllers
during evolution. That is, for two models Mx and My, x > y implies that the prediction
errors of Mx will generally be greater than those of My. It is important that this be true, so
that E can be used to rank the models correctly for the experiments that follow.

The next section describes how the set of models is used to evolve robust controllers
that can transfer to the target environment despite inevitable local errors. I examine how
model inaccuracy affects transfer and use two techniques that use noise to improve it.

6.2 Evolving with the Model

If the simulation environment perfectly replicates the dynamics of the target environment,
as it did in the comparisons of section 4.3, then a model-evolved controller will behave
identically in both settings, and successful transfer is guaranteed. Unfortunately, since
such an ideal model is unattainable, the relevant questions are: (1) how do inaccuracies in
the model affect transfer and (2) how can successful transfer be made more likely given an
imperfect model? To answer these questions controllers were evolved at different levels of
model error to study the relationship between E and transfer, and to find ways in which
transfer can be improved.

The controllers were evolved under three conditions:

No noise. The controllers are evolved as in section 4.3, except instead of interacting
with the analytical system (Appendix A), they interact with the model according
to equation 6.2. This experiment provides a baseline for measuring how well con-
trollers transfer from simulation to the target environment. Each of the five models
(M0.002, M0.005, M0.008, M0.010, M0.025) was used in 20 simulations for a total of 100
simulations. The network fitness was equal to the number of time steps the poles
could be balanced.

Sensor noise. The controllers are evolved as above except that their inputs are perturbed
by noise. The agent-environment interaction is defined by

st+1 = Φ(st, π(st + v)), (6.6)

61

where v ∈ �6 is a random vector with components v(i) distributed uniformly over
the interval [−α, α]. Sensor noise can be interpreted as perturbations in the physical
quantities being measured, imperfect measurement of those quantities, or, more gen-
erally, a combination of both. This kind of noise has been shown to produce more
general and robust evolved controllers in the mobile robot domain (Jakobi et al. 1995;
Reynolds 1994b; Miglino et al. 1995b).

In figure 6.1b, the box labeled “sensor noise” represents this noise source. Note that
because the controller does not have access to the velocities at all in task 2b, only
x, θ1, and θ2 are distorted by noise. As in the “no noise” case, 20 simulations were
run for each of the five models, this time with three sensor noise levels: 5%, 7%, and
10%, for a total of 300 simulations. These noise levels far exceed the sensor error
that would be expected from a real mechanical system, and are not intended to model
the noise of the target environment. Instead, sensor noise is used to try to encourage
robust strategies that will be more likely to transfer.

Trajectory noise. In this case, instead of distorting the controllers’ sensory input the
noise is applied to the dynamics of the simulation model. The agent-environment
interaction is defined by

st+1 = Φ(st, π(st)) + w, (6.7)

where w ∈ �6 is a uniformly distributed random vector with w(i) ∈ [−β, β]. At
each state transition the next state is generated by the model and is then perturbed by
noise before it is fed back in for the next iteration. Although, a similar effect could
be produced by adding noise to the actuators, st+1 = Φ(st, π(st)+w), equation 6.7
ensures that the the trajectory of the model remains stochastic even in the absence of
a control signal, π(s) = 0.

Eight different levels of trajectory noise {0.5%, 0.6%, . . . , 1.2%} were used. As with
the sensor noise simulations, 20 simulations were run for each of the five models at
each trajectory noise level, for a total of 800 simulations.

Figure 6.3 gives examples of how state transitions occur for the two kinds of noise for a
hypothetical 1-dimensional system.

In addition to affecting how networks interact with the simulation environment,
noise also affects performance at the evolutionary level by increasing evaluation noise.
Since a given controller will behave differently from trial to trial due to noisy inputs, its
underlying fitness can only be approximated. This noise in the evaluation of networks can
mislead ESP by causing it to select solutions that are not truly the best individuals in the

62

s

s s+v

s
s

α

time steps

+v s +v

time steps

β Φ(s ,a) Φ(s ,a)
2

2
31s

3
2

s1 3 s
1

1 1
2 2

(a) Sensor noise (b) Trajectory noise

Figure 6.3: State transitions. For sensor noise (a), the actual state of the simulation environment si

is not observable to the controller. Instead, the controller selects an action based on si+v (si distorted
by noise), which transitions the environment to si+1 according to equation 6.6. The vertical bars at
each state represent the range of possible distortions to si. The dotted line is the state trajectory that
the controller sees, the solid line is the actual state trajectory. For trajectory noise (b), the controller
sees the correct state of the environment, but instead of the next state being determined by Φ (dotted
line), noise is added to the transition making the dynamics stochastic. The trajectory from si to
si+1 will lie within the shaded triangle marking the range of possible transitions for a given level of
trajectory noise.

population. Therefore, ESP must be able to tolerate evaluation noise in order to search the
space of controllers effectively.

6.3 Transfer Results

After evolving controllers with the model, the solution found by each simulation was sub-
mitted to a single trial in the target environment. The criteria for successful transfer was
whether a controller could perform the same task in the target environment that it performed
in simulation. That is, balance the poles for 100,000 time steps using the same setup (i.e.
initial state, pole lengths, etc.) used during evolution, but with no noise. This conforms
to the conventional definition of transfer used in many studies (see section 2.6). However,
here it constitutes a minimum requirement that a controller must satisfy before the more
rigorous examination in the next section.

Sensor Noise
Figure 6.4a shows the transfer results for controllers evolved with sensor noise.

The plot shows the average number of time-steps that the networks at each level of model
error could control the target environment. Successful transfers were very rare in this case
(occurring only twice in all 400 simulations); in effect, the curves show the performance of

63

model error model error

tim
e−

st
ep

s

%
 T

ra
ns

fe
r

sensor noise

trajectory noise

50
100
150
200
250
300
350
400
450

10
20
30
40
50
60
70
80
90

100

0

00.0050.010.0150.020.025

5

0.5
0.6

0.7
0.8

0.9

1.1
1.2

00.0050.010.0150.020.025

10

7 1.0

(a) Sensor noise (b) Trajectory noise

Figure 6.4: Transfer results. Plot (a) shows the number of time steps the controllers evolved
at different levels of model error and sensor noise could balance the poles after transfer to the
target environment. Each curve corresponds to a different level of noise. Sensor noise improves
performance slightly but does not produce successful transfers (a transfer was considered successful
if the network could control the system for 100,000 time steps). Plot (b) shows the percentage of
controllers that successfully transferred to the target environment for different levels of model error
and trajectory noise. Each curve is a smoothed average of 20 runs and corresponds to a different
percent trajectory noise. Lower error (i.e. more accurate local model) and higher trajectory noise
produces controllers more likely to transfer from the model to the real world.

networks that did not transfer.
Without noise, all of the transferred controllers failed within 50 time steps i.e. almost

immediately (curve “0”). As sensor noise was added, performance improved significantly,
especially when model error was low, but controllers were still far from being able to
stabilize the target environment. Therefore sensor noise, even at high levels, is not useful
for transfer in this kind of domain.

Trajectory Noise
On the other hand, trajectory noise had a much more favorable effect on transfer.

Because successes were frequent, a different plot is used. Figure 6.4b shows the percent-
age of networks that transferred successfully for different levels of model error and trajec-
tory noise. Each curve corresponds to a different level of trajectory noise, with the “0”
curve again indicating transfer without noise. The plot shows that trajectory noise com-
pensates for model error and ensures better transfer. To achieve very reliable transfer, low
model error needs to be combined with higher levels of trajectory noise. The best results
were achieved with 1.2% trajectory noise and a model error of 0.002, yielding a successful
transfer rate of 91%. Moreover, most of these “untransferred” controllers were found to
be “near-misses,” and could be adapted to the target environment quite easily through local

64

random search (section 6.5). These results show that transfer is indeed possible despite
significant model inaccuracy.

6.4 Evaluating Controller Robustness

During evolution a controller can only be exposed to a subset of the conditions that are
possible in the real world. Therefore, how will it perform under conditions that differ from
those encountered during evolution? In this section, I analyze the quality of transferred
controllers in 3 respects: (1) generalization to novel starting states, (2) resistance to external
disturbances, and (3) resistance to changes in the environment. This analysis goes beyond
any other study in testing neuroevolved controllers in realistic situations. Since only the
controllers that were evolved with trajectory noise transferred successfully, this analysis
pertains only to those controllers. Also, because different levels of trajectory noise had
different transfer rates (figure 6.4b), additional controllers were evolved at each noise level
until a minimum of 20 successfully transferred controllers were obtained for each noise
level.

Generalization
In the transfer experiments, the controllers were evaluated from the same starting

state in both the simulation and target environments. Therefore, successful transfer gives
little insight into how well a controller can stabilize the system from states not visited
during evolution.

A total of 625 test cases were generated by allowing the state variables x, ẋ, θ1, and
θ̇1 to take on the values: 0.05, 0.25, 0.5, 0.75, 0.95, scaled to the appropriate range for each
variable (54 = 625). These ranges were ±2.16m for x, ±1.35m/s for ẋ, ±3.6 deg for θ1,
and ±8.6 deg/s for θ̇1. This test, first introduced by Dominic et al. (1991), has become a
standard for evaluating the generality of solutions in pole balancing. A high score indicates
that a solution has competence in a wide area of the state space. Here the generalization test
is used to measure how trajectory noise affects the performance of transferred controllers
in a broad range of initial states. A successful controller is awarded a point for each of the
625 different initial states from which it is able to control the system for 1000 time steps.

Figure 6.5a is a visualization of a controller’s performance on this test. Each dot in
the upper half of the graph identifies the number of time steps the poles could be balanced
for a particular start state, i.e. test case. Each test case is denoted by a unique setting of the
four state variables x, ẋ, θ1, θ̇1 in the lower half of the graph (θ2 and θ̇2 were always set to
zero). Drawing a vertical line through the graph at a given dot gives the state variable values

65

θ1

θ1

x

x
2001000 400300 500 600

.

.

Test cases

St
at

e
va

ri
ab

le
s

T
im

e
st

ep
s

1

2

3

(a) Generalization

1N 2N 3N 4N 5N 6N

10000 15000 20000 25000 30000 35000

Time steps
0 5000

L
on

g
po

le
 a

ng
le

 (
ra

di
an

s)

L
on

g
po

le
 a

ng
le

 (
ra

di
an

s)

case 245

0.14m 0.2m 0.22m

Time steps

0.12m 0.16m 0.18m

X

Y
YZ

−0.2

−0.1

0

0.1

0.2

0.3

−0.2

−0.1

0

0.1

0.2

0.3

10

10

10

0 20000 30000 40000 50000 6000010000

(b) External Disturbances (c) Changing Environments

Figure 6.5: Examples of controller behavior on the robustness tests. The plots quantify the
performance of a particular controller evolved with 1.0% trajectory noise on the three robustness
tests. In plot (a) the lower half of the plot shows the values of x, ẋ, θ1, and θ̇1 for each of the 625
cases. The upper half shows the number of time steps the poles were balanced starting from each
case. The cases are divided into qualitatively similar groups labeled X,Y,Z. This controller solved
353 of the cases. Plot (b) shows the trajectory of the long pole angle for a disturbance test. Each
vertical dotted line marks the onset of an external pulse of the shown intensity (in Newtons). The
controller is able to recover from disturbances of up to 5 Newtons, but fails when the force reaches 6
Newtons. Plot (c) shows the trajectory of the long pole angle for a changing environment test. Each
vertical dotted line marks each lengthening of the short pole. The controller is able to balance the
poles using increasingly wide oscillations as the short pole is lengthened. However, at 0.22 meters
(i.e. almost double the original length) the system becomes unstable.

66

So
lv

e
d

 t
e

st
 c

a
se

s

P
u

lse
 S

tr
e

n
g

th
 (

N
)

Sh
o

rt
 p

o
le

 le
n

g
th

 (
m

)

%Trajectory noise %Trajectory noise %Trajectory noise

0

50

100

150

200

250

300

350

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
3

3.5

4

4.5

5

5.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

(a) Generalization (b) External Disturbances (c) Changing Environments

Figure 6.6: Robustness results. The plots show the performance of successfully transferred con-
trollers evolved at different levels of trajectory noise on the three different tests for robustness. Plot
(a) shows the number of generalization test cases, on average, solved by the controllers. In plot (b),
the y-axis is the average force in Newtons that a network could withstand. In plot (c), the y-axis is
the average short pole length that could be balanced for 10,000 time steps. High levels of trajectory
noise generally yield more robust behavior in transferred controllers.

for that case. For example, the balance time for case 245 (x = −1.080, ẋ = 1.215, θ1 =

0.031, θ̇1 = 0.135; the labeled point in the figure) is 129 time steps for this particular
controller, which solved 353 of the 625 cases.

The graph reveals at least 3 qualitatively different regions of controllability in the
state space. They are grouped together and labeled X, Y, and Z. Starting states near the
edge of the track (in the extreme left and right of the plot) are difficult to solve because
they leave little room to maneuver, especially when the long pole is leaning toward the near
edge of the track (area X). When instead the long pole leans toward the center of the track,
balancing improves, especially if the cart is not moving in the opposite direction (area Y).
States near the center of the track give the controller more space to recover from all settings
of ẋ and θ̇1, and also from all settings of θ1 when in the very center of the track (area Z),
and therefore these states are highly successful.

Figure 6.6a shows the quantitative results for the generalization test. Solutions
evolved with more trajectory noise generalize to a larger number of novel initial states.
Recall that the fitness function used here simply measures the number of time steps the
poles stay balanced. It is therefore almost devoid of domain knowledge, and places no
restriction (bias) on the control strategy. Still, the use of trajectory noise produces solu-
tions that generalize to a large number of cases in the target environment that were not
experienced in the simulation environment.

External Disturbances The generalization test measures how well networks behave across
a large region of the state space. Another important question is: how well will these solu-

67

tions operate in “unprotected” environments where external disturbances, not modeled in
simulation, are present? To answer this question, the networks were subjected to external
forces that simulate the effect of wind gusts buffeting the cart-pole system. Each network
was started in the center of the track with the long pole at 4.5 degrees (the small pole was
vertical). After every 5,000 time steps, a force was applied to the cart for 2 time steps (0.04
sec). The magnitude of this pulse was started at 1 Newton and increased by 1 Newton on
each pulse.

Figure 6.5b shows the angle of the long pole for a typical disturbance test. In the
first 5,000 time steps the controller stabilizes the system from its unstable initial state. After
the first pulse hits, the system recovers rapidly. As the pulse is strengthened, the controller
takes longer to recover, until the force becomes too large causing the system to enter into an
unrecoverable state. Figure 6.6b shows the average maximum force that could be handled
for each level of trajectory noise. Above 1.1% noise controllers could withstand an average
pulse of over 5 Newtons. This magnitude of disturbance is very large: it is more than half
of the maximum force that can be exerted by the controller. Higher levels of trajectory
noise lead to networks that are less affected by external forces.

Changes to the Environment

The two previous tests present novel conditions (initial states, external forces) that
take place roughly within the same environmental dynamics found during evolution. But
what if the dynamics themselves change significantly, as they could in the real world due
to mechanical wear, damage, adjustments, and modifications? Evolved controllers that
adapt specifically to the narrow conditions present during evolution are likely to fail in
environments that do not conform exactly to the simulation model or are non-stationary.

An interesting and convenient aspect of the double pole system is that it is more
difficult to control as the poles assume similar lengths. By lengthening the short pole during
testing, we can test how well the controllers can cope with a change to the dynamics of the
environment. For this test, each network was started controlling the system with a short
pole length of 0.12 meters, 0.02 meters longer than the length used during evolution. If
after 10,000 time steps the trial had not ended in failure, the cart-pole system was restarted
from the same initial state but with the short pole elongated by another 0.02 meters. This
cycle was repeated until the network failed to control the system for 10,000 time steps. A
network’s score was the short pole length that it could successfully control for 10,000 time
steps. Figure 6.5c shows the behavior of the long pole during one of these tests.

Figure 6.6c shows the average short pole length versus trajectory noise. For low
noise levels (≈0.5%), the networks adapt only to relatively small changes (0.03m, or 30%).

68

R
a

d
ia

n
s

R
a

d
ia

n
s

−0.15

−0.10

−0.05

model
model

400 6000 1000200 800

0

0.05

0.1

0.15

Time steps Time steps

target target

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.3

0.4

0.2

100 200 300 400 5000 600

(a) Sensor noise (b) Trajectory noise

Figure 6.7: Comparison of controller behavior before and after transfer. The graphs show
typical behavior (long pole angle) of a network evolved with sensor noise (a) versus a network
evolved with trajectory noise (b), when controlling either the model or the target envirenment. With
sensor noise (a), the trajectories coincide initially, but after about 50 time steps the target environ-
ment becomes unstable, although the model is quickly damped into equilibrium. With trajectory
noise (b), the trajectories also do not coincide after about 50 time steps but the network is still able
to control the target environment because it has been evolved to cope with a range of deviations
from the model trajectory.

At and above 0.6%, networks tolerate up to as much as a 57% increase (to 0.157m) on
average. These are very large changes especially because not only do the dynamics change,
but also the system becomes harder and harder to control with each extension of the short
pole. Trajectory noise prepares controllers for conditions that can deviate significantly
from those to which they were exposed during evolution, and, consequently, produces high-
performance solutions that can better endure the rigors of operating in the real world.

6.5 Analysis of Transfer Results

Whenever a behavior is learned in one environment some adaptation is necessary to pre-
serve an acceptable level of performance in another, different environment. Using noise
is, in a sense, pre-adapting the agent to a range of possible deviations from the simulation
model. It is not surprising that controllers evolved without noise did not transfer, even when
model error was low. But why is there such a disparity between the sensor and trajectory
noise results?

Let us take a typical solution evolved with sensor noise and use it to control the sim-
ulation environment without sensor noise. The resulting behavior is shown by the “model”
curve in figure 6.7a. Sensor noise forces ESP to select against strategies that balance

69

the poles by swinging them back and forth. Such strategies are too precarious when the
state of the environment is uncertain since they cause the system to periodically traverse
states with high velocities where mistakes can more easily lead to failure. Therefore, high-
performance solutions quickly stabilize the environment by dampening oscillations. This
behavior, however, does not help networks control the target environment. Because the
target environment reacts differently from the model, a policy that would stabilize the sim-
ulation environment can soon cause the target environment to diverge and become unstable
(the “target” curve in figure 6.7a).

This result differs from the experience of many researchers (e.g. Reynolds 1994b;
Miglino et al. 1995b) that have used sensor noise to make robots more robust and facilitate
transfer. I believe that sensor noise was not effective in the non-Markov two pole task.
In robot navigation tasks (reviewed in section 2.6), small inaccuracies in actuator values
do not affect the transferred behavior qualitatively. In contrast, the pole balancing domain
requires very precise control and is much less forgiving because it is inherently unstable: a
sequence of poor or even imprecise actions can quickly lead to failure. Also sensor noise
is much less of an issue in the pole balancing domain compared to the robot domain where
sensor error is notoriously problematic. The sensor error in a real cart-pole system would
be negligible using readily available linear and rotary position encoders.

The success of controllers evolved with trajectory noise can be explained by looking
at the space of state trajectories that are possible by making noisy state transitions. If we let
{ui} and {li} be the sequence of states that form the upper and lower bound on the possible
state trajectories for a given policy π, such that

ui+1 = max
si∈[li,ui]

‖Φ(si, π(si)) + w‖, (6.8)

li+1 = min
si∈[li,ui]

‖Φ(si, π(si)) − w‖, (6.9)

where
w = argmax‖w‖, s1 = l1 = u1,

w

then it can be shown, by the continuity of Φ and π, that every state ‖li‖ ≤ ‖s‖ ≤ ‖ui‖ can
be visited by some sequence of state transitions generated by equation 6.7. State sequences
{ui} and {li} form a trajectory envelope for a particular controller.

All of the trajectories that can be followed from an initial state s1 will fall inside this
envelope (figure 6.8). Although each network evaluation involves only a single trajectory of
finite length, the number of state transitions in a successful trial (100,000) is large enough
that it represents a relatively dense sampling of the trajectory space. So the controller is
effectively trained to respond to a range of possible transitions at each state (figure 6.7b).

70

4

4

2

3

s s s
4

== l

u

u

u

ll

l2

3

us
1

3
2

11

Figure 6.8: Trajectory envelope. Trajectories {li} and
{ui} are the upper and lower bounds on the possible tra-
jectories that the model can take for policy π and a given
amount of trajectory noise. The shaded areas show the pos-
sible state transitions from li and ui due to noise. The sets
Si are the sets of states ‖li‖ ≤ ‖s‖ ≤ ‖ui‖. Every state
in Si is reachable from S1 by some trajectory generated us-
ing equation 6.7. A controller that successfully completes a
trial will have sampled a large number of transitions within
the envelope and will be more likely to transfer to the target
environment.

The more noise, the larger the envelope, and the more likely it is that the controller is pre-
pared for differences between the simulation and target environments that could otherwise
lead to instability.

It should be noted that no level of trajectory noise can guarantee transfer, and if
noise is increased too much the state transitions will become so noisy that the task cannot
be solved. Plotting how the performance of ESP scales with trajectory noise (figure 6.9)
we see that an increase in noise incurs a sharply increasing computational cost, but does
not yield a proportional improvement in transfer rate. The figure shows the average num-
ber of evaluations, burst mutations, and network size required by ESP to solve the task at
each noise level. As noise increases, all three grow quadratically. For this reason, trajec-
tory noise was bounded at 1.2% in the experiments—more noise, even just 0.1% more,
would yield a marginal increase in transfer rate, but would require a projected 3 million
evaluations per controller.

Similarly, it might seem reasonable to assume that transfer will reach 100% as
E → 0. This is not guaranteed either since E is defined on a training set of finite size
(equation 6.3). Even for E = 0, ‖Φ∗

(s, a) − Φ(s, a)‖ can be greater than zero for some
state s not in the training set. Therefore, neither high trajectory noise nor low model er-
ror can guarantee that controllers evolved using the neural network model will transfer.
However, as the experiments have shown, a combination of the two should make transfer
possible in practice.

Although these experiments have focused on direct transfer, in domains where un-
successful controllers can be tested, a simple post-transfer search can be used to find a
successful controller. If a network fails to transfer but performs relatively well when tested,
it is likely that it is close to a good solution in the weight space. For instance, a network
that can balance the poles for 10 minutes before failing has a good chance of being in the
vicinity of a network that can control the system indefinitely. Therefore, such controllers

71

200

400

600

800

1 1.1 1.20.90.80.70.60.5 1 1.1 1.20.90.80.70.60.5 1 1.1 1.20.90.80.70.60.5

U
n

its
/n

e
tw

o
rk

1000

1200

1400

0

Ev
a

lu
a

tio
n

s
x

10
00

50

45

40

35

30

25

20

15

10

5

Bu
rs

t
m

u
st

a
tio

n
s

6

7

8

9

5

12

11

10

%Trajectory noise%Trajectory noise %Trajectory noise

0

(a) (b) (c)

Figure 6.9: Learning performance of ESP with increasing trajectory noise. Plot (a) shows
the number of evaluations needed to solve the task at each trajectory noise level. Plot (b) shows the
number of burst mutations required to solve the task. Plot (c) displays the size of the solution net-
work. Each data point is the average of 20 simulations. All three grow quadratically with trajectory
noise. Noise levels above 1.2% will incur a very high cost without significantly improving transfer.

can potentially be adapted to the target environment by local search. For each unsuccessful
network from the transfer experiments the weights were perturbed with Cauchy noise to
produce a new network that was tested in the target environment. If the new network could
not stabilize the system, then the original network was perturbed again until a successful
network was found. Using this simple procedure, all of the controllers evolved with tra-
jectory noise over 0.9% and E ≤ 0.005 could control the target environment after only 68
evaluations on average. This means that evolving with high trajectory noise and low model
error produces “near misses” that can be transferred by just making a few small random ad-
justments to the controller. Given the small number of direct evaluations required to find a
successful controller, it may be possible to apply this technique with real systems in a man-
ner similar to that of refining mobile robot controllers by evolving for a few generations in
real world (Nolfi et al. 1994; Miglino et al. 1995a).

In domains where testing is not feasible, it may be possible to determine the stability
of the controller through analytical tools such as those developed for robust neurocontrol
by Suykens et al. (1993) and Kretchmar (2000). Then, only controllers that pass a stability
test would be allowed to interact with the environment, thereby reducing the chance of
failure.

72

Chapter 7

Prey Capture Task

This chapter demonstrates ESP in an Artificial Life setting that emphasizes the role of
short-term memory in the development of complex general behavior. Unlike the contin-
uous, deterministic pole balancing domain used throughout the previous three chapters,
the prey capture task used here is discrete and stochastic, and places greater demands on
the ability of evolved networks to cope with temporal dependencies between observations
of the environment. The approach uses the incremental evolution technique presented in
chapter 5 to scale multiple dimensions of problem difficulty. The experiments compare
the performance of direct versus incremental evolution and show that all else being equal,
incremental evolution allows ESP to evolve behaviors that are not accessible directly.

7.1 Background and Motivation

Artificial Life (ALife; Langton 1988) is a field that seeks to gain a deeper understand-
ing of biological and evolutionary processes by building computational models of natural
systems. Alife systems attempt not only to replicate existing organisms, behaviors, and
ecosystems, but also suggest new possibilities for life that can shed light on the underlying
properties of growth, development, social organization, and group behavior.

A common Alife environment is the pursuit-evasion scenario consisting of two en-
tities, a predator and a prey, with conflicting objectives: the predator moves through the
environment trying to capture the prey while the prey attempts to avoid capture by fleeing
from the predator. For either side to be successful, its strategy must take into account the
potentially changing strategy of its opponent. Pursuit and evasion contests are of interest
in many areas such as adaptive behavior and robotics (Reynolds 1994a; Haynes and Sen
1995; Floreano and Nolfi 1997; Floreano et al. 1998; Strens and Moore 2002; Whiteson

73

et al. 2003) because they embody the kind of complex general behavior that is ubiquitous
in natural ecosystems, but challenging to produce by artificial means. Pursuit and evasion
also constitutes an area of game theory, differential games (Isaacs 1965), that has important
implications for difficult optimal control problems like air combat (Pesch 1992; Breitner
et al. 1993).

The difficulty in evolving an effective predator or prey depends on the relative
strengths and weaknesses of the two adversaries. If the entity we wish to evolve suffers
from a tactical disadvantage, then the task may be too hard for evolution to make progress.
For example, if the predator is limited in its ability to perceive the prey, then in order to
catch the prey, its behavior must consist of more than just a reactive policy. The predator
will need to use some kind of short-term memory to predict the future location of the prey
based not just on immediate sensory stimulus, but also on previous experience. However,
since such a memory-dependent strategy is unlikely to be present in the initial random pop-
ulation, all of the individuals will perform too poorly to give evolution a clear indication
of where to search (i.e. which individuals should be selected for recombination). Instead
of gradually evolving increasingly sophisticated behaviors, “mechanical” strategies emerge
(e.g. repeating a pattern of movement through the environment). Such strategies make some
headway in terms of maximizing a fitness measure, but do not exhibit the kind of intelligent
responsiveness required to ultimately accomplish the objective. Mechanical strategies are
easy to evolve because they will often have better fitness than standing still or moving very
little, and therefore, can trap the population in a locally maximal region of the solution
space.

One way to solve this problem is to gradually scale the difficulty of the task over
the course of evolution so that the necessary skills required to solve the goal task are more
likely to be acquired. This incremental evolution approach is taken in the prey capture
experiments below.

7.2 Prey Capture Experiments

The prey capture task involves a predator (i.e. the control agent) that “lives” in a bounded,
square arena and whose objective is to chase down a prey that moves unpredictably within
a limited amount of time (figure 7.1). The predator can detect the prey only within a limited
distance. When the prey is within sensor range, the predator must move toward the prey
to capture it, but when the prey moves outside the sensory range, the predator no longer
receives direct sensory stimulus from the prey.

This task is easy to describe yet requires a kind of behavior that is difficult to evolve

74

P

i5

i 6

i 7

i 8

i1

i2

i4

Wall Detectors

Predator

recurrent network

Environment

m
ax action

A

S

E

W

N

3i

C

E

S

W

N

Figure 7.1: The prey capture environment and the predator network. The grid world (a) is
occupied by the predator (agent A) and the prey (P). The sectors and circles around the predator
represent its sensory array. There are 8 sectors divided into two levels of proximity. Each sector
is represented by a node in the input of the neural network controlling the predator (b). An input
unit ij is activated when the prey enters the corresponding sector. If the predator brings the prey
within the inner circle of the array, the C unit will also be activated. Each of the wall detector units
is activated proportional to the predator’s distance to the wall in that direction, provided the wall
is within the sensor range. In the situation shown here, the input unit i3 is activated but C is not,
because the prey is in the far NW area. The E wall-detector unit is also activated by a small amount
because the east wall is just within sensor range. This input is fed into the fully recurrent neural
network along with the network activation from the previous time-step. In this case, the predator
will move north because the north (N) output unit has the highest activation.

directly due to its complexity. Since the predator does not have a global view of the envi-
ronment, it must remember where the prey was last detected to decide which action will
bring the prey back into sensor range. This means that the networks evolved by ESP have
to be recurrent. Furthermore, because the prey does not move deterministically, no amount
of memory will allow the predator to predict exactly how the prey will move. The fol-
lowing sections describe the simulation environment, the predator representation, and the
experimental setup in detail.

7.2.1 Simulation Environment

The environment consists of a square grid-world (figure 7.1a). Both the predator and the
prey occupy a single grid space and can move in one of four directions {N,S,E,W} at each

75

time-step. The predator is considered to have captured the prey when they both occupy
the same grid-cell. The prey moves probabilistically with a tendency to move away from
the predator that grows stronger as the predator gets closer to it (see Appendix A for a
definition of the enemy algorithm, due to Lin (1992)). The prey moves at a speed s that
is set between 0 and 1. This value is the probability of the prey taking an action at each
time-step. If the prey has a speed of 0.5 it will do nothing 50% of the time. Note that if the
environment were continuous, a speed of 0.5 would make the task quite easy because the
prey would always be moving at the same leisurely rate. In this discrete world, however, a
prey moving at a speed of 0.5 is really moving at the same speed as the predator but only
part of the time.

7.2.2 Control Architecture

The predator is controlled by a fully connected recurrent neural network with sigmoidal
units (Figure 7.1b). At each time step each unit receives input from the input layer and
from all other units. Such recurrency allows the predator to maintain temporal information
that is necessary for performing the task.

As the predator moves through the environment it can detect the presence of the prey
within a specified sensor range (figure 7.1a). There is one input unit (ij) assigned to each
of the 8 sectors in the sensory array. When the prey is in an area covered by the sensory
array, the unit corresponding to that sector is set to 1. An additional unit (C) is set when the
prey is within the closer half of the sector. The units i1 through i8 and C therefore afford
a coarse encoding of relative prey position. The radial nature of the sensory apparatus
gives greater sensitivity to prey movement at close range, where it is most crucial. Four
more units are used to detect the walls in the N, S, E, and W directions. As a wall comes
within sensor range the corresponding unit is activated to a degree that is proportional to
the wall’s distance from the predator. There is one output unit for each of the four possible
actions. At each time step the predator selects the action corresponding to the unit with the
highest activation. This representation provides the predator with sensory input that is both
imprecise and of limited range.

7.2.3 Experimental Setup

The effectiveness of incremental evolution was tested in the prey capture task and compared
to direct evolution. To determine how difficult tasks could be solved, the prey speed and
short-term memory requirements of the task were varied.

76

Parameter Value
Environment

size of grid 24× 24
sensor range 5
number or trials (M) 3
number or moves (N) 60

ESP
no. of subpops 5
size of subpops 40
mutation rate 10%

Figure 7.2: Prey capture parame-
ters.

The parameter settings used in the prey cap-
ture experiments are listed in figure 7.2. At each
generation during evolution, 400 networks are con-
structed and evaluated in (M = 3) trials. A trail
consists of the following: the predator is placed in
the center of a 24 × 24 grid world and the prey is
placed in a random position just within the preda-
tor’s sensor range. The predator and prey alternate
in taking an action each time-step until either the
prey has been captured or a maximum number of
time-steps (N = 60) has been reached. If the preda-
tor captures the prey, the prey is moved to a new
initial position just within the sensor range, and the
predator is allowed another N moves to capture the prey. This cycle repeats until the preda-
tor fails to capture the prey within N moves (the value N can thus be interpreted e.g. as the
maximum time that the predator can survive without feeding). The total number of times
the predator captures the prey in the M trials is used as its fitness score. Multiple trials were
used to reduce evaluation noise. For a predator to receive high fitness, it must be able to
catch the prey from many initial states and deal favorably with the prey’s non-deterministic
behavior. The task is difficult because with a sensor range of 5 there are 244 = 331, 776

states, but the predator only receives 612 unique observations.
The difficulty of the task can be controlled by adjusting the value of two free pa-

rameters: the prey’s speed, s, (i.e. the probability of it making a move), and the number of
moves, m, the prey is allowed to make before the predator is allowed to make its first move
(during these m time steps the prey moves at maximum speed, s = 1.0). The prey’s head
start guarantees that each trial will contain situations that require memory. Following the
convention introduced in chapter 5, an evaluation task with a particular setting of m and s

will be referred to by the notation em,s.
Predators were evolved both directly and incrementally to accomplish the goal task

e4,1.0, i.e. where the prey makes four initial moves before the predator is allowed to move,
and then continues to move at the same speed as the predator. A predator is considered to
have accomplished the task if it can capture the prey more than M × 100 = 300 times in
single trial.

77

0.0 1.00.80.60.2 0.4

0

1

2

3

4

5

sc
hedule

 B

schedule C
initial
task

speed s

m
o

ve
s

goal task

m

sc
h

e
d

u
le

 A

Figure 7.3: Prey capture configuration space. The

dashed lines represent the space of evaluation tasks. Many paths

from the initial evaluation task to the goal task are possible by

following different schedules. Schedule A is the path used in

the experiments.

For the Direct evolution sim-
ulations, the evaluation task re-
mains constant throughout evolu-
tion. In other words, the networks
are subjected to the goal task e4,1.0

from the beginning. For incre-
mental evolution the population
is first evolved on the task e0,0.0,
i.e. capturing a stationary prey
within its sensory range. Once
this initial task has been accom-
plished, the best-performing net-
work is saved and burst mutation
is invoked to evolve e2,0.0. After
e2,0.0, the number of initial steps
m is further increased to 3 and
4, and then the prey speed from
0.0 to 1.0 in four steps. In other
words, the incremental evolution
schedule is:

e0,0.0 −→ e2,0.0 −→ e3,0.0 −→ e4,0.0 −→ e4,0.3 −→ e4,0.6 −→ e4,0.8 −→ e4,1.0

This sequence of tasks forces the predator to first develop its short-term memory and
then learn to deal with a fast moving prey. Figure 7.3, shows the configuration space for
the task, and the path implied by the chosen schedule (schedule A). While other schedules
such as B and C in the figure are possible, this is a natural one. To be able to pursue a prey
at all, the predator first has to be able to know where it is.

7.3 Results

Figure 7.4 summarizes the prey capture results for both direct and incremental evolution.
As can be seen from the figure, direct evolution (lower plot) makes little progress in solving
e4,1.0. All of the networks in the first generation perform too poorly to provide adequate
selective pressure for reproduction; the environment is simply too difficult for any single

78

0

20

40

60

80

100

0 50 100 150 200

F
itn

es
s

Generations

Incremental
Direct

Figure 7.4: Performance of direct and incremental evolution in the prey capture task. The
maximum fitness per generation is plotted for each of the two approaches. The direct evolution
(bottom plot) makes slight progress at first but stalls after about 20 generations. The plot is an
average of 10 simulations. Incremental evolution, however, proceeds through several task transitions
(seen as abrupt drop-offs in the plot), and eventually solves the goal task. The incremental plot is an
average of 10 simulations. Each of the simulations included a different number of generations for
each evaluation task, so time was stretched or compressed for each simulation so that the transitions
could be lined up.

individual to perform significantly above average. The networks improve slightly over the
first 20 generations but become trapped in a region of the weight space where the sub-
populations have converged before basic task skills have been acquired. The best of these
individuals move around the environment a few times in a mechanical fashion. In order for
an individual to perform well it must know both how to chase a fast-moving prey and how to
remember its location. The likelihood of encountering an individual with such proficiency
in a random population is extremely low—the direct evolution failed in every simulation.

The upper plot in figure 7.4 shows the performance of the incremental approach. In
the following, the progress of this approach toward e4,1.0 is described for each stage of the
evolution schedule.

79

Capturing an immobile prey (e0,0.0)

This initial stage serves to bootstrap the entire incremental evolution process with a task
that can be evolved from an initial random population. When e0,0.0 is used as the initial
evaluation task, there is sufficient variation in the performance of networks to direct the
genetic search. No memory is needed to accomplish e0,0.0 so the predator only needs to
concern itself with the state of its sensory array, and no pursuit is involved: in other words,
the predator only needs to behave reactively.

In this easier environment, some networks are able to survive significantly longer
than others. Importantly, they survive longer by performing a basic skill that is also required
to solve the goal task. Some predator may do well capturing prey from the east, another
from the west, while another from the north or south. Over the course of evolution the
genetic recombination of these skills eventually produces a well-adapted individual that
can capture the prey from all directions.

Increasing initial prey moves (e0,0.0→ e2,0.0→ e3,0.0→ e4,0.0)

As the number of initial prey moves m is incremented, the ability of the predator to remem-
ber the position of the prey becomes increasingly important. When the evaluation task is
e2,0.0, the prey will often move out of sensor range. However, because of its probabilistic
policy, the prey will also sometimes remain within the sensor range after m moves. As m

is increased, the probability of the prey moving out of sensor range, and its distance from
the predator, increases.

Because situations that demand memory are introduced gradually, a predator can
still capture the prey most of the time even if it does not have the ability to always remember
the prey’s position. If the tasks were rapidly transitioned from e0,0.0 to e4,0.0, a predator
would have to possess a general memory right away. When e4,0.0 has been completed, the
best network can capture the prey regardless of what direction it disappeared, and how far
(within 4 moves).

Increasing prey speed (e4,0.0→ e4,0.3→ e4,0.6→ e4,0.8→ e4,1.0)

After evolving a predator that can reliably remember the prey’s position and capture it, the
prey is made mobile. Until now, the prey’s position has been encoded in the predator’s
recurrent network. When the prey moves, however, the predator’s sensory inputs do not
match its internal representation of the situation, and it does not perform well. Initially, the
prey moves only about one third of the time. At this stage it is still sometimes possible

80

for the prey to be caught as it is unlikely to make many moves during the time it takes the
predator to capture it. Those predators that can follow the prey for even one move will
have an advantage and will be selected for reproduction. Over several task transitions, the
prey gradually becomes faster, and evolution favors networks that pay more attention to the
current sensory input in determining the prey’s location. Eventually networks emerge that
can pursue and capture the prey even when it is moving at every time step, solving the goal
task.

Throughout incremental evolution, therefore, the changes made in the task are small
enough so that the networks formed from the previous population can occasionally perform
well. This makes it possible for evolution to discriminate between good and bad genotypes,
and make progress towards the goal task.

7.4 Experimental Analysis

Given that general prey capture behavior was evolved, what do the solutions look like?
That is, what kind of networks resulted, and what kind of behaviors do they exhibit? This
issue is examined in the following subsections.

7.4.1 Prey Capture Behavior

Figure 7.5 shows a sequence of “snapshots” that illustrate a typical prey capture scenario
in the goal task. In the first frame, the predator (denoted by the letter “A”) is in its initial
position, and the prey (“P”) has been placed in a random position just within sensor range.
At this point, the predator can see the prey. Frame 2 is taken four prey moves later. The
prey is now outside the predator’s sensory array, and the predator has not yet moved. In
Frame 3, the predator has made four moves. The first move was selected while the prey
was still in the SE sector. The next three moves, however, had to rely on a recollection of
where the predator last saw the prey.

As the predator approaches the prey, it may not see it for several moves as the prey
begins to flee. By move 16 (Frame 4), the predator has re-acquired the prey in its sensory
array, and can begin to bear down on it. Since the prey will move every time-step, the
predator can only capture it by trapping it against a wall. This behavior can be seen in
Frame 5: The predator pursues the prey towards the wall, where its moves are limited and
it is captured (Frame 6).

Similar prey capture behavior evolved in all simulations. Although behavior is easy
to describe, it involves sophisticated components: remembering the likely location of the

81

A A
P

Frame 5: 20 Moves

P

P

P

A

A
A

A

P

Frame 1: 0 Moves Frame 2: 4 Moves

Frame 4: 16 Moves Frame 6: 25 Moves

Frame 3: 8 Moves

Figure 7.5: An example of prey capture behavior. The prey gets a head start of 4 moves and
moves outside the sensory array. In 12 moves, however, the predator catches sight of it again,
relying on its memory of where it last saw the prey. Eventually the predator pins the prey down
against the wall and captures it. Similar scenarios occur from virtually all initial states, although the
individual moves vary due to the stochastic nature of the prey.

prey for several time steps, driving the prey towards a wall, and capturing it against the
wall. What is most important, though, is that the successful predators can perform this
strategy from all different initial states, and with a prey that behaves stochastically. In this
sense, the predators display believable and complex general behavior.

7.4.2 Network Analysis

What do the successful prey capture networks look like, that is, how do the different spe-
cializations contribute to and interact in prey capture? One way to analyze the contribu-
tions of individual neurons is to perform a lesion study: remove one of the neurons from
the network and observe the effects on the network’s behavior. The prey capture networks,

82

Lesioned Neuron 1 2 3 4 5
% Network Performance 63.2 21.9 47.7 48.1 25.1

Table 7.1: Prey capture performance of a lesioned network. One of the successful networks
was systematically lesioned by removing the input weights of each of its neurons in turn. The
lesioned network was tested in the prey capture task and its performance was compared to that of
the original network. For example, when the first neuron of this network was lesioned, it was still
able to capture the prey 63.2% as many times as the complete network in a single trial. The results
are averages over 100 trials. Similar results were obtained for all networks tested.

however, are fully recurrent, and 4 out of the 5 units also serve as output units. Such units
cannot be completely removed from the network. Removing for example the “north” output
unit would only have the obvious and uninteresting effect of preventing the predator from
moving north. Instead, a unit can be lesioned by disabling only its input connections (i.e.
the connection from the sensory array), while still allowing it to receive recurrent signals
from the other neurons. The functional role of the lesioned neuron may then be inferred by
observing the behavior of the damaged network in prey capture.

The main result of the lesion study is that the networks are quite robust (table 7.1).
When a any single neuron is lesioned, the behavior does not completely break down: the
predator’s tendency to pursue the prey is preserved to large extent, and it is still able to
perform significant prey capture. When two neurons are lesioned simultaneously there is
a corresponding double degradation in performance (varying between 38.1% for neurons 1
and 4 and 5% for 2 and 5).

It is difficult to attribute a particular behavior to any particular neuron. The coding
of behavior seems to be distributed across the network. These results are in line with those
of feedforward SANE networks for controlling a mobile robot (Moriarty 1997), where
elementary behaviors such as advancing and turning and stopping in front of obstacles
were also found to be distributed across multiple units. Recurrency apparently makes the
behaviors even more distributed. Very few of the recurrent weights of a successful network
are close to zero, which means that each neuron modulates the behavior of all other neurons.
As a result, the functions are distributed across the whole network, and the system is very
robust against degradations such as lesions, noise, and inaccurate weights values.

7.5 Discussion

Although the prey capture task takes place in discrete rather that continuous world, it is
still interesting and relevant due of the predator’s limited perception. Evolving controllers

83

that can operate in situations where sensory information may be interrupted is important in
many real-time tasks. For example, consider a collision detection system for a car. If the
sensors are temporarily obstructed or corrupted by say heavy rain or snow, a system that
possesses short term memory will still be able to predict the location of objects that are
no longer visible, and continue to make good decisions until sensory input is restored. In
general, recurrent networks can make control systems more robust to temporary faults and
noise by allowing actions to depend on more than just the immediate sensory input.

84

Chapter 8

Dynamic Resource Allocation for a Chip
Multiprocessor

As computer chip design moves to architectures with more and more CPUs on a single
chip, on-board controllers will be required to manage the various resources shared among
the processors. In particular, to make efficient use of the memory cache and maximize the
performance of the chip, some mechanism will be needed to assign cache banks dynami-
cally to the processors according to their individual memory requirements.

In this chapter, ESP is used to evolve such a controller. Like the prey capture task
in the previous chapter, the task requires the use of memory to predict future states of the
environment. However, this task represents a significant scale-up in complexity due to
the high-dimensionality of the state space and interdependence of the state variables. The
experiments compare the performance of the evolved controllers to a static assignment of
the cache resources, and show a significant improvement the instruction throughput of the
chip over a broad range of operating conditions.

8.1 Background and Motivation

For decades, the performance of single processor chips has improved at a rate of 50 to 60%
per year through an increase in both the clock rate and the number of transistors on the
chip. More transistors means that more instruction level parallelism (ILP) can be exploited
to increase performance by executing multiple, non-dependent instructions simultaneously.
Unfortunately, this trend cannot continue much longer. As transistors get smaller and faster,
the wires that connect them are becoming much slower, thereby limiting the number of
transistors that can be reached in a clock cycle (Agarwal et al. 2000). Furthermore, since

85

the amount of ILP in any given instruction stream is finite, there is a diminishing return in
performance with each increase in transistor count.

P

L2

main memory

L1

r

r

r w

w

w

Figure 8.1: Memory hierarchy. The dia-

gram shows a simplified view of the typical com-

puter memory hierarchy. The processor (P) has

read/write channels to access data in the caches

(L1,L2) and in main memory. A data access in-

volves checking each level of the hierarchy from

the L1 down, until the data is found.

In order to sustain performance growth
at its historical level, chip designers will have
to focus less on ILP and more on parallelism
at the thread or even process level. New mi-
croarchitectures will be partitioned into in-
dependent physical regions each containing
its own CPU core and memory cache (Ham-
mond et al. 1997; Sohi et al. 1998). Each
region will occupy only a small portion of
the entire chip so that wire lengths are short-
ened along critical paths allowing the design
of each core to be simplified and optimized
for speed. While sacrificing some ILP, these
chip multiprocessors, or CMPs, can execute
multiple independent instruction streams si-
multaneously. As parallelizing compilers im-
prove and become more widespread, and par-
allel programming techniques become more
accepted, CMPs promise to scale chip per-
formance well into the future.

Commercial CMPs have already started to emerge including the IBM Power4 pro-
cessor (Diefendorff 1999), which has two processing cores per die, the eight-core Com-
paq Piranha (Barroso et al. 2000), and many other designs are currently being studied in
academia, e.g. Stanford’s Hydra (Hammond et al. 2000) and RAPTOR (Lee et al. 1999) at
Korea University.

An open question is how the memory hierarchy of CMPs will be designed as the
number of cores on a chip increases from two to eventually hundreds. All modern computer
architectures use memory hierarchies to minimize the frequency with which data accesses
to main memory occur. The typical configuration consists of two levels of cache, level-one
(L1) and level-two (L2), that intervene between the CPU and main memory (figure 8.1).
Whenever the CPU needs to access a piece of data, each level of the hierarchy is checked
in succession until the data is found or “hit.” The lower the level of the hit in the hierarchy,
the longer the delay, and potentially the longer the CPU has to wait to resume execution.

In the ideal case, all of the data required during the execution of an instruction

86

stream (i.e. a program) is loaded into the cache once, and the CPU never has to wait for
data from main memory. However, since the exact memory access behavior cannot be
known in advance and the cache space is finite, cache misses are inevitable. In order to
optimize the memory design for a single processor machine, the L1 needs to be relatively
small so that it is fast, and the L2 must be large so that fewer misses occur, but not so large
that it is slow and significantly increases the penalty for a miss in the L1.

When there are multiple processors on the same chip, designing the memory hier-
archy is potentially more complicated because some levels may be shared. It is likely that
each core in future CMPs will have a private L1 cache, which will be small and tightly
coupled to its processing core. The L2 caches, however, will consume much of the die
to reduce the frequency with which processors must go off the chip for data. These L2
caches will total tens (and eventually hundreds) of megabytes in size, and will be divided
into hundreds of physical banks.

In the simplest configuration, each core is assigned its dedicated memory resources
(i.e. some number of L2 cache banks) at design time. However, such a static assignment
is suboptimal, as different workloads have different memory requirements that vary over
time. For instance, if job A is only using a small fraction of its L2 cache, and job B is
memory bound, then performance would be improved by dynamically assigning some of
the cache banks from job A’s processor to job B.

A more flexible and potentially powerful solution is to allow the partitioning of the
L2 resources to be determined by an on-board controller that dynamically allocates cache
banks to cores. The controller would be responsible for managing the resources adaptively
in response to the changing needs of the jobs running on the individual cores. For such a
controller to be practical it must have an efficient implementation so that decisions can be
made within the tight time constraints imposed by the operation of the chip. A sufficiently
low-overhead implementation could significantly improve the performance of the CMP by
allocating resources to where they contribute most to maximizing some desired measure of
overall chip performance, e.g. the number of instructions executed per clock cycle (IPC).
In the experiments below, ESP is used to evolve a recurrent neural network controller to
manage the L2 cache resources. The next section describes the task in more detail and
examines the challenges inherent in this problem.

8.2 Design Challenges

Figure 8.2 gives a high level view the control scheme for the hypothetical CMP used in this
study. The CMP has four processing cores surrounded by a number of L2 cache banks. At

87

CMP controller

CMP
processing
core

3 4

21

L2 cache
bank

decisionstate

Figure 8.2: Controlling a Chip Multiprocessor. The CMP consists of a number of cores (in this
case four) surrounded by L2 cache banks. Each core has its own private L1 cache situated at close
proximity (not shown). The controller receives measurements from the chip at regular intervals and
outputs a decision to optimize some measure of performance (e.g. IPC) by assigning each L2 cache
bank to a core.

regular intervals, the controller receives information about the state of the CMP, and uses
this information to assign a number of cache banks to each core.

The following three properties of the CMP make designing such a controller diffi-
cult.

1. High dimensionality: with n cores the input and output dimensionality of the con-
troller is O(n), and future CMPs are expected to contain hundreds of cores.

2. Non-Markov task: making effective decisions requires more information than just
the current state of the chip.

3. Highly variable operating conditions. The controller must optimize performance for
all combinations of possible jobs and their characteristic memory access behaviors.

Together these three properties make it impossible to accurately predict the behavior
of the CMP in a timely manner. In general it is not known in advance what affect an
action will have on future states of the CMP. Therefore, the problem can be viewed as
one of delayed reward where the relative merit of a particular sequence of cache allocation
decisions is determined by the performance of the CMP over the long term with respect to
some cost function—a reinforcement learning problem.

88

As we have seen in the comparisons of chapter 4, conventional reinforcement learn-
ing methods are not suited to this kind of high-dimensional, non-Markov environment. In
contrast, ESP can cope with such environments. Moreover, using ESP guarantees the re-
sulting controller will be efficient since it can be realized in hardware as a dedicated parallel
processor. The more important issue for neuroevolution is property 3: the CMP is expected
to operate effectively over the entire range of likely workloads. Any practical evaluation
regime can only sample a small subset of these conditions, and therefore the fitness mea-
surement could be potentially very noisy.

8.3 CMP Controller Experiments

8.3.1 Simulation Environment

Controllers were evolved in an approximation to the CMP environment that relies on traces
collected from the SimpleScalar processor simulator (Burger and Austin 1997). A trace
is a sequence of measurements of processor variables sampled at fixed intervals, and is a
common way to capture various characteristics of processor behavior (Prete et al. 1995).
A set of traces was generated for each of the following SPEC2000 benchmarks: art,
equake, gcc, gzip, parser, perlbmk, and vpr, using their respective refer-
ence working-sets. Each benchmark’s trace set consists of one trace for each possible L2
cache size s ∈ S = {64K, 128K, 256K,

. . . , L2tot}, for a total of 7 × |S| traces. The parameter L2tot} is the total amount of L2
cache available on the CMP. For convenience, traces are identified by the naming scheme:
<benchmark name><cache size>. For example, gcc256 is the trace for the
gcc benchmark for a processor with 256K of L2 cache. All traces recorded instructions
per cycle (IPC), L1 cache miss rate (L1m), and L2 cache miss rate (L2m) of the simulated
processor every 10,000 instructions using the DEC Alpha 21264 processor configuration.
These three variables constitute the state of the chip that is observable to the controller, and
were chosen intuitively to be the measurements most relevant to L2 cache resizing.

The traces provide a substitute for the actual CMP for which a full simulator is
not currently available. By combining n traces, a CMP with n processing cores can be
approximated. Taking the recorded values (IPC,L1m,L2m) from the k-th entry in each of
the n traces gives the state that the CMP would be in after 10, 000 × k instructions have
been executed on each of the cores.

89

64K
128K
256K
512K
1Meg
2Meg
4Meg
8Meg

64K
128K
256K
512K
1Meg
2Meg
4Meg
8Meg

64K
128K
256K
512K
1Meg
2Meg
4Meg
8Meg

time

Benchmark K

Benchmark 2

Benchmark 1

Core 2

Core C

Core 1

Figure 8.3: Trace environment. The CMP is approximated by several sets of traces, one for each
benchmark. There are as many traces active during a network evaluation as there are cores. There
is one trace in each set for each of the cache sizes. When the controller changes a core’s cache size
the trace environment switches over to the appropriate trace.

8.3.2 Control Architecture

Figure 8.4 shows the representation used in the experiments. The input layer receives the
IPC, L1m, and L2m of each core {ci}C

i=1, for a total of 3C input units. Because the networks
are recurrent, each neuron also receives the hidden layer activation from the previous time-
step. There is one output unit per core, and all hidden and output units are sigmoidal.

At each decision point, the network outputs a vector o ∈ �C that is normalized and
quantized to produce a vector u ∈ �C of cache size assignments

ui = f

(
oi∑C
j oj

)
, f : [0, 1] → S (8.1)

where f is the quantizing function and
∑

ui ≤ L2tot. This post-processing ensures that

90

u1 u2 u3 uC

o1 o2 o3 oC

Hidden Layer

Output

Input

Hidden Layer

Output

Input
IPC L1m L2m

core C

IPC L1m L2mIPC L1m L2m

core 1 core 2

Normalize/Quantize

L2 cache sizes

Figure 8.4: CMP control network. The network has a set of input units for each core, one unit
for each of the three performance measurements (IPC,L1m,L2m). There is one output unit per core.
The activation of the output unit for core i, oi, (indicated by gray-scale coding) is normalized and
quantized to produce a cache size request, ui, for that core.

the total amount of cache requested never exceeds the total cache available, L2tot, and
partitions each output unit’s continuous output into |S| levels, i.e. the predefined number of
possible cache sizes.

8.3.3 Experimental Setup

Controllers were evaluated by having them interact with the trace-based environment for
some fixed number of control decisions. At the beginning of a network evaluation the en-
vironment is initialized by selecting a set of C benchmarks at random, and allocating an
equal amount of L2 cache to each core (L2tot/C). Once initialized, the network starts con-
trolling the CMP by receiving the state of the chip at time t from the traces corresponding
to caches of size L2tot/C. The network then outputs its cache allocation decision which
affects the configuration of the chip from t until the next decision point at time t+1, 10,000

91

instructions later. The next state at t + 1 then becomes the new input to the controller and
the cycle is repeated.

Parameter Value
Environment

no. of cores (C) 4
total L2 cache (L2tot) 4M
caches sizes (|S|) 7 (64k..4M)

ESP
no. of subpops 10
size of subpops 100
burst criteria 20
mutation rate 30%

Figure 8.5: Task parameters. The val-

ues for ESP are a compromise between perfor-

mance (i.e. the quality of the solution) and the

CPU time required for the simulation. Larger

values produced similar results with a linear in-

crease in CPU time.

In a real CMP, the reassignment of a
cache bank from core A to core B would cause
the entire caches of A and B to be unavailable
for a significant number of cycles while their
data is being written back to memory. In these
experiments, this overhead is ignored and the
chip is simply reconfigured by switching to the
trace corresponding to the new cache size (fig-
ure 8.3). So, for instance, if the controller de-
cides that core c1, which is currently execut-
ing the gzip benchmark with a 256K cache,
should have 512K, then the trace for c1 will
switch from gcc256 to gcc512, and the con-
troller will receive values from gcc512 at the
next decision point. The new trace is started
at the same point as the old one (i.e. the same
number of instructions into the computation).
When a trace runs out, the environment switches to the trace of a different, randomly se-
lected benchmark at the same cache size (see trajectory of core C in figure 8.3). The
evaluation ends after some predefined number of cycles.

All of the experiments presented here were conducted using the parameter settings
in figure 8.5. With 7 possible cache sizes available to each core and 7 benchmarks, a total
of 49 traces were used to implement the environment. Each network was evaluated for 1
billion instructions (i.e. 100,000 decisions). The fitness of a network was the average IPC
of the chip averaged over the duration of the trial.

Although using this trace-based approach simplifies the CMP environment some-
what, it provides a good first approximation with which to evaluate the feasibility of actu-
ally applying ESP to a full-scale version of the simulator, once it becomes available. Fur-
thermore, if the CMP is reconfigured using a much more efficient implementation where
the number of cache banks assigned to a core is changed by increasing or decreasing the
associativity of its total cache, then the trace-based model more closely approximates the
true behavior of the chip.

92

256k

64k

128k

512k

2M

1M

256k

64k

128k

512k

2M

1M

256k

64k

128k

512k

2M

1M

256k

64k

128k

512k

2M

1M

instructions x 10000

C
ac

he
 s

iz
es

 core 4

 core 1 core 2

 core 3
100000

0 20000 40000 60000 100000

0 20000 40000 60000 80000

0 20000 40000 60000 80000 10000080000

0 20000 40000 60000 80000 100000

Figure 8.6: Control behavior. Each plot shows the cache size of each of the 4 cores executing one
the benchmarks for 1 billion instructions. (expand, more analysis)

8.4 Results

Five simulations were run on a 14-processor Sun Ultra Enterprise 5500 for approximately
1000 generations each. At the end of each simulation the fitness of the best network was
compared to a baseline performance value that is the average IPC of the chip obtained when
the total amount of L2 cache on the chip is divided equally among the cores. The networks
showed an average improvement of 16% over the baseline.

However, since this result is measured from a single trial, it only indicates the net-
works performance under the specific conditions experienced during that trial. To measure
how well the networks perform the general task despite their limited exposure to the envi-
ronment, the best network from each of the 5 simulations was submitted to a generalization
test. The test consists of 1000 trials where the network controls the chip for 1 billion in-
structions under random initial conditions. In each trial, the baseline performance was also
measured. Once all the trials were completed, the network performance was compared to
the baseline across all trials. The result of this test showed that the networks still retained
a 13% average performance advantage over the baseline, and, perhaps more importantly,
the networks performed better than the baseline on every trial. These tests show that al-
though the networks had very limited exposure to the task during evolution, they were able

93

to extract general competence to perform well under novel circumstances.
Figure 8.6 shows the behavior of one of the best networks over the course of 100,000

decisions. It is clear that the different cores that are running different benchmarks are being
managed differently. Core c1 stays almost entirely at 64K while the others oscillate rapidly
within characteristic ranges. This oscillation is an artifact of not imposing an overhead on
cache re-sizing.

8.5 Discussion

The experiments in this chapter represent a first step toward solving the complex resource
management problem that will be critical as large-scale chip multiprocessors become widespread.
The results indicate that ESP could potentially provide an effective mechanism for devel-
oping a CMP cache resource manager.

The trace-based model currently ignores the following characteristics of the CMP
microarchitecture: (1) As mentioned in the previous section, since there is no penalty as-
sociated with reconfiguring the chip, the controller may change the size of the caches more
frequently than would be optimal for the actual CMP, (2) it treats all cache banks as if they
are equidistant from each of the cores without accounting for the variability in cache access
latencies that exist due the physical layout of the chip—some banks are necessarily further
from a core and require more cycles to access, and (3) to reduce the number of traces in the
model, the cache sizes available to each core grow in powers of 2 (2n × 64K), instead of
linearly (n × 64K). This limits control to a relatively coarse partitioning of the cache.

A model that incorporates these complexities will force ESP to evolve controllers
that are more reserved in their resource management regime, favor cache banks that reside
at close proximity to the cores, and are able to control resources at a finer granularity.
It is important to note that unlike physical dynamical systems, a CMP simulator can be
built which perfectly replicates the behavior of the actual CMP (Pai et al. 1997; Ikodinovic
et al. 1999). Therefore, transfer in this task is not an issue. However, characterizing and
simulating realistic workloads will still be important to ensure that controllers are evaluated
under conditions that are representative of what can be expected in the real world.

94

Chapter 9

Active Guidance of a Finless Rocket

Figure 9.1: The Interorbital Systems
RSX-2 rocket. The RSX-2 is capable of lift-

ing a 5 pound payload into the upper atmosphere

using four liquid-fueled thrusters. It is the only

liquid-fueled sounding rocket in production. Such

rockets are desirable because of their low acceler-

ation rates and non-corrosive exhaust products.

Finless rockets are more efficient than
conventional finned designs, but are too un-
stable to fly unassisted. These rockets re-
quire an active guidance system to control
their orientation during flight and keep them
from tumbling. However, because the dy-
namics of these rockets are highly non-linear,
designing such a guidance system can be pro-
hibitively costly.

In this chapter, ESP is used to evolve
an active guidance system for a finless ver-
sion of Interorbital Systems RSX-2 rocket.
This is the most challenging control problem
attempted in this dissertation. Not only is the
environment continous, high-dimensional, and
non-linear, but the difficulty of the task changes
during the course of each evaluation. In con-
trast to the optimization task in the previous
chapter... The experimental results show that
the evolved guidance system can increase the
final altitude of the finless rocket far beyond
that of the unguided full-finned version.

95

9.1 Background and Motivation

Sounding rockets carry a payload for making scientific measurements to the Earth’s up-
per atmosphere, and then return the payload to the ground by parachute. These rockets
serve an invaluable role in many areas of scientific research including high-G-force testing,
meteorology, radio-astronomy, environmental sampling, and micro-gravity experimenta-
tion (Corliss 1971; Seibert 2001). They have been used for more than 40 years; they were
instrumental e.g., in discovering the first evidence of X-ray sources outside the solar sys-
tem (Giacconi et al. 1962). Today, sounding rockets are much in demand as the most
cost-effective platform for conducting experiments in the upper atmosphere.

Figure 9.1 shows one such sounding rocket, the Interorbital Systems RSX-2. The
RSX-2 is a low-cost, state of the art design that uses four liquid-fueled engines. Like all
sounding rockets and most rockets in general, the RSX-2 is equipped with fins to keep
the rocket on a relatively straight path and maintain stability. While fins are an effective
“passive” guidance system, they increase both mass and drag on the rocket which lowers
the final altitude or apogee that can be reached with a given amount of fuel. A rocket
with smaller fins or no fins at all can potentially fly much higher than a full-finned version.
Unfortunately, such a design is unstable, requiring some kind of active attitude control or
guidance to keep the rocket from tumbling. In the case of the RSX-2, active guidance could
be implemented by controlling the amount of thrust from each of the four engines.

Finless designs have been used for decades in expensive, large-scale launch vehicles
such as the USAF Titan family, the Russian Proton, and the Japanese H-IIA. The guidance
systems on these rockets are based on classical feedback control such as Proportional-
Integral-Differential (PID) methods to adjust the thrust angle (i.e. thrust vectoring) of the
engines. Because rocket flight dynamics are highly non-linear, engineers must make sim-
plifying assumptions in order to apply these linear methods, and take great care to ensure
that these assumptions are not violated during operation. Such an undertaking requires
detailed knowledge of the rocket’s dynamics that can be very costly to acquire. Recently,
non-linear approaches such as neural networks have been explored primarily for use in
guided missiles (see (Liang Lin and Wen Su 2000) for an overview of neural network con-
trol architectures). Neural networks can make control greatly more accurate and robust,
but, unfortunately, still require significant domain knowledge to train.

For these reasons, the cost of developing finless versions of small-scale rockets,
like the RSX-2, has been prohibitive. However, using ESP it may be possible to solve the
guidance problem without the need for analytical modeling of the rocket’s dynamics or
prior knowledge of the appropriate kind of control strategy to employ. All that is required

96

roll

(a) Fins: stable

CG

CP

CG

CP

Thrust

Drag

(b) Finless: unstable

αα

β β

pitch
yaw

Side force

Lift

Figure 9.2: Rocket dynamics. The rocket (a) is stable because the fins increase drag in the rear
of the rocket moving the center of pressure (CP) behind the center of gravity (CG). As a result,
any small angles α and β are automatically corrected. In contrast, the finless rocket (b) is unstable
because the CP stays well ahead of the CG. To keep α and β from increasing, i.e to keep the rocket
from tumbling, active guidance is needed to counteract the destabilizing torque produced by drag.

is a sufficiently accurate simulator and a quantitative measure of the guidance system’s
performance, i.e. a fitness function.

9.2 Stabilizing the Finless RSX-2 Rocket

The rocket guidance domain is similar to pole-balancing in that both involve stabilizing
an inherently unstable system. Figure 9.2 gives a basic overview of rocket dynamics. The
motion of a rocket is defined by the translation of its center of gravity (CG), and the rotation
of the body about the CG in the pitch, yaw, and roll axes. Four forces act upon a rocket in
flight: (1) the thrust of the engines which propel the rocket, (2) the drag of the atmosphere
exerted at the center of pressure (CP) in roughly the opposite direction to the thrust, (3)
the lift force generated by the fins along the yaw axis, and (4) the side force generated by
the fins along the pitch axis. The angle between the direction the rocket is flying and the
longitudinal axis of the rocket in the yaw-roll plane is known as the angle of attack or α, the
corresponding angle in the pitch-roll plane is known as the sideslip angle or β. When either

97

mach 1 mach 2 mach 3 mach 4

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

mach 2mach 1 mach 3 mach 4

Altitude: ft. Altitude: ft.
30000 40000 50000 60000 70000 80000 90000

(a) (b)

20000

800

600

400

200

0

1000

1200

D
ra

g:
 p

ou
nd

s

C
P:

 f
t.

ah
ea

d
of

 C
G

10

12

14

8

6

4

100000

Figure 9.3: The time-varying difficulty of the guidance task. Plot (a) shows the amount of drag
force acting on the finless rocket as it ascends through the atmosphere. More drag means that it takes
more differential thrust to control the rocket. Plot (b) shows the position of the center of pressure
in terms of how many feet ahead it is of the center of gravity. From 0 to about 22,000ft the control
task becomes more difficult due to the rapid increase in drag and the movement of the CG away
from the nose of the rocket. At approximately 22,000ft, drag peaks and begins a decline as the air
gets thinner, and the CP starts a steady migration towards the CG. As it ascends further, the rocket
becomes progressively easier to control as the density of the atmosphere decreases.

α or β is greater than 0 degrees the drag exerts a torque on the rocket that can cause the
rocket to tumble if it is not stable. The arm through which this torque acts is the distance
between the CP and the CG.

In figure 9.2a, the finned rocket is stable because the CP is behind the rocket’s
CG. When α (β) is non-zero, a torque is generated by the lift (side) force of the fins that
counteracts the drag torque, and tends to minimize α (β). This situation corresponds to a
pendulum hanging down from its hinge; the pendulum will return to this stable equilibrium
point if it is disturbed. When the rocket does not have fins, as in figure 9.2b, the CP is ahead
of the CG causing the rocket to be unstable. A non-zero α or β will tend to grow causing
the rocket to eventually tumble. This situation corresponds to a pendulum at its unstable
upright equilibrium point where any disturbance will cause it to diverge away from this
state.

Although the rocket domain is similar to the inverted pendulum, the rocket guidance
problem is significantly more difficult for two reasons: the interactions between the rocket
and the atmosphere are highly non-linear and complex, and the rocket’s behavior continu-
ously changes throughout the course of a flight due to system variables that are either not
under control or not directly observable (e.g. air density, fuel load, drag, etc.).

Figure 9.3 shows how the difficulty of stabilization varies over the course of a suc-

98

cessful flight for the finless rocket. In figure 9.3a, drag is plotted against altitude. From 0ft
to about 22,000ft, the rocket approaches the sound barrier (Mach 1) and drag rises sharply.
This drag increases the torque exerted on the rocket in the yaw and pitch axes for a given α

and β, making it more difficult to control its attitude. In figure 9.3b, we see that also during
this period the distance between the CG and CP increases because the consumption of fuel
causes the CG to move back, making the rocket increasingly unstable. After 22,000ft, drag
starts to decrease as the air becomes less dense, and the CP steadily migrates back towards
the CG, so that the rocket becomes easier to control.

For ESP, this means that the fitness function automatically scales the difficulty of
the task in response to the performance of the population. At the beginning of evolution
the task is relatively easy. As the population improves and individuals are able to control
the rocket to higher altitudes, the task becomes progressively harder. Although figure 9.3
indicates that above 22,000ft the task again becomes easier, progress in evolution continues
to be difficult because the controller is constantly entering an unfamiliar part of the state
space. A fitness function that gradually increases in difficulty is usually desirable because
it allows for sufficient selective pressure at the beginning of evolution to direct the search
into a favorable region of the solution space. However, the rocket control task is already
too hard in the beginning—all members of the initial population perform so poorly that the
evolution stalls and converges to a local maxima. In other words, direct evolution does not
even get started on this very challenging task. Therefore, the controller must be evolved
incrementally, first using a more stable finned version of the rocket, and then transitioning
to the goal task of stabilizing the finless version.

The following section describes the simulation environment used to evolve the con-
troller, the details of how a guidance controller interacts with the simulator, and the exper-
imental setup for evolving a neural network controller for this task.

9.3 Rocket Control Experiments

9.3.1 Simulation Environment

The sounding rocket environment was simulated using the JSBSim Flight Dynamics Model1

adapted for the RSX-2 rocket by Eric Gullichsen of Interorbital Systems. JSBSim is an
open source, object-oriented flight dynamics simulator with the ability to specify a flight
control system of any complexity. JSBSim provides a realistic simulation of the complex

1More information about the free JSBSim software package is available at:
http://jsbsim.sourceforge.net/

99

Figure 9.4: RSX-2 rocket simulator. The picture shows a 3D visualization of the JSBSim rocket
simulation used to evolve the RSX-2 guidance controllers. The simulator provides a realistic envi-
ronment for designing and verifying aircraft dynamics and guidance systems.

dynamic interaction between the airframe, propulsion system, fuel tanks, atmosphere, and
flight controls. The aerodynamic forces and moments on the rocket were calculated using
a detailed geometric model of the RSX-2.

full fin half quarter finless

Figure 9.5: Fin configurations.
Four versions of the RSX-2 were used in

the experiments, each with a different fin

size and CG location (black circles).

Four versions of the rocket with different fin
configurations were used: full fins, half fins (smaller
fins), quarter fins (smaller still), and no fins, i.e.
the actual finless rocket (figure 9.5). This set of
rockets allows the behavior of the RSX2 to be ob-
served at different levels of instability, and provides
a sequence of increasingly difficult evaluation tasks
with which to evolve incrementally. All simulations
used Adams-Bashforth 4th-order integration with a
time step of 0.0025 seconds.

100

9.3.2 Control Architecture

Figure 9.6: Neural network guidance.
The control network receives the state of the

rocket every time step through its input layer.

The input consists of the rocket’s orientation, the

rate of change in orientation, α, β, the current

throttle position of each engine, the altitude, and

the velocity of the rocket in the direction of flight.

These values are propagated through the network

to produce a new throttle command (the amount

of thrust) for each engine.

The rocket controller is represented by
a feedforward neural network with one hid-
den layer (figure 9.6). Every 0.05 seconds
(i.e. the control time-step) the controller re-
ceives a vector of readings from the rocket’s
on-board sensors that provide information about
the current orientation (pitch, yaw, roll), rate
of orientation change, angle of attack α, sideslip
angle β, current throttle position of the four
thrusters, altitude, and velocity in the direc-
tion of flight. This input vector is propagated
through the sigmoidal hidden and output units
of the network to produce a new throttle po-
sition for each engine determined by:

ui = 1.0 − oi/δ, i = 1..4 (9.1)

where ui is the throttle position of thruster i,
oi is the value of network output unit i, 0 ≤
ui, oi ≤ 1, and δ ≥ 1.0. A value of ω for ui

means that the controller wants thruster i to
generate ω × 100% of maximum thrust. The
parameter δ controls how far the controller is
permitted to “throttle back” an engine from
100% thrust.

9.3.3 Experimental Setup

Each ESP network was evaluated in a single trial that consisted of the following four
phases:

1. At time t0, the rocket is attached to a launch rail that will guide it on a straight path
for the first 50 feet of flight. The fuel tanks are full and the engines are ignited.

2. At time t1 > t0, the rocket begins its ascent as the engines are powered to full thrust.

101

3. At time t2 > t1, the rocket leaves the launch rail and the controller begins to modulate
the thrust as described in section 9.3.2 according to equation 9.1.

4. While controlling the rocket one of two events occurs at time tf > t2:

(a) α or β exceeds ±5 degrees, in which case the rocket is about to tumble, and the
controller has failed.

(b) the rocket reaches burnout, in which case the controller has succeeded.

In either case, the trial is over and the altitude of the rocket at tf becomes the fitness
score for the network.

Parameter Value
Environment

output scale (δ) 10
ESP

no. of subpops 10
size of subpops 500
burst criteria 50
mutation rate 80%

Figure 9.7: Task parame-
ters. ESP evaluated 5,000 net-

works per generation. The pa-

rameter δ is used in equation 9.1

to determine thrust of each en-

gine.

In a real launch, the rocket would continue after
burnout and coast to apogee. Since we are only concerned
with the control phase, for efficiency the trials were lim-
ited to reaching burnout. This fitness measure is all that
is needed to encourage evolutionary progress. However,
there is a large locally maximal region in the network weight
space corresponding to the policy oi = 1.0, i = 1..4; the
policy of keeping all four engines at full throttle. Since it is
very easy to randomly generate networks that saturate their
outputs, this policy will be present in the first generations.
Such a policy clearly does not solve the task, but because
the rocket is so unstable, no better policy is likely to be
present in the initial population. Therefore, it will quickly
dominate the population and halt progress toward a solu-
tion. To avoid this problem, all controllers that exhibited
this policy were penalized by setting their fitness to zero. This procedure ensured that the
controller was not rewarded for doing nothing.

All simulations used the parameter settings in figure 9.7. The parameter δ was set
to 10 so the network could only control the thrust in the range between 90% and 100%
for each engine. It was determined in early testing that this range produced sufficient
differential thrust to counteract side forces, and solve the task.

As was discussed in section 9.2, evolving a controller directly for the finless rocket
was too difficult and an incremental evolution method was used instead. First a controller
for the quarter-finned rocket was evolved. Once a solution to this easier task was found,
the evolution was transitioned to the more difficult finless rocket.

102

full fins no guidance

1/4 fins w/ guidance

finless w/ guidance

finless
no guidance

no guidance
1/4 fins

no guidance
1/2 fins

A
lti

tu
de

: f
t.

x
10

00

Time: seconds

0
0 10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

Figure 9.8: Burnout altitudes for different fin-size rockets with and without guidance. The
crosses indicate the altitude at which a particular rocket becomes unstable (i.e. either α or β > ±5
degrees). The circles indicate the altitude of a successful rocket that remained stable all the way
to burnout. The guided quarter-finned and finless rockets fly significantly higher than the unguided
full-finned rocket.

9.4 Results

ESP solved the task of controlling the quarter-finned rocket in approximately 600,000 eval-
uations. Another 50,000 evaluations were required to successfully transition to the finless
rocket. Figure 9.8 compares the altitudes that the various rockets reach in simulation. With-
out guidance, the full-finned rocket reaches burnout at approximately 70,000ft, whereas
the finless, quarter-finned, and half-finned rockets all fail before reaching burnout. How-
ever, with neural network guidance the quarter-finned and finless rockets do reach burnout
and exceed the full-finned rocket’s altitude by 10,000ft and 15,000ft, respectively. After
burnout, the rocket will begin to coast at a higher velocity in a less dense part of the at-
mosphere; the higher burnout altitude and the aerodynamically more efficient design of the
finless rocket translates into an apogee that is about 20 miles higher than that of the finned
rocket (figure 9.9).

Figure 9.10a shows the behavior of the four engines during a guided flight for the
finless rocket. The controller makes smooth changes to the thrust of the engines throughout
the flight. This very fine control is required because any abrupt changes in thrust at speeds

103

Time: seconds

A
lti

tu
de

: f
t.

x
10

00 }20.2
miles}miles

16.3

full fins 1/4 fins

finless

 0
 0 50 100 150 200 250 300 350 400

 100

 150

 400

 350

 300

 250

 200

 50

Figure 9.9: Final altitudes for the unguided full-finned, guided quarter-finned, and finless
rockets. After a sounding rocket reaches burnout, it continues to coast up to apogee where it makes
its scientific measurements. Because the quarter-finned and finless rockets begin to coast at higher
altitudes (where the atmosphere is less dense), with greater velocity and less drag than the full-finned
version, they can fly up to 20 miles higher with the same amount of fuel.

of up to Mach 4 can quickly cause failure. Figure 9.10b shows α and β for the various
rockets with and without guidance. Without guidance, the quarter-finned and even the half-
finned rocket start to tumble as soon as α or β start to diverge from 0 degrees. Using
guidance, both the quarter-finned and finless rockets keep α and β at very small values up
to burnout. Note that although the finless controller was produced by further evolving the
quarter-finned controller, the finless controller not only solves a more difficult task, but is
also better able to minimize α and β.

9.5 Discussion

The rocket control task is representative of many real world problems such as manufactur-
ing, process control, and robotics that are characterized by complex non-linear interactions
between system components. The critical advantage of using ESP over traditional engi-
neering approaches is that it can produce a controller for these systems without requiring
formal knowledge of system behavior or prior knowledge of correct control behavior. To

104

T
hr

ot
tle

 %

Altitude: ft.

(a)

(b)

α β
α

β

de
gr

ee
s

1/4 fin unguided

1/2 fin unguided

1/4 fin guided

finless guided

αα

β
β

Altitude: ft.

−2

−1

0

1

2

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

100

98

96

94

92

90

Figure 9.10: Controller performance for the finless rocket. Plot (a) shows the policy imple-
mented by the controller. Each curve corresponds to the percent thrust of one of the four rocket
engines over the course of a successful flight. After some initial oscillation the control becomes
very fine, changing less than 2% of total thrust for any given engine. Plot (b) compares the values α
and β for various rocket configurations, and illustrates how well the neural guidance system is able
to minimize α and β. The unguided quarter-finned and half-finned rockets maintain low α and β
for a while, but as soon as either starts to grow the rocket tumbles. In contrast, the guidance system
for the quarter-finned and finless rockets is able to contain α and β all the way up to burnout. The
finless controller, although evolved from the quarter-finned controller, is more optimal.

105

evolve a successful controller, ESP only had to measure the final altitude of each guidance
attempt.

Of equal importance is the result that the differential thrust approach for the fin-
less version of the current RSX-2 rocket is feasible. Prior to these experiments, it was not
known whether the current performance specifications of the RSX-2’s engines would pro-
vide responsive enough control to utilize this control scheme. Also, having a controller that
can complete the sounding rocket mission in simulation has provided valuable information
about the behavior of the rocket that would not otherwise be available.

Future work with the RSX-2 is discussed in the next chapter.

106

Chapter 10

Discussion and Future Directions

In this chapter, I discuss the three components of the methodology, and offer some direc-
tions for the future improvement of each. Several promising opportunities for applying the
method to new domains are also presented, and a plan is outlined for continuing work in
the rocket guidance problem.

10.1 ESP

10.1.1 Strengths and Limitations

ESP provides an efficient means to solve complex non-linear control tasks. By coevolving
separate neuron subpopulations, ESP is able to form specializations rapidly, and reliably
discover fruitful regions of the search space. The strength of the algorithm is further en-
hanced by burst mutation. As long as ESP can discover individuals in a neighborhood
around a solution, it can still solve the task even after convergence by burst mutating and
refocusing the population in that neighborhood. If ESP does not converge in or near such
a neighborhood, burst mutation may not be able to escape the local minima. In situations
where this problem occurs consistently, ESP can be run with larger subpopulations or, if
possible, an easier configuration can be chosen as the initial task.

In chapter 4, ESP was shown to be significantly faster than the other methods studied
across the entire suite of tasks; it solved even the most difficult tasks in which several of
the methods could make little or no progress. This result is important because despite
its superior performance on these tasks, neuroevolution continues to receive much less
attention from the machine learning community than conventional reinforcement methods.
A key thrust of the comparisons is to raise the profile of NE and inspire broader research

107

interest in the field.

Although ESP’s performance was roughly equal to that of NEAT in the pole bal-
ancing domain, I believe that the simplicity of ESP could be an overriding advantage when
applying neuroevolution to more difficult tasks. NEAT, with its 23 user parameters, may
prove more difficult to configure than ESP when applied to tasks that require larger net-
works, i.e. tasks that make more demanding use of NEAT’s topology growing mechanism.
Further study will be required to determine the parameter sensitivity of NEAT, and assess
which types of problems benefit most from either of the two methods.

An interesting area for future work is to explore possible combinations of the two
algorithms that would evolve both at the neuron and network level. For example, an ESP-
like neuron level could provide the “raw material” for a NEAT-like network level. The
network level evolves topologies or network templates that are instantiated with neurons
selected from the neuron level. This idea is similar to the blueprints in SANE except
that instead of specifying which neurons should be combined, the templates describe how
different types of neurons should be combined. The challenge would be to organize the
neurons such that they can adapt to perform useful functions in the different emerging
topologies. Such a system could potentially harness the efficiency of neuron coevolution
while also optimizing topology.

10.1.2 Probabilistic Subpopulations using Local Information

Currently, the number of subpopulations in ESP and their size is specified by the user at the
outset of evolution. In addition, neurons are never permitted move to other subpopulations
or mate with members of other subpopulations. While this restriction allows the neurons
to specialize rapidly, an algorithm with softer boundaries between subpopulations might be
able to sustain diversity for a longer period by allowing for some degree of neuron migra-
tion. This could be accomplished by making subpopulation membership probabilistic.

Each neuron maintains a probability mass function that it learns by sampling its own
fitness in different network positions. Initially, all probabilities are uniform for all neurons
(i.e. no preference for any particular hidden unit position). After the first generation each
neuron develops a preference for some network positions over others as it obtains local
information about which positions produce higher fitness. The probabilities would also
be used to determine mating so that a neuron’s preference becomes increasingly greedy
throughout its lifetime, until the algorithm eventually approaches something close to ESP.
Evolution starts with neurons that are positioned in networks at random (as in SANE), and
gradually transitions toward disjoint subpopulations (ESP). The total number of neurons

108

would still be fixed, but the subpopulation sizes would change, assigning more neurons to
network positions where they are most needed. This annealing process could help avert
premature convergence giving evolution more time to discover a good region of the search
space.

10.1.3 Probabilistic Subpopulations using Global Information

A more global approach than the one above could improve the autonomy of the algorithm
even further by allowing the number of overlapping clusters of neurons to be determined au-
tomatically. For instance, if the population were modeled as a high-dimensional Gaussian
Mixture Model (GMM), the number of clusters could be determined using the Expectation-
Maximization (EM) algorithm. Initially, the neurons are distributed at random throughout
the weight space and the EM is used to find the centers and variances of some predefined
number of Gaussians (i.e. the number of hidden units in the networks) that fit the distribu-
tion. Then networks are formed by selecting one neuron from each cluster probabilistically,
according to the model. The best neurons within each cluster are mated, and EM is run
again on the new population, but now without specifying the number of clusters.

This way, not only would cluster membership be determined automatically, but the
size of networks would be set by the changing distribution of neurons throughout the weight
space. It is possible that such an algorithm would act to distribute neurons so that larger
or smaller networks would be formed in response to the requirements of the task. Taking
this idea one step further, the GMM representation could be used directly to generate new
individuals in addition to those created through crossover. The approach could provide an
additional source of diversity, and be generalized to other non-Gaussian kernel functions
that may turn out to be better suited for neuroevolution.

Other extensions to ESP have already been implemented by other researchers, in-
cluding combining ESP with rule-based systems (Fan et al. 2003), and adding another level
to the system by using multiple conventional ESP processes to coevolve modules in hierar-
chical neural networks (Yong and Miikkulainen 2001).

10.1.4 Large-Scale Parallel Implementation of ESP

While improvements to the ESP algorithm should make it a more reliable method for a
given population size, re-implementing the algorithm for parallel execution will greatly
increase the population sizes the are feasible, and expand the range of tasks that can be
solved efficiently. ESP, like most evolutionary systems, can be sped-up at a rate that is

109

linear in the number of processors used because each network evaluation in a generation
can be performed independently.

To allow for the maximum number of processors to be utilized, I propose a parallel
implementation of ESP that is based on a client-server model where the server and clients
communicate primarily through a shared file system. At the beginning of a run the server
is started on one machine and waits until it receives a signal from some number of clients
each of which is running on a different remote machine. The server then generates random
subpopulations of neurons, writes them to a file, and broadcasts the filename to the clients.
Each client reads the file, evaluates some number of networks, and writes their fitnesses to
another file that the server reads when all of the clients have completed their evaluations.
The next generation begins after the server recombines the neurons, writes the new sub-
populations to the file system, and, once again, signals the clients to start the next round of
evaluations.

Since the CPU time of ESP is dominated by network evaluations (over 98% of the
total CPU time for the tasks examined in this dissertation) and the clients only need to syn-
chronize at generation boundaries, performing file I/O once per generation incurs negligible
overhead and provides a simple and portable architecture. In chapter 8, a multi-threaded
implementation was used to parallelize ESP for a specific shared-memory multiprocessor
machine, the 14-processor Sun Enterprise. The implementation described here is more
general, allowing a single ESP run to be distributed over an arbitrary number of processors,
potentially harnessing the entire computational resources of e.g. local academic comput-
ing networks which commonly have one to several hundred machines. A speed increase
of two orders of magnitude means that much larger simulations can be run, and, of equal
importance, that more simulations can be run to study the task and determine useful envi-
ronmental parameters. For instance, the large simulations that are planned for the RSX-2,
which will require roughly a week of CPU time using the current implementation, could be
reduced to a couple of hours.

10.2 Incremental Evolution

Although shaping is not a new concept, my work in this area constitutes some the first in
applying the idea to evolution. Incremental evolution is a simple mechanism that allows
the user to incorporate task knowledge to guide the evolutionary process at a coarse level
of granularity. The technique should be applicable to all problems that can be naturally
decomposed into a sequence of increasingly complex tasks. However, the user has to de-
termine the free parameters that will reliably afford successful transitions for a population

110

of a given size. This may not always be easy to do: there may not always be a clear way
to simplify a task without decorrelating it completely from the goal task, and it may not
always be easy to determine the relative difficulty of asks.

However, the experiments in chapters 5, 7, and 9 show that, in practice, a reasonably
low level of domain knowledge required to make effective use of incremental evolution. In
the prey capture task, the problem was decomposed in a very intuitive manner that did
not require special knowledge of the prey’s policy. Likewise, in the rocket guidance do-
main, the problem of controlling the finless rocket was made possible by adding small fins
to incrementally increase the rocket’s stability—a solution that required only superficial
knowledge of basic rocket dynamics. Furthermore, at least for Artificial Life and robot
control, the task sequences are usually easy to come by because the goal task often sub-
sumes natural layers of behavior (Brooks 1986).

10.2.1 Task Prediction

Incremental evolution relies on the user’s intuition about the structure of the configuration
space. To traverse the configuration space effectively requires some knowledge of the rel-
ative evolvability of different evaluation tasks. Currently, the incremental method does not
exploit any task knowledge that may become available after some number of task transi-
tions have taken place.

If the sequence of evaluation tasks T : {t1, t2, . . . , tn} are related (as they should
be), the solution of a subsequence of T , say T̃ : {t1, t2, . . . , tn−k} could provide some
knowledge about tn−k+1. It is very possible that T̃ represents a directed path in the weight
space that can be used to predict where in the configuration space to start looking for the
next solution network. For instance, a linear regression could be performed on the weights
of the sequence of networks in T̃ to extrapolate a likely location of the next network. Burst
mutating around this predicted point space could then lead to the solution of an evaluation
task closer to the goal than would otherwise be attempted.

This approach could make incremental evolution more automatic, efficient, and ca-
pable of dealing with larger task transitions.

10.3 Controller Transfer

Transfer is potentially the most important stage in developing a neuroevolved controller.
No matter how well the controller performs in the simulation environment, if it cannot

111

transfer successfully to the target environment, it is of no practical use. In some domains
such as game-playing, transfer is not an issue, but for physical systems it must be ensured.

The experiments in chapter 6 revealed that a relatively accurate model combined
with sensor noise may not be sufficient to ensure transfer when the target environment is
inherently unstable. Transforming the deterministic model into a stochastic one by injecting
trajectory noise improved the transferred controllers significantly. The controllers were
able to cope with a wide variety of conditions in the target environment that they had not
experienced in the simulation environment.

This dissertation contributes the first examination of transfer in problems involving
unstable systems, and demonstrates how such transfer can be achieved in principle. More
research is needed to learn how to apply trajectory noise more optimally in order to max-
imize the amount of model error that can be tolerated. For example, different levels of
trajectory noise could be applied to each state variable so that high levels of noise are used
to widen the trajectory envelope in those dimensions where it is most needed, while main-
taining the same level of evolvability (i.e. the number of evaluations required to solve the
task) by reducing noise in less critical dimensions.

Instead of broadly sampling the state space to generate a training set for the model,
future experiments should use data derived from an existing controller. This is important
because in many real applications training data can only be obtained from the region of the
state space that is visited while the system is being controlled. It would be interesting to
see how well the controller can cope with regions of the target state space that were not
explicitly modeled.

The next logical step is to apply the principles to a small-scale, but real, transfer
experiment. On possibility is to use a physical apparatus such a pole balancer or similar
unstable mechanical system. A model would be trained using data sampled directly from
encoders mounted on the apparatus. Such an experiment would help validate the results in
chapter 6, and provide more concrete information about the transfer process in a safe and
inexpensive environment.

Together, ESP, incremental evolution, and transfer with trajectory noise provide a
comprehensive base on which to build new and more powerful neuroevolution systems, and
establish neuroevolution as a practical and effective design tool.

10.4 Applications

Beyond measuring performance on benchmark tasks, the real test of ESP lies in the applica-
tions. Too often learning methods are tested on limited problems and never fully evaluated

112

on full scale applications. The CMP resource allocation task (chapter 8) and the rocket
guidance task (chapter 9) show that ESP can scale to the full complexity of the real world.
These two applications exhibit all of the characteristics that must be dealt with to solve
difficult control problems: non-linearity, high-dimensionality, continuous state and action
spaces, partial observability, and stochasticity.

The ability to cope with various types of complexity in the environment suggests
that ESP should be widely applicable outside the class of tasks treated in this dissertation.
Already the algorithm has been applied to such diverse problems as discovering strategies
in the game of Go (Perez-Bergquist 2001; Lubberts and Miikkulainen 2001), optimizing an
aluminum recycling plant (Greer et al. 2002), developing cooperative strategies in robotic
soccer (Whiteson et al. 2003), and evolving adaptive agent teams (Bryant and Miikkulainen
2003).

The RSX-2 will be the primary focus of ongoing research. The domain not only
offers an interesting control problem, but also provides a rare opportunity to take the con-
troller development process to completion. Future work will involve first changing the
control scheme so that instead of generating a continuous control signal, the network will
output a binary vector indicating whether or not each engine should “throttle back” to a
preset low throttle position. This modification will simplify the control hardware on the
real rocket by not requiring the engines to maintain arbitrary throttle settings.

Once a controller is evolved using this new scheme, work will focus on making
the controller more robust by following the procedure developed in chapter 6. The target
environment for this problem is characterized by variable and unpredictable conditions. Air
density and wind intensity change at different rates through the atmosphere depending on
the weather (which itself is not constant). In order to produce a sounding rocket that can be
used in as wide a range of launch conditions as possible, new simulations must incorporate
wind, and noise to force the controller to adopt a robust policy.

Incremental evolution will play an important role in this process. Starting with
a controller that can stabilize the finless rocket under complete calm, wind will be intro-
duced in stages, incrementally increasing its intensity until a level of approximately 5 knots
is attained. Then trajectory noise will be introduced to compensate for the inevitable dis-
crepancies between the simulated and real RSX-2. As with the robustness experiments in
chapter 6, it is likely that resistance to wind (i.e. external disturbances) can be achieved by
using trajectory noise alone, limiting the need to use wind explicitly in the network evalu-
ations. Extensive testing will be conducted in the simulator to determine the performance
envelope of each successfully evolved controller. This phase will be critical to the ultimate
goal of transferring the controller to the RSX-2 and testing it in an actual rocket launch.

113

It may turn out that utilizing a single, monolithic controller for all reasonable flight
conditions is not feasible. If so, it should be possible to partition the configuration space
into qualitative regions, and evolve a controller for each separately. For example, a different
controller could be evolved for low, medium, and high winds. The appropriate controller
for a particular launch could either be selected prior to lift-off or chosen automatically by
a discrete controller to build a hybrid control system for the rocket.

10.5 Conclusion

ESP in combination with burst mutation and incremental evolution has been successful
in several domains. The current method is limited by requiring the user to estimate the
initial network size, subpopulation size, and task schedule for incremental evolution. The
extensions proposed in this chapter should go a long way toward making the method more
self-sufficient by reducing the number of user parameters in ESP, and facilitating incremen-
tal evolution by using knowledge acquired from solved tasks. Further study of transfer will
make these improvements worthwhile by providing a deeper understanding of the process
that will ultimately determine the utility of the method and of neuroevolution in general. In
the future, broader application of the method should be possible, establishing neuroevolu-
tion as a viable technique, and eventually leading to its regular use in industry.

114

Chapter 11

Conclusion

The goal of this dissertation was to provide a complete methodology for applying neuroevo-
lution to real world control problems. In order for a neuroevolution system to be useful it
must be powerful enough to evolve controllers in simulation that are robust enough to trans-
fer to the real world. I have developed a complete approach designed to achieve this goal
that consists of three components: the Enforced SubPopulations algorithm, incremental
evolution, and controller transfer

This chapter summarizes the contributions of this dissertation, and then concludes
with a reflection on the significance of this research and the prospects for the future.

11.1 Contributions

ENFORCED SUBPOPULATIONS

ESP represents a significant advancement in neuroevolution. The algorithm that
ESP is built upon, SANE, has been demonstrated successfully on many problems, but
cannot reliably evolve recurrent networks. ESP addresses this problem by using multiple
subpopulations instead of a single population of neurons. This architecture makes neu-
ron evaluations more consistent, allowing ESP to evolve recurrent networks, and therefore,
solve tasks that require short-term memory.

The comparisons in chapter 4 showed that using subpopulations also results in
greater efficiency by accelerating the specialization of neurons into useful network sub-
functions. With the exception of NEAT, ESP was the the most efficient method in terms
of both number of evaluations and CPU time. The performance of ESP and NEAT was
statistically even on the two most difficult tasks, but the lower complexity of ESP suggests

115

that is may be more widely applicable.

INCREMENTAL EVOLUTION

Incremental evolution is a general technique that can be combined with any evolu-
tionary algorithm. The experiments in chapter 5 showed that tasks that cannot be solved
directly, using a given population size, can be solved efficiently and reliably by evolving
on a sequence of increasingly difficult tasks.

The prey capture experiments demonstrated how two different faculties, memory
and motor coordination, can be acquired efficiently by using intuitive knowledge about the
task to structure the evolution. Incremental evolution was critical to the success of ESP
in the RSX-2 domain. Evolving a controller for the finless rocket directly would have re-
quired much greater computational resources and allowed for much less experimentation
in the domain.

CONTROLLER TRANSFER

The experiments in chapter 6 contribute the first study into the factors that influence
the transfer of neuroevolved controllers in an unstable domain. This kind of study is nec-
essary because it is often not safe or practical to experiment with real unstable systems.
Therefore, it is important to first investigate transfer systematically in a safe and controlled
setting before transferring to the real world.

The experiments showed that for unstable environments sensory noise is not bene-
ficial. In contrast, trajectory noise produced robust controllers that could overcome model
error to transfer successfully, and demonstrate general behavior in the target environment.

EMPIRICAL EVALUATION OF REINFORCEMENT LEARNING METHODS

Although, the primary thrust of the pole balancing comparisons was to demonstrate
the efficiency of ESP, I believe that this study is a significant contribution in its own right.
A total of nine different methods were compared on four tasks making it, to my knowl-
edge, the most extensive comparison of both single-agent and evolutionary reinforcement
learning methods to date.

The evolutionary methods consistently outperformed the single agent methods by a
wide margin. Such a large difference in performance suggests that NE may be better suited
to continuous reinforcement learning tasks than single-agent methods.

APPLICATIONS

ESP and incremental evolution were applied successfully to to three very different

116

applications: a pursuit-evasion contest (prey capture), chip-multiprocessor resource alloca-
tion, and the stabilization of a finless rocket.

The prey capture task, while smaller in scale and more abstract than the other two
applications, is important because it requires short-term memory, and because it is related to
a large class of autonomous agent tasks such as point-to-point navigation an object tracking.

The experiments with the chip-multiprocessor are a first step in trying to address the
emerging need for effective on-chip resource management controllers. The task demon-
strates ESP’s ability to cope with high dimensional state spaces and unpredictable operat-
ing conditions. The evolved controller was able to allocate cache banks to the processors
better than an equipartition of the cache, and generalize well to novel workloads.

The rocket guidance task is the most interesting, challenging, and promising appli-
cation in the dissertation. The RSX-2 domain represents a full scale-up to the complexity
of real-world non-linear control tasks. The task is difficult because it requires precise con-
trol and because the dynamics of the rocket change throughout the flight. ESP successfully
evolved a controller that could stabilize the finless rocket to burnout, improving the final
altitude of the rocket by over 40%. This achievement confirmed the feasibility of using
differential thrust as a stabilizing mechanism for the RSX-2, and is an encouraging step
toward an actual rocket launch.

11.2 Conclusion

Because real world control tasks are non-linear, there are no tractable and general mathe-
matical solutions to these problems. Neuroevolution can be a means to solve such tasks if it
can be made sufficiently efficient, and the resulting controllers are robust enough to trans-
fer successfully. This research should bring neuroevolution closer to becoming a practical
tool by addressing both issues. ESP has been shown to be the state of the art method in
the difficult pole balancing benchmarks, and, combined with incremental evolution, it was
able to scale up to the complexity of the RSX-2 domain. By studying the transfer process,
this work lays the foundation for further investigation of how to make transfer reliable, and
ultimately enable the industrial use of neuroevolution.

117

Appendix A

Pole-balancing equations

The equations of motion for N unjointed poles balanced on a single cart are

ẍ =
F − μcsgn(ẋ) +

∑N
i=1 F̃i

M +
∑N

i=1 m̃i

,

θ̈i = − 3

4li
(ẍ cos θi + g sin θi +

μpiθ̇i

mili
),

where F̃i is the effective force from the ith pole on the cart,

F̃i = miliθ̇2
i sin θi +

3

4
mi cos θi(

μpiθ̇i

mili
+ g sin θi),

and m̃i is the effective mass of the ith pole,

m̃i = mi(1 − 3

4
cos2 θi).

Parameters used for the single pole problem:

Sym. Description Value

x Position of cart on track [-2.4,2.4] m
θ Angle of pole from vertical [-12,12] deg.
F Force applied to cart -10,10 N
l Half length of pole 0.5m

M Mass of cart 1.0 kg
m Mass of pole 0.1 kg

118

Parameters for the double pole problem.

Sym. Description Value

x Position of cart on track [-2.4,2.4] m
θ Angle of pole from vertical [-36,36] deg.
F Force applied to cart [-10,10] N
li Half length of ith pole l1 = 0.5m

l2 = 0.05m
M Mass of cart 1.0 kg
mi Mass of ith pole m1 = 0.1 kg

m2 = 0.01 kg
μc Coefficient of friction 0.0005

of cart on track
μp Coefficient of friction 0.000002

if ith pole’s hinge

119

Appendix B

Parameter settings used in pole
balancing comparisons

Below are the parameters used to obtain the results for Q-MLP, SARSA-CABA, SARSA-
CMAC, CNE, SANE, and ESP in section 4.3. The parameters for VAPS, EP, and CE
along with a detailed description of each method can be found in the papers from which
their results were taken: VAPS (Meuleau et al. 1999), EP (Saravanan and Fogel 1995),
CE (Gruau et al. 1996a).

Table B.1 describes the parameters common to all of the value function methods.

Parameter Description

ε greediness of policy
α learning rate
γ discount rate
λ eligibility

Table B.1. All parameters have a range of (0,1).

120

Q-MLP

Parameter Task

1a 1b 2a
ε 0.1 0.1 0.05
α 0.4 0.4 0.2
γ 0.9 0.9 0.9
λ 0 0 0

For all Q-MLP experiments the Q-function network had 10 hidden units and the action
space was quantized into 26 possible actions: ±0.1, 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

————————–
SARSA-CABA

Parameter Task

1a 1b
τd 0.03 0.03
τx
k 0.05 0.05

τu
k 0.1 0.1

ε 0.05 0.05
α 0.4 0.1
γ 0.99 0.99
λ 0.4 0.4

τd is the density threshold, τx
k and τu

k are the smoothing parameters for the input and output
spaces, respectively. See Santamaria et al. (1998) for a more detailed description of the
Case-Based Memory architecture.

121

SARSA-CMAC

Parameter Task

1a 1b
ε 0.05 0.05
α 0.4 0.1
γ 0.9 0.9
λ 0.5 0.3
No. of tilings 45: 50 :

10 based on x, ẋ, θ1 10 based on xt, xt−1, θt

5 based on x, θ 10 based on x, θt, θt−1

5 based on x, θ̇ 5 based on xt, θt

5 based on ẋ, θ̇ 5 based on xt−1, θt−1

5 based on x 5 based on xt

5 based on ẋ 5 based on xt−1

5 based on θ 5 based on θt

5 based on θ̇ 5 based on θt−1

where xt and θt are the cart position and pole angle at time t. Each variable was divided in
to 10 intervals in each tiling. For a more complete explanation of the CMAC architecture
see Santamaria et al. (1998).

————————–
SANE

Parameter Task

1a 1b 2a 2b
no. of neurons 100 100 200 400
no. of blueprints 50 50 100 100
evals per generation 200 200 400 1000
size of networks 5 5 7 7

The mutation rate for all runs was set to 10%.

122

CNE

Parameter Task

1a 1b 2a 2b
no. of networks 200 200 400 1000
size of networks 5 5 5 rand [1..9]
burst threshold 10 10 10 15

The mutation rate for all runs was set to 20%. Burst threshold is the number of generations
after which burst mutation is activated if the best network found so far is not improved
upon. CNE evaluates each of the networks in its population once per generation.

————————–
ESP

Parameter Task

1a 1b 2a 2b
initial no. of subpops 5 5 5 5
size of subpopulations 20 20 40 100
evals per generation 200 200 400 1000
burst threshold 10 10 10 15

The mutation rate for all runs was set to 40%. Burst threshold is the number of generations
after which burst mutation is activated if the best network found so far is not improved
upon.

123

Appendix C

The prey movement algorithm

The prey’s actions are chosen stochastically. On each step, (1 − v)% of the time (where
v ∈ [0, 1] is user-defined) the prey will not move, and v% of the time it will choose one of
the four actions, A0 (north), A1 (south), A2 (east), and A3 (north), according to the follow-
ing distribution:

prob(Ai) = Pi/(P0 + P1 + P2 + P3),

where

Pi = exp(0.33 · W (angle) · T (dist))

angle = angle between the direction of action Ai and the direction from the prey to the agent,

dist = distance between the prey and the agent,

W (angle) = (180 − |angle|)/180,

T (dist) =

⎧⎪⎪⎨⎪⎪⎩
15 − dist if dist ≤ 4,
9 − dist/2 if dist ≤ 15,
1 otherwise.

124

Bibliography

Agarwal, V., Murukkathampoondi, H., Keckler, S., and Burger, D. (2000). Clock rate
versus IPC: The end of the road for conventional microarchitectures. In Proceedings of
the 27th Annual International Symposium on Computer Architecture.

Albus, J. S. (1975). A new approach to manipulator control: The cerebellar model ar-
ticulation controller (CMAC). Journal of Dynamic Systems, Measurement, and Control,
97(3):220–227.

Anderson, C. W. (1989). Learning to control an inverted pendulum using neural networks.
IEEE Control Systems Magazine, 9:31–37.

Bagnell, D., and Schneider, J. (2001). Autonomous helicopter control using reinforcement
learning policy search methods. In Internatinal Conference on Robotics and Automation.

Baird, L. C., and Moore, A. W. (1999). Gradient descent reinforcement learning. In
Advances in Neural Information Processing Systems 12.

Barroso, L. A., Gharachorloo, K., McNamara, R., Nowatzyk, A., Qadeer, S., Sano, B.,
Smith, S., Stets, R., and Verghese, B. (2000). Piranha: A scalable architecture based on
single-chip multiprocessing. In Proceedings of the 27th Annual International Symposium
on Computer Architecture, 282–293.

Barto, A. G. (1990). Connectionist learning for control. In 3rd, W. T. M., Sutton, R. S.,
and Werbos, P. J., editors, Neural Networks for Control, chapter 1, 5–58. Cambridge, MA:
MIT Press.

Belew, R. K., and Booker, L. B., editors (1991). Proceedings of the Fourth International
Conference on Genetic Algorithms. San Francisco, CA: Morgan Kaufmann.

Belew, R. K., McInerney, J., and Schraudolph, N. N. (1991). Evolving networks: Using
the genetic algorithm with connectionist learning. In (Langton et al. 1991).

125

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166.

Breitner, M., Pesch, H., and Grimm, W. (1993). Complex differential games of pursuit-
evasion type with state constraints, part 1: Necessary conditions for optimal open-loop
strategies. Journal of Optimization Theory and Applications, 78:419–442.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, 2(10).

Brooks, R. A., and Maes, P., editors (1994). Proceedings of the Fourth International Work-
shop on the Synthesis and Simulation of Living Systems (Artificial Life IV). Cambridge,
MA: MIT Press.

Bryant, B., and Miikkulainen, R. (2003). Neuroevolution of adaptive teams: Learning het-
erogeneous behavior in homogeneous multi-agent systems. In Congress in Evolutionary
Computation, Canberra, Australia.

Burger, D., and Austin, T. M. (1997). The simplescalar tool set version 2.0. Technical
Report Technical Report 1342, Computer Sciences Department, University of Wisconsin.

Buskey, G., Roberts, J., and Wyeth, G. (2002). Online learning of autonomous helicopter
control. In Proceedings of Australasian Conference on Robotics and Automation.

Carpenter, G. A., and Grossberg, S. (1987). ART 2: Self-organization of stable category
recognition codes for analog input patterns. Applied Optics, 26:4919–4930.

Chavas, J., Corne, C., Horvai, P., Kodjabachian, J., and Meyer, J.-A. (1998). Incremental
evolution of neural controllers for robust obstacle-avoidance in khepera. In EvoRobots,
227–247.

Colombetti, M., and Dorigo, M. (1992). Robot shaping: Developing situated agents
through learning. Technical Report TR-92-040, International Computer Science Institute,
Berkeley, CA.

Corliss, W. R. (1971). NASA sounding rockets, 1958-1968: A historical summary. Tech-
nical Report NASA SP-4401, National Aeronautics and Space Administration, Washing-
ton, D.C.

Crites, R. H., and Barto, A. G. (1996). Improving elevator performance using reinforce-
ment learning. In (Touretzky et al. 1996), 1017–1023.

126

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems, 2:303–314.

Darwen, P. J. (1996). Co-Evolutionary Learning by Automatic Modularization with Spe-
ciation. PhD thesis, University College, University of South Wales.

Diefendorff, K. (1999). Power4 focuses on memory bandwidth. Microprocessor Report,
13(13).

Dominic, S., Das, R., Whitley, D., and Anderson, C. (1991). Genetic reinforcement learn-
ing for neural networks. In (IJCNN 1991), 71–76.

Dorigo, M., and Colombetti, M. (1998). Robot Shaping: An Experiment in Behavior
Engineering, vol. 2 of Intelligent Robotics and Autonomous Agents series. MIT Press.

Dracopoulos, D. C. (1997). Evolutionary Learning Algorithms for Neural Adaptive Con-
trol. Perspectives in neural computing. Springer.

Eck, C., Chapuis, J., and Geering, H. P. (2001). Inexpensive autopilots for small un-
manned helicopters. In Proceedings of the Micro Mini Aerial Vehicles Conference, MAV.
Brussels, Belgium.

Elman, J. L. (1991). Incremental learning, or The importance of starting small. In Pro-
ceedings of the 13th Annual Conference of the Cognitive Science Society, 443–448. Hills-
dale, NJ: Erlbaum.

Eriksson, R., and Olsson, B. (1997). Cooperative coevolution in inventory control opti-
mization. In Proceedings of 3rd International Conference on Artificial Neural Networks
and Genetic Algorithms.

Fan, J., Lau, R., and Miikkulainen, R. (2003). Utilizing domain knowlegde in neuroevo-
lution. Unpublished manuscript (submitted to ICML-03).

Ficici, S. G., Watson, R. A., and Pollack, J. B. (1999). Embodied evolution: A response
to challenges in evolutionary robotics. In Wyatt, J. L., and Demiris, J., editors, Eighth
European Workshop on Learning Robots, 14–22.

Floreano, D., and Mondada, F. (1996). Evolution of homing navigation in a real mo-
bile robot. In IEEE transactions on systems, man, and cybernetics: part B; cybernetics,
vol. 26, 396–407. IEEE.

127

Floreano, D., and Nolfi, S. (1997). Adaptive behavior in competing co-evolving species.
In Husbands, P., and Harvey, I., editors, Fourth European Conference on Artificial Life,
378–387. Cambridge, MA: MIT Press.

Floreano, D., Nolfi, S., and Mondada, F. (1998). Competitive co-evolutionary robotics:
From theory to practice. In Pfeifer, R., editor, From Animals to Animats 5: Proceedings
of the Fifth International Conference on Simulation of Adaptive Behavior.

Giacconi, R., Gursky, H., Paolini, F., and Rossi, B. (1962). Evidence for X-rays from
sources outside the solar system. Physical Review Letters, 9(11):439–444.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Reading, MA: Addison-Wesley.

Gomez, F., and Miikkulainen, R. (1997). Incremental evolution of complex general be-
havior. Adaptive Behavior, 5:317–342.

Grady, D. (1993). The vision thing: Mainly in the brain. Discover, 14:57–66.

Greer, B., Hakonen, H., Lahdelma, R., and Miikkulainen, R. (2002). Numerical opti-
mization with neuroevolution. In Proceedings of the 2002 Congress on Evolutionary
Computation (CEC2002).

Großmann, A. (2001). Continual learning for mobile robots. PhD thesis, School of
Computer Science, The University of Birmingham, Birmingham, UK.

Gruau, F., Whitley, D., and Pyeatt, L. (1996a). A comparison between cellular encod-
ing and direct encoding for genetic neural networks. Technical Report NC-TR-96-048,
NeuroCOLT.

Gruau, F., Whitley, D., and Pyeatt, L. (1996b). A comparison between cellular encoding
and direct encoding for genetic neural networks. In Koza, J. R., Goldberg, D. E., Fogel,
D. B., and Riolo, R. L., editors, Genetic Programming 1996: Proceedings of the First
Annual Conference, 81–89. Cambridge, MA: MIT Press.

Hammond, L., Hubbert, B., Siu, M., Prabhu, M., Chen, M., and Olukotun, K. (2000). The
stanford HYDRA chip. In IEEE MICRO Magazine.

Hammond, L., Nayfeh, B., and Olukotun, K. (1997). A single-chip multiprocessor. IEEE
Computer, 30(9):79–85.

128

Harp, S. A., Samad, T., and Guha, A. (1989). Towards the genetic synthesis of neural
networks. In Proceedings of the Third International Conference on Genetic Algorithms,
360–369.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmil-
lan.

Haynes, T., and Sen, S. (1995). Evolving behavioral strategies in predators and prey. In
Sen, S., editor, IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems,
32–37. Montreal, Quebec, Canada: Morgan Kaufmann.

Higdon, D. (1963). Automatic Control of Inherently Unstable Systems with Bounded
Control Inputs. PhD thesis, Department of Aeronautics and Astronautics, Standford Uni-
versity.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. Ann Arbor,
MI: University of Michigan Press.

Holland, J. H., and Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms.
In Waterman, D. A., and Hayes-Roth, F., editors, Pattern-Directed Inference Systems.
New York: Academic Press.

Horn, J., Goldberg, D. E., and Deb, K. (1994). Implicit niching in a learning classifier
system: Nature’s way. Evolutionary Computation, 2(1):37–66.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. Cambridge, MA:
MIT Press.

IJCNN (1991). Proceedings of the International Joint Conference on Neural Networks
(Seattle, WA). Piscataway, NJ: IEEE.

Ikodinovic, I., Magdic, D., Milenkovic, A., and Milutinovic, V. (1999). Limes: A multi-
processor simulation environment for pc platforms. In Third International Conference on
Parallel Processing and Applied Mathematics (PPAM). Kazimierz Dolny, Poland.

Isaacs, R. (1965). Differential Games: A Mathematical Theory with Applications to War-
fare and Pursuit, Control and Optimization. Dover Publications.

129

Jacobs, R. A., Jordan, M. I., and Barto, A. G. (1991). Task decomposition through compe-
tition in a modular connectionist architecture: The what and where vision tasks. Cognitive
Science, 15:219–250.

Jakobi, N. (1993). Half-baked, ad-hoc, and noisy: Minimal simulations for evolutionary
robotics. In Husbands, P., and Harvey, I., editors, Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems (Artificial Life IV), 348–357.
Morgan Kaufmann.

Jakobi, N. (1998). Minimal Simulations for Evolutionary Robotics. PhD thesis, University
of Sussex.

Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise and the reality gap: The use of
simulation in evolutionary robotics. In Proceedings of the Third European Conference on
Artificial Life. Springer-Verlag.

Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C., and
Wang, A. (1991). Evolution as a theme in artificial life: The Genesys/Tracker system. In
(Langton et al. 1991).

Kaelbling, L. P., Littman, M., and Moore, A. W. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence, 4:237–285.

Kitano, H. (1990). Designing neural networks using genetic algorithms with graph gen-
eration system. Complex Systems, 4:461–476.

Koza, J. R. (1991). Genetic Programming. Cambridge, MA: MIT Press.

Kretchmar, R. M. (2000). A Synthesis of Reinforcement Learning and Robust Control
Theory. PhD thesis, Department of Computer Science, Colorado State University, Fort
Collins, Colorado.

Langton, C. G., editor (1988). Artificial Life I. SFI Studies in the Sciences of Complexity.
Addison-Wesley.

Langton, C. G., Taylor, C., Farmer, J. D., and Rasmussen, S., editors (1991). Proceedings
of the Workshop on Artificial Life (ALIFE ’90). Reading, MA: Addison-Wesley.

Lee, S.-W., Hahn, W.-J., Oh, H.-C., Song, Y.-S., and Kim, S.-W. (1999). RAPTOR: A
single chip multiprocessor. In The First IEEE Asia Pacific Conference on ASICs, 217–220.

130

Liang Lin, C., and Wen Su, H. (2000). Intelligent control theory in guidance and control
system design: an overview. Proc. Natl. Sci, Counc. ROC(A), 24(1):15–30.

Lin, L.-J. (1992). Self-improving reactive agents based on reinforcement learning, plan-
ning, and teaching. Machine Learning, 8(3):293–321.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. PhD thesis,
CMU, Pittsburg.

Lin, L.-J., and Mitchell, T. M. (1992). Memory approaches to reinforcement learning in
non-Markovian domains. Technical Report CMU-CS-92-138, Carnegie Mellon Univer-
sity, School of Computer Science.

Lubberts, A., and Miikkulainen, R. (2001). Co-evolving a go-playing neural network. In
Coevolution: Turning Adaptive Algorithms Upon Themselves, Birds-of-a-Feather Work-
shop, Genetic and Evolutionary Computation Conference (GECCO-2001).

Lund, H. H., and Hallam, J. (1996). Sufficient neurocontrollers can be surprisingly simple.
Technical Report Research Paper 824, Department of Artificial Intelligence, University of
Edinburgh.

Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms. PhD thesis, University
of Illinois at Urbana-Champaign.

Mandischer, M. (1993). Representation and evolution of neural networks. In Albrecht,
R., Reeves, C., and Steele, N., editors, Proceedings of the Conference on Artificial Neural
Nets and Genetic Algorithms at Innsbruck, Austria, 643–649. Springer-Verlag.

Mataric, M., and Cliff, D. (1996). Challenges in evolving controllers for physical robots.
Robotics and Autonomous Systems, 19(1):67–83.

Meeden, L. (1998). Bridging the gap between robot simulations and reality with improved
models of sensor noise. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M.,
Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and Riolo, R., editors, Genetic
Programming 1998: Proceedings of the Third Annual Conference, 824–831. University
of Wisconsin, Madison, Wisconsin, USA: Morgan Kaufmann.

Meuleau, N., Peshkin, L., Kim, K.-E., and Kaelbling, L. P. (1999). Learning finite state
controllers for partially observable environments. In 15th International Conference of
Uncertainty in AI.

131

Michie, D., and Chambers, R. A. (1968). BOXES: An experiment in adaptive control. In
Dale, E., and Michie, D., editors, Machine Intelligence. Edinburgh, UK: Oliver and Boyd.

Miglino, O., Lund, H. H., and Nolfi, S. (1995a). Evolving mobile robots in simulated and
real environments. Artificial Life, 2:417–434.

Miglino, O., Lund, H. H., and Nolfi, S. (1995b). Evolving mobile robots in simulated and
real environments. Technical report, Institute of Psychology, C.N.R, Rome, Rome, Italy.

Miller, G., and Cliff, D. (1994). Co-evolution of pursuit and evasion i: Biological and
game-theoretic foundations. Technical Report CSRP311, School of Cognitive and Com-
puting Sciences, University of Sussex, Brighton, UK.

Miller, W. T., Sutton, R. S., and Werbos, P. J., editors (1990). Neural Networks for Control.
Cambridge, MA: MIT Press.

Mondada, F., Franzi, E., and Ienne, P. (1993). Mobile robot miniaturization: A tool for
investigation in control algorithms. In Proceedings of the Third International Symposium
on Experimental Robotics, 501–513.

Moriarty, D. E. (1997). Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. PhD thesis, Department of Computer Sciences, The University of Texas at Austin.
Technical Report UT-AI97-257.

Moriarty, D. E., and Miikkulainen, R. (1996a). Efficient reinforcement learning through
symbiotic evolution. Machine Learning, 22:11–32.

Moriarty, D. E., and Miikkulainen, R. (1996b). Evolving obstacle avoidance behavior
in a robot arm. Technical Report AI96-243, Department of Computer Sciences, The
University of Texas at Austin.

Nolfi, S., Floreano, D., Miglino, O., and Mondada, F. (1994). How to evolve autonomous
robots: Different approaches in evolutionary robotics. In (Brooks and Maes 1994), 190–
197.

Nolfi, S., and Parisi, D. (1995). Learning to adapt to changing environments in evolving
neural networks. Technical Report 95-15, Institute of Psychology, National Research
Council, Rome, Italy.

132

Pai, V. S., Ranganathan, P., and Adve, S. V. (1997). RSIM: An execution-driven simulator
for ilp-based shared-memory multiprocessors and uniprocessors. In Proceedings of the
Third Workshop on Computer Architecture Education.

Paredis, J. (1994). Steps towards co-evolutionary classification neural networks. In
(Brooks and Maes 1994), 102–108.

Paredis, J. (1995). Coevolutionary computation. Artificial Life, 2:355–375.

Perez-Bergquist, A. S. (2001). Applying ESP and region specialists to neuro-evolution
for Go. Technical Report CSTR01-24, Department of Computer Sciences, The University
of Texas at Austin.

Perkins, S., and Hayes, G. (1996). Robot shaping–principles, methods, and architectures.
Technical Report 795, Department of Artifical Intelligence, University of Edinburgh.

Pesch, H. J. (1992). Solving optimal control and pursuit-evasion game problems of high
complexity. In Bulirsch, R., and Kraft, D., editors, Proceedings of the 9th IFAC Workshop
on Control Applications of Optimization.

Pollack, J. B., Blair, A. D., and Land, M. (1996). Coevolution of a backgammon player.
In Langton, C. G., and Shimohara, K., editors, Proceedings of the 5th International Work-
shop on Artificial Life: Synthesis and Simulation of Living Systems (ALIFE-96). Cam-
bridge, MA: MIT Press.

Potter, M. A., and De Jong, K. A. (1995). Evolving neural networks with collaborative
species. In Proceedings of the 1995 Summer Computer Simulation Conference.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C. Cambridge University Press. Second edition.

Prete, C. A., Prina, G., and Ricciardi, L. (1995). A trace-driven simulator for performance
evaluation of cache-based multiprocessor systems. IEEE Transactions on Parallel and
Distributed Systems, 6(9):915–929.

Reynolds, C. W. (1994a). Competition, coevolution and the game of tag. In Brooks, R.,
and Maes, P., editors, Proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems (Artificial Life IV), 59–69. Cambridge, MA: MIT Press.

133

Reynolds, C. W. (1994b). Evolution of obstacle avoidance behaviour: using noise to
promote robust solutions. In Kenneth E. Kinnear, J., editor, Advances in Genetic Pro-
gramming, chapter 10. MIT Press.

Ring, M. B. (1994). Continual Learning in Reinforcement Environments. PhD thesis, De-
partment of Computer Sciences, The University of Texas at Austin, Austin, Texas 78712.

Rosin, C. D. (1997). Coevolutionary Search Among Adversaries. PhD thesis, University
of California, San Diego, San Diego, CA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal repre-
sentations by error propagation. In Rumelhart, D. E., and McClelland, J. L., editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume
1: Foundations, 318–362. Cambridge, MA: MIT Press.

Rummery, G. A., and Niranjan, M. (1994). On-line Q-learning using connectionist sys-
tems. Technical Report CUED/F-INFENG/TR-166, Engineering Department, Cambridge
University.

Santamaria, J. C., Sutton, R. S., and Ram, A. (1998). Experiments with reinforce-
ment learning in problems with continuous state and action spaces. Adaptive Behavior,
6(2):163–218.

Saravanan, N., and Fogel, D. B. (1995). Evolving neural control systems. IEEE Expert,
23–27.

Schaffer, J., and Cannon, R. (1966). On the control of unstable mechanical systems. In
Automatic and Remote Control III: Proceedings of the Third Congress of the International
Federation of Automatic Control.

Schultz, A. C. (1991). Adapting the evaluation space to improve global learning. In
(Belew and Booker 1991), 158–164.

Seibert, G. (2001). A world without gravity. Technical Report SP-1251, European Space
Agency.

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental sequential
tasks. Machine Learning, 8:323–339.

Smith, T. M. C. (1998). Blurred vision: Simulation-reality transfer of a visually guided
robot. In EvoRobots, 152–164.

134

Sohi, G. S., Breach, S. E., and Vijaykumar, T. N. (1998). Multiscalar processors. In 25
Years ISCA: Retrospectives and Reprints, 521–532.

Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks through augment-
ing topologies. Evolutionary Computation, 10(2). In press.

Strens, M. J. A., and Moore, A. W. (2002). Policy search using paired comparisons.
Journal of Machine Learning Research, 3:921–950.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3:9–44.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In (Touretzky et al. 1996), 1038–1044.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press.

Suykens, J., Moor, B. D., and Vandewalle, J. (1993). Stabilizing neural controllers: a
case study for swinging up a double inverted pendulum. In International Symposium on
Nonlinear Theory and its Application (NOLTA’93), 411–414.

Suykens, J. A. K., Vandewalle, J. P. L., and Moor, B. L. R. D. (1996). Artificial Neural
Networks for Modelling and Control of Non-Linear Systems. Kluwer Academic Publish-
ers.

Tesauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,
8:257–277.

Tesauro, G., and Sejnowski, T. J. (1987). A “neural” network that learns to play backgam-
mon. In Anderson, D. Z., editor, Neural Information Processing Systems. New York:
American Institute of Physics.

Thrun, S. (1996). Explanation-Based Neural Network Learning: A Lifelong Learning
Approach. Kluwer.

Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors (1996). Advances in Neural
Information Processing Systems 8. Cambridge, MA: MIT Press.

Voigt, H. M., Born, J., and Santibanez-Koref, I. (1993). Evolutionary structuring of artifi-
cial neural networks. Technical report, Technical University Berlin, Bio- and Neuroinfor-
matics Research Group.

135

Vukobratovic, M. (1990). Biped locomotion : dynamics, stability, control, and applica-
tions. Number 7 in Scientific fundamental of robotics. Springer-Verlag.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis, University of
Cambridge, England.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning. Machine Learning, 8(3):279–292.

Watson, R. A., Ficici, S. G., and Pollack, J. B. (1999). Embodied evolution: Embodying
an evolutionary algorithm in a population of robots. In Angeline, Michalewicz, Schoe-
nauer, Yao, and Zalzala, editors, Congress on Evolutionary Computation, 335–342. IEEE.

Whitehead, B. A., and Choate, T. D. (1995). Cooperative–competitive genetic evolution
of radial basis function centers and widths for time series prediction. IEEE Transactions
on Neural Networks.

Whiteson, S., Kohl, N., Miikkulainen, R., and Stone, P. (2003). Evolving keepaway
soccer players through task decomposition. In Proceedings of the Genetic Evolutionary
Computation Conference(GECCO-03).

Whitley, D., Mathias, K., and Fitzhorn, P. (1991). Delta-Coding: An iterative search
strategy for genetic algorithms. In (Belew and Booker 1991), 77–84.

Wieland, A. (1991). Evolving neural network controllers for unstable systems. In (IJCNN
1991), 667–673.

Yamauchi, B., and Beer, R. D. (1994). Integrating reactive, sequential, and learning be-
havior using dynamical neural networks. In Cliff, D., Husbands, P., Meyer, J.-A., and
Wilson, S. W., editors, From Animals to Animats 3: Proceedings of the Third Interna-
tional Conference on Simulation of Adaptive Behavior, 382–391. Cambridge, MA: MIT
Press.

Yao, X. (1993). A review of evolutionary artificial neural networks. International Journal
of Intelligent Systems, 4:203–222.

Yong, C. H., and Miikkulainen, R. (2001). Cooperative coevolution of multi-agent sys-
tems. Technical Report AI01-287, Department of Computer Sciences, The University of
Texas at Austin.

136

Vita

Faustino John Gomez was born in Ft. Sill, Oklahoma on August 5th, 1969, the son of
Asuncion Gomez and Faustino Gomez. After completing his work at Keystone School, San
Antonio, Texas, in 1987, he entered Clark University in Worcester, Massachusetts where he
earned the degree of Bachelor of Arts in Geography in 1991. In 1993, he moved to Austin,
Texas, and in the fall of 1994 he entered the Graduate School of Computer Sciences at the
University of Texas at Austin.

Faustino attended and presented papers at ICANN-98, IJCAI-99, IJCNN-01, won
the best paper award in real world applications at GECCO-03, and published a paper in the
Adaptive Behavior Journal.

Permanent Address: 407 West 18th Street #304
Austin, Texas 78701 USA
inaki@cs.utexas.edu

http://www.cs.utexas.edu/users/inaki/

This dissertation was typeset with LATEX 2ε
1 by the author.

1LATEX 2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of the
American Mathematical Society. The macros used in formatting this dissertation were written by Dinesh
Das, Department of Computer Sciences, The University of Texas at Austin, and extended by Bert Kay and
James A. Bednar.

137

