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Towards a Biologically Plausible and
Efficient Reinforcement Learning Agent

Abstract
The primary goal of this degree project was to evaluate a selection of biologically
plausible reinforcement learning (RL) agents. An agent was assumed to be biologically
plausible if it could be constructed using a biologically plausible model of learning.
Such a model had to be realizable using an artificial neural network (ANN) with a
learning rule that could be implemented within biological constraints. The first step of
this project consisted of reviewing the literature on this type of model. Four different
models were found. Two of the models were used to construct RL agents: the S-model
AR−P weight update rule, and the dual projection BCPNN RL system.

The agents were experimentally evaluated by presenting them with a set of chal-
lenging tasks. Performance measurements were gathered as they solved the tasks. An
implementation of the Sarsa algorithm was used for benchmarking. The evaluations
illuminated different strengths and weaknesses of the two agents. Neither agent was
found to be very efficient. However, the insights gained could still be used to construct
more efficient biologically plausible RL agents in the future. Other insights gained
from this project include: (i) a simple and general framework for constructing RL
agents from biologically plausible models of learning, and (ii) an evaluation procedure
which proved to be very useful in illuminating different features of the agents.

Mot en biologiskt plausibel och effektiv
agent för förstärkningsinlärning

Referat
Det primära målet med detta examensarbete var att utvärdera ett urval av biologiskt
plausibla agenter för förstärkningsinlärning (RL). En agent antogs vara biologiskt plau-
sibel om den kunde konstrueras utifrån en biologiskt plausibel inlärningsmodell. En
sådan modell skulle vara realiserbar med ett artificiellt neuralt nätverk (ANN) vars in-
lärningsregel kunde implementeras under biologiska inskränkningar. Första steget i
exjobbet gick ut på att söka i litteraturen efter den här typen av modell. Fyra olika
modeller hittades. Två av modellerna användes för att bygga RL agenter: S-modellens
AR−P -viktuppdateringsregel, och det dubbelprojicerande BCPNN RL systemet.

Agenterna utvärderades försöksvis genom att låta dem lösa ett antal uppgifter. Data
om deras prestation samlades in medan de löste uppgifterna. En implementation av
Sarsa-algoritmen användes som måttstock. Experimenten belyste olika styrkor och
svagheter hos de två agenterna. Ingen av agenterna ansågs vara särskilt effektiv. In-
sikterna som uppnåtts kan dock ändå användas för att konstruera effektivare biologiskt
plausibla RL agenter i framtiden. Andra insikter som detta projekt har gett upphov till
inkluderar: (i) ett enkelt och generellt ramverk för att konstruera RL agenter utifrån
biologiskt plausibla inlärningsmodeller, och (ii) en utvärderingsprocedur som visade
sig vara mycket användbar för att belysa olika egenskaper hos agenterna.
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Chapter 1

Introduction

From an engineer’s point of view, the human brain is an amazing piece of machinery.
For one, the brain allows us to control our bodies to do our will, whether it involves
walking, running, swimming, typing, climbing, or picking up an egg without crushing
it. However, body control is only one requirement to get these tasks done. Another
one, just as important, is our ability to perceive our surroundings by signals passed to
us via our five senses. These signals are processed by the brain almost instantly, and
allows us to understand and react to our environment appropriately. The adaptivity of
the brain also allows us to master an incredibly diverse set of skills, such as reading,
writing, driving, medical diagnosis, teaching, diving, and so on. All these skills are
readily available to us, should we wish to learn them.

The superiority of the human brain becomes obvious whenever we attempt to create
so called “intelligent” software. By this we mean that the software, in some respect,
behaves in an intelligent way. Trying to program software capable of doing any of the
things mentioned above is daunting. Even if we sometimes, in some limited field, can
achieve a reasonable amount of success, the brain is usually faster and more efficient.

It seems only natural to look to the brain for inspiration in building intelligent and
adaptive software. Unfortunately, the inner workings of the brain is to a large extent
shrouded in mystery. We do know that the brain processes information in a funda-
mentally different way than a computer does. A conventional computer typically has a
single powerful processor. The human brain, on the other hand, contains a staggering
number of simple and massively interconnected processing elements known as neu-
rons. The neurons in our brain connect with each other at sites called synapses to form
a single complex network. There are approximately 100 billion neurons in the human
brain, and the number of synapses is about 1000 trillion (Tortora and Grabowski, 2003,
p. 452). The knowledge of the brain is believed to be stored at these synapses, see
Section 2.2 on page 10. This knowledge is continuously updated throughout life, be-
cause the brain never really stops adapting and learning. A remarkable feature, which
traditional software completely lacks.

1.1 Previous Work

Artificial Neural Networks (ANNs) are designed to model the way we think the brain
processes information. ANNs have turned out to be powerful computing tools. Their
virtues include the ability to compute any computable function, and they are also noise
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Introduction

and fault tolerant, as is the brain (Gurney, 1997, pp. 16, 17; Haykin, 1999, pp. 2–4).
ANNs have been used for a wide variety of applications over the years. Examples
include: medical diagnosis, handwritten character recognition, voice recognition, and
stock market prediction. Also, because they are designed to mimic the real thing, these
efforts have led to a deeper understanding of how the brain itself might solve these
tasks. The knowledge of an ANN is stored in its so called weights. A weight is the
artificial equivalent to the strength of a synapse, see Section 2.2 on page 10. Learning,
the acquisition of knowledge, is accomplished by updating those weights. The set of
algorithms which do this are collectively referred to as the ANN’s weight update rule.
Researchers in this field are usually more concerned with efficiency, rather than trying
to create biologically plausible weight update rules. This is not to say that such rules
do not exist, but they are unpopular. As a result, most of the ANN literature do not
provide us with many clues as to how how the brain might learn.

Reinforcement learning (RL) is a learning paradigm within the field of machine
learning. RL provides a framework on the problem of learning by interaction to achieve
a goal. Put simply, its about learning by doing and observing what happens. It is a
very intuitive approach to learning, as it is quite similar to how we humans can learn
by the method of trial and error. This goal-directed learning is something we know
the brain can do very well, but it is currently poorly understood how. A contributing
factor is no doubt due to the fact that most of the previous work in this field has been
completely unrelated to biology. The focus has rather been on the development of
efficient algorithms. In that respect, much progress has been made. However, because
these algorithms have been developed without any biological considerations, there is
nothing in them that can tell us anything about how the brain solves RL problems, i.e.
how it learns by interacting with its environment. This is something we would very
much like to know, since while several successful RL algorithms have been developed,
they are not even remotely able to compete with the brain on real-world problems. The
reason for this is partly due to poor scaling characteristics.

ANNs have been used in the field of RL before, but only in relatively few cases has
the RL agent been directly implemented with ANNs. For the most part, ANNs have
been used merely as supportive tools, often in the form of function approximators. One
of the most famous and successful applications of an ANN as a supportive tool in the
context of RL was TD Gammon, by Tesauro (1992, 1995). His application was able
to learn to play the game of backgammon at an expert level, with no game specific
knowledge built in. It achieved this by playing many thousands of games against itself.
At the core of the application was an ANN, which was used as a function approxi-
mator to predict the outcome of game positions. Specifically, the ANN predicted the
probability of either player winning a normal win, or a so called gammon. The net-
work was trained by the methods of temporal difference (TD) (Sutton, 1988). A simple
look-ahead mechanism was used to select moves based on the predictions of the ANN.

1.2 Goal and Purpose

The primary goal of this project was to evaluate a selection of biologically plausible
RL agents. The purpose of doing this was primarily to advance our knowledge of how
such agents can be constructed and evaluated, but also to gain insights into how to
potentially make them more efficient. Ultimately, hopefully within a not too distant
future, we will be able to construct a biologically plausible RL agent that is efficient
enough to rival the human brain on solving real-world problems. Furthermore, the
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1.3 Restrictions

process of trying to develop such an agent could potentially help us gain insights into
how the brain itself accomplishes goal-directed learning.

An RL agent was defined to be biologically plausible if it could be implemented
using a biologically plausible model of learning. Such a model had to be possible to
realize using an ANN with a biologically plausible weight update rule (see Section 4.2
on page 22). It was important to show how the construction of the agent, using such a
model, was carried out. Development of biologically plausible RL agents has not seen
much research in the past. Only one such agent was known to have been implemented
previously.

A cornerstone of this project was the assumption of what makes a model of learning
biologically plausible. To motivate the selection of models, it was important to also
review what literature there is connecting RL and ANNs with the biology of learning
in real neural networks. Of course, finding these models in the first place was a priority.

1.3 Restrictions

Many interesting biologically plausible models of learning were found, especially from
the field of classical conditioning, which could potentially be used to build biologically
plausible RL agents. Classical conditioning is a particularly rich source, because learn-
ing in those models is driven by stimulus signals; much like how RL agents learn from
the reward signal. Furthermore, these models often have a neural substrate, or are based
on a neural substrate. It seems reasonable to assume that many models from that field
could be used to build biologically plausible RL agents. Due to time restrictions, only
four of the models found will be described in this thesis. Of those, only two will be
evaluated.

Interesting sources for more models, none of which are described in this thesis,
include: Balkenius and Morén (1998), Bartlett and Baxter (1999), and Wörgötter and
Porr (2005).

1.4 Thesis Structure

The structure of the thesis is as follows.

Chapter 2 Provides the theoretical background of the project. The topics covered
are: RL, some basic neurobiology, and ANNs.

Chapter 3 Describes the four biologically plausible models of learning that were
found in the literature.

Chapter 4 Explains the method of evaluation. The chapter includes a section which
motivates the selection of the models. It also describes how the RL agents were con-
structed from the models. Finally, the chapter details the specifics of the evaluation
procedure.

Chapter 5 Presents the results of the evaluations.

Chapter 6 Discusses the evaluation results. Conclusions are drawn, and suggestions
are made for future work in this area of research.
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1.5 Abbreviations and Symbols

Here follows a summary of important abbreviations and symbols used in this thesis.

Table 1.1 Important abbreviations and symbols.

Abbreviation Explanation

2-AB 2-Armed Bandit
ANN Artificial Neural Network
AP Action Potential
BCPNN Bayesian Confidence Propagating Neural Network
LTP Long-Term Potentiation
PSP Postsynaptic Potential
RL Reinforcement Learning
TD Temporal-Difference

Symbol Definition

A set of all actions available to the agent
E number of learning episodes used in every run R
R number of runs used to evaluate the agent
Rt return at time step t, the (discounted) accumulated reward re-

ceived from time step t + 1 onward
S set of all non-terminal states
S+ set of all states the environment can occupy
at action chosen by agent at time step t
hi support value of an agent for action i
m number of actions available to the agent, m = |A|
n number of non-terminal states, n = |S|
pi probability of choosing action i
πt policy at time step t, maps each non-terminal state to a probability

distribution over the actions available in that state
rt reward received by the agent at time step t
st state of the environment at time step t
uij episode value, the value of episode j in run i
ui run value, the value of run i
umax best-case performance, taken over all runs R, of an agent on a

specified task
umin same as umax, except this is the worst-case performance
wij weight which modulates the connection from input node or unit

j to unit i
xj input signal from input node j which connects to one or more

units
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Chapter 2

Background

This chapter provides the theoretical background of this project. The first section cov-
ers the essentials of RL. After that, some basic neurobiology is introduced, and some
connections back to the field RL are made. The section on neurobiology hopefully
makes the last section about ANNs intuitive to grasp.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a subfield of machine learning: the study of algo-
rithms/systems that can improve their performance through experience. The learning
system typically accumulates this experience through an iterative process. During the
iterative process, input patterns are presented to the system one at a time. If the system
does not get any more information than the input patterns, the system is said to un-
dergo unsupervised learning. This is to be contrasted to supervised learning. That kind
of learning provides the system with information about the correct response to each
input pattern, typically in the form of an error signal. The error signal carries informa-
tion about how “off” the system’s response was from the correct one. A well-known
example of a supervised learning algorithm is the error back-propagation algorithm,
see Section 2.3 on page 13. See Haykin (1999, p. 63) for more information about
supervised learning.

RL is similar to supervised learning, except its error signal is much simpler. RL is
a fairly intuitive approach to machine learning, as it resembles the way we humans can
learn by the method of trial and error. In trial and error, one tries an option to see if it is
satisfactory. If it is, we have accomplished our goal and found a solution. If not, there
is an error, and another option is tried.

Formally, RL provides a framework on the problem of learning by interaction to
achieve a goal. The learning system, or learner, is called an agent. The idea is to
have the agent learn by trying different actions and observing the outcome of these
actions. The outcome is provided by the environment, which is what the agent interacts
with. See Figure 2.1 on the following page. In response to an action, the agent will
receive a numerical value, a reward, which indicates how good or bad its chosen action
was. Somewhat informally, the goal of the system is to learn how to maximize the
reward it receives. If it has done that, then it has also learned how to achieve the goal.
If maximizing the rewards corresponds to achieving the goal, then the problem has
successfully been framed as a RL problem.
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Environment

Agent

rt+1st at

Figure 2.1 The agent-environment interaction.

The agent and the environment interact via three signals: the state st, action at,
and reward rt+1. Each state st must belong to the set of possible states, denoted S+,
and every action at must be chosen from A(st), the set of all actions available in state
st. This choice of action is made by implementing a policy πt, which is a mapping
from each state to a probability distribution over the actions available in that state. The
rewards are always real numbers.

The interaction begins with the agent receiving state s0, which specifies the initial
state of the environment. The agent responds with an action a0. As a consequence
of that action the agent receives a numerical reward r1, followed by the next state s1.
Now, unless s1 is a terminal state (see below), the agent will respond with action a1,
and so the cycle repeats itself.

A complete specification of an environment is called a task. Tasks can be episodic
or continuous. They are called episodic if they have a natural ending, such as check-
mate in a game of chess. This “end state” is formally called a terminal state. Contin-
uous tasks, on the other hand, do not have such a natural ending. While the set of all
states is denoted S+, the set of all non-terminal states is denoted S. Usually only S is
on interest to the agent, since no action is to be taken in a terminal state.

An episode1 is a sequence of states, actions, and rewards, beginning with state s0

at time t = 0 and ending some finite time T > 0 later in a terminal state sT :

s0, a0, r1, s1, a1, r2, s2, . . . , sT−1, aT−1, rT , sT . (2.1)

It was previously stated, informally, that the goal of the agent is to maximize the
accumulated reward it receives. Formally, the agent should maximize the expected
return. For episodic tasks, the return can be defined as

Rt = rt+1 + rt+2 + rt+3 + · · ·+ rT . (2.2)

Assuming the rewards are finite, the sum in (2.2) will also be finite since the task is
assumed to be episodic. The return is defined slightly differently for continuous tasks,
in order to ensure the return only assumes finite values. This is similar to the concept
of discounting, which will be introduced next. Discounting can be used to represent
that immediate rewards may be worth more than rewards which lie in the distant future.
The discounted return can be used for this purpose. It is defined as

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−1rT , (2.3)

where γ ∈ [0, 1] is the discount parameter. In other words, a big reward in the distant
future may be less desirable than a small reward right now. Note that (2.3) reduces to
(2.2) for γ = 1. For continuous tasks there is no final time step T , so by setting γ < 1
it can be ensured that the discounted return always assumes a finite value.

1 Episodes are sometimes called trials or epochs.
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2.1 Reinforcement Learning

The Exploration-Exploitation Dilemma

This definition of the goal, to maximize the expected return, presents the agent with a
problem. In order to maximize the expected return the agent must choose the actions
it has found to be favorable. The problem is that in order to discover those favorable
actions in the first place, the agent has to explore its environment by trying actions it has
not tried before. The agent cannot leave an action untried, as it may be the very action
which yields the highest reward. As a further complication, there is no guarantee that
the environment is deterministic in handing out rewards. An action may for example
yield a reward 90 % of the time. If an agent were to select that action and receive no
reward, it may, erroneously, conclude that the action is bad and never try it again. The
only way for the agent to discover how good any action really is, is to try it over and
over. Of course, the agent may not exclusively explore actions in this manner, since it
then would fail to reach its goal: to maximize the expected return. The agent is required
to continuously explore its environment while progressively exploit its knowledge of it.
The matter is further complicated if the environment is non-stationary, i.e. if it changes
over time. However, all tasks considered in this project were stationary. For more
information about the exploration-exploitation dilemma, see Sutton and Barto (1998,
pp. 26–27, 30).

Value Functions

Value functions are functions that, given a policy π, assign a numerical value to either
a state: V π(s), or a state-action pair: Qπ(s, a). Their purpose is to provide a numerical
estimate of “how good” it is to either be in a state s, or to choose an action a in a state
s. A natural measurement for this is the expected return, which is why they are defined
as

V π(s) = Eπ{Rt|st = s} and Qπ(s, a) = Eπ{Rt|st = s, at = a}, (2.4)

where the Eπ{} expression denotes the expected return received, given that the agent
follows policy π from time step t + 1 onwards. The return Rt could be defined as in
(2.3) or (2.2).

These value functions are typically not known beforehand. Instead, they are esti-
mated based on the agent’s experience of interacting with the environment. The esti-
mated value functions are denoted V̂ π and Q̂π respectively. To simplify the discussion,
only the state-value function V̂ π will be addressed from now on. The reasoning will
be similar for the state-action value function. Also, the estimated state-value function
will be written as simply V̂ from now on.

When a particular policy is in place, the agent can use that to explore the envi-
ronment, thereby obtaining a sample of the return. This sample return can be used to
improve the estimated value function by making it more consistent with the policy. A
simple example of how this update might be accomplished is

V̂ (st)← V̂ (st) + α(Rt − V̂ (st)), (2.5)

where Rt is the accumulated reward the agent actually received after time step t, and
α ∈ [0, 1] is a constant learning rate parameter. This update rule strives to make V̂ (st)
more similar to Rt. The methods of learning that wait until a sample of the return is
known are called Monte-Carlo methods.
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Generalized Policy Iteration

The improved estimated value function computed in (2.5) can be used to improve the
policy. This is accomplished by making the new policy “greedy” with respect to the
current state-value function V̂ . Making the policy greedy means having it assign higher
probabilities to those actions which yield higher values according to the current V̂ .
Next, the current estimated value function may again be improved, in order to match the
improved policy better. This is an iterative process, and Sutton and Barto (1998) used
the term “generalized policy iteration” (GPI) to refer to the general idea of improving
both the policy and the estimated value function in this way.

Temporal-Difference Learning

Sutton and Barto (1998) identified temporal-difference (TD) learning as a central idea
in the field of RL. Unlike Monte-Carlo methods, TD methods do not have to wait for
a sample return to become available in order to make a useful update of V̂ . The basic
idea of TD methods is that learning is based on the difference between temporally
successive estimates (Tesauro, 1995). The most basic TD method, known as TD(0),
has the following update rule:

V̂ (st)← V̂ (st) + α(rt+1 + γV̂ (st+1)− V̂ (st)), (2.6)

which makes use of the discount rate parameter in (2.3). It is quite intuitive, if one
recalls that V̂ (st) is an estimate of the return the agent expects to receive when starting
from state st. By the same reasoning, V̂ (st+1) is an estimate of the expected return
from state st+1. Thus, there is no need to wait for a sample of the actual return to
become available. It is possible to make a useful update immediately, since the ob-
served reward rt+1 is available and the discounted return from state st+1 is available
in V̂ (st+1) (Sutton, 1988).

Sarsa Algorithm

The Sarsa algorithm uses the TD method described above, but instead of learning to
estimate the value of states, this algorithm learns to estimate the value of state-action
pairs. It follows the idea of GPI described earlier, and is shown in Algorithm 2.1 on
the next page. The name “Sarsa” is derived from the fact that the algorithm uses the
following signals in every time step:

st, at, rt+1, st+1, at+1

to update the state-value function Q̂. The update rule is showed in Algorithm 2.1 on
the facing page, line 10. Compare it with (2.6) above.

The agent used for benchmarking in the evaluations was based on the Sarsa algo-
rithm.

2.2 Neurobiology

Functionally, the cells within the brain can be said to be of two fundamentally different
types: glial cells and neurons. Glial cells have a strictly supportive functionality, and
will not be discussed further. The information processing that occurs in the brain is
carried out by the neurons.
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2.2 Neurobiology

Require: α, γ ∈ [0, 1] . Learning (α) and discount (γ) rate parameters
1: Initialize Q̂(s, a) arbitrarily for all s ∈ S, a ∈ A

2: Initialize Q̂(s, a) = 0 for all s ∈ S+ − S, a ∈ A . Q̂ = 0 in terminal states
3: for all episodes do
4: Observe initial state s0

5: Choose a0 from s0 using policy π0 derived from Q̂
6: t← 0
7: repeat
8: Perform action at, receive reward rt+1, observe next state st+1

9: Choose at+1 from st+1 using policy πt derived from Q̂
10: Q̂(st, at)← Q̂(st, at) + α(r + γQ̂(st+1, at+1)− Q̂(st, at))
11: t← t + 1
12: until st is a terminal state
13: end for

Algorithm 2.1 Sarsa algorithm. Algorithm adapted from Sutton and Barto (1998, p. 146).

Neurons

Neurons are cells which have become specialized in the generation and transmission of
electrical signals. They come in many different shapes and sizes, and yet they all have a
similar structure. Morphologically, we can identify four parts: its cell body, dendrites,
axon, and its presynaptic terminals. Figure 2.2 on the next page depicts a schematic of
a typical neuron in the brain.

The dendrites and the axon are the two types of extensions that emerge from the
cell body. The dendrites branch out in a tree-like tendering fashion, while the axon
is long, thin, and cylindrical. The initial segment of the axon, called the trigger zone,
joins with the cell body. Near its end, the axon branches out into several fine thread-like
extensions called axon terminals. The axon terminals end in the presynaptic terminals,
marked • in Figure 2.2 on the following page. Presynaptic terminals may come into
close proximity with another neuron’s dendrites or cell body and form special contact
sites known as synapses. These are sites where neural signals can pass from one neuron
to another. One such synapse is shown to the top left of Figure 2.2 on the next page.

The output signal of a neuron is known as an action potential (AP), and is generated
near the trigger zone. Once generated, it travels along the axon, away from the cell
body, and towards the axon terminals. The direction of the AP flow is illustrated in
Figure 2.2 on the following page by the dark arrows á. AP conduction speed along an
axon is quite slow. This is not a problem for short axons, but to enable neural signaling
over long distances, some axons are put through a process called myelination (Purves
et al., 2004, pp. 63–65). This process causes the axon to become wrapped with a
substance called myelin, thereby effectively insulating it. APs are said to be actively
propagated along such axons because they are now regenerated, i.e. restored to full
strength, at regular intervals at sites known as nodes of Ranvier. AP conduction speed
is greatly increased with myelination.

The rate at which a neuron produces APs is loosely referred to as its firing fre-
quency. Following dendritic input, some neurons rarely fire APs while others fire them
almost without pausing. It is often useful to classify neurons according to their firing
frequency. The current belief is that output from neurons within the cerebral cortex is
in fact frequency encoded. In other words, it is the frequency in which APs are fired
that is the important information carrier, not the existence or absence of individual APs.
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Figure 2.2 Schematic illustration of a typical neuron in the brain. The arrows indicate the
flow of neural signals. See the text for more information. Illustration adapted from Gurney
(1997, pp. 2, 8) and Haykin (1999, p. 8).

The lower and upper bound of possible frequency values depend on the intrinsic prop-
erties of each neuron. See Connors and Gutnick (1990) for a review of different firing
patterns.

The arrival of an AP at a presynaptic terminal sets off a chemical sequence of
events that result in the production of a neural signal in the dendrites, local to the
synapse, of the postsynaptic neuron. However, unlike the AP, this signal is graded,
which means that its amplitude can assume a range of values. The so called strength
of the synapse determines the amplitude of the postsynaptic neural signal. The change
in potential brought about by the arrival of this neural signal is called a postsynaptic
potential (PSP). Synapses which transmit neural signals in this manner, i.e. by chemical
means, are referred to as chemical synapses.

The signal travels passively, i.e. without regeneration, along the dendrites towards
the cell body, and the trigger zone. The direction of this flow is marked with é in
Figure 2.2. Each signal that arrives at the cell body contributes to raising or lowering
its potential. In other words, the neural signals are integrated, or “summed together”,
both spatially and temporally, in the cell body. If the potential is raised above the
neuron’s so called threshold potential, the neuron will generate an AP.

Learning and Long-Term Memory

This section reviews plausible neural substrates for learning and long-term memory.
Current opinion is that learning is, at least in part, accomplished by means of

synaptic plasticity. Synaptic plasticity refers to chemical synapses’ ability to alter their
strength. Recall that the strength of a synapse determines the amplitude of the PSPs
it produces. Purves et al. (2004) point out that it is likely that all chemical synapses
are capable of plastic change. Learning may also be accomplished by means of the
formation of new synaptic connections, but it is mainly attributed to the alteration of
synaptic strength.

The general agreement is that long-term memory depends, at least in part, on long-
term changes in the efficacy among relevant synaptic connections (Purves et al., 2004).
Biological support for this has been detected in the phenomenon known as long-term
potentiation (LTP), first reported by Bliss and Lomo (1973). The effect of LTP is to
alter the strength of individual synapses for an extended period of time. The interested

10



2.3 Artificial Neural Networks

reader is referred to Bliss and Collingridge (1993); Goosens and Maren (2002) for more
information about LTP.

As LTP occurs at individual synapses, the information needed to determine the
change in synaptic strength must be locally available at each synapse. Information
about the presynaptic AP is clearly available, since it induces a PSP in the post-synaptic
neuron. Also, evidence is mounting to support the idea that APs are actively back-
propagated into the dendritic tree (Magee and Johnston, 1997; Markram et al., 1997;
Stuart and Sakmann, 1994). This is in contradiction with the traditional view that den-
drites are electrically passive structures whose only purpose is to allow neural signals
to travel toward the cell body. It implies that information about the AP of the post-
synaptic neuron could also be available at the synapse. Furthermore, it has been shown
that this back-propagating AP is of importance in the induction of LTP (Magee and
Johnston, 1997). To describe the biology behind this is beyond the scope of this thesis.
See Paulsen and Sejnowski (2000), and Linden (1999) for more information about the
role of back-propagating APs in the induction of LTP.

Reinforcement Learning in the Brain

This section will discuss aspects of neurobiological theory and research that relate to
the field of RL.

There is support for the idea that the brain maintains an internal representation of
which state is currently occupied in the environment. In rodents it has been shown that
there are neurons in the hippocampus, a structure deep within the brain that is vital
for memory and emotional behavior (Purves et al., 2004), which fire APs only when
the animal occupies certain spatial locations. For this reason, these neurons are called
place cells (Purves et al., 2004, p. 584). The restricted portion of the environment a
place cell responds to is called its place field (Foster et al., 2000, p. 1).

The normalization model proposed in Carandini et al. (1997) provides clues as to
how the brain might be able to compute a probability mass function, and consequently
a policy. The idea is that cells may be contained in a so called normalization pools.
The effect is that neurons in such a pool will inhibit each other, thereby undergoing
“normalization”. Their model included a parameter called the gain, which could be
used to control the rate of exploration versus exploitation. Another article of interest
was written by Uscher et al. (1999). It too presented a model where neurons inhibited
each other. Their model had a mechanism for controlling the rate of exploration versus
exploitation as well. The model was able to explain their experimental data.

O’Doherty et al. (2003) reported of a convincing experiment which suggests that
TD learning is expressed in the human brain. Specifically, they found that the output
of a TD learning algorithm was able to account for responses given by their human
test-subjects. Schultz et al. (1997) presented a review of experimental evidence which
supports this idea. They concluded that learning may indeed be driven by changes in
expectations about future rewards and punishments. They found that the TD algorithm
was well suited for understanding the experimental data. The same ideas were also
expressed by Montague et al. (1996).

2.3 Artificial Neural Networks

There is no universally accepted definition of what an artificial neural network (ANN)
is. In this thesis we adopt the following definition by Gurney (1997, p. 1):
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Figure 2.3 Artificial neuron i. Compare with Figure 2.2 on page 10.

“A neural network is an interconnected assembly of simple processing el-
ements, units or nodes, whose functionality is loosely based on the animal
neuron. The processing ability of the network is stored in the inter-unit
connection strengths, or weights, obtained by a process of adaptation to,
or learning from, a set of training patterns.”

Note that it is common to drop the word artificial, if it is understood that the neural
network is artificial. These “artificial neurons” will henceforth be referred to simply as
units. Typically, such a unit is modeled as in Figure 2.3. A unit is able to receive a set
of signals. The particular unit i shown in Figure 2.3 receives signals x = (x1, . . . , xn)
from n so called input nodes, depicted as •. Signals from input nodes will be referred
to as input signals. The only purpose of the input nodes is to provide input signals to
one or more units.

The input/output behavior of a unit, such as i, is as follows: Each incoming signal
to the unit is multiplied with its corresponding weight. These weights are shown in
boxes in Figure 2.3. For example, input signal xj is multiplied with weight wij . Note
the order of the subscripts of weight wij . The convention in this thesis is to write the
index of the target unit i first, then the index of the source node/unit j. Typically one
allows the weights to assume any real value. The weighted input signals, for example
wijxj , are then summed together to form the so called induced local field vi = bi +∑n

j=1 wijxj . Also included is a bias term bi. It is common practice to treat the bias bi

as just another weight wi0 = bi which just happens to be connected to an input signal
x0 that is always one: x0 = 1. This lets us rewrite the equation for the induced local
field vi as

vi =
n∑

j=0

wijxj (2.7)

Next, the induced local field signal vi is passed to the transfer function ϕ. There is a
wide variety of transfer functions commonly used, and one must choose an appropriate
one on a task-per-task basis. It may, for example, be entirely linear, in which case
the output oi from unit i is oi = ϕ(vi) = vi. If we wish to model the all-or-none
property of the AP we could instead choose a threshold function. Such a threshold
function could for example output 1 if vi > θ, corresponding to the firing of an AP,
and output 0 otherwise. In this example, θ corresponds to the threshold potential of
the animal neuron modeled. Recall that it is believed that the output from a neuron
in the cerebral cortex is frequency encoded, with an upper and a lower bound on the
frequency. This could be modeled by having ϕ map the induced local field vi into the
continuous interval [0, 1]. This interval would then represent the whole range of AP
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Figure 2.4 Example of a two-layered, feedforward, fully connected ANN.

firing frequencies, from the lowest (0) to the highest (1), the neuron could potentially
produce.

According to the definition, an ANN is an interconnected assembly of units like the
one modeled in Figure 2.3 on the preceding page. Units can be connected in infinitely
many different ways, but some network structures have been found to be more useful
than others. An example of how the units could be connected is shown in Figure 2.4.
This is an example of a two-layered, feed-forward, fully connected ANN. The units are
arranged in two layers. Units one through four reside in layer one, and unit five alone
occupies the second layer. The last layer is often referred to as the output layer. The
layers in between the input nodes and the output layer are sometimes called hidden
layers. Signals propagate forward, from left to right without any feedback loops. It is
furthermore classified as a fully connected ANN, because every unit is connected to
every other unit/node in the preceding layer. Each connection, both node-to-unit and
unit-to-unit, is modulated by a weight. When depicting the whole network structure,
as in Figure 2.4, these weights are usually not explicitly illustrated.

The input/output behavior of the network as a whole is computed on a layer-per-
layer basis. That is, first the output of layer one is computed using the input signals
from the input nodes. The output signals from the first layer then serves as input to
the second layer, and so on until the output signals from the output layer has been
computed. These output signals constitute the output from the network.

According to the definition, the ANN obtains its processing ability by adjusting
its weights. This is often an iterative process, during which the weights of the net-
work are updated according to the chosen learning rule. A popular choice for training
multilayer2 feed-forward ANNs, such as the one illustrated in Figure 2.4, is the error
back-propagation algorithm, or some variation of it. The idea is to first present the
network with a pattern of input signals x at the input nodes. Next, these signals are
propagated through the network, layer by layer, until they reach the output layer. The
output from the units in the output layer is compared with the desired output, and an
error signal is computed. The desired output for each pattern of input signals is known
beforehand, as it is a supervised learning algorithm. The computed error is then propa-
gated backwards through the network, and the weights are adjusted in such a way that
the error will be smaller the next time the same pattern of input signals is presented to
the network. The details of the algorithm are described in Haykin (1999, pp. 156–175)
and Gurney (1997, pp. 65–69).

2 A multilayer ANN has at least two layers of units.
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Chapter 3

Biologically Plausible
Models of Learning

This chapter presents a review of a selection of what was considered to be biologically
plausible models of learning. Recall that a model was defined to be biologically plau-
sible if it could be implemented with an ANN that used a biologically plausible weight
update rule. What was considered to be a biologically plausible weight update rule is
discussed in Section 4.2 on page 22.

Some of the original notation has been changed to better comply with the notation
used in this thesis.

3.1 S-model AR−P Weight Update Rule

The S-model AR−P weight update rule1 was first introduced by Barto and Jordan
(1987). They used it in a supervised learning task to update the weights and biases
of the units in the hidden layer in a two-layered feed-forward ANN.

Using the notation introduced with Figure 2.3 on page 12, the input/output behavior
of the units in the hidden layer were

oi = ϕ(vi) =

{
1 with probability f(vi)
0 with probability 1− f(vi),

(3.1)

where f(vi) = 1/(1+ e−vi). The function f can be recognized as the logistic sigmoid
function, whose range is the continuous interval [0, 1].

As it was a supervised learning task, the desired output from the ANN was known.
The weights to the units in the output layer were updated according to the error back-
propagation algorithm (see Section 2.3 on page 13). However, the units in the hidden
layer were updated differently. Based on the desired output and the actual output, a
single numerical measure of success r ∈ [0, 1] was computed. Their weights and
biases were then updated according to

∆wij = ρ [r(oi − f(vi)) + λ(1− r)(1− oi − f(vi))]xj , (3.2)

1 The S-model AR−P rule is an extension of the AR−P algorithm introduced by Barto and Anandan (1985).
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where ρ > 0 and λ ∈ [0, 1] are constants. The numerical measure of success r was
required to reside in the interval [0, 1], where 0 and 1 meant complete failure and com-
plete success respectively. In other words, if r = 1, the output from the ANN matched
the desired output perfectly.

The weight update rule in (3.2) can be understood by considering the extreme cases
of r = 1 and r = 0. In the case of r = 1, i.e. we have a complete success, the
right-hand side reduces to ρ [oi − f(vi)]xj . This would modify the weight wij so that
whatever oi ∈ {0, 1} the unit selected, the likelihood of it selecting the same oi again
would increase. Conversely, in the case of complete failure we have r = 0, and the
weight wij would instead be adjusted so that this likelihood was decreased. No weight
change at all took place if xj = 0, since the weight then did not contribute to the choice
of oi.

The authors stated that ρ controlled the magnitude of the weight change, and λ:
“determines the degree of asymmetry in the magnitude of the weight change”.

Bartlett and Baxter (1999) used a similar update rule for which a great deal of
theory has been worked out. By setting λ = 0 in (3.2), it corresponds to a specific
instance of their update rule: the one obtained by setting their quantity β = 0. For a
biologically relevant application of the S-model AR−P rule, see Mazzoni et al. (1991).

3.2 Dual Projection BCPNN RL System

BCPNN RL systems (Johansson and Lansner, 2002b; Johansson et al., 2003) are sys-
tems based on the Bayesian Confidence Propagating Neural Network (BCPNN), and
are designed to solve RL problems. Previous work have studied BCPNNs in the con-
text of classification (Holst, 1997; Holst and Lansner, 1993), classical conditioning
(Johansson and Lansner, 2002a), and as a model for memory (Johansson et al., 2001;
Sandberg et al., 1999).

Johansson and Lansner (2002b) described three BCPNN RL systems of varying
complexities and capabilities. All were based on the concept of populations and pro-
jections. A population can be thought of as a set of units. All three systems utilized two
populations of units. The first population, the state population, represented the states.
It contained one unit for every non-terminal state in the environment. These units will
be referred to as state units. The other population, the action population, represented
the actions available to the agent. The authors assumed that the same set of actions
were available to the agent in all non-terminal states. Therefore, this population con-
tained as many units as there were possible actions. Units in the action population will
be referred to as action units. A projection was defined as: “the computation needed
to derive the weights and biases of the connections between two populations”. One
projection corresponded to a full set of connections between the units in the two popu-
lations. In other words, there was one connection from every state unit to every action
unit, for each of the two projections.

The system of interest for this project was their dual projection BCPNN RL system.
This system had features added to be able to handle negative rewards. It also possessed
the ability to relearn, i.e. it was able to adapt to a changing environment. This was made
possible by the use of two projections: one “positive” (+) and one “negative” (−). The
positive projection enhanced correlations between the units in the two populations,
while the negative projection inhibited them.

Some notation needs to be introduced. The output from unit j in the state popu-
lation was denoted xj . The weight from state unit j to action unit i was denoted w±ij ,
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3.2 Dual Projection BCPNN RL System

for the two (±) projections respectively. The bias value of action unit i was denoted
β±i . Every action unit had a support value hi, which represented the strength of the
network’s “belief” in that unit. There was also one support value for each action unit
for both projections, denoted h±i . The number of state and action units are denoted n
and m respectively.

The input/output behavior of the system as a whole was as follows. First the unit
representing the current state in the state population was activated. Secondly, the sup-
port values h±i for both projections, for every action unit i, were set to zero: h±i = 0.
These projection support values were then updated by iterating

∆h±i ←

log(β±i ) + log

 n∑
j=1

w±ijxj

− h±i

 /τC (3.3)

until stability, where τC ∈ [1,∞[ was a constant. The actual support values for the
action units were then simply

hi = h+
i − h−i . (3.4)

These action support values were then normalized by

pi =
eGhi∑m

k=1 eGhk
(3.5)

to obtain the (partial) policy used for action selection, where G ∈ [0,∞[ was a constant.
Thus, pi was the probability of choosing action i.

After having chosen an action the system received a reward r; all according to the
agent-environment interaction described in Section 2.1 on page 5. The activities, Si

and Sj , of the action and state units were clamped to represent the action, and the state
in which the action was chosen. The activities were set to one for the state and action
unit in question. The other units’ activities were set to zero. The activities were used
to update the so called trace (E) variables according to

∆E±
i = (Si − E±

i )/τE

∆E±
j = (Sj − E±

j )/τE

∆E±
ij = (SiSj − E±

ij )/τE ,

(3.6)

where τE ∈ [1,∞[ was a constant. The trace variables were updated regardless of
the value of the reward r. The next step, however, only took place when the reward
assumed a non-zero value: r 6= 0. It involved updating the so called memory (P )
variables according to

∆P±
i = κ(E±

i − P±
i )/τP

∆P±
j = κ(E±

j − P±
j )/τP

∆P±
ij = κ(E±

ij − P±
ij )/τP ,

(3.7)

where τP ∈ [1,∞[ was a constant, and κ was the so called print-now signal. If r > 0,
then the positive (+) projection was updated with print-now signal κ = r and the
negative projection (−) was decayed, and vice versa with κ = −r if r < 0. That way,
whichever projection was updated, κ > 0. Decaying a projection meant updating the
memory variables according to

∆P±
i = (1/m− P±

i )/τP

∆P±
j = (1/n− P±

j )/τP

∆P±
ij = (1/mn− P±

ij )/τP ,

(3.8)
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instead of using (3.7). Finally the weights and biases were computed as

β±i = P±
i + λ0 and w±ij =

P±
ij + λ2

0

(P±
i + λ0)(P±

j + λ0)
, (3.9)

where λ0 > 0 was constant whose purpose was to prevent the possibility of taking the
logarithm of zero in (3.3). The authors chose λ0 = 10−4 in their experiments.

Initially, before learning began, the trace and memory variables were set according
to

Ei = Pi = 1/m

Ej = Pj = 1/n (3.10)
Eij = Pij = 1/mn.

On a biological note, they stated that the trace (E) variables were thought to cor-
respond to the influx of calcium in a synapse. Also, the memory (P ) variables were
intended to correspond to LTP in a synaptic coupling. The print-now signal κ was
thought to correspond to release of inter-cellular neuromodulator substances, such as
dopamine. See also Wahlgren and Lansner (2001).

3.3 Doya’s Basal Ganglia Loop Hypothesis

The basal ganglia loop2 is believed to play a major role in RL (Doya, 1999). This sec-
tion presents a set of hypothesizes about possible roles of its components with respect
to RL. The hypothesis of most interest to this project was presented by Doya (2002). It
assumed the existence of two sets of basis functions:

bj(s) and ck(s, a), (3.11)

where s and a denoted state and action respectively. The basis functions provided the
internal representation of states and actions, and were assumed to reside within the
cerebral cortex.

Here is a description of how actions were assumed to be selected, according to
the hypothesis. The basis functions ck(s, a) projected, modulated by weights wk, into
the so called matrix compartment of the basal ganglia’s input zone, where state-action
values Q(s, a) were formed:

Q(s, a) =
∑

k

wkck(s, a). (3.12)

These state-action values were projected into the substantia nigra pars compacta and
the globus pallidus. There they were subjected to competitive dynamics to realize a
probability distribution over the actions, and subsequently an action selection. It was
suggested that the probability distribution could be computed with

pi =
eβQ(s,ai)∑m

j=1 eβQ(s,aj)
, (3.13)

2 It is beyond the scope of this thesis to describe the basal ganglia loop. For simplicity, one can think of it as
a set of projections that lead from the cerebral cortex to the basal ganglia, to the thalamus, and back again.
See Purves et al. (2004, pp. 417–434) for more information.
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where β was a constant parameter, and m was the number of candidate actions. In
words, pi denoted the probability of choosing action i. Using the distribution in (3.13),
an action was selected, projected to the thalamus, and then projected back to the cere-
bral cortex to close the loop.

The other set of basis functions bj(s) projected into the so called patch compart-
ment of the basal ganglia’s input zone. This projection was modulated by weights vj ,
and formed a state value function

V (s) =
∑

j

vjbj(s). (3.14)

Using that value function, a TD error signal δ(t) could be computed in the the substan-
tia nigra dopaminergic neurons (Doya, 2000a) according to

δt = rt + γV (st)− V (st−1), (3.15)

where γ was a constant parameter. It may look awkward, but (3.15) can be rewritten
in way which could potentially be implemented within the basal ganglia loop (Doya,
2000c). The TD error signal δt was then used to update the weights vj and wk accord-
ing to

∆vj = αδtbj(st−1)
∆wk = αδtck(st−1, at−1),

(3.16)

where α was a constant parameter.
Another hypothesis by Doya (2000b) attempted to provide a biological relevance

to the above mentioned parameters/signals: δ, γ, β, and α. Specifically, it stated that:
(i) dopamine signals the TD error δ (which we have already mentioned), (ii) serotonin
controls the discount factor γ, (iii) noradrenaline controls the inverse temperature β,
and (iv) acetylcholine controls the learning rate α.

3.4 Water-Maze Navigation Model

This model was presented by Foster et al. (2000). It was intended to show: “how
hippocampal place cells might be used for spatial navigation”. Specifically, it was
intended to model the behavior of rats in water-maze tasks.

The place cells were modeled with Gaussian functions. Assuming the rat was at
position p, the output from place cell j was computed as

fj(p) = e−‖p−sj‖2/2σ2
, (3.17)

where sj was the center location of the cell’s place field, and σ was the breadth of the
field. It can be seen that the place cell will respond the strongest when p = sj , i.e.
when the rat was in the center of the cell’s place field.

The output from the place cells projected to two computational sub-structures: the
actor and the critic. The purpose of the actor was to produce actions, while the critic’s
job was to criticize the actions selected by the actor. At each time step, the actor had to
choose one of the eight actions shown in Figure 3.1 on the next page: north (N), north-
east (NE), east (E), and so on. Each action was represented with a corresponding unit
i inside the actor. All place cells projected to these so called action units, modulated
by weights. The weight between place cell j and action unit i was denoted zij . The
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Figure 3.1 Actions available in the water-maze tasks. Each action was represented with a
so called action unit i.

critic contained a single unit C. All place cells projected to that unit, also modulated
by weights. The weight to unit C from place cell j was denoted wj .

The actor selected an action in the following way. First, the support value hi of
each individual action cell i was computed by

hi(p) =
n∑

j=1

zijfj(p), (3.18)

where n denoted the number place cells. The authors interpreted these support values
hi as the relative preference for swimming in the ith direction at location p. The actual
direction chosen was selected according to the probability distribution

pi =
e2hi∑
k e2hk

, (3.19)

in other words pi was the probability of swimming in direction i.
Learning was based on the output from the critic’s unit C, whose output was com-

puted simply as

C(p) =
n∑

j=1

wjfj(p). (3.20)

The next step was to compute the so called prediction error δt

δt = rt + γC(pt+1)− C(pt), (3.21)

where rt was the reward given to the RL agent at time step t, and γ was a constant
parameter. Positions pt+1 and pt were the positions occupied by the agent at time steps
t + 1 and t respectively. Finally, the weights of the model were updated according to

∆wj ∝ δtfj(pt)
∆zij ∝ δtfj(pt)gi(t),

(3.22)

where gi(t) was one if action i was chosen at time step t, and zero otherwise.
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Chapter 4

Method of Evaluation

This chapter describes how the goal of this project was approached. The evaluation
was carried out by having the agents solve a set of challenging tasks. Recall that a task
is a complete specification of a RL environment, as was explained in Section 2.1 on
page 6. The chapter begins by listing some features all tasks had in common. Next
comes a discussion of what was considered reasonable to require of a biologically
plausible weight update rule. This motivates the selection of biologically plausible
models of learning presented in Chapter 3. The models were turned into RL agents by
fitting them into a framework, which is described in Section 4.3 on the next page. The
evaluation procedure is described in Section 4.4 on page 25, and the tasks themselves
are described in the last section.

As was mentioned in Chapter 1, due to time restrictions only two models were
evaluated: the S-model AR−P weight update rule (see Section 3.1 on page 15), and
the dual projection BCPNN RL system (see Section 3.2 on page 16). They were quite
different models of learning, which made it interesting to compare them. The S-model
AR−P weight update rule only specified the input/output behavior of the units them-
selves, and how to update weights and biases. In contrast, the dual projection BCPNN
RL system was pretty much a complete RL agent in itself.

4.1 Task Features

The tasks all shared some important features which will be reviewed in this section.
First of all, all actions were available to the agent in every non-terminal state s ∈ S:

A = A(s). (4.1)

Intuitively, this was not an unreasonable assumption. After all, in real life one is free
to choose any action in any situation. Admittedly, some choices are better than others.

Secondly, all tasks were restricted to having a finite set of actions and states, with
only one terminal state. The number of non-terminal states and actions were denoted
n and m respectively:

|S| = n <∞ and |A|= m <∞. (4.2)

Since there was only one terminal state, the total number of states was: |S+| = n + 1.
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Thirdly, the reward signal rt was restricted to the continuous interval [−1,+1] for
all time steps t:

rt ∈ [−1,+1]. (4.3)

This ought not to have been a serious limitation. Any task can be adjusted to hand
out rewards in this interval by dividing all positive rewards with the maximum positive
reward, and vice versa for the negative rewards. Biologically, a reward of +1 could
correspond to a sense of complete bliss, while a reward of −1 could correspond to the
worst pain imaginable. In between those two extremes was, of course, the indifferent
reward ±0.

4.2 Biologically Plausible Weight Update Rule

A biologically plausible weight update rule should only use information expected to
be present at a biological synapse. The output from the presynaptic neuron is certainly
available, as it arrives in the presynaptic terminal in the form of an AP. There is strong
evidence supporting the idea of back-propagating APs, see Section 2.2 on page 10,
which would mean that the output from the postsynaptic neuron is also available at
the synapse. Also, we would expect such an update rule to be relatively “simple”.
This, admittedly vague statement, is meant to reflect the fact that a biological synapse
cannot be expected to perform complicated arithmetic. At least, this author knows of
no biological data supporting this idea.

The error back-propagation algorithm (see Section 2.3 on page 13), or some varia-
tion of it, is perhaps the most commonly used method of training ANNs today. There
are many reasons this is not considered to be biologically plausible. For one, it is a su-
pervised learning method and thus requires the desired output to be known. Secondly,
it requires the error to be propagated backwards through the network. Biologically,
this would for example mean that a signal (the error) has to travel from the presynaptic
terminals, and back up the axon. There is no biological support for this. Thirdly, the
error back-propagation algorithm requires the computation of a staggering number of
partial derivatives; namely one for every weight in the network. This contradicts the
assumption that the weight update rule should be relatively simple.

4.3 RL Agent Framework

The models of learning were fitted to the same RL agent framework, see Figure 4.1 on
the next page, to allow for a more intuitive evaluation and comparison. This section
will describe that framework, and how each model was fitted into it.

The framework consisted of three stages: the ANN stage, the normalization stage,
and the selection stage. Signals propagated from left to right, starting with the input
nodes.

The input nodes, each depicted with a • in Figure 4.1 on the facing page, provided
unary input x = (x1, x2, . . . , xn) to the ANN stage. The restriction to use unary input
was put in place in order to simplify the evaluations. The framework itself allows for
arbitrary input. The vector x was called the state vector, because it represented the
state of the environment. Each of its elements represented one of the n < ∞ possible
states. Assuming the environment was in state k, then xk = 1 and all other elements
in the vector were zero.
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Figure 4.1 The three stages of the RL agent framework.

The ANN stage contained the model specific algorithms. Its output was called the
support vector h = (h1, . . . , hm), since it contained support values for each of the
m < ∞ actions. Each support value hi ∈ R represented the model’s support for that
particular action.

The support vector h was fed into the normalization stage, which computed a prob-
ability distribution p = (p1, . . . , pm) according to

pi =
eGhi∑m

k=1 eGhk
, (4.4)

where G ∈ [0,∞[ was the gain parameter; so called because it would favor the actions
with higher support values as G→∞. Each element pi in p thus gave the probability
of selecting action i. The probability distribution p was not a complete policy π, but at
least it allowed the agent to choose its next action. All agents had to be able to do this,
so it was quite natural to include it in the framework. The normalizing function used
in (4.4) is called the Gibbs (or Boltzmann) distribution. It was a natural choice, since
it was common to many of the models.

The effects of the gain parameter can clearly be seen by considering the special
case m = 2. In this case, (4.4) for i = 1 becomes p1 = eGh1/(eGh1 + eGh1), which
can be simplified to p1 = 1/(1 + e−G(h1−h2)). This can be recognized as the logistic
function with slope parameter G. Figure 4.2 shows the effect of different values of G
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Figure 4.2 Effects of different gain parameter G values on the Gibbs distribution when
selecting between two actions. Inspired by Doya (2002, p. 502).
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for the case m = 2. When G becomes very large, even a small difference in support
values (h1 − h2) will have a big impact on the policy. Conversely, when G = 0, the
policy is completely stochastic, regardless of the support values. Presumably, G can be
used to control the trade-off between exploration (G = 0) and exploitation (G = ∞),
see Section 2.1 on page 7. For more information on the Gibbs distribution, see Sutton
and Barto (1998, p. 30–31).

The probability distribution p was then fed into the last stage, the selection stage,
where an action was chosen. The chosen action was represented by the unary vector
y = (y1, . . . , ym), where each element represented an action. Thus, if action i was
chosen, then yi = 1 and all other elements were zero.

Sarsa

This agent was based on the Sarsa algorithm listed in Algorithm 2.1 on page 9. In
order to be of maximum use for benchmarking, it was implemented similarly to the
biologically plausible agents.

The state-action values Q̂ were initialized according to Q̂(s, a) = 1/mn for all
non-terminal states s ∈ S and all actions a ∈ A. This resembles the initialization of
the dual projection BCPNN RL System.

In every time step t, the policy πt was obtained by normalizing all m state-action
values where the state was st, namely: {Q̂(st, a)|a ∈ A}. The state-action values were
normalized by using the Gibbs distribution in (4.4), similarly to the other agents.

AR−P Agent

This agent was based on the S-model AR−P weight update rule in Section 3.1 on
page 15. For simplicity, the agent was named the AR−P agent.

The ANN stage of this agent was a one-layer, feedforward, fully connected ANN.
Its input layer consisted of input nodes which simply relayed the state vector x. Its
output layer contained units with the input/output behavior specified in (3.1). There
were m units in this layer, one for every action. The output from the units in this layer
was the support vector h in Figure 4.1 on the previous page.

The S-model AR−P weight update rule was designed to work with a numerical
measure of success r ∈ [0, 1], but these evaluations nevertheless allowed the reward
to range between −1 and +1, see (4.3). The reward was not rescaled into the interval
[0, 1] to accommodate the AR−P agent. Because of this, the range of the output from
the ANN stage in the framework, i.e. the support vector h, was unknown. The nor-
malization stage ensured that a valid action selection still took place. The AR−P agent
was expected to display poor performance on tasks with negative rewards, as it lacked
the machinery to cope with it.

Initially, the weights were set according to wij = 1/mn and the biases according
to bi = wi0 = 1/m. This initialization was chosen because it resembles the way the
Sarsa and the BCPNN agents are initialized.

BCPNN Agent

This agent was based on the dual projection BCPNN RL system presented in Sec-
tion 3.2 on page 16. That system was pretty much a complete RL agent in itself. As it
was fitted into the framework it was only slightly simplified.
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The state population simply contained input nodes which relayed the state vector
x, same as the AR−P agent.

The activities Si and Sj used in equation (3.6) were set to Si(t) = yi(t − 1) and
Sj(t) = xj(t− 1), where explicit use of time t was made in order to be able to specify
that the activities should represent the last action taken and in what state it was taken,
respectively. This meant the action taken, and the state occupied, at time step t− 1.

For simplicity it was decided to lock the two parameters τC and λ0 to: τC = 1
and λ0 = 10−4. Having τC = 1 meant there was no need to iterate (3.3). The
projection support values could now be computed in one go. This left two parameters
to investigate in the evaluations: τE and τP .

The normalization in (3.5) was taken care of by the normalization stage in Fig-
ure 4.1 on page 23.

Finally, note that (3.3) now could be written

∆h±i = log(β±i ) + log(w±ik) = log(β±i w±ik), (4.5)

where k corresponded to the input node of the currently visited state. This simplifica-
tion was possible because τC = 1, as was explained above, but also because x was
a unary vector, which meant that the sum

∑
j w±ijxj was reduced to w±ik. Recall that,

since x was a unary vector, we had xj = 0 for all j 6= k.

4.4 Evaluation and Performance Measure

Agents were evaluated according to Algorithm 4.1 on the following page. It shows how
a performance measure called the episode value uij ∈ [0, 1] was collected after the
completion of every episode in every run. The episode value served as a measurement
of how well the agent performed in that episode. An episode value of one indicated
that the agent found the optimal solution. Conversely, uij = 0 meant that the agent
failed completely. See the description of each task in Section 4.5 on the next page for
information on how the episode values were computed for each task.

The episode values uij were gathered in a R× E matrix U :

U =


u11 . . . u1j . . . u1E

...
...

...
ui1 . . . uij . . . uiE

...
...

...
uR1 . . . uRj . . . uRE

 (4.6)

Note that a row i in matrix U contained the episode values collected in run i. The
following approach was used to summarize this data. A single numeric measure ui of
the performance of the agent in run i was obtained by computing the mean, taken over
all episodes in that run:

ui =
1
E

E∑
j=1

uij (4.7)

This measure ui will be referred to as the run value of run i. These run values were
collected in a vector u = (u1, . . . , ui, . . . , uR). The data in u was then in turn sum-
marized by computing the well-known five number summary: minimum value umin,
lower quartile Q1, median Q2, upper quartile Q3, and maximum value umax. The

25



Method of Evaluation

Require: ∞ > E, R ∈ N+ . Number of episodes (E) and runs (R)
1: for i← 1, 2 . . . , R do
2: Agent is initialized
3: for j ← 1, 2, . . . , E do
4: Agent observes initial state s0

5: t← 0
6: repeat
7: Agent performs action at

8: Agent receives reward rt+1

9: Agent observes next state st+1

10: t← t + 1
11: until st is a terminal state
12: uij ← value of episode
13: end for
14: end for

Algorithm 4.1 Evaluation algorithm.

minimum value umin was the worst-case performance of the agent. That value was
frequently used in the evaluations, since it provided a lower bound on the agent’s per-
formance. Conversely, the maximum value umax was the best-case performance of the
agent. The difference umax − umin was sometimes used to estimate the stability of the
agent’s performance. Box and whisker plots were generated for especially interesting
results, where outliers were drawn with asterisks (∗). See Tamhane and Dunlop (2000,
pp. 114, 121–123) for more information about the statistical concepts mentioned here.

In order to ensure a reliable result, agents were evaluated over 2000 runs. Thus,
R = 2000 in all evaluations. The number of episodes ranged from 10 up to 2050,
depending on the type of evaluation performed.

Using the Gibbs distribution in the normalization stage was a natural choice, but
it introduced an extra parameter: the gain G. Before the agents could be properly
evaluated, a suitable value of G had to be found. A suitable value would, ideally, not
favor either agent.

Empirical Parameter Search

The performance of each agent could be adjusted by changing its parameters. This
introduced a difficulty, since it was not obvious how to set the parameters in order to
ensure a fair comparison. Too keep it reasonably fair, an empirical search for the opti-
mal parameter setting was conducted for all agents on all tasks. The procedure outlined
above was used to obtain the umin values for a particular parameter setting. This was
repeatedly done for a selection of parameter settings. The results were recorded into a
table, from where the best umin value could be read off. The parameters used to obtain
it was considered to be optimal. The optimal parameter setting of each agent, on that
task, was then used to create box and whisker plots for use in the comparisons.

4.5 Tasks and Challenges

Here follows descriptions of the tasks used in the evaluations. The descriptions include
a motivation as to why the task was included. All tasks except one, the 2-armed bandit

26



4.5 Tasks and Challenges

which served as a reference task, presented the agents with specific challenges. These
challenges were designed to show the existence, or absence, of specific features in the
agents, like the ability to handle delayed reward for instance. The tasks were otherwise
quite simple in design, in order to allow for an intuitive understanding of the results.
All tasks were episodic, and evaluations took place in discrete time with discrete time
steps, see Section 2.1 on page 5.

2-Armed Bandit

The 2-armed bandit (2-AB) task was similar to a Las Vegas slot machine: the so called
one-armed bandit. However, the bandit used in these evaluations had not one lever, but
two. The agent was to select one of the arms, pull it, and receive the pay-off, or reward,
from the bandit. The agent was then free to select again. The task had two states:

• state 1 which represented the state of being able to choose an arm, and

• state 2 which represented the state of having pulled an arm.

State 2 was thus a terminal state, and marked the end of the episode. The two arms
were denoted arm1 and arm2. These were the actions available to the agent in state 1.
There were no actions available to the agent in state 2 since it was a terminal state. The
non-terminal state and action set was therefore

S = {1} and A = {arm1, arm2}.

This particular 2-AB handed out a reward of +1 if arm1 was pulled, and ±0 if arm2
was pulled. Figure 4.3 shows the transition graph for the 2-AB task. The double border
around state 1 marks it as the initial state. This was the state the agent found itself in
at the start of every episode. The shaded background of state 2 marks it as the terminal
state. Transition arrows are labeled both with the action they represent, and the reward
handed to the agent when it selected that action. Note that there are no arrows leaving
state 2. The episode ended as soon as the agent entered the terminal state 2.

The 2-AB was chosen because of its simplicity, which allowed for in-depth em-
pirical evaluation and analysis. It was the only environment which did not present the
agents with a specific challenge. This allowed it to be used as a performance reference.

The optimal solution was, of course, the arm which gave a reward of one: arm1.
The value of an episode uij was one if the agent selected that arm, and zero otherwise.

Negative Reward Task

This task was based on the 2-AB task. The difference was that the reward for the non-
optimal arm was now −1. The optimal arm still gave a reward of +1. In other words,
the agent was not only rewarded for selecting the optimal arm, but also punished for not

1 2

arm1,+1

arm2,±0

Figure 4.3 Transition graph for the 2-AB task.
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selecting it. Such a combination of reward and punishment was expected to increase
the speed and stability of learning.

The value of an episode uij was one if the agent selected arm1, and zero otherwise.

Fuzzy Task

This task was also based on the 2-AB task. The difference was that the reward for
the non-optimal arm was now 0.8. Admittedly, this was a very poor definition of a
RL problem. Recall that the RL problem is a framing of the problem of learning by
interaction to achieve a goal, but in this task both arms yielded high rewards. The
optimal arm was worth only slightly more than the other. This meant that the goal was
not clearly defined, it was “fuzzy”, so to speak, hence the name of the task.

The purpose of the task was to estimate how likely the agent was to get stuck on
a suboptimal solution. The reward of 0.8 for the non-optimal arm was chosen a bit
arbitrarily. It had to be “high enough”, but still significantly lower than the reward for
the optimal arm. 0.8 seemed like a reasonable choice.

The value of an episode uij was one if the agent selected arm1, and zero otherwise.

Relearning Task

This task was in fact composed of two 2-AB tasks. The first 2-AB task was the same
task described previously. The second 2-AB task was similar to the first, but the re-
wards had now switched places with each other. The agent was trained on the first
task for 50 episodes. For the remaining episodes it was challenged with the second
task. This meant that the agent had to be able to “unlearn” what it had learned during
the first 50 episodes. Otherwise it would be unable to find the optimal solution on the
second 2-AB task.

The purpose of this task was to investigate the relearning properties of the agents.
The ability to relearn is very valuable in a changing environment such as the real world
where, at least in the animal kingdom, adaptation is crucial for survival.

The value of an episode uij was one if the agent selected the arm which resulted in
a reward of +1 in that episode, and zero otherwise.

Stochastic Task

This task was also based on the 2-AB task. The difference was that rewards were not
handed out deterministically. If the agent selected arm1 it received a reward of +1 with
a probability of 90 %, and a reward of zero otherwise. The second arm, arm2, yielded
a reward of +1 with a probability of only 10 %, and zero otherwise. Many real-world
problems are stochastic by nature in the sense that the optimal solution may not always
yield a high reward all the time. The first arm was clearly the optimal solution to this
task, and yet it would not always yield a reward. To add to the confusion, the second
arm would sometimes yield a reward.

The purpose of this task was to give an indication of the agent’s capability to handle
stochastic tasks. The probabilities of 90 % and 10 % were chosen a bit arbitrarily. The
optimal arm had to yield a reward of +1 most of the time, whereas the other arm had to
yield a reward of ±0 most of the time. 90 % and 10 % seemed like reasonable choices.

The value of an episode uij was one if the agent selected arm1, and zero otherwise.
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Figure 4.4 Illustrations of the 2x2 GW task. The transition graph is shown in (a), and a
more compact illustration of the states and actions is shown in (b).

Delayed Reward Task

The bandit tasks could not be used to evaluate how the agents coped with delayed re-
wards, i.e. when the consequence of an action is not immediately observable. Most
real-world tasks fall into this category. The task used to present this challenge to
the agents was a so called 2-by-2 gridworld (2x2 GW). The term gridworld typically
refers to tasks which have a grid-like appearance. The transition graph of the particular
2x2 GW used in the evaluations is illustrated in Figure 4.4a. Next to it, in Figure 4.4b,
the same gridworld is shown in a more compact illustration, where each cell corre-
sponds to a state.

The initial state, which was labeled 1 in this task, is marked with a double border.
There was one terminal state: state 4, which is shaded gray in both the transition graph
and the more compact illustration. At the start of the episode, the agent was placed in
the initial state 1.

In each state the agent could choose between going north, south, east, or west. The
agent’s location would be left unchanged if it would “step off” the gridworld. This
would happen if, for example, the agent chose to go west in state 1. All transitions
resulted in a reward of −1, except the ones which brought the agent into the terminal
state 4; those transitions yielded a reward of +1.

By handing out negative rewards on all transitions which did not lead into a terminal
state, the agent was encouraged to find the terminal state as quickly as possible. There
were two such solutions, or paths: 1 → 2 → 4 and 1 → 3 → 4, both of which were
considered optimal. The value of the episode uij was computed as:

uij =
length of shortest path

length of agent’s chosen path
(4.8)

In other words, an episode value of one meant the agent found one of the shortest paths
through the gridworld. An episode value closer to zero meant the agent took a more
“scenic” route before ending up in the terminal state. If the agent failed to find the
terminal state within 1024 time steps, the episode was terminated with uij = 0. Such a
“time step limit” had to be set to make sure all episodes eventually terminated. Though
it was chosen a bit arbitrarily, 1024 time steps was considered to be an appropriate
limit.
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Extended Negative Reward Task

Because of some surprising results for the AR−P agent on the negative reward task, an
extension to it was created. This task was also a bandit, but it had ten arms instead of
the usual two. Nine of these arms yielded a reward of −1, while only arm1 yielded a
reward of +1.

The value of an episode uij was one if the agent selected arm1, and zero otherwise.

Strictly Positive Delayed Reward Task

Due to some surprising results for the BCPNN agent on the delayed reward task, an
extended task was created: the strictly positive delayed reward task. The tasks were
almost identical, the only difference was that all transitions which did not bring the
agent into the terminal state 4 now yielded a reward of ±0. This meant that the agent
was in no way encouraged by the reward signal to find the shortest path through the
gridworld.

The episode value was computed in the same way as in (4.8).
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Chapter 5

Results

The results of the evaluations are presented in this chapter. Before the agents could
be evaluated and have their performance compared, a reasonable value for the gain
parameter G had to be found. It was important to use a value for G which did not favor
either of the agents. The results of this search is shown in Section 5.1. The following
three sections presents the evaluation results for the three agents, beginning with the
Sarsa agent since it was used for benchmarking. Finally, the last section covers the
results of some additional evaluations. These extra evaluations were performed due to
some unexpected results during the previous ones.

5.1 Finding a Reasonable Gain

Figure 5.1 on the next page illustrates how different values of the gain parameter G
affected the worst-case performance umin of the agents on the 2-AB task. For this
evaluation, the agents were allowed to learn for E = 2000 episodes. Note that the
performance of the Sarsa and AR−P agents were almost identical; their umin values
overlapped almost exactly. For values of G < 10 the BCPNN agent outperformed the
other agents, but umin ≈ 1 for all three agents at G = 10. While it is difficult to make
out from the plot, the performance of the AR−P and the BCPNN agent then dropped
slightly near G = 30. Because of this, it was decided that

G = 10 (5.1)

was a reasonable choice, as it appeared this value did not favor either of the agents.

5.2 Sarsa Agent

The results of the evaluations performed on the Sarsa agent are summarized in Fig-
ure 5.2 on page 33. It would seem the Sarsa agent easily solved all the tasks, except
perhaps the fuzzy task; more about that below. The parameter settings that were used
are shown in Table 5.1 on the next page. These settings were found to be optimal by
means of empirical parameter search, see Section 4.4 on page 26. Parameter γ was
found to have no effect on the immediate reward tasks.

The fuzzy task proved to be the most difficult task to solve for the Sarsa agent.
Decent performance was achievable with parameter setting: α = 0.01. Increasing
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Figure 5.1 The worst-case performance umin of the three agents as a function of the (log)
gain parameter G on the 2-AB task.

the learning rate parameter α too high above 0.01 resulted in a highly unstable per-
formance, with many outliers. Lowering α too much below 0.01 resulted in the agent
being unable to learn anything useful within 2000 episodes.

5.3 AR−P Agent

The evaluation results for the AR−P agent are shown in Figure 5.3 on page 35. Overall,
the agent performed very well, though it was not very successful on the delayed reward
task. The results are discussed in more detail below.

The effect on the worst-case performance umin with different parameter settings
was investigated on the 2-AB task, in accordance with the empirical parameter search
method described in Section 4.4 on page 26. The purpose was to learn more about how
different parameter values affected the agent’s performance, and to find the optimal
parameter setting on the 2-AB task. The agent was not allowed to learn for more than
100 episodes in order to get a good spread of umin values. The result of this parameter
search is shown in Table 5.2 on page 34. This data suggested that the optimal parameter
setting on the 2-AB task was ρ = 1010 and λ ≥ 0.1. It was clear that for higher values
of ρ, the other parameter λ had less and less effect. However, note that, even for the
extreme choice ρ = 1010, performance dropped for λ = 0. Furthermore, for lower
values of ρ, it was clear that the agent performed better as λ → 1. Finally, note that
the performance of ρ = 10 was almost as good as ρ = 1010. Because of this, and the

Table 5.1 Optimal parameter settings for the Sarsa agent. Parameter γ had no effect on the
immediate reward tasks.

Task α γ

2-AB 1 –
Negative reward 1 –
Fuzzy 0.01 –
Relearning 1 –
Stochastic 0.1 –
Delayed reward 1 1
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(e) Stochastic task.
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Figure 5.2 Performance of the Sarsa agent on the 2-AB, negative reward, fuzzy, relearning,
stochastic, and delayed reward tasks. Each plot shows the distribution of run values as a
function of the number of learning episodes. The parameter settings used are shown in
Table 5.1 on the preceding page. See Section 4.4 on page 25 for more information about
the data displayed in this figure.
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Table 5.2 Worst-case performance umin of the AR−P agent on the 2-AB task with different
parameter settings.

λ

ρ 0 0.1 0.5 0.9 1

0 0.29 0.34 0.31 0.32 0.32
0.1 0.56 0.61 0.71 0.73 0.74
0.5 0.79 0.81 0.87 0.89 0.88

1 0.85 0.89 0.90 0.91 0.91
2 0.90 0.92 0.91 0.93 0.93
5 0.89 0.93 0.95 0.95 0.96

10 0.89 0.95 0.97 0.98 0.98
1010 0.88 0.98 0.98 0.98 0.98

fact that 1010 is such an outrageously large number compared to λ = 1, the optimal
parameter setting on the 2-AB was decided to be

ρ = 10 and λ = 1. (5.2)

The parameter setting in (5.2) was found to be optimal, by means of empirical parame-
ter search, on almost all tasks. The stochastic task was the exception, where ρ = 1 and
λ = 0 was found to be optimal.

It was also of interest to investigate how much the agent could improve its perfor-
mance when it was allowed to learn for many more episodes. A limit of E = 2000
episodes was set, and the agent was evaluated using the same parameter settings shown
in Table 5.2. The results revealed that the agent converged to the optimal solution for
ρ >= 0.1.

The performance of the AR−P agent on the negative reward task was better than its
performance on the 2-AB task. This was unexpected, as the agent was not designed to
handle negative rewards, see Section 6.3 on page 42. Because of this, more evaluations
were made, see Section 5.5 on page 39.

The agent appeared to converge upon the optimal solution on the fuzzy task, but
it was an unstable convergence with many outliers. After 100 episodes, its worst-case
performance umin was still only about 0.7.

Performance on the relearning task was excellent for all values of λ ≥ 0.01 tested.
With λ = 0 performance was terrible. The speed of relearning was found to be faster
as λ → 1. With the optimal parameter setting in (5.2) the agent was able to relearn
faster and with greater stability than the Sarsa agent.

It was difficult to find a parameter setting that could be regarded as optimal on the
stochastic task. Different settings were found to have different advantages. Shown
in Figure 5.3e on the next page is the performance of the AR−P agent with parameter
setting ρ = 1 and λ = 0. With this choice of parameters the agent eventually converged
upon the optimal solution. It was a very unstable convergence however, with many
outliers. Note that one outlier has achieved a run value only marginally greater than
zero after 100 episodes. With the parameter setting shown in (5.2) the convergence was
more stable, but it did not converge to the optimal solution within 2000 episodes.

The AR−P agent was not very successful on the delayed reward task. In the limit,
as E →∞, it appears the agent will converge to a performance of about 0.7. While this
is better than using a random policy, it is terrible when compared to the Sarsa agent.
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(c) Fuzzy task.
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(d) Relearning task.
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(e) Stochastic task
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(f) Delayed reward task.

Figure 5.3 Performance of the AR−P agent on the 2-AB, negative reward, fuzzy, relearn-
ing, stochastic, and delayed reward tasks. Each plot shows the distribution of run values
as a function of the number of learning episodes. The parameter setting used is shown in
(5.2), except for the stochastic task. See Section 4.4 on page 25 for more information about
the data displayed in this figure.
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Table 5.3 Parameter settings of the BCPNN agent on the tasks shown in Figure 5.4 on the
facing page.

Task τE τP

2-AB 1 1
Negative reward 1 1
Fuzzy 25 500
Relearning 5 200
Stochastic 1 1
Delayed reward 5 25

5.4 BCPNN Agent

The evaluation results for the BCPNN agent are shown in Figure 5.4 on the facing page.
The parameter settings used are shown in Table 5.3. These settings were all found to be
optimal by means of empirical parameter search, described in Section 4.4 on page 26.
It can be seen that the agent was not able to solve all tasks in a satisfactory manner.
The results are discussed in more detail below.

The effect on the BCPNN agent’s worst-case performance umin with different pa-
rameter settings was first investigated on the 2-AB task. In order to get a good spread
on the umin values, learning was limited to 200 episodes. The performance is shown
in Table 5.4. If τE was set too high, it would completely destroy the learning ability
of the agent on the 2-AB task. As an example, compare the effects of τE = 50 and
τP = 50. With τP = 50 it is still possible to achieve good performance, but with
τE = 50 it appears to be impossible. Upon examination of the table, it can be seen that
performance was best with τE = τP = 1, and thereabouts.

Using the optimal parameter setting, the BCPNN agent eventually converged to the
optimal solution on the 2-AB task after 2000 episodes. The convergence was quite
unstable though, with many outliers. Even after 100 episodes, the agent’s worst-case
performance was only about 0.9.

Introducing negative rewards had a positive effect on the stability of convergence.
Notice in Figure 5.4 on the facing page how many outliers there are in (a) the 2-AB
task, compared to (b) the negative reward task, which shows no outliers at all.

No parameter setting which produced good results on the fuzzy task was found.
Some choices of τE and τP produced a high best-case performance umax, but also a low

Table 5.4 Worst-case performance umin of the BCPNN agent with different parameter
settings on the 2-AB task.

τP

τE 1 5 10 25 50 100 200 500

1 0.95 0.95 0.95 0.95 0.93 0.88 0.86 0.73
5 0.95 0.95 0.94 0.91 0.89 0.81 0.74 0.54

10 0.93 0.92 0.89 0.86 0.79 0.69 0.57 0.45
25 0.73 0.70 0.69 0.65 0.60 0.53 0.45 0.43
50 0.57 0.55 0.55 0.52 0.51 0.46 0.42 0.40

36



5.4 BCPNN Agent

10 50 100 2000
0

0.2

0.4

0.6

0.8

1

R
un

 v
al

ue

Number of episodes

(a) 2-AB task.
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(b) Negative reward task.
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(e) Stochastic task.
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(f) Delayed reward task.

Figure 5.4 Performance of the BCPNN agent on the 2-AB, negative reward, fuzzy, relearn-
ing, stochastic, and delayed reward tasks. Each plot shows the distribution of run values as
a function of the number of learning episodes. The parameter settings used are shown in
Table 5.3 on the facing page. See Section 4.4 on page 25 for more information about the
data displayed in this figure.
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Table 5.5 Worst-case performance umin of the BCPNN agent with different parameter
settings on the fuzzy task.

τP

τE 1 5 10 25 50 75 100 300 500

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.12
5 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.23 0.22

10 0.00 0.00 0.01 0.02 0.05 0.15 0.17 0.33 0.33
25 0.23 0.26 0.24 0.28 0.29 0.32 0.36 0.35 0.39
50 0.37 0.36 0.33 0.36 0.36 0.35 0.36 0.37 0.35

100 0.36 0.36 0.37 0.38 0.37 0.38 0.37 0.37 0.35
300 0.37 0.38 0.39 0.35 0.37 0.38 0.37 0.38 0.36
500 0.36 0.38 0.38 0.38 0.38 0.38 0.37 0.39 0.38

worst-case performance umin at the same time. Other settings lowered the difference
umax − umin, but resulted in a low umax instead. For example, with τE = τP = 1,
the difference was umax − umin = 1. After 200 episodes of learning, the worst-case
performance was still below 0.40 for all parameter settings investigated, see Table 5.5.
Figure 5.4c on the preceding page shows the performance with parameter setting τE =
25, τP = 500. It was one of the best ones found, and yet it was only slightly better than
a completely random policy.

It was not obvious how to set the parameters τE and τP to achieve good perfor-
mance on the relearning task, see Table 5.6. In this empirical parameter search, learn-
ing was allowed to take place over 2000 episodes. One of the best parameter setting
found was τE = 5 and τP = 200. With τE = τP = 1, the agent was completely
unable to relearn.

Introducing the challenge of a stochastic environment proved to be of little diffi-
culty for the BCPNN agent. In Figure 5.4 on the preceding page, compare the plot in
(a) with the one in (e). The two graphs are almost identical, meaning that performance
hardly dropped at all.

The agent was also evaluated on the delayed reward task. Its worst-case perfor-
mance umin with different parameter settings, over 100 learning episodes, is shown in
Table 5.7 on the next page. It appeared that τE = 5 and τP = 25 could have been
a good parameter setting, but the agent failed to converge upon the optimal solution.
This was much worse than expected, and therefore additional evaluations were made,
see Section 5.5 on the facing page.

Table 5.6 Worst-case performance umin of the BCPNN agent with different parameter
settings on the relearning task.

τP

τE 1 5 50 100 200 300 400 500

1 0.02 0.02 0.02 0.02 0.55 0.83 0.90 0.91
5 0.02 0.02 0.45 0.88 0.92 0.92 0.92 0.91

10 0.69 0.78 0.89 0.91 0.90 0.88 0.86 0.84
25 0.80 0.79 0.77 0.76 0.73 0.71 0.69 0.67
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Table 5.7 Worst-case performance umin of the BCPNN agent with different parameter
settings on the delayed reward task.

τP

τE 1 5 10 25 50 75 100

1 0.36 0.69 0.70 0.71 0.72 0.72 0.72
2 0.45 0.77 0.78 0.80 0.79 0.79 0.78
5 0.43 0.77 0.80 0.82 0.81 0.81 0.79

10 0.42 0.67 0.75 0.76 0.76 0.75 0.74
25 0.39 0.54 0.57 0.60 0.61 0.60 0.60

5.5 Additional Evaluations

Due to some unexpected results for the AR−P and the BCPNN agents, some additional
evaluations were made. The results are presented here.

Extended Negative Reward Task

It was surprising to find that the AR−P agent was successful on the negative reward
task, because according to Section 3.1 on page 15, the reward r used in (3.2) must
be in the interval [0, 1]. These results suggested that this may not be entirely true.
Therefore, the AR−P agent was evaluated on the extended negative reward task, which
is described in Section 4.5 on page 30.

Using the same parameter setting as in the negative reward task, the AR−P agent
achieved a worst-case performance umin = 0 after 100 episodes of learning. Several
other parameter settings were tried, but no improvement could be found. In other
words, the agent was completely unsuccessful. The Sarsa and the BCPNN agents, on
the other hand, had no problems solving this task.

One possible explanation for the failure of the AR−P agent, was that it simply was
not able to handle bandit tasks with more than two arms. To test this hypothesis, the
AR−P agent was evaluated on a bandit with ten arms, where nine of them yielded a
reward of ±0, and one yielded +1. The agent was found to be able to cope with this
task without any problems. The Sarsa and the BCPNN agents had no problem solving
it either.

Strictly Positive Delayed Reward Task

The BCPNN agent performed much worse on the delayed reward task than was ex-
pected. In order to investigate this further, a strictly positive delayed reward task was
constructed. The task is described in Section 4.5 on page 30. The parameter setting
of the BCPNN agent was τE = 2 and τP = 5. For comparison, the Sarsa agent was
also evaluated on this task, with parameter setting α = 0.1 and γ = 1. The results
are shown in Figure 5.5 on the following page. It can be seen that the BCPNN agent
outperformed the Sarsa agent on this task.
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(a) Sarsa agent.
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(b) BCPNN agent.

Figure 5.5 Performance of the Sarsa and the BCPNN agent on the strictly positive delayed
reward task. Each plot shows the distribution of run values as a function of the number of
learning episodes.
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Chapter 6

Discussion

The results of the evaluations presented in the previous chapter will be analyzed and
discussed here. Note that this chapter contains, to a large extent, subjective opinions of
the author.

The chapter begins with a section covering the results of the investigation of the
gain parameter G, and how it affected the performance of the agents. The following
three sections discuss the results for each of the three agents separately. The last section
makes some overall conclusions regarding the findings presented in this thesis. Some
suggestions are made as to how this line of research could be extended.

6.1 Gain Parameter G

The results of the evaluations regarding the gain parameter G, which are presented in
Figure 5.1 on page 32, will be discussed in this section. Overall, the data suggests that
the gain parameter G can indeed be used to control the trade-off between exploration
and exploitation.

Consider what happens as G is increased. For the Sarsa agent, it appears that
the worst-case performance umin of the agent will converge to the optimal solution.
This supports the assumption that, at least for this agent, G can be used to control
the trade-off between exploration and exploitation. The worst-case performance of
both the BCPNN and the AR−P agent, however, has dropped at G = 30 compared
to G = 10. This contradicts the very same assumption. It is, however, a very small
anomaly, and no definite conclusion can be drawn. At most, these results indicate that
G may have a more complicated impact on the performance of these two agents than
initially estimated.

The BCPNN agent achieved a better worst-case performance than the other two
agents for low gain values (G < 10). This could indicate that the BCPNN agent was
able to extract more accurate information about the environment. It is possible that
it was able to distinguish the correct solution more clearly than the other two agents.
That would explain why it did not need a high gain value (G ≥ 10) to begin exploiting
so heavily.

Interestingly, the data points for the AR−P agent overlapped almost exactly with
those of the Sarsa agent, except at G = 30. In other words, the worst-case perfor-
mances of these two agents were almost identical. I have no explanation for this be-
havior.
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6.2 Sarsa Agent

Refer to Figure 5.2 on page 33 while reading the discussion of the Sarsa agent’s results
in this section.

As was expected, this agent performed very well on the 2-AB, negative reward,
relearning, and the delayed reward tasks. The learning rate could be set to its most
extreme, α = 1, without many signs of instability. The exception being perhaps on
the relearning task, where relearning did appear to take place, but with some signs of
instability. The agent’s performance was increased on the negative reward task, when
compared with its performance on the 2-AB task, as was expected. The Sarsa agent
also displayed a solid performance on the delayed reward task. For all these tasks the
agent appeared to converge to a run value of one. This meant that it would find, and
converge to, the optimal solution.

The agent performed worse than expected on the fuzzy task. The agent displayed
no signs of converging to the optimal solution after 100 episodes. This, in combination
with the many outliers after 2000 episodes makes one wonder what it might converge
to as E → ∞, or if it would converge at all. The reason it failed was probably due to
the choice of gain G = 10, in combination with the choice of rewards for the optimal
(+1) and the suboptimal (+0.8) arm.

Due to the nature of the stochastic task, it was quite understandable that the learning
parameter α had to be set fairly low to ensure good performance.

6.3 AR−P Agent

This section will discuss the evaluation results for the AR−P agent. It will be helpful
to look at Figure 5.3 on page 35 while reading this section.

Looking at Table 5.2 on page 34, it appears that parameter ρ controlled the learning
rate, at least up to a point. This was in agreement with the S-model AR−P weight
update rule in (3.2) on page 15; the higher the value of ρ, the greater the weight updates
will be.

The 2-AB task presented no difficulty for the agent. Its learning speed and stability
of convergence matched that of the Sarsa agent almost exactly.

The S-model AR−P weight update rule does not allow r < 0, so it was surpris-
ing to see that the agent’s performance on the negative reward task was so good. In
fact, its performance was slightly improved compared to the 2-AB task. This result
indicated that the AR−P agent could handle negative rewards after all. However, its
terrible performance on the extended negative reward task extinguished that idea. It
must be concluded that the agent has, at most, some limited ability to cope with nega-
tive rewards.

After having seen the Sarsa agent produce poor results on the fuzzy task, it was
unexpected to see the AR−P agent solve it. Convergence was very shaky with many
outliers, but in the limit it did appear to converge to the optimal solution.

The performance of the AR−P agent on the relearning task was excellent; in fact,
it was even better than the Sarsa agent. The poor results for λ = 0, combined with
the fact that relearning was much faster as λ → 1, seems to indicate that λ served to
“punish bad behavior”. During the first 50 episodes the agent learned to choose arm1,
which meant the weight to that action unit was strengthened. Starting with episode 51,
arm1 was now the wrong action to choose. The weight which was associated with arm1
should now have been weakened, but it was not with λ = 0. With λ = 0, weights can
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only be strengthened due to good behavior, never weakened due to bad behavior, as can
be understood by examining (3.2). It was also in agreement with the finding that faster
relearning took place as λ → 1: the higher the value of λ, the greater the punishment
for being wrong.

While the agent does appear to converge to the optimal solution on the stochastic
task, it was very unstable, especially when compared to the Sarsa agent. It is clear that
the AR−P agent has great difficulties dealing with stochastic tasks, at least for G = 10.
Lower the value of G may boost its performance, since a lower gain would cause the
agent to explore more, thereby giving it a chance to discover that there exists a better
choice than arm2, namely arm1.

The AR−P agent had no means to handle delayed reward, and it was therefore a bit
surprising to find that it was partially successful on the delayed reward task. The reason
it achieved some success on this task was probably because the agent learned to favor
the actions north and east. In other words, it most likely became biased to choosing
one of those two actions. There is of course no guarantee that such action favoring is of
any help to it in more complicated gridworld. The fact that the AR−P agent performed
better than expected on the delayed reward task should not be interpreted to mean that
it is able to handle delayed rewards.

In summary, the most surprising result was that the agent was so successful on
the fuzzy task. The agent also performed much better than expected on the relearning
task. As was expected, the evaluations confirmed that the agent is not able to cope
with delayed rewards, or with negative rewards. Finally, it would appear that the gain
parameter G was set too high at G = 10 for the agent to perform well on the stochastic
task.

6.4 BCPNN Agent

The evaluation results for the BCPNN agent will be discussed here. Refer to Figure 5.4
on page 37 while reading this section.

The BCPNN agent had a surprisingly shaky convergence on the 2-AB task. Due
to the many outliers, it can be concluded that the BCPNN agent was much slower to
learn reliably than the other agents on the 2-AB task. This agent clearly required many
episodes of training in order to guarantee good performance. The fact that learning
was fastest with τE = τP = 1 and thereabouts, as seen in Table 5.4 on page 36, was in
agreement with (3.6) and (3.7).

Introducing negative rewards with the negative reward task had a big impact on
the stability of convergence. Its performance now matched that of the Sarsa agent.
Learning speed and stability was expected to increase with the introduction of negative
rewards, but these results were even better than expected.

The agent performed poorly on the fuzzy task. It appears the agent would have
converged to a run value of approximately 0.5 as E → ∞. Thus, in the agent’s opin-
ion, both arms were about equally good, which was not true. This result was quite
understandable, since the parameters τE and τP were set so extraordinarily high. The
fact that umax − umin = 1 for the much more sensible choices τE = τP = 1, meant
the agent selected one of the arms exclusively in some runs. This was consistent with
the results displayed in Figure 5.1 on page 32. Those results indicate that the agent was
able to extract more accurate information about the environment than the other agents,
resulting in the agent not needing a high gain in order to start exploiting exclusively. So
with G = 10, a very high gain from the BCPNN agent’s point of view, the agent proba-
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bly locked immediately on the first arm it happened to select in the first episode. It can
be concluded that, at least for G = 10, the BCPNN agent can be fooled quite easily by
suboptimal solutions. Lowering the gain would most likely solve this problem.

The BCPNN agent needed careful parameter tuning in order to achieve an accept-
able distribution of run values after 2000 episodes on the relearning task. With the
setting used, τE = 4 and τP = 200, the parameter τP was set so high, it is doubtful the
agent had time to learn much in the first 50 episodes before the reward was swapped.
Also, there should have been no need to set τE to anything but one on this task, since
the reward was handed out without delay. Still, it was necessary in order to achieve
decent performance within 2000 episodes. Setting τE > 1 meant delaying the storage
of correlations, and it explains the odd look of the plot. It took time for the agent to
register that the reward had moved after 50 episodes, therefore the plot displayed a
“dip” before it began to rise.

This implementation was clearly very bad at this relearning task, but why? The
reason it failed was, in retrospect, quite understandable. During the first 50 episodes,
the agent strengthened the correlation to arm1, as it yielded a reward of +1. Starting at
episode 51, the correlation to arm2 was now strengthened instead, since that now was
the only arm which yielded a reward of +1. However, the correlation to arm1 was still
as strong as ever, and it remained strong, since the agent had no mechanism to weaken
it. Recall that the agent would modify neither projection if the reward was ±0.

It was interesting to see that the BCPNN agent, apparently, solved the stochastic
task just as easily as it solved the 2-AB task. The stochastic nature of the task did not
appear to affect the agent at all. It would appear the BCPNN agent has a knack for
solving stochastic tasks.

Surprisingly, the agent did not converge upon the optimal solution in the delayed
reward task. A possible answer could have been that the trace (E) variables were not
able to provide a satisfying short-term memory. This suspicion was laid to rest as the
agent solved the strictly positive delayed reward task without any difficulty. In fact,
its performance was even better than the Sarsa agent’s on that task. The agent found
an “optimal” path, even though it, strictly speaking, was not optimal any more. The
rewards no longer motivated the agent to find the terminal state of the gridworld as fast
as possible, and yet the agent converged upon that solution anyway; as did the Sarsa
agent.

To summarize: It proved to be difficult to set the parameters τE and τP appropri-
ately on several of the tasks. No parameter setting which could produce decent results
on the fuzzy task was found. This probably had to do with the gain being set to high
at G = 10. The reason the agent produced such poor results on the relearning task
was most likely due to the fact that this implementation did not decay its projections
when the reward was±0. Finally, it seems very strange that the BCPNN agent failed to
converge to the optimal solution on the delayed reward task, when it was so successful
on the simplified delayed reward task. One would have expected the negative rewards
used in the delayed reward task to increase learning speed and stability. Recall how the
its performance was increased on the negative reward task, compared to the 2-AB task.

6.5 Conclusions and Suggestions for Future Work

The primary goal of this project was to evaluate a selection of biologically plausible
RL agents. The agents were to be constructed from biologically plausible models of
learning. Four such models were found, of which two were used to construct RL
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agents. The evaluations successfully revealed some of their potential strengths and
weaknesses. The overall conclusion must be that, based on these evaluations, neither
of the two RL agents can be said to be very efficient. However, some useful insights
have been made, and the evaluation results have also spawned ideas for future research
in this area.

Aside from the evaluation results, another benefit of this project was the develop-
ment of the RL agent framework presented in Section 4.3 on page 22. While it is very
simple, it can hopefully provide a useful insight into how biologically plausible RL
agents can be constructed from appropriate models of learning.

The evaluation procedure and performance measure presented in Section 4.4 on
page 25 was found to be very useful in assessing the performance of an agent. The
list of tasks used to challenge the agents with was by no means exhaustive, but, with
the possible exception of the fuzzy task, they all proved to be useful in illuminating
different features of the agents.

Next, in the remainder of this final section, some suggestions will be presented on
how this line of research could be extended.

Future Evaluations and Analysis

The Sarsa agent was designed to be used for benchmarking, and the fact that it failed to
solve the fuzzy task indicates that the task itself was unsuitable for these evaluations.
The reason the agent failed may have been that the difference in rewards for the optimal
(+1) and the suboptimal (+0.8) arm was not big enough. This ought to be kept in mind
if this type of task is used in future evaluations.

It might be illuminating to investigate what happens with the agents’ worst-case
performances umin for G > 30, see Figure 5.1 on page 32. Specifically, it would
be interesting to find out if the performance of the AR−P and the BCPNN agent will
continue to drop. Furthermore, some theoretical analysis might reveal why the umin

values for the Sarsa and AR−P agent practically overlap.
The AR−P agent was expected to fail on the negative reward task, and yet it did

not. It remains to be seen why this was so. The task is relatively simple, so it ought to
be possible to provide an explanation by theoretical analysis.

These evaluations have not, in any detail, investigated how the agents scale on
tasks of increasing complexity. For example, one could have the agents solve a 50-
armed bandit (50-AB) task, and compare with the results on the 2-AB task. Following
the same line of reasoning, one could also have the agents solve a 8x8 GW task, and
compare with the results on the delayed reward task. A biologically plausible and
efficient RL agent can be expected to display robustness as the complexity is increased.

Future Agents

The effects of the concept of distributed coding has not been investigated at all in this
project. It would be interesting to see this area of research extended in that direction.

The memory (P ) variable update rules in (3.7) for the dual BCPNN RL system
required a positive “print-now” signal κ, and yet the BCPNN agent was capable of
solving the negative reward task, as well as the extended one. The ability to cope
with negative rewards was due to its use of a negative projection. That concept might
potentially be used with other models that also require a positive reinforcement signal.
For example, the S-model AR−P weight update rule in (3.2) is only defined to be used
with a positive r. It might be possible to extend the AR−P agent by adding a negative
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projection, similar to the BCPNN agent, thereby potentially allowing it to cope with
negative rewards more effectively.

One possible solution to the problem with the BCPNN agent’s poor performance
on the relearning task, could be to add a rule which decays both projections if the
reward is ±0. Intuitively this makes sense, since the projections did not help the agent
accumulate any reward. Some evaluations were made using an implementation of this
approach on the relearning task and the preliminary results were good. An extension to
this idea, is to decay the weights of the projections proportionally, with respect to the
most recently activated state-action unit pairs. The idea is to focus the decay of state-
action weights to the units that were actually responsible for the±0 reward, rather than
simply decaying all weights.

The AR−P agent’s ability to relearn was very impressive. It might be worthwhile
to consider incorporating aspects of its weight update rule in future RL agent imple-
mentations. Specifically, the term with factor λ in (3.2) looks promising.

The model presented by Doya (see Section 3.3 on page 18), and the water-maze
navigation model (see Section 3.4 on page 19) are especially interesting candidates for
future work, because they incorporate TD learning. This should make them very effi-
cient in dealing with delayed reward tasks. There might be a problem in that there are
two different sets of weights that need to be updated during learning. In the watermaze
model for example, one set of weights connects the place cells to the critic unit, and
another set connects them to the action units. Also, note that the model presented by
Doya is in fact a generalization of the watermaze navigation model. In other words, the
watermaze model is one possible implementation of Doya’s model.

Based on what has been presented in Chapter 2, incorporation of TD learning meth-
ods are, I think, almost a requirement for a biologically plausible and efficient model of
learning. TD learning methods appear to capture the essentials of the biological learn-
ing process. It makes sense that learning is driven by an error in temporally successive
evaluation/prediction errors because learning, I believe, must in some way require en-
ergy. It takes energy to induce changes, such as acquiring new knowledge, and nature
is not keen on spending energy. Therefore, learning ought to occur only when it is
necessary. For example, if an animal accurately predicts its environment, then it is pre-
sumably successful in living in it. There will be no need for it to learn anything new.
However, if a prediction is wrong – maybe a food source has been moved – then the
animal should be encouraged to learn, to adapt, in order to ensure its survival. This is
accurately reflected by the methods of TD learning.
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