
Evolving a neural network using dyadic connections

Andreas Huemer
Institute Of Creative Technologies

De Montfort University, UK
E-mail: ahuemer@dmu.ac.uk

Mario Gongora
Centre for Computational Intelligence

De Montfort University, UK
E-mail: mgongora@dmu.ac.uk

David Elizondo
Centre for Computational Intelligence

De Montfort University, UK
E-mail: elizondo@dmu.ac.uk

Abstract—Since machine learning has become a tool to make
more efficient design of sophisticated systems, we present in this
paper a novel methodology to create powerful neural network
controllers for complex systems while minimising the design
effort.

Using a robot task as a case study, we have shown that using
the feedback from the robot itself, the system can learn from
experience, or example provided by an expert.

We present a system where the processing of the feedback is
integrated entirely in the growing of a spiking neural network
system. The feedback is extracted from a measurement of a
reward interpretation system provided by the designer, which
takes into consideration the robot actions without the need for
external explicit inputs.

Starting with a small basic neural network, new connec-
tions are created. The connections are separated into artificial
dendrites, which are mainly used for classification issues, and
artificial axons, which are responsible for selecting appropriate
actions. New neurons are then created using a special connection
structure and the current reward interpretation of the robot.

We show that dyadic connections can also make an artificial
neural network acting and learning faster because they reduce
the total number of neurons and connections needed in the
resulting neural system.

The main goal of the research is to create a novel unsu-
pervised learning system where the designer needs to define
only the interface between the robot and the neural network
in addition to the feedback system which includes a calculation
of a reward value depending on the performance of the robot
(or task aim of the system being developed).

I. INTRODUCTION

To design controllers for robots capable of performing
complex tasks, much effort has been put into improving
machine intelligence techniques. Given the vast variety of
possible conditions present in the real world, machine learn-
ing has been the subject of significant research to improve the
responses of autonomous systems to a multitude of situations.
This paper relates to a novel methodology being studied and
evaluated which is capable of creating a spiking neural based
controller for applications such as robotics. Our method also
takes into account the aspect of online learning which is a
much more intuitive approach to real world problems.

Neural networks have been applied successfully to some
control problems and learning systems, however, if the robot
needs to be able to adapt to completely new situations,
there have to be enough adaptable components in the neural
network. One approach could be to provide a neural network
with enough neurons and connect them fully, and have those
connections adapted with known machine learning methods.

Alternatively, it has been shown that partially connected neu-
ral networks are faster to train and have better generalisation
capabilities [2]. Similar effects have been found considering
the number of neurons [4], where it has been shown that
more is not always better.

Consequently, a novel method for creating neural networks
which, among other applications, could be useful for con-
trolling a mobile robot is to use a neural network with a
minimum number of neurons and connections and grow it
until it can fulfil the task performance required by the system.
The results presented in this paper have been evaluated with
a set of experiments where a robot or a simulation of it learns
to wander around in a room and to avoid obstacles.

We have created a self building neural network which
learns from experience by connecting the neurons, adapting
the connections and growing new neurons depending on a
feedback process that will correspond to the measurement
of a perceived reward of the robot. The measurement of
the reward that the robot perceives can be defined by an
evaluation function of the task performance, in which case
the neural network will develop itself without the need of
any human intervention, creating a purely automated learning
mechanism; alternatively the reward values can be fed into
the system at runtime, representing feedback from a trainer
(either automated or human operated).

Florian simulated a worm that was fed with positive reward
when its mouth was moving towards its food source and
negative reward when its mouth was moving in the other
direction [3]. A neural network controlled the movements
of the worm. Depending on the feedback the connections
between the neurons were adapted, which finally took the
mouth of the worm to the food source. A similar method
will be used in the experiments of this paper. In addition
to adapting the connections between the neurons the reward
will also be used for growing new neurons.

We have separated the neural connections in two parts:
artificial dendrites and axons. These do not only play an
important role with the growth mechanism but in the basic
decision mechanism for the actions as well.

Initial constraints have been used at this stage of the
research to provide a reliable evaluation of the novel growth
methods. For example recurrent connections and Spike Time
Dependent Plasticity have been excluded, which would both
increase the capabilities of the neural network but which
would also increase the dynamics of the network and hence
the effort of evaluating it and the certainty of the evaluation



results at this initial stage.
This paper is organised in the following way. Section

II explains the principle of dyadic connections. In section
III the basic learning mechanisms of the spiking neural
network are described. The growth mechanism of the neural
network is discussed in section IV, followed by results of
testing the mechanism in section V. Section VI contains
concluding remarks. At the end some ideas for further work
are mentioned, in section VII.

II. DYADIC CONNECTIONS

A. Two parts for two tasks

There are different methods for connecting neurons in an
artificial neural network. In the model presented in this paper
spiking neurons are used, which send Boolean signals via the
connections when a certain threshold potential is exceeded
(a basic explanation of these can be found in [12]). For the
experiments reported in this paper the threshold is kept equal
in the whole neural network; one advantage of this is that
all new neurons created need the same properties.

Neural networks can be used for: classification and/or
action selection. We will define a classification task as of
deciding which class a data vector belongs to according to
a set of input features. An input pattern can for example
belong to a certain class, if neuron 2 AND neuron 5 are active
together. On the other hand a certain action is for example
selected, if neuron 1 OR neuron 3 is active.

In a control system for a robot the classification task is
needed to reduce the number of neurons that are responsible
for selecting an action. Also the number of connections
between neurons can be reduced by merging certain input
patterns into classes. Classification is usually done by con-
necting several input neurons to a neuron that represents the
class that all of the connected input neurons belong to. This
process is often called representation and can be distributed
over several layers. By combining several neurons into a
single one at the next level, also in the succeeding parts of
the network the number of neurons and connections can be
reduced. It has been shown that less neurons and connections
result in less computation effort and better development of
the network [2] [4].

To be capable of dealing with classification tasks and
action selection mechanisms at the same time, it is useful
to separate the connections into two parts. For the model we
are presenting dendrites connect axons with a postsynaptic
neuron and axons connect a presynaptic neuron with a
dendrite.

B. Computation

If the presynaptic neuron fires, which means that it sends a
spike, its axons influence the dendrites connected to it. The
influence can differ from axon to axon, depending on its
weight, which is adjusted by the learning process discussed
later. A single axon can be sufficient to activate a dendrite.

More issues of the separation of connections into axons
and dendrites are discussed in section IV. The signals travel

from a presynaptic to a postsynaptic neuron as explained by
the following equations.

For all equations it is assumed that all axon weights of
one dendrite sum up to 1. If weights are changed, they have
to be normalised afterwards, so that the sum is 1 again.

Input of a dendrite:

Id =
∑
p

Oa(p) · wa(p) (1)

where Id is the dendrite’s input. Oa(p) is the output of
axon p, which is 1, if the presynaptic neuron has fired and
0 otherwise. wa(p) is the weight of axon p.

Output of a dendrite:

Od =
1

1 + e−b·(Id−θd)
(2)

where Od is the dendrite’s output and Id is its input. θd is
a threshold value for the dendrite. b is an activation constant
and defines the abruptness of activation.

The dendrites which belong to the postsynaptic neuron are
also weighted and adapted by the learning process. Contrary
to the situation in a dendrite, a neuron is only activated and
fires when many or all of the excitatory dendrites are active.
An excitatory dendrite has got a positive weight, while an
inhibitory dendrite has got a negative weight and decreases
the probability of a neuron to fire.

Similar to the axons, all excitatory dendrites of one neuron
sum up to 1. The inhibitory dendrites of a neuron sum up to
-1. Again, normalisation is needed after weight changes.

Input of a neuron:

Ij =
∑
q

Od(q) · wd(q) (3)

where Ij is the input of the postsynaptic neuron j, Od(q)
is the output of dendrite q and wd(q) is the weight of dendrite
q.

Change of neuron potential:

Pj(t+ 1) = δ · Pj(t) + Ij (4)

where the new neuron potential Pj(t+1) is calculated from
the potential of the last time step t, Pj(t), and the current
contribution by the neuron input Ij . δ is a constant between
0 and 1 for recovering the resting potential (which is 0 in this
case) with time. The fact that δ will never bring the potential
exactly to the resting potential, is not very important but can
be avoided with a total reset when reaching a small range
around the resting value.

If the neuron potential reaches a certain threshold θj , the
neuron fires and resets its potential to its resting state. In
contrast to similar neuron models that are for example sum-
marised by Katic [8], a refractory period is not implemented
here.

The whole computation process for a neuron is shown in
figure 1.



c

a

b

d e

Fig. 1. A spike is produced when the presynaptic neuron fires and is sent
to a dendrite (a). The dendrite sums up the weighted spikes (b, equation 1)
and calculates its output (c, equation 2). The postsynaptic neuron sums up
the weighted output of all of its dendrites (d, equation 3) and calculates its
new potential (e, equation 4).

III. LEARNING FROM EXPERIENCE

A. Adapting connection weights

Learning from experience means to use past events to
correct and optimise the behaviour in the future. For some
applications an exact error is known and is to be minimised.
In complex situations like robots acting in the real world
there is no exact error value. As an alternative to an error
value one or more reward values can be fed into the control
system to represent the well-being of the robot, which is
modified by positive (“that was good”) or negative (“that
was bad”) feedback. The reward is to be maximised.

In the introduced model a single reward value is used that
represents the general well-being of the robot. Its range is
kept from -1, very bad, to 1, very good. The calculation
of the reward can be varied. Usually it combines current
measurements like fast movement, crashes or the energy
level with residual effects of recent ones to avoid too rapid
changes. For example, if the robot crashes into an object, the
value for representing its well-being will be negative for a
short while. A robot that moves away from an obstacle after
crashing into it deserves an increase of the reward.

For the methods that are explained here it is assumed to
have a meaningful global reward value Π(t) at each time
step t. This value can be added to a learning rule as an
additional factor. Different authors, all of them using different
neuron functions and learning functions, have shown that
this surprisingly simple method can successfully be used to
implement reinforcement learning in a neural network [1] [3]
[7]. They do not need an external module that evaluates and
changes the connections of the network after each processing
step any more.

An example for adapting axons and dendrites using Acti-
vation Dependent Plasticity is shown below. Activation De-
pendent Plasticity is based on Hebb’s ideas of strengthening

connections that fire together [5]. As shown by Izhikevich
reward can also be integrated into the more sophisticated
Spike Time Dependent Plasticity (STDP) learning model [7].

Adaptation of an axon weight:

wa(t+ 1) = wa(t) + ηa · Π(t) · φa ·Od (5)

where wa(t) and wa(t + 1) are the axon weights before
and after the adaptation. ηa is the learning factor for axons
and Od is the recent output of the connected dendrite. φa
shows if the axon was active shortly before the postsynaptic
neuron fired. For STDP this value can be the result of a
function that takes into consideration the time when spikes
were transmitted via the axon. In any case φa is a value from
0 to 1.

Π(t) is the current reward. If it is positive, the strength
of the axon will increase. A negative value will decrease the
strength of the axon.

Adaptation of a dendrite weight:

wd(t+ 1) = wd(t) + ηd · Π(t) · φd (6)

where wd(t) and wd(t+1) are the dendrite weights before
and after the adaptation. ηd is the learning factor for dendrites
and φd is the activity value of the dendrite. The activation
of the postsynaptic neuron is not given explicitly. This factor
is always 1 in the proposed model, because the function is
only called when the neuron has fired. φd is the equivalent
of φa, but φd represents the activity of the dendrite.

With this function, active excitatory dendrites are strength-
ened and active inhibitory dendrites are weakened, if the cur-
rent reward Π(t) is positive. Otherwise excitatory dendrites
are weakened and inhibitory dendrites are strengthened.

B. Delayed feedback

An important issue to consider when dealing with feed-
back from the environment and resulting rewards is delayed
feedback. When weights are adapted and as discussed later
also neurons are created based on the current reward, this
may seem the wrong time at the first glance. Typically, the
feedback is received after the responsible action is executed.
Actually, the time difference can vary significantly.

There are two methods that can make the discussed
methods efficient anyway:
• Feedback is not fed directly into the neural network

but just changes the current reward value, which also
contains residual effects of past feedback. This avoids
fast changes of the reward value, which would be
difficult to assign to a certain neuron activity pattern.

• In spiking neural networks, there is no single event that
is responsible for an action, but a continuous flow of
spikes. The input pattern, and hence the spiking pattern,
usually does not change rapidly if a certain feedback is
received. Figure 2 shows an example situation for this
issue.

Of course there remain situations that make it difficult to
assign the feedback correctly, for example if there is a big
time difference between action and feedback, or if there are



Short period when the neuron does not receive the feedback for its action

Prev. action

FB for next action

Short period when the neuron for moving

forward is not active any more

Moving forward

Receiving feedbackFB for prev. action

Next action

Fig. 2. Example for delayed feedback

many competing actions or feedback values at the same time.
However, even humans do not always arrive at the correct
conclusions. They can deal with very complex relations but
not with all.

In further work, a method will be introduced that may
enable a robot to deal with delayed feedback in a better way,
or may even be used to predict feedback. The method will
be refined through further experimentation and research.

IV. NEURAL NETWORK GROWTH

The neural network to be grown to create a robot control
system initially has no links from the input to the output.
The developer only defines the input neurons and how they
are fed with signals to produce spikes, the output neurons
and how their signals are used, and how the global reward
is calculated. An example for how this is done is explained
in section V.

If a non-input neuron has got no predecessors (neurons,
which it gets spikes from), it creates a new excitatory dendrite
and connects it to any neuron. In the experiments that are
discussed later a predecessor is looked for that is positioned
above the postsynaptic neuron in a layered network struc-
ture. Excitatory dendrites can also look for new presynaptic
neurons every now and then and connect them with weak
strength (low weights). That way a new connection does not
abruptly change the established behaviour.

The method to grow new axons, which are the connections
between presynaptic neurons and dendrites, can only be
used for the action selection task. To classify different input
patterns a method that creates new neurons is presented. Liu,
Buller and Joachimczak have already shown that correlations
between certain input patterns and a certain reward can be
stored by creating new neurons [9] [10].

In the model proposed here, if the current reward is
positive, a neuron that was active recently should be active
again in similar situations, because, if a certain action was
responsible for positive reward, it may be successful again. In
section III delayed feedback was discussed. To avoid wrong
correlations between feedback and neuron activity, a neuron
will only create a connection to a new neuron in the following
way, if it was active for some time already:
• All axons with enough influence on a neuron that was

active before receiving positive feedback are redirected
to a new neuron. The influence depends on the axon
weights and the recent activity of the presynaptic neu-
rons.

• The redirected connections are no longer just axons to
one dendrite but are all connected to their own dendrite
at the new neuron. This stores the combination of input
signals.

• The old axons need not be removed completely, but
most of their strength will be moved to a new axon that
is connected to the new neuron.

• The process, which is illustrated in figure 3, is repeated
for all dendrites of a neuron.

Fig. 3. The excitatory dendrite a is connected to two neurons of the
input layer A via the axons b and c. Both were active when there was a
significant positive reward. A new neuron was created in the hidden layer B
that connects the same input neurons by two dendrites (d, e) and one axon
for both dendrites (f, g). Then the new neuron was connected to dendrite a
(axon h) of the neuron in the output layer C.

For a negative reward the process of creating a new neuron
is similar, but the new neuron is not connected by a new axon
but by a new inhibitory dendrite. In the future a similar input
pattern will then inhibit the neuron that was active before
receiving negative feedback. Bad actions will be suppressed
that way. A new neuron that inhibits another one is shown
in figure 4.

Fig. 4. Axon d, which connects an input neuron to the excitatory dendrite
a, was active when there was a significant negative reward. Axon c was
inactive. A new neuron was created with a connection to the active input
neuron (e). For the output neuron a new inhibitory dendrite was created (b)
and connected to the new neuron by axon f.

V. EXPERIMENTS

A. Setup

The methods for growing a spiking neural network from
a minimal initial network were tested with a simulation of a
Pioneer Peoplebot which moves using differential steering,
as depicted in figure 5. The initial neural network consists



of 12 input neurons, 4 output neurons, and no connections
as indicated by layers A and C in figures 3 and 4.

The input neurons are fed by values from 6 sonar sensors:
4 in the front and 2 in the rear as shown in figure 5. The
distance value is converted in a way that one input neuron
fires often for big distances and a second one fires often for
small distances.

A B

C D

E F

G H

Input neurons

Neural network

Output neurons

Fig. 5. Robot interface with sonar sensors A to F and motors G and H

The more frequently the first output neuron fires, the faster
the left motor tries to turn forward. The more frequently the
second output neuron fires, the faster the same motor tries to
turn backward. The final speed is calculated by the difference
between both neurons. The right motor is driven in a similar
way by the two remaining output neurons.

The mechanisms discussed earlier were used for the robot
to learn to wander around randomly in a simulated office
while not crashing into obstacles. The global reward value is
updated at each time step. When a bumper of the robot fires
the reward is decreased significantly. Otherwise the reward
is increased the farther the robot goes straight forward.
Backward movement increases the robot’s reward only if the
reward was negative before (to reward recovering behaviour),
but decreases the robot’s reward in other cases.

The neurons are stored in a nested layer structure. The
top layer contains the input neurons and the bottom layer
contains the output neurons. New layers can be created in-
between for new neurons. Currently, the network is evaluated
as a strict feed forward network, which means there are
no connections to the same layer (for example no local
inhibition) or upwards (no recurrent connections).

For all experiments Activation Dependent Plasticity is
used. That means actions are selected based on co-activation
of certain neurons without considering the exact spike times.
This is sufficient for experiments without competing actions

that can be executed synchronously and without input pat-
terns where the temporal course is relevant. Accordingly, also
the learning and growing mechanisms are not based on exact
spike times to make evaluation easier. Advantages of spike
time dependent processes have for example been investigated
by Izhikevich [6] or van Leeuwen [11]. It is possible to
include some of those processes in more sophisticated future
experiments.

B. Results

Initial experiments using the novel neural network growth
model showed that certain circumstances can produce “neu-
ron chains” (see figure 6). A new neuron that stores an input
pattern that seems to be responsible for a certain reward
is created. If that assignment is correct, the new neuron
will again generate a reason to produce another new neuron
because its output can also be assigned to a certain reward.

0

500

1000

1500

2000

2500

1

2
5

4
9

7
3

9
7

1
2
1

1
4
5

1
6
9

1
9
3

2
1
7

2
4
1

2
6
5

2
8
9

3
1
3

3
3
7

3
6
1

3
8
5

4
0
9

4
3
3

4
5
7

4
8
1

5
0
5

5
2
9

5
5
3

5
7
7

6
0
1

6
2
5

6
4
9

6
7
3

6
9
7

7
2
1

7
4
5

7
6
9

7
9
3

8
1
7

8
4
1

8
6
5

8
8
9

Time steps

N
e
u

ro
n

s

0

10000

20000

30000

40000

50000

60000

70000

80000

C
o

n
n

e
c
ti

o
n

s

Neurons Connections

Fig. 6. The number of neurons and connections is growing so fast that the
time for one step increases enormously. One step is finished after calculating
the function of all neurons of the network once.

It is not possible to create a neuron only, if a combination
of input signals is stored, because also single active connec-
tions can deliver important information. If that connection is
not redirected to a new neuron, it may later be redirected to
another neuron, but the input pattern memorised in that other
neuron may be less useful than memorising an input pattern
coming from a single connection.

A first successful measure to avoid chains of neurons that
are actually responsible for the same input-output mapping
was to consider the age of the connections (see figure 7).
Young axons that seem to be responsible for a lot of reward
will not lead to a new neuron. Finding the best circumstances
for creating new neurons will be an important matter for
further research.

With this later adaptation the robot was able to learn to
wander around and to turn away from obstacles. Figure 8
shows an example run in which the robot perceived more
reward when its experience increased. Table I shows some
results of a test sample of 50 simulation runs, each run
starting with the initial neural network without connections
and stopping after 20000 time steps. The speed values are
measured in internal units of the simulation. The number of



0

20

40

60

80

100

120
1

3
9
4

7
8
7

1
1
8
0

1
5
7
3

1
9
6
6

2
3
5
9

2
7
5
2

3
1
4
5

3
5
3
8

3
9
3
1

4
3
2
4

4
7
1
7

5
1
1
0

5
5
0
3

5
8
9
6

6
2
8
9

6
6
8
2

7
0
7
5

7
4
6
8

7
8
6
1

8
2
5
4

8
6
4
7

9
0
4
0

9
4
3
3

9
8
2
6

1
0
2
1
9

1
0
6
1
2

1
1
0
0
5

1
1
3
9
8

1
1
7
9
1

1
2
1
8
4

1
2
5
7
7

1
2
9
7
0

1
3
3
6
3

1
3
7
5
6

1
4
1
4
9

1
4
5
4
2

1
4
9
3
5

Time steps

N
e
u

ro
n

s

0

50

100

150

200

250

300

350

400

C
o

n
n

e
c
ti

o
n

s

Neurons Connections

Fig. 7. The robot started at the same place under the same conditions as
with figure 6. The mechanisms for growing the neural network were the
same. The only difference was that a connection was not considered for the
growth algorithm if it was younger than 6000 time steps.

inhibitory axons is ident to the number of inhibitory dendrites
in all cases.

There is some potential for improving the methods for
the robot to learn to recover if it crashes into an object.
The different parameters of the neural network have to be
adjusted and tested to render the strengths and weaknesses
of the proposed robot control system more precisely.

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1

5
0
9

1
0
1
7

1
5
2
5

2
0
3
3

2
5
4
1

3
0
4
9

3
5
5
7

4
0
6
5

4
5
7
3

5
0
8
1

5
5
8
9

6
0
9
7

6
6
0
5

7
1
1
3

7
6
2
1

8
1
2
9

8
6
3
7

9
1
4
5

9
6
5
3

1
0
1
6
1

1
0
6
6
9

1
1
1
7
7

1
1
6
8
5

1
2
1
9
3

1
2
7
0
1

1
3
2
0
9

1
3
7
1
7

1
4
2
2
5

1
4
7
3
3

1
5
2
4
1

1
5
7
4
9

1
6
2
5
7

1
6
7
6
5

1
7
2
7
3

1
7
7
8
1

1
8
2
8
9

1
8
7
9
7

1
9
3
0
5

1
9
8
1
3

Time steps

R
e
w

a
rd

Fig. 8. At the beginning the robot did not perceive very much reward.
After some random movements the robot learned how to increase positive
reward. Smaller reward at later stages shows that the robot slowed down
near obstacles. The negative amplitudes show that not all obstacles could
be avoided.

TABLE I
RESULTS OF 50 SIMULATION RUNS

Minimum Maximum Average
Total reward −164.96 7412.83 3160.72
Average reward −0.01 0.37 0.16
Maximum speed 395.00 1303.00 970.38
Average speed 4.09 388.24 190.48
Crashes 0.00 16.00 3.36
Neurons 16.00 32.00 20.62
Excitatory axons 14.00 126.00 34.46
Excitatory dendrites 4.00 96.00 18.98
Inhibitory axons 4.00 6.00 4.12

VI. CONCLUSIONS

We have presented our successful tests for a novel model
capable of growing an artificial neural network that keeps the
effort to design a control system at a minimum. With this
methodology, the main effort to design a system controller
is to define the inputs, the outputs and the mechanism to
quantify a perception of "well-being" feedback depending
on the performance of the system. In addition, this methods
make it possible to simply add or remove any sensors or
actuators, and the neural network will adapt to the new
situation autonomously and automatically.

We have shown that a robot controller can be created
autonomously without the need for various stages such as
learning phase, execution phase, and feedback evaluation
phase. The complete process is integrated in a single stage
robust methodology for the creation of the neural network;
which is capable of learning from experience in a continuous
way when running.

A consequence of the fact that all processes except the
calculation of the reward are executed in the neurons is
a very efficient system if the neurons can be executed in
parallel; making a very fast practical alternative for creating
an artificial intelligence system.

VII. FURTHER WORK

The different parameters that define the speed of adapting
connection weights and the way of creating new neurons
and connections have to be investigated further to evaluate
our novel methodology for creating controllers for concurrent
tasks. These investigations will lead us to find an elaborate
but still very basic “artificial brain” model that enables a
system to achieve a sophisticated level compared to other
artificial intelligence models by learning from experience
efficiently.

When the basic methods are investigated in detail, some
extensions can be added like Spike Time Dependent Plastic-
ity or a feedback prediction mechanism. Initial ideas for both
enhancements were discussed in this paper. Those improve-
ments would help the controlled systems to deal with more
complex situations, especially when timing considerations
are important.

Also an improvement of the network architecture can
help to increase the control capabilities. For example, local
inhibition can increase the contrast between different input
patterns and make the controller act faster and more ac-
curately. Recurrent connections may also be important for
contrasting issues, but they may also keep the behaviour of
a system more stable, which means it does not swing between
different actions too often. Recurrent connections may bring
even more advantages with them, but they can also make a
neural network very difficult to analyse and evaluate.

As mentioned in section III assigning delayed feedback
more efficiently or even predicting feedback will be an
interesting research issue for future work. The idea is that a
neuron that receives positive or negative reward very often
when it is active will probably receive the same reward also



in the future. Predicting reward could actually be one reason
for producing reward. This earlier reward may now be cor-
related to the activity of another neuron. That neuron could
again produce reward when predicting it. By the recursive
process reward could potentially be predicted progressively
earlier.

REFERENCES

[1] E. Daucé and F. Henry. Hebbian learning in large recurrent neural
networks. Technical report, Movement and Perception Lab, Marseille,
2006.

[2] D. Elizondo, E. Fiesler, and J. Korczak. Non-ontogenetic sparse neural
networks. In International Conference on Neural Networks 1995,
IEEE, volume 26, pages 290–295, 1995.

[3] R. V. Florian. A reinforcement learning algorithm for spiking neural
networks. In Proceedings of the Seventh International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, pages
299–306, 2005.

[4] G. Gómez, M. Lungarella, P. Eggenberger Hotz, K. Matsushita, and
R. Pfeifer. Simulating development in a real robot: On the concurrent
increase of sensory, motor, and neural complexity. In Proceedings
of the Fourth International Workshop on Epigenetic Robotics, pages
119–122, 2004.

[5] D. O. Hebb. The Organization of Behaviour: A Neuropsychological
Approach. John Wiley & Sons, New York, 1949.

[6] E. M. Izhikevich. Polychronization: Computation with spikes. Neural
Computation, 18:245–282, 2006.

[7] E. M. Izhikevich. Solving the distal reward problem through linkage
of STDP and dopamine signaling. Cerebral Cortex, 10:1093–1102,
2007.

[8] D. Katic. Leaky-integrate-and-fire und spike response modell. Tech-
nical report, Institut für Technische Informatik, Universität Karlsruhe,
2006.

[9] J. Liu and A. Buller. Self-development of motor abilities resulting from
the growth of a neural network reinforced by pleasure and tension. In
Proceedings of the 4th International Conference on Development and
Learning 2005, pages 121–125, 2005.

[10] J. Liu, A. Buller, and M. Joachimczak. Self-motivated learning
agent: Skill-development in a growing network mediated by pleasure
and tensions. Transactions of the Institute of Systems, Control and
Information Engineers, 19(5):169–176, 2006.

[11] M. van Leeuwen. Spike timing dependent structural plasticity in
a single model neuron. Master’s thesis, Intelligent Systems Group,
Institute for Information and Computing Sciences, Utrecht University,
2004.

[12] J. Vreeken. Spiking neural networks, an introduction. Technical report,
Intelligent Systems Group, Institute for Information and Computing
Sciences, Utrecht University, 2003.


