
Random recurrent neural networks for autonomous system designEmmanuel Dauc�e� Mathias Quoy���DTIM, ONERA - Centre de Toulouse2,avenue Edouard Belin31055 Toulouse Cedex, Francedauce@cert.fr ��Neurocybernetics Team, ETIS, UCP-ENSEA6, Av. du ponceau95014 Cergy Pontoise Cedex, Francequoy@u-cergy.frAbstractIn this article, we stress the need for using dy-namical systems properties in autonomous archi-tecture design. We �rst study the dynamics ofrandom recurrent neural networks (RRNN). Suchsystems are known to spontaneously exhibits var-ious dynamical regimes, as they always tries toremain on an attractor, thus achieving stable dy-namical behaviors. Second, we try to character-ize the adaptive properties of such a system inan open environment, i.e. in a system which al-ways interacts with external signals.Under theseconditions, a change in the behavior correspondsto the switch from one attractor to another one.Such bifurcation occur for very little changes inthe environment signal; our system is thus un-stable on its inputs. We propose a local Hebbianlearning rule which tends to stabilize the responseof the system for given inputs. After training, thesystem is able to perform recognition, i.e to pro-duce a speci�c regular cyclic attractor while thelearned input is present (or even a noisy versionof this learned input). Moreover, our system canmake associations while learning process takesplace under two \sensory" in
uences. The sys-tem can indeed perform recognition, even whenone sensory signal is missing. Our RRNN is thenimplemented on a robotic system, under visualand sensori-motor in
uences. After learning pe-riodic motor sequences in association with visualinputs, our system can now discriminate betweenmatching and unknown visual sequences. Whenvisual sequence matches inner sequence, the sys-tem produces regular periodic movements. Onthe contrary, when there is a con
ict between vi-sual inputs and inner dynamics, the system tendsto produce chaotic aperiodic movements. Ourwork �nally illustrate a very general paradigm oncognitive aspects of perception : what the systemperceives depends both on input signal and innerexpectations on such input.

1. IntroductionAutonomous systems have to adapt and react to arapidly changing environment. Moreover the environ-ment may be unknown and unpredictable. So the designof such systems may not stand alone on prewired reac-tions. However, some regular patterns may be found inthe environment dynamics. These patterns may be thebasis for sensory-motor learning and temporal sequencelearning. So an autonomous system dealing with suchan environment has to achieve the following properties:� stable behaviors, though the inputs are changing� if necessary, rapid change in behaviors� learning new appropriate behaviorsAnimals are particularly well adapted autonomoussystems. So one of our source of inspiration isto capture the relevant necessary informations thatmake animals behave autonomously. Neurobiolog-ical research can become a source of inspirationfor people who work in the conception of intelli-gent and autonomous systems (\animat" approach(Meyer and Wilson, 1991)). Our �rst source of biolog-ical inspiration comes from the pioneer \dynamical" ap-proach to cognition performed by Freeman on the ol-factory bulb of the rabbit (Skarda and Freeman, 1987,Yao and Freeman, 1990). He has shown that natural at-tentive waiting states correspond to chaotic dynamics,and that presentation of a known odor leads through abifurcation to almost cyclic dynamics. Even local andspeci�c to the olfactory bulb, these results may indicaterelevance of taking inspiration from dynamical systemstheory for the analysis of brain processing. Indeed, re-cently important progress has been made in the preci-sion of brain signal capture, and new phenomenons areobserved which stress the role of global distant corre-lations in brain computation. As the subject or ani-mal carries out a cognitive act (recognition, action selec-tion ...), one can observe global spatio-temporal patternsof activation emerging from background activity. Suchpatterns have a very short life (of the order of tenthsof milliseconds) and their extinction leads to the emer-gence of new patterns (Mac Leod and Laurent, 1996,



Neuenschwander et al., 1996, Jirsa et al., 1998). Thesetransitions from one stable behavior to another can beseen as bifurcations, which can either occur through in-teractions with the environment or through inner dy-namical constraints.So we use arti�cial neural networks in order to designour control architectures. The main stream of connec-tionnist methods, derived from Hop�eld networks, feed-forward networks and Kohonen maps, produce static sig-nals as their input values remain constant. Such staticbehaviors never occur in real brain activity. A more "bi-ologically inspired" approach which take into account amore precise modeling of a neuron (latencies of dischargeand discrete pulses for instance) may lead to more com-plex dynamics. In this article, we do not claim such alocal biological precision. Indeed, we are mainly con-cerned with simplifying the biological complexity in or-der to exhibit the simple control variables of the system.So, we start with a model of very simple analog neurons,and study some dynamical properties of such networks.Then, with the help of a learning rule, we deal with in-ner and outer dynamics in order to produce dynamicallyrelevant acts of perception and recognition. The idea isto show that systems that spontaneously exhibit severaldynamical regimes with di�erent stimulations can be ofgood help for the conception of agents that have to in-teract with the real world, and can also give clues for thecomprehension of brain computation. Then, the systemthat has to be taken into account is the inner dynamicsplus the environment inputs (open systems). Hence theemerging attractor does not only correspond to the in-ner state of the system, but is a combination of the innerdynamics and the inputs. So, in our system, a \cognitiveact" should both depend on the input (command) andon inner dynamical constraints.Spontaneous dynamical behaviors occur un-der certain conditions in recurrent neural net-works (RNN). Lots of recurrent models ex-hibit cyclic sequential behaviors when properlycon�gurated (Hertz and Prugel-Bennett, 1996)and can learn from observation some char-acteristics of a given dynamical system(Williams and Zipser, 1989, Tani and Fukumura, 1995).Some works have yet applied RNN to robotic con-trol. Tani (Tani and Nol�, 1998) used a hierarchyof RNN for categorizing di�erent sensory-motorsituation. With a di�erent approach, Sch�oner(Sch�oner et al., 1995, Bicho and Sch�oner, 1997) uses theNeural Field formalism (Amari, 1977) for controllinga mobile robot. In its system, the attractor is alwaysa �xed point. The system goes continuously from oneattractor to the other through bifurcations dependingon the change of external inputs.In this article, we �rst present the RRNN model used,in particular, the various dynamical regimes it may

exhibit, and how they may be related to externalinputs. Then we propose a local Hebbian learningrule stabilizing stimulus-associated dynamical patterns.Finally, we apply our model to a simple control task ona mobile robot.2. Basic properties of the model2.1 A random recurrent modelOur dynamical system (1) is de�ned as a pool ofN inter-acting units, whose state is described with an activationvector x(t). The external world is represented by theinput vector signal I(t). This system is a discrete-timeneural network, with random recurrent connections andanalog neurons. Random neural networks have been in-troduced by Amari (Amari, 1972) in a study of theirlarge size properties. Our model keeps the global recur-rent architecture of Hop�eld networks (Hop�eld, 1982);the main di�erence stands on the fact that the initialweights are randomly chosen.xi(t) = fg0@�� + Ii(t) + NXj=1 Jijxj(t� 1)1A (1)The Jij's are the synaptic weights, and � is the acti-vation threshold. The Jij's values are randomly de-�ned at the creation of the system, with Gaussian lawsN (0; 1=N ). This means in particular that our con-nection pattern is not symmetric , which is a neces-sary condition for developing complex dynamics. Wetake a monotonic non-linear sigmoidal transfer functionfg(u) = (1 + tanh(gu))=2, whose gain is g=2. This func-tion takes its values in ]0; 1[. Notice that our system isdeterministic as soon as the input signal does not includenoise.The dynamics can be characterized by the observablemN (t) de�ned as the mean signal of x(t):mN (t) = 1N NXi=1 xi(t) (2)2.2 Autonomous dynamics and attractorsIf the external signal I(t) is static (does not change withtime), the system is called autonomous and its dynamicalactivity only stands on inner interactions. Our systemis dissipative, so that any trajectory tends to convergetowards a small invariant structure whose volume is null:the attractor of the system. The characteristics of this at-tractor determine the dynamical regime of the system. Inone given system (de�ned by its weights and thresholdsvalues), the transitions from one dynamical regime tothe other occurs through bifurcations while continuouslyincreasing the gain parameter g. We typically �nd fourdi�erent dynamical regimes: �xed point, limit cycle, T2-torus and chaos (see Figure 1). This generic process of
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g=7.02Figure 1: Quasi-periodicity route to chaos. Four returnmaps are represented, on the basis of mean signal mN (t), for in-creasing values of gain parameter g (i.e g = 6:62 { �xed point {,g = 6:78 { limit cycle {, g = 6:94 { T2-torus { and g = 7:02{ chaos {). Principle of return map : mN (t) is on the x-axis,mN (t+1) is on the y-axis. Transients have been discarded. Otherparameters are N = 200, � = 0:1.the dynamics becoming more complex is called a quasi-periodicity route to chaos (Berg�e et al., 1992). More de-tails on such quasi-periodicity route in our systems canbe found in (Doyon et al., 1993, Cessac et al., 1994).2.3 Cluster formationWe still consider here that our system is autonomous.We thus take I(t) = 0. An accurate study of the in-dividual signals is necessary in order to characterizethe spontaneous dynamical organization taking place inour system. As soon as the gain parameter g is highenough, every random network tends to produce a com-plex spatio-temporal pattern of activation. We will seehere that the non-linear transfer function fg has a veryimportant structuring role.Theoretical results on the statistical repartition of ac-tivation in our model when the size tends towards in�n-ity (thermodynamic limit) have been previously studied(Cessac, 1995). There are two possible regimes at thethermodynamic limit: �xed point and chaos. Consid-ering potential signals ui(t) = �� +PNj=1 Jijxj(t � 1),the chaotic regime is analog to a Gaussian process at thethermodynamic limit:u(t) = u� + b(t)Where u� is a Gaussian static vector and b(t) a whitenoise.We will now consider a �nite-size system in a cyclicregime, near destabilization, with a real1 positive period� . Even if such cyclic regimes are not described at the1Even if our system is discrete time, the value of � dependson the spectrum of the linearized system near the �xed point atdestabilization value gc. This implies that � takes its value in[2;+1[.

thermodynamic limit, they however imitate the charac-teristics of a Gaussian process, in particular:1. Mean potentials u�i repartition tends to obey to aGaussian law.2. Individual potential signals tend to be desynchro-nized. This means that individual phases are uni-formly distributed in [0,� [.We now consider activation signals xi(t) = fg(ui(t)).Due to nonlinearity of fg , we see that1. Neurons whose mean potential u�i is strongly posi-tive or negative have almost constant output signals.Such neurons are called inactive or quiescent. Onlyneurons whose potentials oscillate around zero havetheir signal ampli�ed by the transfer function. Suchneurons are called active neurons. They are respon-sible for the propagation of the inner signal (comingfrom the interactions within the RRNN) throughoutthe system. For usual parameter values, active neu-rons represent about 30% of the whole population.2. Activation signal xi(t) tends to be sharpened, withpeaks (or gaps) of activation corresponding to max-ima (minima) of the potential signal ui(t). Thisleads to increase the correlation between neuronswhose potential signals have neighbour phases. Suchneurons have their activation signal almost phased-locked on discrete instants. We thus have the emer-gence of clusters of neurons which produce closelycorrelated activation signals. If we consider two clus-ters whose phase shift is 1, it seems that the �rstcluster propagates its signal towards the second clus-ter. From one cluster to another, we �nally have acircular dynamical organization. This organization,which strongly depends on the value of � , can notbe deduced from the synaptic weights, but emergesfrom global interactions.These two points help us �gure out the dynamical or-ganization of our networks. We have a majority of in-active neurons, and a minority of active neurons whichtend to clusterize and propagate the inner signal in anactivation loop. Moreover, for one given system, this cir-cular dynamical organization remains stable in di�erentregimes. Figure 2 shows that two neural clusters whosephase is opposite in cyclic regime keep this phase oppo-sition in a chaotic regime.2.4 Constraint dynamicsWe now consider that the input signal I(t) is non-constant with time, so that there is a competition be-tween inner in
uences and outer in
uences (the signalcoming from the external world). The important point
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can produce a motor command on the basis of innerdynamics. For that, we need to build a system withinterfaces that can interpret inner dynamical response.4. Multi-layer modelsThe recognition and associativity properties denoted inour single population model can be usefully adaptedin real applications such as robot navigation. Theidea is to build interfaces which both display exter-nal signals to the RRNN and receive a signal from it.A nearly similar neural architecture can be found in(Williams and Zipser, 1989), but the back-propagatinglearning rule used by these authors prevents them fromreaching \unstable" dynamics. Our purpose here is tostart from such unstable dynamics in order to regularizeit according to the input signal.The learning rule is then extended to every link be-tween the interface and the RRNN. This means in partic-ular that when no external signal is displayed on the in-terface, the links from the RRNN produce a signal whichshows what should be present on the interface, accordingto what has previously been learned.In case we have two interfaces, one corresponding tovisual perception and the other corresponding to motormovements, we build a system which should be able toproduce movements according to both visual entries andlearning-induced representations.5. Global control architectureThe basis of the global control architectureis the PerAc block developed in our team(Gaussier and Zrehen, 1995). The robotic platformis a Koala robot provided by the K-Team. The maininformation source is obtained through a CCD camera.The pictures are not processed as a whole, but aresplit into several 32x32 subimages. These subimagesare taken around some feature points which may varydepending on the application, but which mainly arehigh curvature points (corners ...) extracted from thegradient of the image. Then a log-polar transformationis applied to the subimages giving some invariancewith respect to shift and distance. The subimages areafterwards learned on a Probabilistic Topological Map(PTM) (Gaussier and Zrehen, 1994). In a navigationcontext, the correspondence between a subimage (callednow \landmark") with its angular position (azimuth)in respect with an absolute direction (north givenby a compass for instance) gives the position of thatlandmark in the environment. The set of (landmark,azimuth) gives the position of the robot in the environ-ment. Merging landmark and azimuth information isperformed on an associative map. These con�gurationsare learned on an other map (�g. 7). The neurons ofthis map may be linked to a particular movement. Thus,



in association with each position in the environment, itis possible to learn a movement. This process enablesto reach a goal by successively going from one learnedposition to the other (Gaussier et al., 2000).
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Figure 9: Successive positions of the robot after the 3rotation commands. After these commands, the robot is facingbackwards. Issuing these commands again let the robot go backto its initial position.There are two stages in the training process. First,we iterate the dynamics without changing the weights,until the system reaches its stationary dynamics.Second, we iterate the learning rule while the ro-bot is moving. Due to friction between wheels andground, the real rotation performed is di�erent fromthe command issued. So during the training process,the robot is moved back to a learned position whenthe shift is too big. The learning process is lasting 20time steps (one time step corresponds to one movement).After this learning process, the resulting system istested. The forcing motor signal is removed, so that therobot determines its movement from the information is-sued by the RRNN. After a transient time of around 10time steps, the robot performs the succession of learnedrotations. As stated before, due to friction, there is aprogressive shift of the robot orientation so that after awhile the image in front of it is associated to a movementwhich is di�erent from the movement it would perform



if following the sequence. So there is a con
ict betweenthe movement associated with the perceived image andthe movement proposed by the learned sequence. Whathappens is not a take over of one movement over theother. For some time steps the movements performedare not following the sequence anymore, nor correspondto the ones associated with the image (�g. 10). Buteventually, the robot goes back to a learned position,triggers the associated movement and now resumes thegood sequence (which now matches the good pictures).So the robot is able to recalibrate its position based ona recognized image.
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Figure 10: Example of recalibration after a shift. Rotationangle versus time when the robot is gradually shifting. The �rsttwo steps are transients. Then the rotations show the learnedperiodic sequence (+30�;+60�;+90�) corresponding to the visualinputs. The real robot angle shifts and suddenly the robot loosesthe correspondence between the image in front of him and theassociated movement. Finally the robots �nds a good matchingand resumes the periodic sequence.The second experiment we have conducted is mask-ing the camera once the robot is performing the goodsequence. The movement sequence is not the good oneanymore, though there are some patterns of it. Thisshows that what has been learned is no the movementsequence alone. When the robot can see again, it is ableto go back to the learned sequence based on a recognizedimage (�g. 11).7. ConclusionWe can make several comments on this work. First,the RRNN we have presented has both properties oflearning input-output correlation (sensory-motor asso-ciations) and temporal sequences. Hence it may act asa working memory where representations of a combina-tion of the external perception and the internal state arecoded. The complexity of the coding is not an obsta-cle for using such a system in real world applicationsas demonstrated on the robot experiment. However,
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Figure 11: Example of visual inputmasking. Rotation angleversus time when the camera is suddenly masked. The �rst twelvesteps are transients. When the camera is hidden, the robot loosesthe periodic sequence.these working representations have to be transfered toanother part of the system for long time storage. More-over, this storage may not necessary be of the samenature as the one in the working memory. In biolog-ical terms, what we have constructed plays the samerole as an hippocampus, our RRNN playing the role ofthe CA3 structure. This architecture is linked with aplanning structure enabling action selection and motorcontrol (Quoy et al., 1999b, Quoy et al., 1999a). It re-mains now to be seen how the RRNN may be linkedwith such a planning system. It is already possible tolink an image and a movement with an internal motiva-tion (searching for a particular object, or going to thepower station ...). Another kind of hippocampal modelhas been implemented in our group for learning tempo-ral sequences (Gaussier et al., 1999) and sensory-motorassociations (Gaussier et al., 2000).Second, the learning rule increase the coherency be-tween the inner chaotic dynamics of the RRNN and theevolving values of visual and motor inputs. This highercoherency corresponds to a regularization of the dynam-ics (it becomes less chaotic), and the possibility to usesuch regularity to produce a motor command. Whenthe visual input matches the previously learned visualsequence, the dynamics remains regular and the motorcommands correspond to the learned sequence. Whenthe visual information tends to mis�t the learned vi-sual sequence, the dynamics qualitatively changes andgets more chaotic, so that the system is able to performan exploration of its visual environment in order to �ndthe matching visual sequence. When there is no pos-sible match (for instance when the scene is hidden, orwhen the robot is moved to another place), the dynam-ics remains chaotic, and the robot stands searching for
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