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Executive Summary

The main difference between a computer and a human brain is the complexity of the tasks it 
can process. Even if a computer is unmatchable at bare mathematical operations and automated 
tasks, there are things which even a child can do better and faster (recognizing objects, faces, 
and so on) that even the most advanced AI system running on the world's faster supercomputer 
cannot  match.  The brain  has  a  lot  of  other  features  which  would be  desirable  in  artificial 
systems:  robustness,  fault  tolerance,  flexibility,  handling  of  fuzzy  /  probabilistic  /  noisy  / 
inconsistent data, highly parallel and small, very compact and with low power dissipation.
The concept of neural networks, to come up with a different computational paradigm than the 
one introduced by von Neumann (used as basis for almost all machines to date), was conceived 
as to mimicking nature itself. As the name implies it is inspired from neuroscience but it does 
not  try  to  be  biologically  realistic  in  detail.  This  discipline  combines  different  areas  like 
systems theory, statistical physics, network theory, probabilistics and dynamical systems but it's 
applications do not lie only in computer science / engineering but in diverse areas like sensory / 
cognitive psychology, military intelligence, industrial analysis and basically any area in which 
different elements interact with each other in a known / unknown way such that the final result 
of  the  system  is  modeled  in  a  predictable  way  and  can  even,  by  specialized  analysis,  be 
influenced with very small interventions in it's components so as to obtain a different result.



1. Summary

The  dynamics  of  stochastic  asymmetric  neural  networks  is  simulated  in  a  MATLAB 

framework.  Temperature and number of  patterns is varied such that different  phases of the 

network  are  observed.  A  new  state  for  compound  ensemble  spin  glass  states  is  found. 

Evaluation of such states shows that the compound state that superimposes over the normal 

spin glass state is always opposed to the former (ie they have opposite eigenvalues), resulting in 

oscillation-spin-glass-states (OSGS).

2. Statement and Motivation of Research

As  the  name  implies,  a  neural  network  was  first  aimed  at  simulating  brain  behavior  and 

connections, highly motivated by the possibility of making artificial computing networks. But 

the models used are very simplistic in nature so that we will not be lost in unimportant details 

which don't pertain to the total system behavior of such a network. There are two types of 

learning  mechanisms  in  these  networks:  supervised and  unsupervised.  We will  study  the 

latter, as we are interested in the basic functionality.

McCulloch and Pitts  [26] proposed a simple model of a neuron as a binary threshold 

unit which they proved that in synchronous associations of such neurons, they are capable of 

universal computation for suitably chosen weights. The model computes a weighted sum1 of 

it's inputs and then passes it through a Heaviside step function:

n it1=g ∑
j=1

N

w ij n jt −i  (1)

The above example is more general, making use of a general  activation function g, 

which in the case of McCulloch and Pitts was the Heaviside step function. The ni's represent the 

neuron's state at time t or t+1 and the  ' s are the threshold values.

Updates of the neuron states can either be done synchronously using a central clock to 

1 Unless otherwise noted we will be using normal alphabet letters for neuron indexes (going from 1 to N) and greek letters for the  
stored patterns (going from 1 to p) where N is the number of neurons and p the number of (stored) patterns.
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update them at the same time, or  asynchronously by either going randomly over the neuron 

array or setting a probability of update for each individual neuron (both asynchronous methods 

being equivalent).

Later,  Hopfield  [13] devised, using a similar model called the  Hopfield model (but 

instead of a general  g function, he uses the  sgn function; i.e. the outputs are either  -1 or  +1 

whereas  for  the  McCulloch-Pitts  neuron,  they  were  either  0 or  +1),  a  content-adressable 

memory, insensitive to small errors in the input pattern that can, when presented with a pattern, 

recall the closest match of the known stored patterns. This  storage is done off-line using the 

Hebb-rule [27] weights (i.e. (2) in the case of short-time connections) whereas a plus-one rule 

(3), in the case of long-time connections, would be used later for the asymmetric case.

wij
S
=
1
N ∑

=1

p

i

 j
  (2)

w ij
L
=
1
N
∑
=1

p

i
1

 j
  (3)

Hopfield also introduced an energy function (similar to mechanics) and emphasized the 

representation of stored patterns as dynamical attractors with an associated basin of attraction. 

He also managed to find out that the storage capacity of a Hopfield network cannot be higher 

than  pmax=0.138  N for  random pattern  sets.  Of  course,  orthogonal  patterns  will  give  zero 

crosstalk, but using too many such patterns (~N) would defeat the purposes of an associative 

memory as the weights would all be w ij=ij and the network becomes stable in any state.

The normal states (called  retrieval states) are not the only possible states. There are 

also reversed states (which occur when more than half of the input bits are in a reversed state), 

but  also  mixture states which are not  equal  to any single pattern but  correspond to linear 

combinations of an odd number of patterns [1]. If we increase the number of stored patterns we 

will  obtain also local minima that are not correlated with any finite number of the original 

patterns. These are called spin glass states because of the similarity with sping glass models in 

statistical mechanics. All of the unwanted states are called generically just spurious states.

There  was also an effort  in completing the  model  so  that  it's  fully  equivalent  with 

magnetic (spin-glass) models by inserting also  thermal fluctuations.  More specifically, the 
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activation function is replaced from a sgn to a fully fledged Fermi distribution (4) function (see 

Glauber dynamics [27]) rescaled for [-1..1].

g x=
1−e−2 x

1e−2 x
=tanh x  (4)

Such networks  are  called  stochastic  networks and  are  usually  equivalent  to  using 

random thresholds in (1). Such networks are analyzed using mean field theory [1] and it was 

found that the storage capacity for them is also c≈0.138 although this is obtained in the 

low-temperature limit (as it should be expected). There are 4 possible phase-states for such a 

network called A, B, C and D. States A represent error-free retrieval states, whereas B represent 

all the other retrieval states. In state C (high temperature), the network shows only spin glass 

states, but these are not correlated with any of the stored patterns. If the temperature is raised 

more, then these states melt as well and the only mean field solution is zero [1].

The problem of correlated patterns which limit the network capacity even for  p<<N 

was solved [14]  [21]   by changing the Hebbian rule to use the pattern overlap matrix Q in what 

is called a pseudo-inverse rule.

w ij=
1
N
∑


i
Q

 j


where, Q

=
1
N
∑
i=1

N

i

i


 (5)

Such a construct was shown [14] to have almost the same pmax capacity in practice, but 

from the biological  point of  view, it  presents non-locality  whereas the Hebbian rule would 

imply interaction only at the pre- and post-synaptic levels, like it would be expected from a real 

neuron.

Until now we have looked into generating strong attractors for stable pattern states. But 

it is also interesting to investigate the possibility of storing, recalling, generating and learning 

sequences of patterns. Thus our goal changes from stability of one pattern to closed limit cycles 

such that these sequences are encoded in the choice of connections weights as before. We will 

investigate whether the pattern sequence storage does remember common features of the stored 
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patterns and how does the stored features relate to common elements in the patterns; is the 

neural network capable of extracting general information from a class of patterns.

Hopfield  suggested  [13] that  a  possibility  would be using  assymetric  connections, 

more specifically,

w ij=
1
N
∑
=1

p

i

 j





N
∑
=1

p

i
1

 j
  (6)

to produce such sequences of patterns. Here  is a  asymmetry constant that governs the 

relative strength between symmetric and asymmetric terms. For the case of correlated patterns, 

the Hebb rule (6) may be replaced by a pseudo-inverse rule similar to (5).

w ij=
1
N
∑


i
Q

 j





N
∑


i
1Q

 j


 (7)

Unfortunately these schemes proved unusable in practice. The synchronous updating tends to 

de-phase the system so that one obtains states that overlap several consecutive patterns, and the 

sequence is soon lost. Only if the length of the sequence is very small (p<<N), the limit cycles 

are embedded successfully [18]. One of the focuses of our research is finding a good method to 

train such an asymmetric network efficiently.

There were some attempts  [2]  [3]   at tackling this problem using sparse patterns on a 

stochastic network with additional terms in (6) to inhibit transitions to pattern states that were 

not  the  next  ones  in  sequence.  The  transitions  themselves  occurred  at  relatively  high 

temperatures  (being  driven  to  the  next  state  by  thermal  noise),  but  the  delays  were 

unpredictable.  Also  it  was  investigated  [24]  [16]  [20]   that  by  using  dynamic  weights  (more 

specifically  just  changing  the  to  grow linearly  as  to  provoke  the  next  transition)  it  is 

possible  to  obtain  a  robust  scheme  but  with  careful  selection  of  the  constants  (delay  and 

asymmetry). In the case of using an exponential-based kernel for the moving-average of the 

delayed response,  it  was shown  [22] that  the  system acquires  chaotic  behavior  for  a  large 

asymmetry  constant.  There were reports  [17] of  using this  for  successfull  modeling of the 

central pattern generator of the mollusk Tritonia diomedea.

In the case of delta-based kernels, the long time connections simply reduce to delayed 
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synapses that  pass  a  given  signal  after  a  time  delay.  In  general  this  amounts  to  using  a 

Hebbian-type learning scheme with temporization:

w ij
L
=
1
N
1
T
∫itij j t dt
0

T
 (8)

which was shown [4]  [12]  [15]   that can “lea rn”  even sequences with different transition times 

than the synaptic delay time. This would imply a range of delay times in the network, with a 

broad distribution so as to cover the relevant  time scales  of  the input  sequence;  short-time 

connections would be superfluous for they are included in the model as the zero delay term. 

The connections that become strong are those in resonance with the sequence itself as shown 

in  [7]  [25]  . Another focus of our research would be to analyze whether equations  (6),(7)&(8) 

can be used in a similar analysis as in [1], for finding out an equivalent phase diagram of an 

asymmetric network as well as the storage capacity of such a network and any presence of 

spurious states. Simulations will be performed to analyze the change in system behavior when 

orthogonal  pattern overloading occurs and see if,  similar  to the symmetric  case,  spin glass 

states are formed, in both stochastic and non-stochastic scenarios.
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3. Work documentation

The working framework was implemented in MATLAB as depicted in the following schematic.

FIG. 1 – Module list for working framework

Each module is implemented in a different m-file as a separate function. Following there is a 

small description for each one:

hebbian Implements the learning rule for short/long connections.

iterator Stochastic and delayed neural network simulator.

statecompare Calculate overlap between two given states.

nncompare Calculate overlap between given state and memorized patterns.

viscapacity Generate enforced random learning patterns and simulate the network.

asynctest Call viscapacity with different parameters.

TABLE 1 – Module descriptions
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3.1 System details

We will present shortly how we arrived at the current framework configuration. First of all, we 

needed to analyze a stochastic system, and for this we would need a lot of simulations to obtain 

the average values <Si> from different Si measurements. Instead we can use continuous valued 

units with  the  activation  function  (4) which  is  completely  equivalent  as  the  formulas  are 

identical <Si> = Vi.

V i=g u i=g ∑
j

wij V j  (9)

The weights are trained using the Hebb learning rule as explained above  [24]  [16]   where the 

long connections  (3) represent slow synapses that have delayed or sluggish response. More 

precisely, the input hi(t) to a unit is given by:

h it =∑
k

[ wij
S S jt wij

L S j t  ]  (10)

Where the delayed response S jt  is a weighted moving average (memory trace) over past 

values of Sj:

S jt =∫
−∞

t

G t−t ' S j t ' dt '  (11)

For simplicity  of  implementation we will  use  a  delta  function  as  the  G kernel  which will 

amount to a shifted equation similar to (8):

w ij
L
=
1
N

∑
t=0, , 2 , ...

it jt   (12)

Of course considering that we have a finite set of training patterns, and considering the wanted 
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sequence  of  pattern  generation  we  can  say  that i t =i=i
 and  thus  the  actual 

equation for the wL
ij's reduces to (3). The only other thing we need now is a nice form for (11) 

which is straightforward using the delta kernel Gt =t− :

S jt =S jt−  (13)

And  thus  we  obtain  the  final  formula  used  in  the  iterator module  considering  stochastic 

averaging as explained above.  Discretizing the system in time up to a scaling constant  we 

obtain:

V i [ k1]= tanh 2∑k
[w ij

S V j [k ]wij
L V j [k−]]  (14)

3.2 Comparison method

For analyzing the simulation results using our built  neural network we use three measuring 

parameters: pattern overlap (m μ ), maximum overlap (m) and mean square non-retrieve overlap 

(r). We will explain their properties shortly.

m=
1
N
∑

i

i
V i  (15)

Of course  m is  just the biggest  m μ  for  all  μ .  Let   be this pattern with biggest overlap asυ  

computed with the formula above. Then, by definition:

r=
N
p ∑≠

m

2
 (16)

9



Considering random patterns, the expected values (supposing we are retrieving pattern ) are:α

m μ , μ ≠α ~
1

 N

m=mα ~1.00

r ~1.00

TABLE 2 – Pa rameter expected values for optimal retrieval

Ideally, if we get back the pattern that we want, almost error-free, then our parameters should 

take the values in Table 2. Glancing at  (15), we can note that the overlap between a normal 

state and it's corresponding reversed state amounts to -1.00 whereas to obtain a zero, we need 

half of the bits to match and half of them to be reversed and of course for two identical patterns 

the result is 1.00.

The m's are computed in statecompare/nncompare whereas r is computed inside viscapacity.

4. Results

Different sets of simulations have been done using N=100, =2 and =8 for different numberλ τ  

of  patterns  p and temperatures  T (different  β).  One example (2a)  follows with  the  desired 

operation of the system as limit cycle memory.
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FIG. 2a – Norm al system operation; p = 6; T=0;

FIG. 2b – Mixed-mode operation; p = 6; T=0;

As it can be seen on Fig. 2a, the system evolves in time by switching from pattern 1 through 6 
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in order 1->2->3->4->5->6. On Fig. 2b, the network prefers, after a short relaxation period, a 

mixture-state oscillation between three such mixed states (MS).

FIG. 3a – Ti me-varying temperature system;

p = 4; =166/t for t<500 and =200 in rest.β β

FIG. 3b – Time-varying temperature system;

p = 4; =233/t for t<500 and =200 in rest.β β
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Next we have a time-varying temperature simulation. The system is heated up linearily in time 

with different slopes.  After 500 time ticks, the system is switch to zero-freezing. Two cases are 

shown (Fig.  3a,  3b).  In the first  case,  the system returns to normal  cycle generation (NS), 

whereas in the second case, while rapidly cooled, the system switches to a non-oscillating spin-

glass state (SGS). Taking measurements from the graph we notice that both systems are error-

free  until  around  t=40  (which  corresponds  to  T=0.17-0.24)  when  they  start  decaying 

exponentially (EDNS –  exponentially decayed normal state) (still keeping the cycle order intact 

though).  The  systems  transitions  eventually  to  a  mean-field-zero  (MFZ)  solution  decay  at 

approximatively T=1.9 loosing all it's correlation with any of the pattern states.

We  note  here  that  temperature  values  compared  to  the  symmetric  case  are  not 

equivalent as this temperature is scaled depending on the normalization constant(s) present in 

the learning rule of the system. In our case, these temperature values depend on  as it showsλ  

up in the weights formula and thus are valid only for =2.λ

FIG. 4 – Fo rmation of (ED)OSGS states.

p = 4; =200/t for t<500 and =200 in rest.β β

Here we can observe an interesting phenomenon. First the system is in a EDNS but t=140 (T = 

0.7)  the  oscillation  order  is  completely  lost,  going  into  what  we  will  call  an  exponential 

decayed oscillating spin glass state (EDOSGS).  The main difference between an EDNS and an 
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EDOSGS is the loss of cycle corellation. Of course, while temperature increases, the decay will 

probably switch to a MFZ state where pattern correlation is lost as well. Interestingly enough, 

when the temperature is switched back instantly to zero-freezing point, the system instead of 

going  into  an  SGS  as  expected,  it  starts  to  oscillate  around  it.  We  will  call  these  states 

oscillating-SGS or OSGS.

These OSGS states are a novelty, but this phenomenon is not unique to asymmetric 

networks. As we will show, this can occur in symmetric networks all the same, but it is very 

hard to separate it's effects from a normal SGS, as symmetric networks are static (not time-

dependent). We will note that compared to a NS which repeats itself every  pτ time ticks, an 

OSGS repeats always every 2τ. The reason is quite simple. Around the SGS point, a limit cycle 

forms. Because a pattern can be related to this SGS point only in two modes (as either  up or 

down  spin) and assuming that  this point  is  a much stronger attractor  than any of the other 

patterns (as explained by mean field theory for T>Tc), it follows that we will have our pattern 

correlation switch from up to down and down to up as fast as possible which for us means it is 

done in just one . An interesting question is why do these OSGSs apparently have the sameτ  

amplitude.  Could  it  be  that  OSGSs  have  a  constant  radius  basin  around  them  where  the 

oscillations are possible? This could be a nice theme for future investigations.

FIG. 4 – Pa ttern saturation chaotic evolution;

p = 30; T=0;
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Another interesting development is pattern saturation. For >>0.14 the system starts to behaveα  

eratically,  full  random  separation  of  the  pattern  correlations  around  a  SGS  is  obtained 

combined with relative temperature increases. If the networks is simulated at (T~0) then no 

chaotic  behavior  is  observed;  only  a lot  of  different  mixed states.  The spectrum of  such a 

random signal was analyzed using FFT and was found not to contain any specific frequency 

content  distinguishable  from the  noise  floor.  We arrived at  the  conclusion  that  the  system 

behaves as a white noise generator, although such approaches have already been analyzed more 

thoroughly [30].

4.1. Theoretical classification

As we have shown before, we have found a few types of states: (ED)NS, MS, (ED)OSGS, 

SGS, MFZ. Considering equation (14) and Fig. 2a we can infer two rules for the dynamics of 

the system. One for constant state, and the other for the transition:

i

=g ∑j

w ij
S
 j

w ij

L
 j
−1

  (17)

i
1

=g ∑j

w ij
S
 j

wij

L
 j


=g ∑j

wij  j


  (18)

It is easy to notice that for a cycle of length p, we have the identity:



=L p


  (19)

Where we defined the L non-linear operator as Lij≡g wij . As such we will extend the 

definition of eigenvector/eigenvalue to non-linear operators as well. Therefore the NS 

are  the  “eigenvec tors”  of  Lij
p that  have  “eigenvalu e”  of  1  or  more  specifically  the 

generalized eigenvectors of algebraic multiplicity p.

The SGS are those states that are constant in time (we will note them with G):
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Gi

=g ∑j

wij G j


  (20)

G
=LG  (21)

Please  note  that  here  we  used  overlined  vectorial  notation.  The  SGS  are  the  normal 

eigenvectors of L with eigenvalue 1. What we can observe is that any SGS Gμ also satisfies the 

NS equation. From here we can prove the existence of the OSGS which is an ensemble of 

SGS+NS that can exist (as an EDOSGS) above the critical temperature as opposed to normal 

NS.

L G
 L

=G
−

  (22)

L
=−

  (23)

Comparing  (23) with  (19) we arrive at the conclusion that for any NS present in an 

OSGS ensemble, we have that (-1)p = 1 => p=even which is proven experimentally not 

to be correct; there are OSGS states for any (small) p, may it be even or odd. It follows 

that  there  should  be  a  linear  combination  of  patterns  such  that  it  forms  a  “-1”  

eigenvector. Note that because L is not linear, we cannot do superposition (distribute 

the sum) for L.

L∑




=−∑






 (24)
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5. Conclusions

We have found 5 types of states for an asymmetric neural network:

● Normal  States  (NS) –  representing the useful  operation  of  the  neural  network as a 

central  pattern  generator;  EDNS  represent  the  stochastic  version  of  NS  where 

temperature affects the retrieval of states exponentially.

● Mean Field Zero (MFZ) –  at high temperatures, as expected, the activation function is 

scaled that much, as to have the system evolve exponentially towards zero with the 

temperature increase.

● Mixed States (MS) –  a linear combination of NS that have a stronger attractor than 

each individual state.

● Spin Glass States (SGS) –  when the system is heated beyond critical temperature and 

then frozen abruptly, states appear that have no or little relation to the initial states.

● Osciallating Spin Glass States (OSGS) –  sometimes, when frozen, the system does not 

go to a stationary SGS, but converges to a limit cycle around that SGS, the oscillations 

being correlated with the stored patterns, but not independently, similar to an ensemble 

that orients itself with opposite spin as the SGS.
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Appendix A –  A few interesting simulations

FIG. 5 – Hea ting – f reezing; Heating freezing;

p = 5; T = t/100; T=200 for [500,700]

FIG. 6 – Another example of OSGS; p = 5; T = t/100;
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FIG. 7 – Transition SGS->EDNS->SGS; p=4; T = t / 220;

T=200 for [500,700] and [1000, 1400]

FIG. 8 – Transition SGS->MFZ->SGS; p=4; T = t / 220;

T=200 for [500,700] and [1000, 1400]
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Appendix B –  The code

%%%
%%% Hopfield Neural Network; Symmetric Hebbian Learning
%%%
 
% Input:  n - number of neurons; train - matrix with training patterns
%         long - long connection coefficient lambda
% Output: w - weights matrix
function [w_s, w_l] = hebbian(n, train)
    % Number of patterns p
    [p, q] = size(train);
    
    % Sanity check
    if (q ~= n)
        error('hebbian: Given training patterns have wrong dimensions.')
    end
    
    % Fill in weights
    %fprintf(1, 'hebbian: Learning... ');
    w_s = zeros(n, n);
    w_l = zeros(n, n);
    for i = 1:n
        for j = 1:n
            tmp_s = 0;
            tmp_l = 0;
            for k = 1:p
                t = mod(k, p) + 1;
                tmp_s = tmp_s + train(k, i) * train(k, j);
                tmp_l = tmp_l + train(t, i) * train(k, j);
            end
            w_s(i, j) = tmp_s / n;
            w_l(i, j) = tmp_l / n;
        end
    end
    %fprintf(1, 'DONE\n')
end

%%%
%%% Hopfield Neural Network; Iterator
%%%
 
% Input:  n - number of neurons; w - matrix with weights(s/l);
%         g - activation function; bgn - initial neuron states
%         beta - stochastic squashing; lambda - long coeff.
% Output: hnn - output neuron states
function hnn = iterator(n, w_s, w_l, bgn, prev, beta, lambda)
    % Sanity Check
    [x, y] = size(w_s);
    [xx, yy] = size(w_l);
    [t, q] = size(bgn);
    [t, qq] = size(prev);
    if ((x ~= n) || (y ~= n) || (q ~= n) || (qq ~= n) || (xx ~= n) || (yy ~= 
n))
        error('iterator: Given data has wrong dimensions')
    end
    
    hnn = bgn;
    hash = randperm(n);
    for i = 1:n
        %i = hash(k);
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        s = 0;
        l = 0;
        for j = 1:n
            s = s + w_s(i, j) * hnn(j);
            l = l + w_l(i, j) * prev(j);
        end
        s = s + lambda * l;
        hnn(i) = g(beta, s);
    end
    %fprintf('\niterator: Convergence steps: %d\n\n', step)
end
 
%Activation function
function y = g(beta, x)
    y = tanh(beta * x);
end
 

%%%
%%% Hopfield Neural Network; Compare states
%%%
 
% Input:  state - one training patterns;
%         hnn - state to compare with
% Output: difference
function dst = statecompare(state, hnn)
    % Number of neurons n
    [x, n] = size(state);
    [y, n2] = size(hnn);
    
    % Sanity check
    if ((x ~= 1) || (y ~= 1) || (n ~= n2))
        error('statecompare: Wrong dimensions.')
    end
    
    %dif = abs(state - hnn);
    %dst = sum(dif);
    %dst = n - dst / 2;
    
    dst = sum(state .* hnn) / n;
end

%%%
%%% Hopfield Neural Network; Compare neural networks
%%%
 
% Input:  n - number of neurons; train - matrix with training patterns;
%         hnn - long connection coefficient lambda
% Output: w - weights matrix
function cdst = nncompare(n, train, hnn)
    % Number of patterns p
    [p, q] = size(train);
    [x, y] = size(hnn);
    
    % Sanity check
    if ((q ~= n) || (y ~= n))
        error('nncompare: Given training patterns have wrong dimensions.')
    end
    
    %fprintf(1, 'nncompare: Comparing... ')
    cdst = zeros(1, p);
    for i = 1:p
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        cdst(i) = statecompare(hnn, train(i,:));
    end
 
    %fprintf(1, 'PATTERN %d [%d]\n', pat, dst)
end

%%%
%%% Hopfield Neural Network; Assymmetric Simulation with Stochastics
%%%
 
% Input:  mode - 0/hebbian, 1/psi
% Output: m^mu vs time
function [mc, fc, ret] = viscapacity(p, n, tix, bx)
 
    TICKS    = tix;     %Number of iterations
    MAX_NEUR = n;    %Number of neurons
    MAX_PAT  = p;      %Number of patterns
    LAMBDA   = 2;      %Long connectivity
    TAU      = 8;      %Time shift; Delta kernel
    RAND_FIN = 1;      %Random levels
    BETA     = bx;   %Stochastic equivalency
    ERR      = 0.001 * n; %Starting error / no. of bit
    
    %Generate x-axis: time
    time = 1:TICKS;
    
    %Generate random training patterns
    train = zeros(MAX_PAT, MAX_NEUR);
    for i = 1:MAX_PAT
        for j = 1:1000000000
            tmp = randint(1, MAX_NEUR, RAND_FIN + 1);
            tmp = 2 .* (tmp ./ RAND_FIN) - 1;
            ok = 1;
            break;
            for k = 1:(i-1)
                ddd = statecompare(tmp, train(k, :));
                if (ddd > 0.5)
                    ok = 0;
                    break
                end
            end
            if (ok == 1)
                break
            end
        end
        train(i, :) = tmp;
    end
    
    %Train the network
    [w_s, w_l] = hebbian(MAX_NEUR, train);
    
    %Starting pattern
    d = ERR;
    bgn = train(1, :);
    for i = 1:MAX_NEUR
        c = d / (n - i + 1);
        if (rand < c)
            bgn(i) = -bgn(i);
            d = d - 1;
        end
    end
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    %Generate data
    data = zeros(MAX_NEUR, TICKS);
    dif = zeros(MAX_PAT, TICKS);
    data(:, 1) = bgn;
    dif(:, 1) = nncompare(MAX_NEUR, train, bgn)';
    for i = 2:TICKS
        if (i < 500)
            f = 100/i;
        elseif (i < 700)
            f = 100;
        elseif (i < 1200)
            f = 100/(i - 700);
        else
            f = 100;
        end
        f = BETA;
        nex = iterator(MAX_NEUR, w_s, w_l, bgn, data(:, getprev(i, TAU))', f, 
LAMBDA);
        data(:, i) = nex;
        dif(:, i) = nncompare(MAX_NEUR, train, nex)';
    end
 
    ret = dif;
    %Le graph
    %hold all;
    %ylim([-0.5 1.2]);
    %for i = 1:MAX_PAT
    %    plot(time, dif(i, :))
    %end
    %hold off;
 
    %Process; Compute 'r' no-store-overlap
    s = zeros(1, TICKS);
    for i = 1:TICKS
        m = max(dif(:, i));
        s(i) = MAX_NEUR / MAX_PAT * (sum(dif(:, i).^2) - m^2);
        mc(i) = m;
    end
    fc = s;
    
    %ylim([-0.3 1.2]);
    %plot(time, s)
    
    %fc = sum(s(800:1400)) / (1400-800);
 
    %if (qswer > 0.6)
    %    ret = viscapacity(mode, p);
    %end
    
end
 
function y = getprev(x, tau)
    if (x - tau < 1)
        y = 1;
    else
        y = x - tau;
    end
end

%%%
%%% Hopfield Neural Network; Assymmetric Graphical Visualization
%%%
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% Input:  mode - 0/hebbian, 1/psi
% Output: m^mu vs time
iter = 10;
n = 100;
pat = n / 5;
tix = n * 2;
beta = 0.5;
 
s = zeros(1, pat);
qt = zeros(1, pat);
for i = 1:pat;
    a = 0;
    q = 0;
    w = 0;
    for j = 1:iter
        [m, r, b] = viscapacity(i, n, tix, beta);
        a = a + b;
        q = q + max(r);
        w = w + min(m);
        fprintf(1, '.')
        if (mod(i*iter + j, 70) == 0)
            fprintf(1, '\n')
        end
    end
    kk = a ./ iter;
    pp = q ./ iter;
    mm = w ./ iter;
    %s(i) = sum(pp) ./ tix;
    %qt(i) = sum(mm) ./ tix;
    s(i) = pp;
    qt(i) = mm;
end
hold all;
plot(smooth(s))
plot(smooth(qt))
hold off;
%ylim([-0.5 1.2]);
%hold all;
%plot(pp)
%for i = 1:pat
%    plot(kk(i, :))
%end
%hold off;
 
%hold all
%kkx=kk(3, :);
%m = sum(kkx) / length(kkx);
%kkx = kkx - m;
%plot(kkx)
%fs=fft(kkx(500:1400));
%plot(log(2*abs(fs(1:floor(length(fs)/2)))))
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