Asymmetric Neural Networks
Training and Memory Breakdown

Dorian Bivolaru

Electrical Engineering and Computer Science
Jacobs University Bremen

Campus Ring 4

28759 Bremen

Germany

Type: Guided Research Proposal
Date: May 13, 2007
Supervisor: Dr. Mathias Bode

Executive Summary

The main difference between a computer and a human brain is the complexity of the tasks it
can process. Even if a computer is unmatchable at bare mathematical operations and automated
tasks, there are things which even a child can do better and faster (recognizing objects, faces,
and so on) that even the most advanced Al system running on the world's faster supercomputer
cannot match. The brain has a lot of other features which would be desirable in artificial
systems: robustness, fault tolerance, flexibility, handling of fuzzy / probabilistic / noisy /
inconsistent data, highly parallel and small, very compact and with low power dissipation.

The concept of neural networks, to come up with a different computational paradigm than the
one introduced by von Neumann (used as basis for almost all machines to date), was conceived
as to mimicking nature itself. As the name implies it is inspired from neuroscience but it does
not try to be biologically realistic in detail. This discipline combines different areas like
systems theory, statistical physics, network theory, probabilistics and dynamical systems but it's
applications do not lie only in computer science / engineering but in diverse areas like sensory /
cognitive psychology, military intelligence, industrial analysis and basically any area in which
different elements interact with each other in a known / unknown way such that the final result
of the system is modeled in a predictable way and can even, by specialized analysis, be
influenced with very small interventions in it's components so as to obtain a different result.

1. Summary

The dynamics of stochastic asymmetric neural networks is simulated in a MATLAB
framework. Temperature and number of patterns is varied such that different phases of the
network are observed. A new state for compound ensemble spin glass states is found.
Evaluation of such states shows that the compound state that superimposes over the normal
spin glass state is always opposed to the former (ie they have opposite eigenvalues), resulting in

oscillation-spin-glass-states (OSGS).

2. Statement and Motivation of Research

As the name implies, a neural network was first aimed at simulating brain behavior and
connections, highly motivated by the possibility of making artificial computing networks. But
the models used are very simplistic in nature so that we will not be lost in unimportant details
which don't pertain to the total system behavior of such a network. There are two types of
learning mechanisms in these networks: supervised and unsupervised. We will study the
latter, as we are interested in the basic functionality.

McCulloch and Pitts [26] proposed a simple model of a neuron as a binary threshold
unit which they proved that in synchronous associations of such neurons, they are capable of
universal computation for suitably chosen weights. The model computes a weighted sum' of

it's inputs and then passes it through a Heaviside step function:

ni(t+1):g 1)

N
Zwij n,(t)-o,
Jj=1

The above example is more general, making use of a general activation function g,
which in the case of McCulloch and Pitts was the Heaviside step function. The n/'s represent the
neuron's state at time tor t+1 and the 0's are the threshold values.

Updates of the neuron states can either be done synchronously using a central clock to

1 Unless otherwise noted we will be using normal alphabet letters for neuron indexes (going from 1 to N) and greek letters for the
stored patterns (going from 1 to p) where N is the number of neurons and p the number of (stored) patterns.

2

update them at the same time, or asynchronously by either going randomly over the neuron
array or setting a probability of update for each individual neuron (both asynchronous methods
being equivalent).

Later, Hopfield [13] devised, using a similar model called the Hopfield model (but
instead of a general g function, he uses the sgn function; i.e. the outputs are either -1 or +1I
whereas for the McCulloch-Pitts neuron, they were either 0 or +I), a content-adressable
memory, insensitive to small errors in the input pattern that can, when presented with a pattern,
recall the closest match of the known stored patterns. This storage is done off-line using the
Hebb-rule [27] weights (i.e. (2) in the case of short-time connections) whereas a plus-one rule

(3), in the case of long-time connections, would be used later for the asymmetric case.

wi-%; £'e] 2)
=t Y EE 3

Hopfield also introduced an energy function (similar to mechanics) and emphasized the
representation of stored patterns as dynamical attractors with an associated basin of attraction.
He also managed to find out that the storage capacity of a Hopfield network cannot be higher
than pmax=0.138 N for random pattern sets. Of course, orthogonal patterns will give zero
crosstalk, but using too many such patterns (~N) would defeat the purposes of an associative
memory as the weights would allbe w;=06, and the network becomes stable in any state.

The normal states (called retrieval states) are not the only possible states. There are
also reversed states (which occur when more than half of the input bits are in a reversed state),
but also mixture states which are not equal to any single pattern but correspond to linear
combinations of an odd number of patterns [1]. If we increase the number of stored patterns we
will obtain also local minima that are not correlated with any finite number of the original
patterns. These are called spin glass states because of the similarity with sping glass models in
statistical mechanics. All of the unwanted states are called generically just spurious states.

There was also an effort in completing the model so that it's fully equivalent with

magnetic (spin-glass) models by inserting also thermal fluctuations. More specifically, the

activation function is replaced from a sgn to a fully fledged Fermi distribution (4) function (see
Glauber dynamics [27]) rescaled for [-1..1].

——;-=tanh(B x) (4)

Such networks are called stochastic networks and are usually equivalent to using
random thresholds in (1). Such networks are analyzed using mean field theory [1] and it was
found that the storage capacity for them is also «.~0.138 although this is obtained in the
low-temperature limit (as it should be expected). There are 4 possible phase-states for such a
network called A, B, C and D. States A represent error-free retrieval states, whereas B represent
all the other retrieval states. In state C (high temperature), the network shows only spin glass
states, but these are not correlated with any of the stored patterns. If the temperature is raised
more, then these states melt as well and the only mean field solution is zero [1].

The problem of correlated patterns which limit the network capacity even for p<<N
was solved [14][21] by changing the Hebbian rule to use the pattern overlap matrix Q in what

is called a pseudo-inverse rule.

1 v v
w,=—- 2 EL0"E
ij Nuv J

N
where, Q,,= % Z g'e’
i=1

Such a construct was shown [14] to have almost the same pn.x capacity in practice, but
from the biological point of view, it presents non-locality whereas the Hebbian rule would
imply interaction only at the pre- and post-synaptic levels, like it would be expected from a real
neuron.

Until now we have looked into generating strong attractors for stable pattern states. But
it is also interesting to investigate the possibility of storing, recalling, generating and learning
sequences of patterns. Thus our goal changes from stability of one pattern to closed limit cycles
such that these sequences are encoded in the choice of connections weights as before. We will

investigate whether the pattern sequence storage does remember common features of the stored

patterns and how does the stored features relate to common elements in the patterns; is the
neural network capable of extracting general information from a class of patterns.
Hopfield suggested [13] that a possibility would be using assymetric connections,

more SDECifically,
U N u= J N u=1 ! /

to produce such sequences of patterns. Here A is a asymmetry constant that governs the
relative strength between symmetric and asymmetric terms. For the case of correlated patterns,

the Hebb rule (6) may be replaced by a pseudo-inverse rule similar to (5).
=Y Eo LY g0 ™)
N - i 7N o~ i J

Unfortunately these schemes proved unusable in practice. The synchronous updating tends to
de-phase the system so that one obtains states that overlap several consecutive patterns, and the
sequence is soon lost. Only if the length of the sequence is very small (p<<N), the limit cycles
are embedded successfully [18]. One of the focuses of our research is finding a good method to
train such an asymmetric network efficiently.

There were some attempts [2][3] at tackling this problem using sparse patterns on a
stochastic network with additional terms in (6) to inhibit transitions to pattern states that were
not the next ones in sequence. The transitions themselves occurred at relatively high
temperatures (being driven to the next state by thermal noise), but the delays were
unpredictable. Also it was investigated [24][16][20] that by using dynamic weights (more
specifically just changing the A to grow linearly as to provoke the next transition) it is
possible to obtain a robust scheme but with careful selection of the constants (delay and
asymmetry). In the case of using an exponential-based kernel for the moving-average of the
delayed response, it was shown [22] that the system acquires chaotic behavior for a large
asymmetry constant. There were reports [17] of using this for successfull modeling of the
central pattern generator of the mollusk Tritonia diomedea.

In the case of delta-based kernels, the long time connections simply reduce to delayed

5

synapses that pass a given signal after a time delay. In general this amounts to using a

Hebbian-type learning scheme with temporization:

wi= JE+T))E (1)1 ®)

which was shown [4][12][15] that can fea rm” even sequences with different transition times
than the synaptic delay time. This would imply a range of delay times in the network, with a
broad distribution so as to cover the relevant time scales of the input sequence; short-time
connections would be superfluous for they are included in the model as the zero delay term.
The connections that become strong are those in resonance with the sequence itself as shown
in [7]1[25]. Another focus of our research would be to analyze whether equations (6),(7)&(8)
can be used in a similar analysis as in [1], for finding out an equivalent phase diagram of an
asymmetric network as well as the storage capacity of such a network and any presence of
spurious states. Simulations will be performed to analyze the change in system behavior when
orthogonal pattern overloading occurs and see if, similar to the symmetric case, spin glass

states are formed, in both stochastic and non-stochastic scenarios.

3. Work documentation

The working framework was implemented in MATLAB as depicted in the following schematic.

hebbian

iterator

asynctest __ viscapacity
statecompare

nncompare

FIG. 1 - Module list for working framework

Each module is implemented in a different m-file as a separate function. Following there is a

small description for each one:

hebbian Implements the learning rule for short/long connections.

iterator Stochastic and delayed neural network simulator.

statecompare Calculate overlap between two given states.

nncompare Calculate overlap between given state and memorized patterns.
viscapacity Generate enforced random learning patterns and simulate the network.
asynctest Call viscapacity with different parameters.

TABLE 1 - Module descriptions

3.1 System details

We will present shortly how we arrived at the current framework configuration. First of all, we
needed to analyze a stochastic system, and for this we would need a lot of simulations to obtain
the average values <S;> from different S; measurements. Instead we can use continuous valued
units with the activation function (4) which is completely equivalent as the formulas are

identical <Si> = V..

Vi:g(ui):g(zwijVj) 9)

J

The weights are trained using the Hebb learning rule as explained above [24][16] where the
long connections (3) represent slow synapses that have delayed or sluggish response. More

precisely, the input hi(t) to a unit is given by:
hi(6)= 2| wiS () +aw] S, (1) (10)
k

Where the delayed response S_j(t) is a weighted moving average (memory trace) over past

values of S;:
S(0)=] Gle—t")S,(¢")dr’ (11)

For simplicity of implementation we will use a delta function as the G kernel which will

amount to a shifted equation similar to (8):

MV L, BT 1

Of course considering that we have a finite set of training patterns, and considering the wanted

sequence of pattern generation we can say that & (z)=&,(u7t)=%! and thus the actual

equation for the w"y's reduces to (3). The only other thing we need now is a nice form for (11)

which is straightforward using the delta kernel G(¢)=6(¢—7)
S_/(t):S_,‘(t_T) (13)

And thus we obtain the final formula used in the iterator module considering stochastic
averaging as explained above. Discretizing the system in time up to a scaling constant we

obtain:

V0 k+1]=tanh(28 [wiV [k]+AwV [k—7]

k

(14)

3.2 Comparison method

For analyzing the simulation results using our built neural network we use three measuring
parameters: pattern overlap (m,), maximum overlap (m) and mean square non-retrieve overlap

(). We will explain their properties shortly.
— 1 Z H V
m u ﬁ - E[i (1 5)

Of course m is just the biggest m, for all n. Let v be this pattern with biggest overlap as

computed with the formula above. Then, by definition:

N
r=—7 m, (16)
p UFV

Considering random patterns, the expected values (supposing we are retrieving pattern cc) are:

my, B o
N

m=mgy ~1.00

r ~1.00

TABLE 2 Pa rameter expected values for optimal retrieval

Ideally, if we get back the pattern that we want, almost error-free, then our parameters should
take the values in Table 2. Glancing at (15), we can note that the overlap between a normal
state and it's corresponding reversed state amounts to -1.00 whereas to obtain a zero, we need
half of the bits to match and half of them to be reversed and of course for two identical patterns

the result is 1.00.

The m's are computed in statecompare/nncompare whereas ris computed inside viscapacity.

4. Results

Different sets of simulations have been done using N=100, A=2 and t=8 for different number
of patterns p and temperatures T (different 8). One example (2a) follows with the desired

operation of the system as limit cycle memory.

10

FIG. 2a Norm al system operation; p = 6; T=0;

—

—
—

FIG. 2b - Mixed-mode operation; p = 6; T=0;

As it can be seen on Fig. 2a, the system evolves in time by switching from pattern 1 through 6

11

in order 1->2->3->4->5->6. On Fig. 2b, the network prefers, after a short relaxation period, a

mixture-state oscillation between three such mixed states (MS).

il

Il Il Il Il Il Il J
0 100 200 300 400 500 500 100
Time

FIG. 3a -Ti me-varying temperature system;
p = 4; B=166/t for t<500 and =200 in rest.

I I I I I I)
0 100 200 300 400 500 600 100
Time

FIG. 3b - Time-varying temperature system;
p = 4; B=233/t for t<500 and =200 in rest.

12

Next we have a time-varying temperature simulation. The system is heated up linearily in time
with different slopes. After 500 time ticks, the system is switch to zero-freezing. Two cases are
shown (Fig. 3a, 3b). In the first case, the system returns to normal cycle generation (NS),
whereas in the second case, while rapidly cooled, the system switches to a non-oscillating spin-
glass state (SGS). Taking measurements from the graph we notice that both systems are error-
free until around t=40 (which corresponds to T=0.17-0.24) when they start decaying
exponentially (EDNS - exponentially decayed normal state) (still keeping the cycle order intact
though). The systems transitions eventually to a mean-field-zero (MFZ) solution decay at
approximatively T=1.9 loosing all it's correlation with any of the pattern states.

We note here that temperature values compared to the symmetric case are not
equivalent as this temperature is scaled depending on the normalization constant(s) present in
the learning rule of the system. In our case, these temperature values depend on A as it shows

up in the weights formula and thus are valid only for A=2.

1 1 1 1 1 1 J
0 100 200 300 400 500 600 700
Time

FIG. 4 ¥o rmation of (ED)OSGS states.
p = 4; B=200/t for t<500 and B=200 in rest.

Here we can observe an interesting phenomenon. First the system is in a EDNS but =140 (T =

0.7) the oscillation order is completely lost, going into what we will call an exponential

decayed oscillating spin glass state (EDOSGS). The main difference between an EDNS and an

13

EDOSGS is the Ioss of cycle corellation. Of course, while temperature increases, the decay will
probably switch to a MFZ state where pattern correlation is lost as well. Interestingly enough,
when the temperature is switched back instantly to zero-freezing point, the system instead of
going into an SGS as expected, it starts to oscillate around it. We will call these states
oscillating-SGS or OSGS.

These OSGS states are a novelty, but this phenomenon is not unique to asymmetric
networks. As we will show, this can occur in symmetric networks all the same, but it is very
hard to separate it's effects from a normal SGS, as symmetric networks are static (not time-
dependent). We will note that compared to a NS which repeats itself every pt time ticks, an
OSGS repeats always every 21. The reason is quite simple. Around the SGS point, a limit cycle
forms. Because a pattern can be related to this SGS point only in two modes (as either up or
down spin) and assuming that this point is a much stronger attractor than any of the other
patterns (as explained by mean field theory for T>T.), it follows that we will have our pattern
correlation switch from up to down and down to up as fast as possible which for us means it is
done in just one T. An interesting question is why do these OSGSs apparently have the same
amplitude. Could it be that OSGSs have a constant radius basin around them where the

oscillations are possible? This could be a nice theme for future investigations.

|

i ey

Al | i V““M i AR |
anit W‘W’w I APV

C T TTT IIIHHHIT .

[T

\n |

I

1 1 1 1 1 1 1 1)
0 50 100 150 200 250 300 350 400 450 500

FIG. 4 Pa ttern saturation chaotic evolution;
p = 30; T=0;

14

Another interesting development is pattern saturation. For oc>>(.14 the system starts to behave
eratically, full random separation of the pattern correlations around a SGS is obtained
combined with relative temperature increases. If the networks is simulated at (T~0) then no
chaotic behavior is observed; only a lot of different mixed states. The spectrum of such a
random signal was analyzed using FFT and was found not to contain any specific frequency
content distinguishable from the noise floor. We arrived at the conclusion that the system
behaves as a white noise generator, although such approaches have already been analyzed more
thoroughly [30].

4.1. Theoretical classification

As we have shown before, we have found a few types of states: (ED)NS, MS, (ED)OSGS,
SGS, MFZ. Considering equation (14) and Fig. 2a we can infer two rules for the dynamics of

the system. One for constant state, and the other for the transition:

£ =g| ZwiEr+aniE| an
=g D wiErawE)| =g X w8 (18)

It is easy to notice that for a cycle of length p, we have the identity:
E'=L"g" (19)

Where we defined the L. non-linear operator as L;=gw; . As such we will extend the
definition of eigenvector/eigenvalue to non-linear operators as well. Therefore the NS
are the #igenvec tors” of L;® that have &igenvalu e” of 1 or more specifically the
generalized eigenvectors of algebraic multiplicity p.

The SGS are those states that are constant in time (we will note them with G):

15

G$‘=g(2ngﬁ) (20)
G"'=LG" (21)

Please note that here we used overlined vectorial notation. The SGS are the normal
eigenvectors of L with eigenvalue 1. What we can observe is that any SGS G also satisfies the
NS equation. From here we can prove the existence of the OSGS which is an ensemble of
SGS+NS that can exist (as an EDOSGS) above the critical temperature as opposed to normal
NS.

LG '+yLE=G"-y¥€’ (22)

LE=-¢ (23)

Comparing (23) with (19) we arrive at the conclusion that for any NS present in an
OSGS ensemble, we have that (-1)” = 1 => p=even which is proven experimentally not
to be correct; there are OSGS states for any (small) p, may it be even or odd. It follows
that there should be a linear combination of patterns such that it forms a “1”

eigenvector. Note that because L is not linear, we cannot do superposition (distribute

the sum) for L.

Lzyu?:—z yu? (24)

16

5. Conclusions

We have found 5 types of states for an asymmetric neural network:

e Normal States (NS) - representing the useful operation of the neural network as a
central pattern generator; EDNS represent the stochastic version of NS where
temperature affects the retrieval of states exponentially.

e Mean Field Zero (MFZ) - at high temperatures, as expected, the activation function is
scaled that much, as to have the system evolve exponentially towards zero with the
temperature increase.

e Mixed States (MS) - a linear combination of NS that have a stronger attractor than
each individual state.

e Spin Glass States (SGS) - when the system is heated beyond critical temperature and
then frozen abruptly, states appear that have no or little relation to the initial states.

e Osciallating Spin Glass States (OSGS) - sometimes, when frozen, the system does not
go to a stationary SGS, but converges to a limit cycle around that SGS, the oscillations
being correlated with the stored patterns, but not independently, similar to an ensemble

that orients itself with opposite spin as the SGS.

17

References

[1] Amit, D. (1988). Neural Networks for Counting Chimes. Proceedings of the National
Academy of Sciences, USA 85, 2141-2145.

[2] Buhmann, J. and K. Schulten (1987). Noise-Driven Temporal Association in Neural
Networks. Europhysics Letters 4, 1205-1209.

[3] Buhmann, J. and K. Schulten (1988). Storing Sequences of Biased Patterns in Neural
Networks with Stochastic Dynamics. In Neural Computers (Neuss 1987), eds. R.
Eckmiller and Ch. von der Malsburg, 231-242. Berlin: Springer-Verlag

[4] Coolen, A.C.C. And C.C.A.M. Gielen (1988). Delays in Neural Networks. Europhysics
Letters 7, 281-285.

[5] Crisanti, A. and H. Sompolinsky (1987). Dynamics of Spin Systems with Randomly
Assymetric Bonds: Langevin Dynamics and a Spherical Model. Physical Review A 36,
4922-4939.

[6] Crisanti, A., D.J. Amit, and H. Gutfreund (1986). Saturation Level of Hopfield Model for
Neural Network. Europhysics Letters 2, 337-341.

[7] Dehaene, S., J.-P. Changeux, and J.-P. Nadal (1987). Neural Networks That Learn
Temporal Sequences by Selection. Proceedings of the National Academy of Sciences,
USA 84, 2727-2731.

[8] Derrida, B., E. Gardner, and A. Zippelius (1987). An Exactly Soluble Asymmetric Neural
Network Model. Europhysics Letters 4, 167-173.

[9] Gutfreund, H. and M. Mézard (1988). Processing of Temporal Sequences in Neural
Networks. Physical Review Letters 61, 235-238.

[10] Hertz, J.A., G. Grinstein, and S. Solla (1986). Memory Networks with Asymmetric Bonds.
In Neural Networks for Computing (Snowbird 1986), ed. J.S. Denker, 212-218. New
York: American Institute of Physics.

[11] Hertz, J.A., G. Grinstein, and S. Solla (1987). Irreversible Spin Glasses and Neural
Networks. In Heidelberg Colloquium on Glassy Dynamics (Heidelberg 1986), eds. J.L.
van Hemmen and I. Morgenstern, 538-546. Berlin: Springer-Verlag.

[12] Hertz, A., B. Sulzer, R. Kiihn, and J.L. van Hemmen (1989). Hebbian Learning

Reconsidered: Representation of Static and Dynamic Objects in Associative Neural

18

Nets. Biological Cybernetics 60, 457-467.

[13] Hopfield, J.J. (1982). Neural Networks and Physical Systems with Emergent Colective
Computational Abilities. Proceedings of the National Academy of Sciences, USA 81,
3088-3092. Reprinted in Anderson and Rosenfield [1988].

[14] Kanter, I. And H. Sompolinsky (1987). Associative Recall of Memory Without Errors.
Physical Review A 35, 380-392.

[15] Kerszberg, M. and A. Zippelius (1990). Synchronization in Neural Assemblies. Physica
Scripta T33, 54-64.

[16] Kleinfield, D. (1986). Sequential State Generation by Model Nerual Networks.
Proceedings of the National Academy of Sciences, USA 83, 9469-9473.

[17] Kleinfield, D. and H. Sompolinsky (1989). Associative Network Models for Central
Pattern Generators. In Methods in Neuronal Modeling: From Synapses to Networks,
eds. C. Koch and I. Segev, 195-246. Cambridge: MIT Press.

[18] Nishimori, H., T. Nakamura, and M. Shiino (1990). Retrieval of Spatio-Temporal
Sequence in Asynchronous Neural Network. Physical Review A 41, 3346-3354.

[19] Parisi, G. (1986). Asymmetric Neural Networks and the Process of Learning. Journal of
Physics A 19, 1L.675-L680.

[20] Peretto, P. and].J. Niez (1986). Collective Properties of Neural Networks. In Disordered
Systems and Biological Organization (Les Houches 1985), eds. E. Bienenstock, F.
Fogelman-Soulié, and G. Weisbuch, 171-185. Berlin: Springer-Verlag.

[21] Personnaz, L., I. Guyon, and G. Dreyfus (1986). Collective Computational Properties of
Neural Networks: New Learning Mechanisms. Phyiscal Review A 34, 4217-4228.

[22] Riedel, U., R. Kiihn, and J.L. van Hemmen (1988). Temporal Sequences and Chaos in
Neural Nets. Physical Review A 38, 1105-1108.

[23] Sompolinsky, H. (1987). The Theory of Neural Networks: The Hebb Rules and Beyond. In
Heidelberg Colloquium of Glassy Dynamics (Heidelberg 1986), eds. J.L.. van Hemmen
and I. Morgenstern, 485-527. Berlin: Springer-Verlag.

[24] Sompolinsky, H. and I. Kanter (1986). Temproal Association in Asymmetric Neural
Networks. Physical Review Letters 57, 2861-2864

[25] Touluse, G., S. Dehaene, and J.-P. Changeux (1986). Sping Glass Model of Learning by
Selection. Proceedings of the National Academy of Sciences, USA 83, 1695-1698.

[26] McCulloch, W.S. and W. Pitts (1943). A Logical Calculus of Ideas Immanent in Nervous

19

Activity. Bulletin of Mathematical Biophysics 5, 115-133. Reprinted in Anderson and
Rosenfield [1988].

[27] Hebb, D.O. (1949). The Organization of Behavior. New York: Wiley. Partially reprinted in
Anderson and Rosenfeld [1988].

[28] Glauber, R.J. (1963). Time-Dependent Statistics of the Ising Model. Journal of
Mathematical Physics 4, 294-307.

[29] Jinho , K. and T. Sato (1996). Analysis of Periodic Attractor in a Simple Hysteresis
Network. IEICE Transactions on Fundamentals, vol. E79-A, N0.6 JUNE 1996.

[30] Yang, X.-S. and Y. Huang (2006). Complex Dynamics in Simple Hopfield Neural
Networks, Chaos 16, 033114

20

Appendix A - A few interesting simulations

1 1 1 1 1 1 J
0 200 400 600 800 1000 1200 1400
Time

FIG. 5 Hea ting { reezing; Heating freezing;
p =5; T =1/100; T=200 for [500,700]

1 1 1 1 1 1 J
0 100 200 300 400 500 600 700
Time

FIG. 6 - Another example of OSGS; p =5; T = t/100;

21

! ! J
1000 1200 1400

L L L L
0 200 400 600 800
Time

FIG. 7 - Transition SGS->EDNS->SGS; p=4; T =t/ 220;
T=200 for [500,700] and [1000, 1400]

o=

J
1400

! !
1000 1200

L L L
0 200 400 600 800
Time

FIG. 8 - Transition SGS->MFZ->SGS; p=4; T =t/ 220;
T=200 for [500,700] and [1000, 1400]

22

23

Appendix B - The code

oe
oo
oe

oe
o\
oe

Hopfield Neural Network; Symmetric Hebbian Learning

oe
oo
oe

oe

Input: n - number of neurons; train - matrix with training patterns
long - long connection coefficient lambda
% Output: w - weights matrix

oe

function [w s, w 1] = hebbian(n, train)
% Number of patterns p
[p, 9] = size(train);

% Sanity check
if (g ~= n)

error ('hebbian: Given training patterns have wrong dimensions.')
end

oe

Fill in weights

Sfprintf (1, 'hebbian: Learning... ');
w_s = zeros(n, n);
w 1 = zeros(n, n);
for i = 1:n
for 3 = 1:n
tmp s = 0;
tmp 1 = 0;
for k = 1:p
t = mod(k, p) + 1;
tmp_s = tmp_s + train(k, i) * train(k, 3j);
tmp 1 = tmp 1 + train(t, i) * train(k, 3);
end
w s(i, j) = tmp s / n;
w 1l(i, j) = tmp 1 / n;
end
end
$fprintf (1, 'DONE\n')

oe
oo
oe

oe
o\
oe

Hopfield Neural Network; Iterator

oe
oo
oe

% Input: n - number of neurons; w - matrix with weights(s/1);
% g - activation function; bgn - initial neuron states
% beta - stochastic squashing; lambda - long coeff.
% Output: hnn - output neuron states
function hnn = iterator(n, w_ s, w 1, bgn, prev, beta, lambda)

% Sanity Check

[x, y] = size(w_s);

[xx, yyl] = size(w_ 1);

[t, g] = size(bgn);

[t, gg] = size(prev);

if ((x ~=mn) || (y ~=mn) |l (@ ~=mn) || (gq@ ~=n) || (xx ~=n) || (yy ~=
n))

error ('iterator: Given data has wrong dimensions')

end

hnn = bgn;

hash = randperm(n);

for i = 1:n

24

s 0;
1 = 0;
for j = 1:n
s =s + w s(i, Jj) * hnn(J);
1 =1+ w1l(i, J) * prev(j):
end
s = s + lambda * 1;

hnn(i) = g(beta, s);
end
$fprintf ('\niterator: Convergence steps: %d\n\n', step)
end

%$Activation function
function y = g(beta, x)

y = tanh(beta * x);
end

oo
o
o

oe
o
oe

Hopfield Neural Network; Compare states

oo
o
o

o

Input: state - one training patterns;
hnn - state to compare with

% Output: difference

function dst = statecompare(state, hnn)

oe

% Number of neurons n
[x, n] = size(state);
[y, n2] = size(hnn);

% Sanity check

if ((x ~=1) || (y ~=1) |l (n ~= n2))
error ('statecompare: Wrong dimensions.')
end
$dif = abs(state - hnn);
$dst = sum(dif) ;

%dst = n - dst / 2;

dst = sum(state .* hnn) / n;

oo
o
o

oe
o
oe

Hopfield Neural Network; Compare neural networks

oo
o
o

o

Input: n - number of neurons; train - matrix with training patterns;
hnn - long connection coefficient lambda
% Output: w - weights matrix
function cdst = nncompare (n, train, hnn)
% Number of patterns p
[p, 9] = size(train);
[x size (hnn) ;

oe

=
Il

% Sanity check
if ((g ~=n) || (y ~= n))

error ('nncompare: Given training patterns have wrong dimensions.')
end

Sfprintf(l, 'nncompare: Comparing... ')

cdst = zeros(l, p);
for i = 1l:p

25

cdst (1)
end

statecompare (hnn, train(i,:));

$fprintf (1, 'PATTERN %d [%d]\n', pat, dst)

oo
o
o

oe
o
oe

Hopfield Neural Network; Assymmetric Simulation with Stochastics

oo
o
o

% Input: mode - 0/hebbian, 1/psi

% Output: m"mu vs time

function [mc, fc, ret] = viscapacity(p, n, tix, bx)
TICKS = tix; %Number of iterations
MAX NEUR = n; $Number of neurons
MAX PAT = p; $Number of patterns
LAMBDA = 2; %$Long connectivity
TAU = 8; %$Time shift; Delta kernel
RAND FIN = 1; %$Random levels
BETA = bx; %$Stochastic equivalency
ERR = 0.001 * n; %Starting error / no. of bit
%Generate x-axis: time

time 1:TICKS;

%Generate random training patterns

train = zeros (MAX PAT, MAX NEUR);
for i = 1:MAX PAT
for j = 1:1000000000
tmp = randint (1, MAX NEUR, RAND FIN + 1);
tmp = 2 .* (tmp ./ RAND FIN) - 1;
ok = 1;
break;
for k = 1:(i-1)
ddd = statecompare (tmp, train(k, :));
if (ddd > 0.5)
ok = 0;
break
end
end
if (ok == 1)
break
end
end
train(i, :) = tmp;
end
$Train the network
[w s, w 1] = hebbian(MAX NEUR, train);

$Starting pattern

d = ERR;
bgn = train(l, :);
for i = 1:MAX NEUR
c=d/ (n -1+ 1);
if (rand < c¢)
bgn (i) = -bgn(i);
d=d - 1;
end
end

26

%Generate data
data = zeros (MAX NEUR, TICKS);
dif = zeros (MAX PAT, TICKS);
data(:, 1) = bgn;
dif(:, 1) = nncompare (MAX NEUR, train, bgn)';
for 1 = 2:TICKS
if (1 < 500)

f = 100/1;
elseif (i < 700)
f = 100;

elseif (i < 1200)
f = 100/(i - 700);

else

f = 100;
end
f = BETA;

nex = iterator (MAX NEUR, w s, w 1, bgn, data(:, getprev(i, TAU))',
LAMBDA) ;

data(:, 1) = nex;

dif(:, i) = nncompare (MAX NEUR, train, nex)';
end
ret = dif;
%$Le graph

$hold all;
Sylim([-0.5 1.2]);
$for i = 1:MAX PAT

% plot (time, dif (i, :))
%end
$hold off;

%$Process; Compute 'r' no-store-overlap

s = zeros (1, TICKS);

for 1 = 1:TICKS
m = max (dif(:, 1));
s (i) = MAX NEUR / MAX PAT * (sum(dif(:, 1).72) - m"2);
mc (i) = m;

end

fc = s;

sylim([-0.3 1.2]);
Splot (time, s)

$fc = sum(s(800:1400)) / (1400-800);

%if (gswer > 0.6)
% ret = viscapacity(mode, p);

end

function y = getprev(x, tau)
if (x - tau < 1)
y = 1;
else

Yy
end

x - tau;

oe
o°
oe

oo
o
o

Hopfield Neural Network; Assymmetric Graphical Visualization

oe
o°
oe

27

% Input: mode - 0/hebbian, 1/psi
% Output: m"mu vs time

iter = 10;

n = 100;

pat = n / 5;

tix = n * 2;

beta = 0.5;

s = zeros(l, pat);

gt = zeros(l, pat);
for i = l:pat;

a 0;
q = 0;
w = 0;
for j = l:iter
[m, r, bl = viscapacity(i, n, tix,
a=a + b;
q = gq + max(r);
w = w + min(m);

fprintf (1, '.")
if (mod(i*iter + j, 70) == 0)
fprintf (1, '"\n')

end
end
kk = a ./ iter;
pp = g ./ iter;

mm = w ./ iter;

%s (i) = sum(pp) ./ tix;
%gt (1) = sum(mm) ./ tix;
s(i) = pp;
gt (i) = mm;

end

hold all;

plot (smooth(s))
plot (smooth (gt))
hold off;
Sylim([-0.5 1.2]);
$hold all;

$plot (pp)

$for i = l:pat

% plot (kk (i, :))
%end

$hold off;

%$hold all

Skkx=kk (3, :);

%m = sum(kkx) / length (kkx);
$kkx = kkx - m;

$plot (kkx)
Sfs=fft (kkx (500:1400)) ;

$plot (log(2*abs (fs(l:floor (length(fs)/2))))

28

beta) ;

)

