
Asymmetric Neural Networks
Training and Memory Breakdown

Dorian Bivolaru

Electrical Engineering and Computer Science
Jacobs University Bremen
Campus Ring 4
28759 Bremen
Germany

Type: Guided Research Proposal
Date: May 13, 2007
Supervisor: Dr. Mathias Bode

Executive Summary

The main difference between a computer and a human brain is the complexity of the tasks it
can process. Even if a computer is unmatchable at bare mathematical operations and automated
tasks, there are things which even a child can do better and faster (recognizing objects, faces,
and so on) that even the most advanced AI system running on the world's faster supercomputer
cannot match. The brain has a lot of other features which would be desirable in artificial
systems: robustness, fault tolerance, flexibility, handling of fuzzy / probabilistic / noisy /
inconsistent data, highly parallel and small, very compact and with low power dissipation.
The concept of neural networks, to come up with a different computational paradigm than the
one introduced by von Neumann (used as basis for almost all machines to date), was conceived
as to mimicking nature itself. As the name implies it is inspired from neuroscience but it does
not try to be biologically realistic in detail. This discipline combines different areas like
systems theory, statistical physics, network theory, probabilistics and dynamical systems but it's
applications do not lie only in computer science / engineering but in diverse areas like sensory /
cognitive psychology, military intelligence, industrial analysis and basically any area in which
different elements interact with each other in a known / unknown way such that the final result
of the system is modeled in a predictable way and can even, by specialized analysis, be
influenced with very small interventions in it's components so as to obtain a different result.

1. Summary

The dynamics of stochastic asymmetric neural networks is simulated in a MATLAB

framework. Temperature and number of patterns is varied such that different phases of the

network are observed. A new state for compound ensemble spin glass states is found.

Evaluation of such states shows that the compound state that superimposes over the normal

spin glass state is always opposed to the former (ie they have opposite eigenvalues), resulting in

oscillation-spin-glass-states (OSGS).

2. Statement and Motivation of Research

As the name implies, a neural network was first aimed at simulating brain behavior and

connections, highly motivated by the possibility of making artificial computing networks. But

the models used are very simplistic in nature so that we will not be lost in unimportant details

which don't pertain to the total system behavior of such a network. There are two types of

learning mechanisms in these networks: supervised and unsupervised. We will study the

latter, as we are interested in the basic functionality.

McCulloch and Pitts [26] proposed a simple model of a neuron as a binary threshold

unit which they proved that in synchronous associations of such neurons, they are capable of

universal computation for suitably chosen weights. The model computes a weighted sum1 of

it's inputs and then passes it through a Heaviside step function:

n it1=g ∑
j=1

N

w ij n jt −i (1)

The above example is more general, making use of a general activation function g,

which in the case of McCulloch and Pitts was the Heaviside step function. The ni's represent the

neuron's state at time t or t+1 and the  ' s are the threshold values.

Updates of the neuron states can either be done synchronously using a central clock to

1 Unless otherwise noted we will be using normal alphabet letters for neuron indexes (going from 1 to N) and greek letters for the
stored patterns (going from 1 to p) where N is the number of neurons and p the number of (stored) patterns.

2

update them at the same time, or asynchronously by either going randomly over the neuron

array or setting a probability of update for each individual neuron (both asynchronous methods

being equivalent).

Later, Hopfield [13] devised, using a similar model called the Hopfield model (but

instead of a general g function, he uses the sgn function; i.e. the outputs are either -1 or +1

whereas for the McCulloch-Pitts neuron, they were either 0 or +1), a content-adressable

memory, insensitive to small errors in the input pattern that can, when presented with a pattern,

recall the closest match of the known stored patterns. This storage is done off-line using the

Hebb-rule [27] weights (i.e. (2) in the case of short-time connections) whereas a plus-one rule

(3), in the case of long-time connections, would be used later for the asymmetric case.

wij
S
=
1
N ∑

=1

p

i

 j
 (2)

w ij
L
=
1
N
∑
=1

p

i
1

 j
 (3)

Hopfield also introduced an energy function (similar to mechanics) and emphasized the

representation of stored patterns as dynamical attractors with an associated basin of attraction.

He also managed to find out that the storage capacity of a Hopfield network cannot be higher

than pmax=0.138 N for random pattern sets. Of course, orthogonal patterns will give zero

crosstalk, but using too many such patterns (~N) would defeat the purposes of an associative

memory as the weights would all be w ij=ij and the network becomes stable in any state.

The normal states (called retrieval states) are not the only possible states. There are

also reversed states (which occur when more than half of the input bits are in a reversed state),

but also mixture states which are not equal to any single pattern but correspond to linear

combinations of an odd number of patterns [1]. If we increase the number of stored patterns we

will obtain also local minima that are not correlated with any finite number of the original

patterns. These are called spin glass states because of the similarity with sping glass models in

statistical mechanics. All of the unwanted states are called generically just spurious states.

There was also an effort in completing the model so that it's fully equivalent with

magnetic (spin-glass) models by inserting also thermal fluctuations. More specifically, the

3

activation function is replaced from a sgn to a fully fledged Fermi distribution (4) function (see

Glauber dynamics [27]) rescaled for [-1..1].

g x=
1−e−2 x

1e−2 x
=tanh x (4)

Such networks are called stochastic networks and are usually equivalent to using

random thresholds in (1). Such networks are analyzed using mean field theory [1] and it was

found that the storage capacity for them is also c≈0.138 although this is obtained in the

low-temperature limit (as it should be expected). There are 4 possible phase-states for such a

network called A, B, C and D. States A represent error-free retrieval states, whereas B represent

all the other retrieval states. In state C (high temperature), the network shows only spin glass

states, but these are not correlated with any of the stored patterns. If the temperature is raised

more, then these states melt as well and the only mean field solution is zero [1].

The problem of correlated patterns which limit the network capacity even for p<<N

was solved [14] [21] by changing the Hebbian rule to use the pattern overlap matrix Q in what

is called a pseudo-inverse rule.

w ij=
1
N
∑


i
Q

 j


where, Q

=
1
N
∑
i=1

N

i

i


 (5)

Such a construct was shown [14] to have almost the same pmax capacity in practice, but

from the biological point of view, it presents non-locality whereas the Hebbian rule would

imply interaction only at the pre- and post-synaptic levels, like it would be expected from a real

neuron.

Until now we have looked into generating strong attractors for stable pattern states. But

it is also interesting to investigate the possibility of storing, recalling, generating and learning

sequences of patterns. Thus our goal changes from stability of one pattern to closed limit cycles

such that these sequences are encoded in the choice of connections weights as before. We will

investigate whether the pattern sequence storage does remember common features of the stored

4

patterns and how does the stored features relate to common elements in the patterns; is the

neural network capable of extracting general information from a class of patterns.

Hopfield suggested [13] that a possibility would be using assymetric connections,

more specifically,

w ij=
1
N
∑
=1

p

i

 j





N
∑
=1

p

i
1

 j
 (6)

to produce such sequences of patterns. Here  is a asymmetry constant that governs the

relative strength between symmetric and asymmetric terms. For the case of correlated patterns,

the Hebb rule (6) may be replaced by a pseudo-inverse rule similar to (5).

w ij=
1
N
∑


i
Q

 j





N
∑


i
1Q

 j


 (7)

Unfortunately these schemes proved unusable in practice. The synchronous updating tends to

de-phase the system so that one obtains states that overlap several consecutive patterns, and the

sequence is soon lost. Only if the length of the sequence is very small (p<<N), the limit cycles

are embedded successfully [18]. One of the focuses of our research is finding a good method to

train such an asymmetric network efficiently.

There were some attempts [2] [3] at tackling this problem using sparse patterns on a

stochastic network with additional terms in (6) to inhibit transitions to pattern states that were

not the next ones in sequence. The transitions themselves occurred at relatively high

temperatures (being driven to the next state by thermal noise), but the delays were

unpredictable. Also it was investigated [24] [16] [20] that by using dynamic weights (more

specifically just changing the  to grow linearly as to provoke the next transition) it is

possible to obtain a robust scheme but with careful selection of the constants (delay and

asymmetry). In the case of using an exponential-based kernel for the moving-average of the

delayed response, it was shown [22] that the system acquires chaotic behavior for a large

asymmetry constant. There were reports [17] of using this for successfull modeling of the

central pattern generator of the mollusk Tritonia diomedea.

In the case of delta-based kernels, the long time connections simply reduce to delayed

5

synapses that pass a given signal after a time delay. In general this amounts to using a

Hebbian-type learning scheme with temporization:

w ij
L
=
1
N
1
T
∫itij j t dt
0

T
 (8)

which was shown [4] [12] [15] that can “lea rn” even sequences with different transition times

than the synaptic delay time. This would imply a range of delay times in the network, with a

broad distribution so as to cover the relevant time scales of the input sequence; short-time

connections would be superfluous for they are included in the model as the zero delay term.

The connections that become strong are those in resonance with the sequence itself as shown

in [7] [25] . Another focus of our research would be to analyze whether equations (6),(7)&(8)

can be used in a similar analysis as in [1], for finding out an equivalent phase diagram of an

asymmetric network as well as the storage capacity of such a network and any presence of

spurious states. Simulations will be performed to analyze the change in system behavior when

orthogonal pattern overloading occurs and see if, similar to the symmetric case, spin glass

states are formed, in both stochastic and non-stochastic scenarios.

6

3. Work documentation

The working framework was implemented in MATLAB as depicted in the following schematic.

FIG. 1 – Module list for working framework

Each module is implemented in a different m-file as a separate function. Following there is a

small description for each one:

hebbian Implements the learning rule for short/long connections.

iterator Stochastic and delayed neural network simulator.

statecompare Calculate overlap between two given states.

nncompare Calculate overlap between given state and memorized patterns.

viscapacity Generate enforced random learning patterns and simulate the network.

asynctest Call viscapacity with different parameters.

TABLE 1 – Module descriptions

7

asynctest

iterator

viscapacity

nncompare

statecompare

hebbian

3.1 System details

We will present shortly how we arrived at the current framework configuration. First of all, we

needed to analyze a stochastic system, and for this we would need a lot of simulations to obtain

the average values <Si> from different Si measurements. Instead we can use continuous valued

units with the activation function (4) which is completely equivalent as the formulas are

identical <Si> = Vi.

V i=g u i=g ∑
j

wij V j (9)

The weights are trained using the Hebb learning rule as explained above [24] [16] where the

long connections (3) represent slow synapses that have delayed or sluggish response. More

precisely, the input hi(t) to a unit is given by:

h it =∑
k

[wij
S S jt wij

L S j t ] (10)

Where the delayed response S jt  is a weighted moving average (memory trace) over past

values of Sj:

S jt =∫
−∞

t

G t−t ' S j t ' dt ' (11)

For simplicity of implementation we will use a delta function as the G kernel which will

amount to a shifted equation similar to (8):

w ij
L
=
1
N

∑
t=0, , 2 , ...

it jt  (12)

Of course considering that we have a finite set of training patterns, and considering the wanted

8

sequence of pattern generation we can say that i t =i=i
 and thus the actual

equation for the wL
ij's reduces to (3). The only other thing we need now is a nice form for (11)

which is straightforward using the delta kernel Gt =t− :

S jt =S jt− (13)

And thus we obtain the final formula used in the iterator module considering stochastic

averaging as explained above. Discretizing the system in time up to a scaling constant we

obtain:

V i [k1]= tanh 2∑k
[w ij

S V j [k]wij
L V j [k−]] (14)

3.2 Comparison method

For analyzing the simulation results using our built neural network we use three measuring

parameters: pattern overlap (m μ), maximum overlap (m) and mean square non-retrieve overlap

(r). We will explain their properties shortly.

m=
1
N
∑

i

i
V i (15)

Of course m is just the biggest m μ for all μ . Let be this pattern with biggest overlap asυ

computed with the formula above. Then, by definition:

r=
N
p ∑≠

m

2
 (16)

9

Considering random patterns, the expected values (supposing we are retrieving pattern) are:α

m μ , μ ≠α ~
1

 N

m=mα ~1.00

r ~1.00

TABLE 2 – Pa rameter expected values for optimal retrieval

Ideally, if we get back the pattern that we want, almost error-free, then our parameters should

take the values in Table 2. Glancing at (15), we can note that the overlap between a normal

state and it's corresponding reversed state amounts to -1.00 whereas to obtain a zero, we need

half of the bits to match and half of them to be reversed and of course for two identical patterns

the result is 1.00.

The m's are computed in statecompare/nncompare whereas r is computed inside viscapacity.

4. Results

Different sets of simulations have been done using N=100, =2 and =8 for different numberλ τ

of patterns p and temperatures T (different β). One example (2a) follows with the desired

operation of the system as limit cycle memory.

10

FIG. 2a – Norm al system operation; p = 6; T=0;

FIG. 2b – Mixed-mode operation; p = 6; T=0;

As it can be seen on Fig. 2a, the system evolves in time by switching from pattern 1 through 6

11

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

in order 1->2->3->4->5->6. On Fig. 2b, the network prefers, after a short relaxation period, a

mixture-state oscillation between three such mixed states (MS).

FIG. 3a – Ti me-varying temperature system;

p = 4; =166/t for t<500 and =200 in rest.β β

FIG. 3b – Time-varying temperature system;

p = 4; =233/t for t<500 and =200 in rest.β β

12

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

Next we have a time-varying temperature simulation. The system is heated up linearily in time

with different slopes. After 500 time ticks, the system is switch to zero-freezing. Two cases are

shown (Fig. 3a, 3b). In the first case, the system returns to normal cycle generation (NS),

whereas in the second case, while rapidly cooled, the system switches to a non-oscillating spin-

glass state (SGS). Taking measurements from the graph we notice that both systems are error-

free until around t=40 (which corresponds to T=0.17-0.24) when they start decaying

exponentially (EDNS – exponentially decayed normal state) (still keeping the cycle order intact

though). The systems transitions eventually to a mean-field-zero (MFZ) solution decay at

approximatively T=1.9 loosing all it's correlation with any of the pattern states.

We note here that temperature values compared to the symmetric case are not

equivalent as this temperature is scaled depending on the normalization constant(s) present in

the learning rule of the system. In our case, these temperature values depend on as it showsλ

up in the weights formula and thus are valid only for =2.λ

FIG. 4 – Fo rmation of (ED)OSGS states.

p = 4; =200/t for t<500 and =200 in rest.β β

Here we can observe an interesting phenomenon. First the system is in a EDNS but t=140 (T =

0.7) the oscillation order is completely lost, going into what we will call an exponential

decayed oscillating spin glass state (EDOSGS). The main difference between an EDNS and an

13

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

EDOSGS is the loss of cycle corellation. Of course, while temperature increases, the decay will

probably switch to a MFZ state where pattern correlation is lost as well. Interestingly enough,

when the temperature is switched back instantly to zero-freezing point, the system instead of

going into an SGS as expected, it starts to oscillate around it. We will call these states

oscillating-SGS or OSGS.

These OSGS states are a novelty, but this phenomenon is not unique to asymmetric

networks. As we will show, this can occur in symmetric networks all the same, but it is very

hard to separate it's effects from a normal SGS, as symmetric networks are static (not time-

dependent). We will note that compared to a NS which repeats itself every pτ time ticks, an

OSGS repeats always every 2τ. The reason is quite simple. Around the SGS point, a limit cycle

forms. Because a pattern can be related to this SGS point only in two modes (as either up or

down spin) and assuming that this point is a much stronger attractor than any of the other

patterns (as explained by mean field theory for T>Tc), it follows that we will have our pattern

correlation switch from up to down and down to up as fast as possible which for us means it is

done in just one . An interesting question is why do these OSGSs apparently have the sameτ

amplitude. Could it be that OSGSs have a constant radius basin around them where the

oscillations are possible? This could be a nice theme for future investigations.

FIG. 4 – Pa ttern saturation chaotic evolution;

p = 30; T=0;

14

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

Another interesting development is pattern saturation. For >>0.14 the system starts to behaveα

eratically, full random separation of the pattern correlations around a SGS is obtained

combined with relative temperature increases. If the networks is simulated at (T~0) then no

chaotic behavior is observed; only a lot of different mixed states. The spectrum of such a

random signal was analyzed using FFT and was found not to contain any specific frequency

content distinguishable from the noise floor. We arrived at the conclusion that the system

behaves as a white noise generator, although such approaches have already been analyzed more

thoroughly [30].

4.1. Theoretical classification

As we have shown before, we have found a few types of states: (ED)NS, MS, (ED)OSGS,

SGS, MFZ. Considering equation (14) and Fig. 2a we can infer two rules for the dynamics of

the system. One for constant state, and the other for the transition:

i

=g ∑j

w ij
S
 j

w ij

L
 j
−1

 (17)

i
1

=g ∑j

w ij
S
 j

wij

L
 j


=g ∑j

wij  j


 (18)

It is easy to notice that for a cycle of length p, we have the identity:



=L p


 (19)

Where we defined the L non-linear operator as Lij≡g wij . As such we will extend the

definition of eigenvector/eigenvalue to non-linear operators as well. Therefore the NS

are the “eigenvec tors” of Lij
p that have “eigenvalu e” of 1 or more specifically the

generalized eigenvectors of algebraic multiplicity p.

The SGS are those states that are constant in time (we will note them with G):

15

Gi

=g ∑j

wij G j


 (20)

G
=LG (21)

Please note that here we used overlined vectorial notation. The SGS are the normal

eigenvectors of L with eigenvalue 1. What we can observe is that any SGS Gμ also satisfies the

NS equation. From here we can prove the existence of the OSGS which is an ensemble of

SGS+NS that can exist (as an EDOSGS) above the critical temperature as opposed to normal

NS.

L G
 L

=G
−

 (22)

L
=−

 (23)

Comparing (23) with (19) we arrive at the conclusion that for any NS present in an

OSGS ensemble, we have that (-1)p = 1 => p=even which is proven experimentally not

to be correct; there are OSGS states for any (small) p, may it be even or odd. It follows

that there should be a linear combination of patterns such that it forms a “-1”

eigenvector. Note that because L is not linear, we cannot do superposition (distribute

the sum) for L.

L∑




=−∑






 (24)

16

5. Conclusions

We have found 5 types of states for an asymmetric neural network:

● Normal States (NS) – representing the useful operation of the neural network as a

central pattern generator; EDNS represent the stochastic version of NS where

temperature affects the retrieval of states exponentially.

● Mean Field Zero (MFZ) – at high temperatures, as expected, the activation function is

scaled that much, as to have the system evolve exponentially towards zero with the

temperature increase.

● Mixed States (MS) – a linear combination of NS that have a stronger attractor than

each individual state.

● Spin Glass States (SGS) – when the system is heated beyond critical temperature and

then frozen abruptly, states appear that have no or little relation to the initial states.

● Osciallating Spin Glass States (OSGS) – sometimes, when frozen, the system does not

go to a stationary SGS, but converges to a limit cycle around that SGS, the oscillations

being correlated with the stored patterns, but not independently, similar to an ensemble

that orients itself with opposite spin as the SGS.

17

References

[1] Amit, D. (1988). Neural Networks for Counting Chimes. Proceedings of the National

Academy of Sciences, USA 85, 2141-2145.

[2] Buhmann, J. and K. Schulten (1987). Noise-Driven Temporal Association in Neural

Networks. Europhysics Letters 4, 1205-1209.

[3] Buhmann, J. and K. Schulten (1988). Storing Sequences of Biased Patterns in Neural

Networks with Stochastic Dynamics. In Neural Computers (Neuss 1987), eds. R.

Eckmiller and Ch. von der Malsburg, 231-242. Berlin: Springer-Verlag

[4] Coolen, A.C.C. And C.C.A.M. Gielen (1988). Delays in Neural Networks. Europhysics

Letters 7, 281-285.

[5] Crisanti, A. and H. Sompolinsky (1987). Dynamics of Spin Systems with Randomly

Assymetric Bonds: Langevin Dynamics and a Spherical Model. Physical Review A 36,

4922-4939.

[6] Crisanti, A., D.J. Amit, and H. Gutfreund (1986). Saturation Level of Hopfield Model for

Neural Network. Europhysics Letters 2, 337-341.

[7] Dehaene, S., J.-P. Changeux, and J.-P. Nadal (1987). Neural Networks That Learn

Temporal Sequences by Selection. Proceedings of the National Academy of Sciences,

USA 84, 2727-2731.

[8] Derrida, B., E. Gardner, and A. Zippelius (1987). An Exactly Soluble Asymmetric Neural

Network Model. Europhysics Letters 4, 167-173.

[9] Gutfreund, H. and M. Mézard (1988). Processing of Temporal Sequences in Neural

Networks. Physical Review Letters 61, 235-238.

[10] Hertz, J.A., G. Grinstein, and S. Solla (1986). Memory Networks with Asymmetric Bonds.

In Neural Networks for Computing (Snowbird 1986), ed. J.S. Denker, 212-218. New

York: American Institute of Physics.

[11] Hertz, J.A., G. Grinstein, and S. Solla (1987). Irreversible Spin Glasses and Neural

Networks. In Heidelberg Colloquium on Glassy Dynamics (Heidelberg 1986), eds. J.L.

van Hemmen and I. Morgenstern, 538-546. Berlin: Springer-Verlag.

[12] Hertz, A., B. Sulzer, R. Kűhn, and J.L. van Hemmen (1989). Hebbian Learning

Reconsidered: Representation of Static and Dynamic Objects in Associative Neural

18

Nets. Biological Cybernetics 60, 457-467.

[13] Hopfield, J.J. (1982). Neural Networks and Physical Systems with Emergent Colective

Computational Abilities. Proceedings of the National Academy of Sciences, USA 81,

3088-3092. Reprinted in Anderson and Rosenfield [1988].

[14] Kanter, I. And H. Sompolinsky (1987). Associative Recall of Memory Without Errors.

Physical Review A 35, 380-392.

[15] Kerszberg, M. and A. Zippelius (1990). Synchronization in Neural Assemblies. Physica

Scripta T33, 54-64.

[16] Kleinfield, D. (1986). Sequential State Generation by Model Nerual Networks.

Proceedings of the National Academy of Sciences, USA 83, 9469-9473.

[17] Kleinfield, D. and H. Sompolinsky (1989). Associative Network Models for Central

Pattern Generators. In Methods in Neuronal Modeling: From Synapses to Networks,

eds. C. Koch and I. Segev, 195-246. Cambridge: MIT Press.

[18] Nishimori, H., T. Nakamura, and M. Shiino (1990). Retrieval of Spatio-Temporal

Sequence in Asynchronous Neural Network. Physical Review A 41, 3346-3354.

[19] Parisi, G. (1986). Asymmetric Neural Networks and the Process of Learning. Journal of

Physics A 19, L675-L680.

[20] Peretto, P. and J.J. Niez (1986). Collective Properties of Neural Networks. In Disordered

Systems and Biological Organization (Les Houches 1985), eds. E. Bienenstock, F.

Fogelman-Soulié, and G. Weisbuch, 171-185. Berlin: Springer-Verlag.

[21] Personnaz, L., I. Guyon, and G. Dreyfus (1986). Collective Computational Properties of

Neural Networks: New Learning Mechanisms. Phyiscal Review A 34, 4217-4228.

[22] Riedel, U., R. Kűhn, and J.L. van Hemmen (1988). Temporal Sequences and Chaos in

Neural Nets. Physical Review A 38, 1105-1108.

[23] Sompolinsky, H. (1987). The Theory of Neural Networks: The Hebb Rules and Beyond. In

Heidelberg Colloquium of Glassy Dynamics (Heidelberg 1986), eds. J.L. van Hemmen

and I. Morgenstern, 485-527. Berlin: Springer-Verlag.

[24] Sompolinsky, H. and I. Kanter (1986). Temproal Association in Asymmetric Neural

Networks. Physical Review Letters 57, 2861-2864

[25] Touluse, G., S. Dehaene, and J.-P. Changeux (1986). Sping Glass Model of Learning by

Selection. Proceedings of the National Academy of Sciences, USA 83, 1695-1698.

[26] McCulloch, W.S. and W. Pitts (1943). A Logical Calculus of Ideas Immanent in Nervous

19

Activity. Bulletin of Mathematical Biophysics 5, 115-133. Reprinted in Anderson and

Rosenfield [1988].

[27] Hebb, D.O. (1949). The Organization of Behavior. New York: Wiley. Partially reprinted in

Anderson and Rosenfeld [1988].

[28] Glauber, R.J. (1963). Time-Dependent Statistics of the Ising Model. Journal of

Mathematical Physics 4, 294-307.

[29] Jin’no , K. and T. Sato (1996). Analysis of Periodic Attractor in a Simple Hysteresis

Network. IEICE Transactions on Fundamentals, vol. E79-A, N0.6 JUNE 1996.

[30] Yang, X.-S. and Y. Huang (2006). Complex Dynamics in Simple Hopfield Neural

Networks, Chaos 16, 033114

20

Appendix A – A few interesting simulations

FIG. 5 – Hea ting – f reezing; Heating freezing;

p = 5; T = t/100; T=200 for [500,700]

FIG. 6 – Another example of OSGS; p = 5; T = t/100;

21

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

FIG. 7 – Transition SGS->EDNS->SGS; p=4; T = t / 220;

T=200 for [500,700] and [1000, 1400]

FIG. 8 – Transition SGS->MFZ->SGS; p=4; T = t / 220;

T=200 for [500,700] and [1000, 1400]

22

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0

­ 0 . 4

­ 0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

T i m e

O
ve

rla
p

23

Appendix B – The code

%%%
%%% Hopfield Neural Network; Symmetric Hebbian Learning
%%%

% Input: n - number of neurons; train - matrix with training patterns
% long - long connection coefficient lambda
% Output: w - weights matrix
function [w_s, w_l] = hebbian(n, train)
 % Number of patterns p
 [p, q] = size(train);

 % Sanity check
 if (q ~= n)
 error('hebbian: Given training patterns have wrong dimensions.')
 end

 % Fill in weights
 %fprintf(1, 'hebbian: Learning... ');
 w_s = zeros(n, n);
 w_l = zeros(n, n);
 for i = 1:n
 for j = 1:n
 tmp_s = 0;
 tmp_l = 0;
 for k = 1:p
 t = mod(k, p) + 1;
 tmp_s = tmp_s + train(k, i) * train(k, j);
 tmp_l = tmp_l + train(t, i) * train(k, j);
 end
 w_s(i, j) = tmp_s / n;
 w_l(i, j) = tmp_l / n;
 end
 end
 %fprintf(1, 'DONE\n')
end

%%%
%%% Hopfield Neural Network; Iterator
%%%

% Input: n - number of neurons; w - matrix with weights(s/l);
% g - activation function; bgn - initial neuron states
% beta - stochastic squashing; lambda - long coeff.
% Output: hnn - output neuron states
function hnn = iterator(n, w_s, w_l, bgn, prev, beta, lambda)
 % Sanity Check
 [x, y] = size(w_s);
 [xx, yy] = size(w_l);
 [t, q] = size(bgn);
 [t, qq] = size(prev);
 if ((x ~= n) || (y ~= n) || (q ~= n) || (qq ~= n) || (xx ~= n) || (yy ~=
n))
 error('iterator: Given data has wrong dimensions')
 end

 hnn = bgn;
 hash = randperm(n);
 for i = 1:n
 %i = hash(k);

24

 s = 0;
 l = 0;
 for j = 1:n
 s = s + w_s(i, j) * hnn(j);
 l = l + w_l(i, j) * prev(j);
 end
 s = s + lambda * l;
 hnn(i) = g(beta, s);
 end
 %fprintf('\niterator: Convergence steps: %d\n\n', step)
end

%Activation function
function y = g(beta, x)
 y = tanh(beta * x);
end

%%%
%%% Hopfield Neural Network; Compare states
%%%

% Input: state - one training patterns;
% hnn - state to compare with
% Output: difference
function dst = statecompare(state, hnn)
 % Number of neurons n
 [x, n] = size(state);
 [y, n2] = size(hnn);

 % Sanity check
 if ((x ~= 1) || (y ~= 1) || (n ~= n2))
 error('statecompare: Wrong dimensions.')
 end

 %dif = abs(state - hnn);
 %dst = sum(dif);
 %dst = n - dst / 2;

 dst = sum(state .* hnn) / n;
end

%%%
%%% Hopfield Neural Network; Compare neural networks
%%%

% Input: n - number of neurons; train - matrix with training patterns;
% hnn - long connection coefficient lambda
% Output: w - weights matrix
function cdst = nncompare(n, train, hnn)
 % Number of patterns p
 [p, q] = size(train);
 [x, y] = size(hnn);

 % Sanity check
 if ((q ~= n) || (y ~= n))
 error('nncompare: Given training patterns have wrong dimensions.')
 end

 %fprintf(1, 'nncompare: Comparing... ')
 cdst = zeros(1, p);
 for i = 1:p

25

 cdst(i) = statecompare(hnn, train(i,:));
 end

 %fprintf(1, 'PATTERN %d [%d]\n', pat, dst)
end

%%%
%%% Hopfield Neural Network; Assymmetric Simulation with Stochastics
%%%

% Input: mode - 0/hebbian, 1/psi
% Output: m^mu vs time
function [mc, fc, ret] = viscapacity(p, n, tix, bx)

 TICKS = tix; %Number of iterations
 MAX_NEUR = n; %Number of neurons
 MAX_PAT = p; %Number of patterns
 LAMBDA = 2; %Long connectivity
 TAU = 8; %Time shift; Delta kernel
 RAND_FIN = 1; %Random levels
 BETA = bx; %Stochastic equivalency
 ERR = 0.001 * n; %Starting error / no. of bit

 %Generate x-axis: time
 time = 1:TICKS;

 %Generate random training patterns
 train = zeros(MAX_PAT, MAX_NEUR);
 for i = 1:MAX_PAT
 for j = 1:1000000000
 tmp = randint(1, MAX_NEUR, RAND_FIN + 1);
 tmp = 2 .* (tmp ./ RAND_FIN) - 1;
 ok = 1;
 break;
 for k = 1:(i-1)
 ddd = statecompare(tmp, train(k, :));
 if (ddd > 0.5)
 ok = 0;
 break
 end
 end
 if (ok == 1)
 break
 end
 end
 train(i, :) = tmp;
 end

 %Train the network
 [w_s, w_l] = hebbian(MAX_NEUR, train);

 %Starting pattern
 d = ERR;
 bgn = train(1, :);
 for i = 1:MAX_NEUR
 c = d / (n - i + 1);
 if (rand < c)
 bgn(i) = -bgn(i);
 d = d - 1;
 end
 end

26

 %Generate data
 data = zeros(MAX_NEUR, TICKS);
 dif = zeros(MAX_PAT, TICKS);
 data(:, 1) = bgn;
 dif(:, 1) = nncompare(MAX_NEUR, train, bgn)';
 for i = 2:TICKS
 if (i < 500)
 f = 100/i;
 elseif (i < 700)
 f = 100;
 elseif (i < 1200)
 f = 100/(i - 700);
 else
 f = 100;
 end
 f = BETA;
 nex = iterator(MAX_NEUR, w_s, w_l, bgn, data(:, getprev(i, TAU))', f,
LAMBDA);
 data(:, i) = nex;
 dif(:, i) = nncompare(MAX_NEUR, train, nex)';
 end

 ret = dif;
 %Le graph
 %hold all;
 %ylim([-0.5 1.2]);
 %for i = 1:MAX_PAT
 % plot(time, dif(i, :))
 %end
 %hold off;

 %Process; Compute 'r' no-store-overlap
 s = zeros(1, TICKS);
 for i = 1:TICKS
 m = max(dif(:, i));
 s(i) = MAX_NEUR / MAX_PAT * (sum(dif(:, i).^2) - m^2);
 mc(i) = m;
 end
 fc = s;

 %ylim([-0.3 1.2]);
 %plot(time, s)

 %fc = sum(s(800:1400)) / (1400-800);

 %if (qswer > 0.6)
 % ret = viscapacity(mode, p);
 %end

end

function y = getprev(x, tau)
 if (x - tau < 1)
 y = 1;
 else
 y = x - tau;
 end
end

%%%
%%% Hopfield Neural Network; Assymmetric Graphical Visualization
%%%

27

% Input: mode - 0/hebbian, 1/psi
% Output: m^mu vs time
iter = 10;
n = 100;
pat = n / 5;
tix = n * 2;
beta = 0.5;

s = zeros(1, pat);
qt = zeros(1, pat);
for i = 1:pat;
 a = 0;
 q = 0;
 w = 0;
 for j = 1:iter
 [m, r, b] = viscapacity(i, n, tix, beta);
 a = a + b;
 q = q + max(r);
 w = w + min(m);
 fprintf(1, '.')
 if (mod(i*iter + j, 70) == 0)
 fprintf(1, '\n')
 end
 end
 kk = a ./ iter;
 pp = q ./ iter;
 mm = w ./ iter;
 %s(i) = sum(pp) ./ tix;
 %qt(i) = sum(mm) ./ tix;
 s(i) = pp;
 qt(i) = mm;
end
hold all;
plot(smooth(s))
plot(smooth(qt))
hold off;
%ylim([-0.5 1.2]);
%hold all;
%plot(pp)
%for i = 1:pat
% plot(kk(i, :))
%end
%hold off;

%hold all
%kkx=kk(3, :);
%m = sum(kkx) / length(kkx);
%kkx = kkx - m;
%plot(kkx)
%fs=fft(kkx(500:1400));
%plot(log(2*abs(fs(1:floor(length(fs)/2)))))

28

