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Abstract 
We are interested in the asymptotic behavior of noisy 
discrete time neural networks with two populations of 
neurons. The couplings and thresholds are q m m t r i c  
and gaussian. We use the large deviation techniques 
developed by Ben Arous and Guwnnet to study the limit 
behavior of our networks when their size grows to infinity, 
We prove a propagation of chaos property, which is 
closely related to vanishing correlations of activation 
states. We are also able to compute the limit distribution of 
the activation potentials of the neurons in the 
thennodynamic limit. It is gaussian and characterized by a 
set of dynamic mean-field equations. % numerical study 
of these equations reveals a parametric domain where the 
mean of this limit law is subject to periodic oscilhtions. 
This property can be directly related to synchronization. 
Moreover, we prove a use&l equation satisfied by the 
m a n  quadratic distance between two trajectories, which 
allows to predict the dynamics of the network 

Introduction 
Large random networks and their relations to particle 
systems and especially spin glasses has interested many 
biologists, physicists and mathematicians for two decades. 
The major goal of these investigations is to obtain the 
distribution of the activation potential of the neurons when 
the size of the network grows to infinity. The 
characteristics of this limit law are embedded in the mean- 
field equations. 
After Amari's first works (see [l]), the interest focused on 
networks with asymmetric couplings, which variance is of 
order 1/N, where N is the number of neurons. Geman [8] 
proved the convergence property in some particular cases, 
and notably for linear models. Then Sompolinsky (see 
[5,14]) used statistical physics methods to obtain these 
mean-field equations for gaussian connection weights and 
to study the dynamical properties of the associated 
continuous time networks. Cessac and al. [3,4] used the 
same approach for discrete time models and numerically 

showed the general occurrence of chaos by a quasi- 
periodicity route in large size networks. Moreover, they 
established that this asymptotic regime is described in the 
thermodynamic limit by the mean-field equations. They 
also obtained the vanishingcorrelations of activation states 
in their fully connected neural networks. 
The first purpose of this paper is to extend these results to 
our 2-population model, and to give a rigorous proof for 
them. We use extensively the ideas developed in [2,9] by 
Ben Arous and Guionnet. In these papers, they developed 
large deviation techniques to establish many properties in 
a continuous time spin glasses context. They considered 
one population of spins, and their couplings were gaussian 
and centered. They proved the weak convergence of the 
law of every spin towards a measure given by an implicit 
equation. They also obtained a propagation of chaos result. 
Although the deep relations between our two populations 
and the particularities of our model slightly increase the 
complexity of the proof, we use the same methods to 
deduce the propagation of chaos and the mean-field 
equations. The whole rigorous demonstration can be found 
in [6]. Moreover, these large deviation techniques lead to 
an equation which describes the evolution of the mean 
quadratic distance between two initially independent 
trajectories. 
The second part of this communication is dedicated to the 
dynamical behavior of our networks. We obtain properties 
in the thennodynamic limit which are in good agreement 
with the results of numerical simulations of large size 
recurrent networks. This notably means that the mean-field 
equations and the mean quadratic distance are of great help 
to anticipate the dynamical properties of our large finite 
size models. 
More precisely, numerical computations realized on these 
equations reveal a parametric domain where the neurons 
get synchronized for large time. This is related to many 
recent biological discoveries (see [ 10,121 for example), 
which underline the great importance of synchronization in 
neural dynamics in the brain. Notice that such a behavior 
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doesn't occur in the single population model studied by 
Cessac. Furthermore, the expression proved for the mean 
quadratic distance between two trajectories gives a 
criterion to characterize the occurrence of chaos in our 
networks. 
Collecting these properties together, we obtain the 
bifurcation map of the network for some particular values 
of the parameters and give prominence to different 
dynamic regimes. 

The model 
We consider the following discrete time recurrent neural 
network, with dynamics : 

.P (0 = f ( u P  (t))  

u p ( t ) = ~ J ~ " x ) ( t - l ) + ~ J p 2 ~ 2  I/ j (  t - 1 )-YP(t)-Q,P 
j=l j=1 

Our network contains two populations of neurons, whose 
number is given by exponentp. They might for instance 
represent excitators e l )  and inhibitors e 2 ) .  There are 
np neurons of population p. For p,q E { 1,2)', the (JT )'s 
represent the connection weights relative to the influence 
of population q on population p. The (0;)'s are the 

thresholds, and T p  (t) is a synaptic noise. f i s  an arbitrary 
sigmoid function taking its values into/O,Z[ (for all the 
concrete applications, we take f(x)=(Z+th&))/t). 
$ ( t )  represents the activation state of the neuron i of 
population p at time t. It corresponds to the spikes 
discharge frequency of the neuron. All the neuron's 
activation states are supposed to be independent at time 0 
with respective initial laws p: and p i  for the two 

populations. up (t) is the activation potential of the neuron 
i of populationp at time t. 
Our nets are l l l y  connected. We suppose that the 
distributions of the connection weights, the thresholds and 
the synaptic noise are respectively gaussian laws 
N(--,?), jM ( P ) 2  N(~p,(ep)2) and N(0,Z). All these 

random variables are supposed to be independent. We 
study the evolution of this system when the sizes of the 
populations grow to infinity without any change in their 
proportion. 

Mathematical advances 
We consider the evolution of the system between 0 and a 
fixed time T. For technical reasons, we suppose d > 0. 
Notice that the results are valid for an arbitrary small 
noise, and that simulations confirm their generality. Let@ 
represent the law of all the activation potentials of the 
network. We then use our large deviations techniques and 
the ideas developed in [13] (all the activation states of the 

neurons of a given population have the same distribution). 
We deduce the followingpropagation of chaos result : 
Let k1, kz be two integers, and h: ,.., hi, , h: ,.., h i  be a set 
of bounded continuous test functions taking real values. 
Then there are two probabilities Q' and e', defined on 
]0,1po*..*8 and gaussian fort greater than I, such that : 

2 k, 2 kP n n h,? (up ) d e N  (U) 
p=l i=l p=l i=1 

N++ n n h f  (U,? ) d e p  (up) 

This propagation of chaos result is a mathematical strong 
statement corresponding to the vanishing correlations 
hypothesis of the physicists. Let us now explain it in 
concrete terms : at time 0, the activation states of the 
neurons are chosen independent from each other. But from 
time Z to T, as the net in fully connected, many relations 
take place between the neurons. We call propagation of 
chaos the property of the activation potentials U,? to 
behave asymptotically as independent random vectors 
when the size N of the network grows to infinity. 
This particularly implies that all the neurons of every 
population tend to behave as a generic asymptotic neuron, 
whose activation potential's law is Q'. 

In our discrete time context, we are able to compute the 
gaussian characteristics of Q'. We consider ( j( i$ 
Ap (t, t'))lst,tYT the expectation and covariance matrix of 

Q'. In particular, we note v (t) = Ap (t ,  t') . Ap represents 
the time covariance of each population's generic neuron. 
We also note : 

U P  (t ,  t') = 
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As they depend on a small set of parameters (in particular 
they don't depend on the size N of the network), these 
equations are of great help for anticipating the dynamics of 
large neuronal assemblies (see next section). 
Furthermore, the exponentially fast convergence properties 
associated to the large deviations principle lead to the 
followinglaw of large numbers : 
For any integern! let ( u : , N , U ~ , N ) l S k S n , , l ~ m S n z  be a family 
of random variables with law@. Then for anype {1,2], 
almost surely, 

This theorem gives a convergence result for almost all the 
choices of the parameters of the networks. This property 
allows us to use the mean-field equations to predict the 
behavior of macroscopic observable of a particular 
instantiation of the network. 

Moreover, the large deviations techniques we use give 
access to the study of the meanquadratic distance 
between two given trajectories. 
For any p E  11.2) , we consider u p  (t) = (U,!' ( f ) ) l s a p  and 

v p  (t) = (vi" ( t ) ) ly~n,  , with following dynamics : 

q ( t )  = ~ . r $ l y ( ~ : ( t  -1)) +g.r$2y(+i)) + a q p ( t ) - e p  
nl 

j-1 j=1 

v.?(t) = 3JJ$!(v;(t-l)) + ~ J J 2 ~ ( v ~ ~ t - ~ ) ) ~ ~ p ( t ) - ~ / '  
j=l jEl 

The distributions of uip(0)and vip(0)are identical, and 
these two random variables are independent from each 
other. Notice that the parameters of the network are the 
same for Up and 9, except the noises which are supposed to 
be independent. As s can be chosen as small as we want, 
we suppose that the following study remains true without 
any noise. 
We already h o w  that the distributions of ufand 

vf converge separately towards the same law @'. We use 
our large deviations methods to study the covariance 
between ./'and vip . We denote by the global law of 

(U/' , vip ). The mean quadratic distance between Up and d 
is defined as in [7] : 

(d (t))' = lim LkjI,p ( t ) -  vp (t)I2dR 
P i=l N++ -on 

We prove that this mean quadratic distance satisfies the 
following relations : 

(dP( t ) )*  = 2(vP( t ) -AP( t ) )  

where : 

The notations are voluntarily chosen to underline the 
similarities of these equations with the mean-field 
equations. 
This result is of great help to understand the behavior of 
our networks : the evolution of this mean quadratic 
distance for close initial conditions allows to know 
whether the dynamic regime of the system is chaotic (see 
[4,7] for instance). 

Dynamic properties 
This section is dedicated to study the equations obtained 
before numerically and to give prominence to the various 
dynamic regimes of the network. We consider two 
populations of neurons, respectively composed of 
inhibitors and excitators. In seek of simplicity, we reduce 
the number of parameters and suppose that there is no 
inhibition on the inhibitors. More precisely, we suppose 

J12=-2Jd. Notice that d represents the "strength" of 
inhibition and excitation. In particular, ford=O, there is no 
qualitative difference between the neurons of the two 
populations. 
The studies realized on the mean-field equations reveal 
that the average observable m'(t) and m2(t) are subject to 
periodic oscillations for certain values of the parameters. 
We say that our system is synchronized as soon as the 
signals d(t) are not static for long time. This definition, 
which has already been used in [I 11, implies that the mean 
activity of the different neurons of a given population 
tends to evolve the same way. 
In the single population model, Cessac established in [4] 
that the behavior of the neurons could be described by a 
stationary process in the thermodynamic limit (its mean 
and variance are constant temporal functions). In the two 
population model, the limit process associated to the 
mean-field equations is cyclostationary (its mean and 
covariance matrix are periodic temporal functions). 
Remark here that there is no contradiction for the neurons 
to be synchronized and independent in the same time : the 
synchronization is directly related to the temporal 
oscillations of mP(t), while the independence corresponds 

J"=f'=J22=0, J 1 2  = f i J , J 1 l  =J2' = Jd,J" =Oand 
- 
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to random individual fluctuations of the activation states 
around this mean. 
The second dynamic characteristic of our networks we 
want to underline is expressed by the mean quadratic 
distance between two trajectories. We consider two close 
initial conditions. We use the mathematical results 
obtained in the previous section and numerical studies to 
compute the temporal evolution of #().We say that our 
dynamics are stable if the mean quadratic distance B() 
converges towards zero when t grows to infinity. We talk 
about destabilized d y m i c s  if #(t) remains large in the 
same conditions. Such a behavior is directly connected to 
chaotic properties of our networks. Remark here that the 
evolution of &(t) presents the same qualitative 
characteristics as in the single population model. 

Bifurcation map 
We give here the bifurcation map obtained for our 
network. 

Stable 
Destabilized asynchronous 1 I / synchronized 

I 
I 

Stable asynchronous 

I I I I I I I I I 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 
d 

We recall here that g is double of the gain parameter 
associated to the sigmoid functionf(x)=1/2(1 +th(&)) and 

that d = - represents the intensity of inhibition and 

excitation. 
We obtain four dynamical regions, delimited by two 
frontiers : the continuous line gives the destabilization of 
the mean-field process, and is deduced by studying the 
mean quadratic distance. The dashed line corresponds to 
the transition between asynchronous dynamics W(t) 

j 1 1  

J" 

converges towards a fixed point) and synchronized 
dynamics (nf(t) oscillates for large time). 
An important property of this bifurcation map is that 
synchronization occurs only i fd  is large enough : this 
underlines the paramount importance of the intensity of 
inhibition and excitation in the synchronization of the 
neurons. The effective presence of two well-separated 
populations in the network is necessarily to obtain these 
phenomena. 

Conclusion 
The mathematical and numerical work realized in this 
paper proves that the 2-population model presents some 
synchronization properties which don't take place in the 
single population model. This property is linked to 
periodic oscillations ofnf(t) in the mean-field equations. 
Moreover, simulations executed recently establish that the 
behavior of d(t) can even be chaotic in another range of 
parameters. This dynamical diversity confirms the interest 
of the 2-population model. 
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