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Abstract 
 

When training a recurrently connected neural network (RNN), the magnitude of the 
connection strengths (weights) must be limited in some way. The weights are normally 
constrained by either renormalizing them after each learning step, or by using a decay term 
proportional to the weight. For large numbers of training cycles, we show that an RNN output 
can become unstable with previously used weight adjustment methods. 

We introduce a technique that constrains weight values to move on a smooth sigmoidal curve. 
Without the need for renormalization or a parametric decay term, our RNNs then produce 
stable output. Performance is also improved in other ways. As an example, an associative 
memory RNN is shown to converge much faster and to more accurate values than with 
previous methods. 

Résumé 
 

En effectuant l’entraînement d’un réseau récurrent de neurones (RRN), la magnitude des 
forces (poids) de la connexion doit être limitée de quelque façon. Les poids sont normalement 
freinés soit par leur renormalisation après chaque étape d’apprentissage soit par l’utilisation 
d’un facteur de décroissance proportionnel au poids. On a montré, qu’après avoir subi une 
grande quantité de cycles d’apprentissage, une sortie RRN peut devenir instable à cause des 
méthodes d’ajustement des poids utilisées antérieurement. 

On a introduit une technique qui freine les valeurs des poids pour les faire déplacer selon une 
courbe sigmoïdale douce. Notre RRN produit alors des sorties stables sans avoir besoin d’être 
renormalisé ou d’utiliser un facteur de décroissance. La performance est alors améliorée par 
d’autres moyens. Comme exemple, on montre ici qu’un RRN à mémoire associative peut 
converger plus rapidement et à des valeurs plus exactes qu’avec les méthodes précédentes. 
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Executive summary 
 

The development of autonomous land vehicles is an important part of R&D at DRDC 
Suffield. 

Part of this research is expanding methods of artificial intelligence (AI) that may be applied to 
autonomous vehicle navigation, sensing and control. A recurrent neural network (RNN) is an 
AI technique that has several useful functions. Memory of sensor information, and the 
formation of relationships between patterns from different types of sensor is one such 
function. The use of sensor input to drive action is another. In previous work we used the 
output from RNNs to store and identify patterns, to generate associations between input 
patterns and identifications, and to direct the motion of a simulated mobile machine to follow 
a moving goal. The long term intention of this work is to use memory and pattern association 
to control and improve machine action to achieve goals. 

The structure and learning mechanisms of an RNN are based on biological neural systems. An 
RNN is a collection of processing nodes with multiple feedback connections. The strength of 
the connection between two nodes is called the weight, and the output of an RNN is 
essentially determined by the values of these weights. 

During training, the magnitudes of the weights are increased or decreased according to a 
learning rule. With simple weight adjustment schemes the magnitudes of the weights may 
grow indefinitely under some circumstances, and so their magnitudes must be limited in some 
way. The weights are normally constrained by either renormalizing them after each learning 
step, or by using a decay term proportional to the weight. When training is continued over 
thousands of cycles, we show that an RNN output can become unstable with previously used 
weight adjustment methods. 

We introduce a technique that constrains weight values to move on a smooth sigmoidal curve. 
Without the need for renormalization or a parametric decay term, our RNNs then produce 
stable output. Performance is also improved in other ways. As an example, an associative 
memory RNN is shown to converge much faster and to more accurate values than with 
previous methods. 

Computational time is thus greatly reduced and accuracy is significantly improved for any 
RNN application that uses a trained network. Continuous training may also be employed 
while maintaining numerical stability. 

The sigmoidal technique has also been employed in an RNN controlling the movement of a 
simulated mobile machine. Since this employs continuous learning it benefits greatly from the 
stability provided by the sigmoidal weight constraint technique. 

Part of this work was performed under a Technology Investment Fund project, entitled, “Self-
Organized, Goal-Driven Adaptive Learning”, and continues under project 12ph - Autonomous 
Land Systems. 
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Sommaire 
 

À RDDC Suffield, la mise au point de véhicules terrestres autonomes représente une partie 
importante de la R & D. 

Une partie de cette recherche consiste à étendre les méthodes d’intelligence artificielle (IA) 
pouvant être appliquées à la navigation, aux capteurs et au contrôle des véhicules autonomes. 
Un réseau récurrent de neurones est une technique IA qui possède plusieurs fonctions utiles. 
La mise en  mémoire d’informations provenant des capteurs et la mise en rapport de formes 
de types différents de détecteurs sont l’une de ces fonctions. L’utilisation des entrées 
provenant des capteurs pour diriger les actions en est une autre. Lors des travaux précédents, 
nous avons utilisé les sorties provenant des réseaux récurrents de neurones pour mettre en 
mémoire et identifier les formes, pour générer des associations entre les formes d’entrée et des 
identifications ainsi que pour diriger le mouvement d’une machine mobile simulée 
poursuivant un objectif en motion. Le but à long terme de ces travaux et d’utiliser la mémoire 
et l’association des formes pour contrôler et améliorer les actions de la machine vers ses 
objectifs. 

La structure et les mécanismes d’apprentissage d’un RRN sont basés sur les systèmes 
biologiques neuraux. Un RRN est une collection de nœuds de traitement ayant des connexions 
multiples de rétroaction. La force de la connexion entre deux nœuds est appelée le poids et la 
sortie d’un RRN est essentiellement déterminée par les valeurs de ces poids. 

Durant l’entraînement, les magnitudes de ces poids ont été augmentées ou diminuées selon 
une règle d’apprentissage. Un simple ajustement du poids permettant aux schémas des 
magnitudes des poids de continuer à augmenter pendant une période indéterminée dans 
certaines circonstances, leurs magnitudes doivent être limitées par quelque moyen. Les poids 
sont normalement freinés soit en les renormalisant après chaque étape d’apprentissage soit en 
utilisant un facteur de décroissance proportionnelle au poids. Si on continue l’apprentissage 
pendant plusieurs milliers de cycles, on s’aperçoit qu’une sortie RRN peut devenir instable à 
cause des méthodes d’ajustement de poids antérieurement utilisées. 

On a introduit une technique qui freine les valeurs des poids pour les faire déplacer selon une 
courbe sigmoïdale douce. Notre RRN produit alors des sorties stables sans avoir besoin d’être 
renormalisé ou d’avoir un facteur de décroissance. La performance est alors améliorée par 
d’autres moyens. Comme exemple, on montre ici qu’un RRN à mémoire associative peut 
converger plus rapidement et à des valeurs plus exactes qu’avec les méthodes précédentes. 

La durée de calcul est ainsi grandement réduite et l’exactitude est améliorée de manière 
signifiante pour toutes les applications RRN qui utilisent un réseau entraîné. Il est possible 
d’employer un apprentissage continu tout en maintenant la stabilité numérique. 

La technique sigmoïdale a aussi été employée par un RRN contrôlant le mouvement d’une 
machine mobile simulée. Ceci emploie un apprentissage continue et bénéficie grandement de 
la stabilité fournie par la technique sigmoïdale de freinage du poids. 
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1 Introduction

An artificial neural network is a collection of interconnected processors, called nodes. Each
node receives input from many other nodes in the ensemble. The number of inputs at each
node and the location of the connected nodes can be varied. The strength of each connection
is represented by a floating point number, called the weight.

Each node sums the weighted input from all connected nodes and passes the result through
a response function. Thus, the weights between the nodes determine the output of the
network. The form of the response function used for each node is the only other factor de-
termining the output. The weights are altered while the network is being trained to perform
a particular function.

If there is feedback within the network, using recurrently connected nodes, the way in
which the weights are altered during training and subsequent operation will strongly affect
the internal dynamics, which can be convergent, periodic or chaotic [1].

In previous work, we have used the output from convergent recurrent neural networks
(RNNs) to store and identify patterns [2],[3], to generate associations between input pat-
terns and output codes [4], and to direct the motion of a simulated mobile machine to follow
a moving goal [5],[6].

During training, the magnitudes of the weights connecting two nodes are increased or de-
creased according to a learning rule. The problem with simple weight adjustment schemes
is that the magnitudes of the weights may grow indefinitely under some circumstances,
e.g. using a sequence of repeated patterns with some regions that have a constantly strong
output. The weight magnitudes must therefore be limited in some way. The weights are
normally constrained by either rescaling (normalizing) them after each learning step, or by
using a decay term proportional to the weight [7],[8].

One of our learning rules (a form of Hebbian learning [9]) used a decay term to constrain
the weight magnitudes. This learning rule then contained both growth and decay rate pa-
rameters. This has two disadvantages: 1) the two parameters must be optimized; and 2) the
competition between growth and decay may introduce numerical instability in finely bal-
anced systems. For pattern storage applications we also used a form of difference feedback
learning learning [4] that has no explicit weight constraint and can also introduce numerical
instability, as we show in Chapter 3.

This work descibes a novel technique for constraining the weight magnitudes without the
need for either explicit renormalization or the introduction of a parametric decay term.

In Chapter 2 we review the RNN structure and learning rules that we have previously used
for associative pattern memory, and we introduce the new constraint technique, which con-
fines the weight values to move on a smooth sigmoidal curve.

Chapter 3 presents results that show numerical instability using the learning algorithms
with no sigmoidal weight constraint. We then show the effects on the RNN performance
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and stability when the sigmoidal constraint is used. The number of network training cycles
required to accurately store a set of patterns and the accuracy of the storage and identifica-
tion are used as performance criteria.

The results presented in Chapters 3 use an associative memory to demonstrate RNN perfor-
mance with our sigmoidal weight contraint technique. In addition, the technique has been
successfully appled to RNNs that perform other tasks, specifically goal-directed motion
of a simulated mobile machine, and relational learning using two input image streams in
which the image pairs have a fixed functional relationship that is learned by the network.
Relational learning will be described in detail in a future document.

Chapter 4 discusses the results and presents conclusions.

This work is part of project 12ph - Autonomous Land Systems. Our long term goal is to
demonstrate self-organized, adaptive learning in a simulated mobile vehicle with multiple
sensors. The techniques would be applicable to an autonomous vehicle operating in an
unknown and dynamically changing environment.
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2 An Associative Memory RNN

We have previously reported associative memory (AM) in an RNN [4]. This chapter re-
views the structure and learning algorithms of the AM RNN that is used in Chapter 3 to
demonstrate the advantages of our new weight constraint technique.

Two memory regions in the AM RNN are used to store and regenerate patterns from two
independent sensor arrays. These are termed the image array (SI) and its associated code
(SC).

The image array is connected to a central region of the recurrently connected nodes (R
nodes). Each pixel in the image has a fixed number of randomly chosen connections to R
nodes in the central region. No two image pixels have the same set of output connections.

Output from the RNN is presented as two arrays that are connected to the separate R node
memory regions. These memory node arrays, MI and MC, are intended to reproduce SI and
SC respectively after the training process.

It is only input from SI that generates responses in the memory arrays MI and MC, and
during training there is feedback from the differences between corresponding pixels in the
image and code arrays. This feedback adjusts the connection weights to R nodes in the
memory regions so that the differences are reduced. The details are reviwed in this chapter.

The weight that connects two R nodes modifies the signal transferred between the nodes by
a multiplicative factor. Each R node has the same number of input connections, established
randomly after the input connections from the sensor nodes (S nodes) have been chosen.
An R node can be connected to any other R node in the RNN, but self-connection is not
permitted.

The weights are all positive in this RNN, and each R node has a fixed output sign. The
nodes in the RNN are thus either excitatory (positive) or inhibitory (negative). The signs
are chosen randomly, and the fraction of positive nodes (normally 0.5) is defined by the
user.

The MI and MC nodes (M nodes in general) have input connections that are chosen ran-
domly from R nodes in the memory regions, with the requirement that each M node has an
equal number of inputs from excitatory and inhibitory R nodes.

The connection sets for all nodes are unique. No S node can have more than one output to
any R node, and no two S nodes can have the same set of outputs. No M node can have
more than one input from any R node, and no two M nodes can have the same set of inputs.
No R node can have more than one input from any other node.

The weights for connections from S nodes to R nodes, and from R nodes to M nodes are
kept constant, because these connections simply transfer information. Any learning occurs
within the R nodes. The magnitudes of the R node connection weights are initially random,
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between the limits supplied by the user; e.g. 0.1 to 0.9. The S to R node weights are all
initially set to a user specified constant (default 1.0), as are the R to M node weights.

2.1 Node Response Functions

An image and its associated code are presented to the RNN through the sensor arrays. Each
pair of patterns is held in the sensor arrays for a fixed number of RNN cycles. We call this
the exposure time. During training, the weights connecting the R nodes are adjusted at each
cycle, according to the learning rules given later in this chapter.

The nodes respond by passing a weighted sum of the incoming signals through a sigmoid
function. The responses are calculated at each cycle of the RNN. The weighted input (xn)
to the nth node at cycle t is:

xt
n
� nc�

i

W t � 1
ni σ j f t � 1

j (1)

where nc is the number of input connections, and the subscript j gives an index for the node
providing input on the ith connection, with weight W t � 1

ni . The input connection indices are
stored in a matrix C, thus j � Cni. The output of the node on the jth connection is f t � 1

j , and
σ j is its sign.

The sigmoid function has an exponent s, controlling the steepness of the function, and an
offset x0, giving the centre of its output range. The output of the nth node is then:

f t
n
��� 1 � exp �	� s � xt

n � x0n 
�

� � 1 (2)

Fixed values for the sigmoid exponents (sr) are used for every R node. The M nodes use
a separately defined fixed value (sm). The sensor nodes simply supply values between 0.0
and 1.0.

Each R node offset is set at the value that centres its output at 0.5 when all the connected
nodes provide a signal of 0.5. This value varies for each R node, but is kept constant after
being calculated during the RNN initialization. We have found that attempting to optimize
the offsets does not improve the RNN performance. The M node offsets are set to zero.

Output signals for the R nodes are initialized randomly between 0.0 and 1.0.

2.2 Changing the Connection Weights

During the RNN training process the connection weights are changed after each network
cycle; i.e. after all the node outputs have been calculated for a fixed input array. An algo-
rithm used to change the weights is called a learning rule.
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For associative memory of image pairs we have used two learning rules. For R nodes that
are not connected to memory arrays we used a form of Hebbian learning, which is based on
a mechanism proposed by Hebb [9] for biological systems. For R nodes that provide input
to the memory arrays (MI and MC), we used a difference feedback algorithm.

In our form of Hebbian learning, a connection weight is increased when strong input results
in a strong output from the receiving node.

For an R node n at cycle t, which received an input f t � 1
j from the jth node and generated

an output f t
n, the change in the weight Wni connecting nodes n and j is:

∆W t
ni
� α f t � 1

j f t
n � γW t

ni (3)

where α and γ control the growth and decay rates respectively. Recall that the connection
index j is given by Cni.

Note that the weights are constrained by the decay term in Equation 3.

Our difference feedback learning adjusts the input connection weights of each R node that
provides output to one or more M nodes, so that the correlation between each M and S array
can be maximized.

For the nth R node that is connected to one or more M nodes, we first calculate a sum of
differences between the signals in each connected M node and its corresponding S node, in
the following way:

Dn
� σn

ncm

ncm�
i

∆i (4)

where ∆i is the difference between the outputs generated by the ith S and M nodes, ncm is
the number of connections to M nodes from the nth R node, and σn is the output sign of the
R node.

M node arrays (MI � MC) for the image and its code are connected to different regions of the
RNN, so the summation only involves image differences or code differences for a given R
node.

Dn defines the required direction for the change in output signal strength of the nth R node.
Dividing by ncm confines the magnitude of Dn to [0.0, 1.0]; i.e. it is a fractional value.

For the nth R node, the change in the jth input weight at cycle t is calculated in the following
way:

∆W t
jn
� ρDt

n f t
nσk f t

kW
t
jn (5)
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where ρ is the feedback learning rate. The magnitude of a weight change depends on the
strength of the incoming signal f on the jth input connection (from the R node whose index
k � C jn), and on the strength of the weight itself (W jn).

With our form of difference feedback learning, the weight changes become smaller as the
S and M arrays become correlated (Dt

n approaches zero). On the other hand, there is no
explicit constraint on the weights affected by this learning algorithm and if correlation is
not achieved smoothly it may lead to instability. The sigmoidal weight constraint technique
described in Section 2.4 removes this problem.

2.3 The Correlation Function

To assess the effectiveness of an RNN in recalling a set of patterns, we used the following
correlation function:

C � 1 � 1
Nns

N�
j

ns�
i

�
∆i
�
j (6)

�
∆i
�
j is the difference between the ith S and M nodes for the jth pattern, N is the number

of patterns, and ns is the number of sensor pixels. If every pattern is accurately reproduced
during training, C approaches 1.0 (

�
∆i
���

0). During training, pattern j is held in the S node
array for the exposure time, et . After et cycles, the i sum is calculated and the next pattern
is presented for et cycles. C is calculated over each complete cycle of all patterns. Since
there are two sensor arrays, there are actually two correlations calculated, Ci and Cc, for the
image and code arrays respectively.

2.4 Sigmoidal Weight Constraint

Consider the sigmoid function given by:

y � X 
 � 1� 1 � exp �	� 4 � 0 � X � 0 � 5 
�

� (7)

This has, of course, the same functional form as that used to generate R node outputs
(Equation 2), but with fixed values for the exponent (4.0) and offset (0.5). Note that we
use a capital X for the independent variable of Equation 7 to differentiate it from the node
inputs of Equations 1 and 2. This sigmoid function is shown in Figure 1.

If we consider y to represent a connection weight, then we may define a related variable X
from the inverse of Equation 6, thus:

X � 0 � 5 � � log ��� 1 � 0 � y 
 � 1 � 0 
 � 4 � 0 � (8)
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Figure 1: Sigmoidal curve used to constrain weights

So for any connection weight we define the related X , and during training we change X in
place of changing the weight.

Our Hebbian learning then becomes (cf. Equation 3):

∆X t
ni
� ρ � f t � 1

j f t
n � 0 � 25 
 (9)

and our difference feedback becomes (cf. Equation 5):

∆X t
jn
� ρDt

n f t
nσk f t

kW
t
jn (10)

Note that now there is no parametric decay term in the Hebbian algorithm, and a single,
common learning rate parameter ρ is used in both algorithms. In the new Hebbian algo-
rithm, if both sending and receiving nodes are at the middle of their output (0.5), then the
weight is unchanged (the product is 0.25).

Whenever the actual weight value is required in the RNN calculation cycles, it is obtained
from Equation 7, using the current value of X . In this way, the weights are confined to
move smoothly on the sigmoidal curve of Figure 1, and the weight values are con-
strained to the range [0.0, 1.0].

Because we have used 4.0 for the exponent and 0.5 for the offset in Equation 7, there is an
approximately linear relationship between X and the weight near the centre of the weight
range (0.5); i.e. near 0.5, changing X is essentially the same as changing the weight.
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It is intuitively clear that in any biological neural system there must be some physical limits
for each connection strength. These physical limits can be represented by 0.0 and 1.0. Of
course, in a computer system the double precision values give a massive range for the scale
of relative strengths.
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3 Results
3.1 Long Term Instability with No Sigmoidal Weight Constraint

Previously [4] we presented results showing the convergence of the correlations for sets of
images and their associated codes. A set of ten 4x5 patterns and 4x1 code vectors were
used as a test problem.

We showed that a pattern and its identification code can be stored by the simultaneous
presentation of two image streams during training, and an identification can subsequently
be recovered from the code memory array that is generated by the single presentation of a
pattern in the image sensor stream.

The training process is affected by the following parameters: the constant value used for
the S node to R node weights; the learning parameters, α � β � γ and ρ; the node sigmoid
steepness factors sr, and sm; the number of R nodes; the number of output connections for
the S nodes; the number of input connections for the R and M nodes; the exposure time, et ;
and the fraction of positive (excitatory) R nodes.

For a given RNN structure containing 500 R nodes, the fraction of positive R nodes was
fixed at 0.5, the number of R node input connections was 40 and the number of output
connections for each S node was also 40. The image input and memory regions had 200
nodes each, and the code memory region had 100 nodes. The optimal number of input
connections for the memory node arrays (Mi and Mc) was 40. Optimal values were then
established for the learning parameters [4].

It was found that if the learning rates (α � ρ) are too high the training could become unstable,
but that apparent stability could be maintained by keeping these values small enough; e.g.
ρ � 0 � 004 maintained stability when training 2 image pairs, but ρ � 0 � 001 was required
when ten pairs were used.

It appeared that stable convergence had been achieved for 10 pairs after 6,000 training
cycles, but as Figure 2 shows, if the training process is allowed to continue (20,000 cycles
are shown) the process becomes erratic.

With ρ � 0 � 001 it takes about 6,000 training cycles to obtain correlations greater than 0.86.
If ρ � 0 � 002 is used, high corelations are attained after about 2,000 cycles, but the long
term behaviour becomes even more unstable (chaotic), as seen in Figure 3.

3.2 Stable, Rapid Convergence with Sigmoidal Weight
Constraint

When the sigmoidal weight constraint technique is introduced, the performance of the RNN
is dramatically improved. Figure 4 shows the long term correlation for 10 image pairs
using ρ � 0 � 001. This can be directly compared to the curve of Figure 2 as they used the
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Figure 2: Erratic correlations for images (lower) and codes (upper), using 500 R nodes to
train 10 images (ρ � 0 � 001)

Figure 3: Unstable correlations for images (lower) and codes (upper), using 500 R nodes
to train 10 images (ρ � 0 � 002)
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Figure 4: Correlations for 10 images (lower) and codes (upper), using Sigmoidal Weight
Constraint (ρ � 0 � 001)

same RNN configuration. Apart from the evident long term stability, Figure 4 shows faster
convergence and a greater maximum correlation.

Figure 5 shows the long term correlation for 10 image pairs using ρ � 0 � 002, and can be
compared with the curve of Figure 3. In this case, increasing the learning rate parameter
ρ does not lead to instability, and does give faster convergence to an increased maximum
correlation.

In both cases, with sigmoidal weight constraint the RNN clearly remains stable indefinitely.
Furthermore, the maximum correlations for code and image sets occur after about 500
cycles rather than about 5,000 cycles as in Figures 2 and 3. Finally, the accuracy of the
maximum correlations is greater than 0.96 for both image and code sets when sigmoidal
constraint is used. Without it a stable maximum of only about 0.86 was possible for the
images (Figure 2).
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Figure 5: Correlations for 10 images (lower) and codes (upper), using Sigmoidal Weight
Constraint (ρ � 0 � 002)
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4 Discussion and Conclusions

Using RNNs that are structured to generate associative memory, we have shown that numer-
ical instability can arise while the network connection weights are being altered during the
training process. By constraining the weights to move smoothly along a sigmoidal curve
the instability is removed.

Sigmoidal weight constraint also has the following additional advantages:

� weight magnitudes are controlled without the need for renormalization or the use of a
parametrized decay term;

� the number of network cycles required to reach the maximum pattern correlation is
reduced by a factor of about ten; and

� the accuracy of the pattern correlations is significantly improved.

Computational time is thus greatly reduced and better accuracy is achieved for any RNN
application that uses a trained network. Continuous training may also be employed while
maintaining numerical stability.

In the associative memory application, a pattern and its identification code can be stored by
the simultaneous presentation of two sensor image streams during training. After training,
the correlations between input and output node arrays are high for a previously seen pattern,
and an image may then be directly identified by the output in the code memory array.

We have also used sigmoidal weight constraint in an RNN structure that is capable of rela-
tional memory. In this case sets of two input patterns have a fixed relationship that is learned
through the training process, and the relationship is provided as an output array from the
network. Here the use of sigmoidal weight constraint also greatly improves the network
performance. There are many potential applications of relational learning, including the
generation of depth maps from stereo image pairs, and the generation of control signals for
a mobile machine that uses two or more types of sensor. The relational learning capability
of RNNs will be the subject of future work.

The sigmoidal technique has also been employed in an RNN controlling the movement of
a simulated mobile machine, again with smooth, stable performance. Combined with rela-
tional learning, this system will now be used to relate the input from two sensor arrays with
the actions taken by a mobile machine in response to those sensors. The machine responses
can be supplied either by a human user (driving the machine) or by an AI technique such
as reinforcemnt learning. It should be possible to generate adaptive control in the mobile
machine; i.e the ability to navigate through obstacles and reach a goal would improve with
experience. The use of continuous learning in such an RNN-based system benefits greatly
from the stability provided by the sigmoidal weight constraint technique.
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