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Closed-L oop Time-Optimal Path Planning Using a M ulti-Objective Diver sity
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Abstract

This paper presents the use of a multi-objective
diversity control oriented genetic agorithm (MODCGA)
for solving a closed-loop time-optimal path planning
problem. The MODCGA isaresult of the integration
between two types of genetic algorithm: a multi-
objective genetic algorithm (MOGA) and a diversity
control oriented genetic algorithm (DCGA). The
MODCGA is benchmarked against the MOGA and a
random search in the path planning problem whichis
treated as a multi-objective optimisation problem. In
this case, the planning problem is represented by a
position control task whichisgiven to a3-dof revolute
joint robot. From the optimisation viewpoint, the
decision variables consist of the magnitude of torque
limitsfor eachjoint and theinitial and final positions of
afixed length path at which therobot end-effector has
to track.The corresponding search objectives are thus
expressed in terms of the position tracking error and
trajectory time. Two chromosome coding schemesare
explored in thisinvestigation: Gray and integer-based
coding schemes. The simulation results suggest that
the integer-based coding scheme is more suitable at
representing the decision variables. In addition, the use
of diversity control in conjunction with theinteger-based
coding scheme can further improve the search results.

Keywords: Geneticagorithm, path planning, roboatics,
time-optimal control

1. Introduction

Time-optimal control has been one of the major
researchinterestsinrobotics during the past decade.
Time-optimality can lead to an overal improvement
in the level of productivity from a manufacturing
viewpoint and an increase in the effectiveness of a
task execution from an operational viewpoint. One
particular aspect of research is the theory and
application of time-optimal control of a robot arm
along a pre-defined path. An algorithm that can lead
to time-optimality of this kind was firstly developed
by Bobrow et al. [1]. Over the years, this algorithm
has undergone a number of refinements and one of
thelatest modifications has been described in Shiller
and Lu [2]. In summary, a time-optima motion of a
robot arm along a pre-defined path is achieved
when the motion is executed with ether the maximum
possible acceleration or deceleration along the path.
This can be done when one of the actuators on the
robot arm is aways saturated and the other actuators
adjust their torque values so that their torque limits
are not violated [3].

Although this time-optimal control algorithm
has been proven to be useful in a number of tasks,
the use of an additional path planning algorithm is
usualy required. This is because one necessary
input for the time-optimal control algorithm is the
pre-defined path of end-effector in the Cartesian
space. Since the time-optimal control algorithm is
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developed by considering only the open-loop
dynamics of the robotic system [1-2], early works in
the area of time-optimal path planning are usualy
carried out in the open-loop mode [4-5]. However,
closed-loop path planning has also received much
attentionsince it can produce a more accurate result
in terms of the difference between the desired path
andtheactual path obtained. Thisisbecause the closed-
loop dynamics hasbeen taken into the consideration
during the planning process. Nevertheless, the use
of the time-optimal control algorithm in conjunction
with closed-loop path planning has one drawback;
actuator dynamics and the delays caused by an on-
line feedback controller would lead to a reduction in
the efficiency of the algorithm [6]. Three possible
methods have been used to solve this problem. The
first method isbased on a modification of the original
time-optimal control problem into a time-energy
optimal control problem which can be regarded as
alagrangian constraint optimisation problem and can
only be solved numerically [7]. A drawback of this
method is that the modification also leads to an
increase in the resulting trgjectory time. The second
method is based on the use of a simplified friction
model to compensate for the actuator dynamics and
the implementation of a trgjectory pre-shaping to
account for the dynamics of the controller [6].
Finaly, the third method covers the use of a neural
network which is trained using either feedback error
learning [8] or model-based reinforcement learning
[9] as an additional controller in the control loop.
The primary function of this neural network is to
compensate for modelling errors and delays caused
by themain controller in the system. It has also been
demonstrated that the compensation performance of
the neural network controller is higher than that of
the trajectory pre-shaper.

The works initiated by Chaiyaratana and Zalzala
[8-9] will be continued in this paper where the
investigation will concentrate only on the treatment
on the closed-loop time-optimal path planning
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process as a multi-objective optimisation problem.
The interested planning problem is inspired by an
observation that many tasks in manufacturing systems
can be accomplished using lesser processing time
provided that the trade-off in the product quality is
acceptable. For instance, in tasks like welding and
edge-deburring, the time that the robot end-effector
required to track the pre-programmed path can be
reduced if the alowable tracking error bound is
increased. The optimisation problem interested involves
the selection of torque limit combination and the
initial and final positions of a fixed length path
where the search objectives are expressed in terms
of the position tracking error and trajectory time.
Anapproach on multi-objective optimisation using a
genetic algorithm, namely a multi-objective diversity
control oriented genetic algorithm (MODCGA) will
be used to solve the problem. The MODCGA is a
result of the integration between a multi-objective
genetic agorithm or MOGA [10] and a diversity
control oriented genetic algorithm or DCGA [11].
Note the additional neural network controllers as
described in Chaiyaratana and Zazaa [9] are used in
closed-loop planning process in order to minimise
the effect of closed-loop dynamics on the planning
results.

This paper is organised as follows. The time-
optimal control algorithm as described by Shiller and
Lu[2] is briefly explained in section 2. In addition,
the use of additional neural network controllers in
the closed control loop is also explained in this
section. In section 3, the overview of the closed-loop
path planning problem is discussed. In section 4,
the background on the MOGA and DCGA and the
genetic agorithm integration will be discussed. The
application of the MODCGA on the closed-loop
time-optimal path planning problem will be explained
in section 5. The simulation results obtained after
applying the MODCGA to theproblemare shown in
section 6. Finally, discussions on the simulation
results and conclusions are given in section 7.



2. Time-Optimal Control Algorithm and Neural
Network Controllers

In summary, the time-optimal control agorithm
as described by Shiller and Lu [2] can be used to
generate the time-optimal profiles of the reference
joint position and the open-loop control torque
signal provided that the physical properties of the
robot arm are known and a pre-defined path of the
robot arm in the workspace is available. In particular,
the torque limits on the actuators within the robot
are the key factors which have a major influence on
the trajectory time obtained from the algorithm. As
stated earlier, the time-optimal motion is achieved
when one of the actuators on the robot arm is
always saturated and the torque values of other
actuators are within the bounds of the corresponding
limits. This means that with the large values of the
torque limits, the obtained trgjectory time will be
short. On the other hand, with the smaller values of
the torque limits, the obtained trajectory time will be
relatively larger. A schematic diagram describing
input and output of the time-optimal control agorithm
is given in Figure 1. In Figure 1, the time-optimal
control algorithm takes the robot physical properties
and the information regarding the pre-defined robot’s
path as inputs. The outputs from the algorithm are
the reference joint position and the open-loop torque
profiles.

Nonetheless, the time-optima control agorithm
will produce a result based on the open-loop

Robot physical
properties Reference
including the joint position
torque limits profile

Time-optimal

control

algorithm I
Pre-defined Open-loop
path torque profile

Input Output

Figurel Schematic diagram of the time-optimal
control agorithm.
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Figure2 Neura network and PID controllers in
each joint control loop.

dynamics of the system. This means that a certain
number of problems will arise when using the
reference joint position profile obtained from the
algorithm as input to the closed-loop system [6-7]. In
order to solve the problem, Chaiyaratana and Zazaa
[8-9] propose the use of neural networks as additional
controllers in the closed control loop where the
neural networks have a role of compensating for the
dynamics of the primary controllers and the possible
modelling errors. This arrangement is illustrated in
Figure 2.

InFigure2, the joint sub-system block represents
a linear second order system which is obtained
after de-coupling the robot model using a non-
linear de-coupled feedback control scheme [12].
With the use of additional neural network controllers,
the de-coupling scheme can be executed with high
efficacy even when there exists modelling errors in
the system [8-9]. Note that in this paper the neural
network controllers utilised during the planning
process are trained using a model-based reinforcement
learning strategy.

3. Close-loop Time-Optimal Part Planning

The interested path planning problem involves
the use of a 3-dof robot in a position control task.
The robot is required to track a one-metre straight-
line path which is illustrated in Figure 3. Referring
to Figure 3, point A (0.736, 0.226, 0.093) is the initia
location of the robot end-effector and point B (0.0,
0.854,0.3%4) is the fina desired location of the robot
end-effector on this path. The time-optimal control
algorithm is then used to generate the trajectory
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Figure3 Robot and the straight-line path.

time history, which is subsequently used as the
input to the position control loop.

In practice, the maximum torque limits, which
are used in the time-optimal trajectory calculation
process for a closed-loop control, are usually less
than the actual torque limits on the actuators. This
safety precaution is done in order to allow some
marginsof error for possible discrepancies introduced
to the system by modelling errors and controller
dynamics [6]. This implies that for a given set of
the actual torque limits of the actuators, there is a
set of admissible torque limit combinations that can
lead to a certain level of time-optimality within an
acceptable range of tracking error. In addition, in
certain applications such as welding or edge-
deburring it is possible to modify the end-effector
trajectory in Cartesian space without effecting the
task requirement provided that the position and
orientation of the work piece at which the end-
effector hasto remain in contact with can be modified
accordingly. The position control task discussed
above is an example which reflects such applications.
By modifying the initial and final locations of
the straight-line path, the task description in the
application viewpoint would remain the same while
the angular trajectory at which the robot joint has
to follow would be different. Such change in the
angular tragjectory would lead to a variation in the
position tracking error. Combining with the issue on
torque limits, this points to a design problem in
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robotic applications. The objective of such problem
is to find a combination of torque limits from a
set of admissible torque ranges and the initial
and final position of the end-effector which will
lead to a trajectory which meets the time-optimality
and tracking error constraints. This is a multi-
objective optimisation problem since it would be
highly unlikely to obtain a single trajectory that can
minimise both the trgjectory time and tracking error
simultaneously. A multi-objective diversity control
oriented genetic algorithm (MODCGA) will be used
to solve the problem associated with the torque
limit and end-effector position selectionin this study.
The description of the MODCGA will be given in
the next section.

4. Multi-Objective Diversity Control Oriented
Genetic Algorithm

The multi-objective diversity control oriented
genetic algorithm (MODCGA) is a result of the
integration between amulti-objective genetic algorithm
or MOGA [10] and adiversity control oriented genetic
algorithm or DCGA [11]. A brief description of the
algorithms follows.

4.1 Multi-Objective Genetic Algorithm

The multi-objective genetic algorithm (MOGA)
was first introduced by Fonseca and Fleming [10].
The MOGA functions by seeking to optimise the
components of a vector-valued objective function.
Unlike single-objective optimisation, the solution to
a multi-objective optimisation problem is a family of
points known as the Pareto optimal set. Each point
inthe set is optima in the sense that no improvement
can be achieved in one component of the objective
vector that does not lead to degradation in at least
one of the remaining components. Given a set of
possible solutions, a candidate solution is said to be
Pareto optimal if there are no other solutions in the
solution set that can dominate the candidate solution.
In other words, the candidate solution would be a



non-dominated solution. Assuming, without loss of
generality, aminimisation problem, an n-dimensional
cost vector a is said to be dominating another n-
dimensional cost vector b if, and only if, ais partialy
lessthanb (ap<h),i.e
ap<boOi=l.n:ag<b0d=1.n:g<b (@
By identifying the number of solutions in the
solution set that dominate the solution of interest,
a rank value can be assigned to the solution. In
other words, the rank of a candidate solution is
given by the number of solutions in the solution
set that dominate the candidate solution. After a
rank has been assigned to each solution, a fitness
value can then be interpolated onto the solution
where a genetic agorithm can subsequently be
appliedinthe optimisation procedure. Note that since
theaimof a search by the MOGA is to locate Pareto
optimal solutions, in essence the multi-objective
optimisation problem hasalso been treated as a multi-
modal problem. Hence, the use of additional genetic
operators including the fitness sharing and mating
restriction procedures is also required. However, in
addition to the usual application of thefitnesssharing
and mating restriction procedures in the decision
variable space [13], they can also be carried out in
the objective value space [10]. A comprehensive
the MOGA which covers other
advanced topics including goa attainment and

description of

priority assignment strategiescan be found in Fonseca
and Fleming [14].

4.2 Diversity Control Oriented Genetic Algorithm

The diversity control oriented genetic algorithm
(DCGA) was first introduced by Shimodaira [11].
Similar to other single-objective steady-state genetic
algorithms, the parent population and the offspring
population are merged together during the DCGA
run where the appropriated individuals are extracted
from the merged population. However, instead of
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selecting the highly fit individual sfrom the population
straightaway, the extraction process in the DCGA
starts with the elimination of duplicated individuals
in the merged population. The remaining individuals
are then sorted according to their fitness values in
descending order. Following that the best individual
from the remaining individuals is determined and
kept for passing onto the next generation. Then
either a cross-generational deterministic survival
selection (CDSS) method or a cross-generational
probabilistic survival selection (CPSS) method is
applied in the top-down fashion to the remaining
non-elite individuals in the sorted array. In the case
of the CDSS, the remaining non-€lite individuals will
havean equal chance of being selected. In contrast,
a survival probability value is assigned to each
non-elite individual according to its similarity to the
best individual inthe caseof the CPSS. If the genomic
structure of the individua interested is very close
to that of the best individual, the survival probability
assigned to this individual will be close to zero. On
the other hand, if the chromosome structure of this
individual is quite different from that of the best
individual, its survival probability will be close to
one. Each individua will then be selected according
to the assigned survival probability. If the total
number of all selected individuals including the
pre-selected elite individual does not reach the
required population size after the survival selection
loop, randomly generated individuals will be added
to the individua array until the required number
is met. A comprehensive description of the DCGA
and its benchmarking performance in various test
problems can be found in Shimodaira [15]. Note
that in this investigation, the DCGA mechanism that
is a part of the MODCGA is the one which utilises
the CPSS method.

4.3 Genetic Algorithm Integration
By combining the MOGA and the DCGA
together, the resulting algorithm can be referred to



as a multi-objective diversity control oriented genetic
algorithm or MODCGA. Similar to the MOGA, the
rank of each individual will be obtained after
comparing it with the remaining individuals. However,
the comparison will be made among individuals in
the merged population which is the result from
combining parent and offspring populations together.
Since the best individuals in the MOGA are the
non-dominated individuals, there will be more than
one surviva probability value which can be assigned
to each dominated individua. In this study, the
lowest value in the probability value set is chosen
for each dominated individual. After the survival
selection routine is completed and the fitness values
have been interpolated onto the individuals, the
standard genetic operations can then be applied to
the population in the usua way.

5. Application of the MODCGA on the Closed-L oop
Time Optimal Path Planning Problem

The multi-objective diversity control oriented
genetic algorithm (MODCGA) will be used to solve
the closed-loop time-optimal path planning problem.
The problem formulation and the genetic operators
used are discussed as follows.

5.1 Decision Variables

A 3-dof robot with the task of tracking a
straight-line path in Cartesian space presented
earlier is used to demonstrate this multi-objective
optimisation problem. The decision variables of the
problem consist of the torque limit combination and
the initial and final positions of the end-effector.
Assuming that the magnitudes of the maximum and
minimum torgue limits are the same for each actuator,
the torque limit part of the decision variables would
consist of the magnitude of the torque limits of
each joint. In this study, the range of the magnitudes
of the torque limits on joints 1, 2 and 3 are set to
15-30, 25-40 and 5-20 Nm, respectively. The lower
bounds of the limits (i.e. 15, 25, 5) are based on the
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maximum allowable trajectory time requirement of
0.3 seconds, while the upper bounds of the torque
limits (i.e. 30, 40, 20) are set by the actual torque
limits of the actuators.

Moving onto the part of decision variables
which involves the positions of the end-effector. In
order to create a fixed-length path in Cartesian
space, two vectors are required: the position vector
for the initial position of the end-effector and the
direction vector pointing from the initial position
toward the desired final position of the end-effector.
This requirement can be achieved by setting up
two search variables. The first variable will be the
initial location of the end-effector while the second
variable will be another point in the robot workspace
at which a direction vector pointing from the initial
position of the end-effector toward this point can be
established. In this investigation the search range
for the initial position of the end-effector is given by
(0.721-0.751, 0.211-0.241, 0.078-0.108) in the x, y and z
directions, respectively. In contrast, the search range
for the location of the other point in the robot
workspace is set to (-0.015-0.015, 0.839-0.869, 0.339-
0.369) in the x, y and z directions, respectively. Note
that the search ranges for these two points are in
the vicinity of the initial and final positions of the
straight-line path described earlier in section 3.

5.2 Objective Variables

There are two optimisation objective variables
in this problem: the tracking error and the trgectory
time objectives. The tracking error objective is
expressed in terms of the sum of the mean absolute
errors over three joints, calculated over the whole
trgjectory. The trgjectory time objective is the optimal
trgjectory time obtained from the time-optimal control
algorithm. Note that the sampling period used in
the simulation of this 3-dof robotic closed-loop
system is 0.01 seconds. Hence, the traectory time
will always be in the form of 0.01m where m is a
positive integer.



5.3 Chromosome Coding

Nine decision variables - the magnitudes of the
torque limits from al three joints and the co-
ordinates along three axes of the two points for
identifying the straight-line path - are concatenated
together and coded to form a chromosome. Two
chromosome coding schemes are explored here:
Gray and integer-based coding schemes. The torque
ranges for all three joints are discretised using a
search step of 0.5 Nm. This leaves 31 search points
for the magnitude of the torque limits of each joint.
Inasimilar way, the search ranges of the co-ordinates
of the two points for dictating the location of the
straight-line path are discretised using a search step
of 0.001 m. This aso leaves 31 search points for the
co-ordinate in each axis. With the use of a Gray
coding scheme, a Gray code of length 5 can be used
to represent a decision variable. The total length of
the chromosome in this case would be equal to 45.
Note that there are certain search points obtained
after decoding the chromosome which lie outside
the required search space. These points are mapped
back into the feasible region by changing the most
significant bit of the Gray code section representing
the particular decision variable that violates the
feasibility constraint into zero. Incontrast tothecase
of the Gray coding scheme, with the use of an integer-
based coding system a single gene can be used to
represent adecision variable. Each gene can then take
an allele value from a set which is composed of 31
integersranging from 0 to 30. The chromosome length
in this case would be equal to nine.

5.4 Fitness Assignment and Fitness Sharing

The ranking method as described in Fonseca
and Fleming [10] is used to rank each individua
in the population. Following that, a linear fitness
interpolationisused to assign fitnessto eachindividual .
Fitness sharing, with the use of triangular sharing
function, is then carried out in normalised objective
space.
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5.5 Selection, Crossover and Mutation Methods

Stochastic universal sampling selection [16] is
used in the fitness sel ection. Then astandard one-point
crossover technique is used in the recombination.
Two individuals are alowed to perform crossover if,
and only if, they are within the mating restriction
distance from each other. For simplicity, the mating
restrictionradiusisset to equal to the sharing radius
and the consideration on the distance between the
two individuals is also done in normalised objective
space. For the case of chromosome coding using a
Gray code, a standard bit-flipped operation is used
for the mutation. In contrast, the value 1 will be
added to or subtracted from the allele value of the
mutated gene to achieve mutation in the integer-
based coding system.

5.6 Diversity Control
After offspring individuals are created, they
are combined with parent individuals where duplicate
individuals in the merged population are eliminated.
The remaining individuals are then sorted according
to their ranks in descending order. Following that
the non-dominated individuals from the remaining
individuals are determined and kept for passing
onto the next generation. Then a cross-generational
probabilistic survival selection (CPSS) method is
appliedto the remaining dominated individuals where
a probability value is assigned to each individual
according to its similarity to the genomically closest
non-dominated individual. The survival probability
of an individua is given by
ps ={1-c)h/L+3* )
where p, denotes the survival probability, h
is the genomic difference between the interested
individual and its closest non-dominated individual,
L is thehighest possible genomic difference between
two individuals, ¢ is the shape coefficient and a is
the exponent coefficient. Each individual will then



be selected according to the assigned survival
probability. If the total number of all selected
individualsincluding the pre-selected non-dominated
individuals does not reach the required population
size after the survival selection loop, randomly
generated individuals will be added to the individual
array until the required number is met.

For the purpose of comparison, the MOGA
and the random search technique is also used to
find the Pareto optimal solutions in this study. The
parameter settings for the MOGA and MODCGA
are summarised in Table 1. The description of the
case studies explored and the ssimulation results will
be given in the next section.

Table 1 Parameter Settings for the MOGA and

MODCGA
Parameter Value

Chromosome length

Gray code 45

Integer-based code 9
Crossover probability 0.8
Mutation probability

Gray code 0.2

Integer-based code 0.01
Sharing and mating restriction radii 0.03
Diversity control (MODCGA only)

Shape coefficient, ¢ 0.235

Exponent coefficient, a 0.51
Population size 30
Number of generations 30

6. Simulation Results

Two casestudies are investigated in this paper.
The aim of the first case study is to find a set of
torque limit combinations and straight-line paths
which lead to trajectories with the sum of the mean
absolute tracking errors <0.15708 radians (3 degrees
per joint) and the trgjectory time < 0.27 seconds.
The aim of the second case study is to find a set
of torque limit combinations and straight-line paths
which lead to trgjectories with the sum of the mean
absolute tracking errors < 0.07854 radians (1.5
degrees per joint) and the trajectory time < 0.30
seconds. The purpose of the first case study is to
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Table 2 Pareto Optimal Solutions from Casel
Gray Code

Random MOGA MODCGA
Search

t SMAE t

0.21
0.22
0.23
0.24
0.25
0.26

0.27

SMAE t
0.14613
0.11324
0.10090
0.08179
0.06801
0.05544
0.04156

SMAE

0.22
0.23
0.24
0.25
0.26
0.27

0.12512
0.10976
0.09433
0.07003
0.05950
0.05298

0.22
0.23
0.24
0.25
0.26
0.27

0.11340
0.10160
0.08670
0.06970
0.05360
0.04450

t - Trajectory time (second)
SMAE - Sum of mean absolutetracking errors (rad)

Table 3 Pareto Optimal Solutions from Casel -
Integer - Based Code
MOGA

Random MODCGA
Search

t SMAE t

0.21
0.22
0.23
0.24
0.25
0.26
0.27

SMAE t
0.14403
0.12255
0.10061
0.08789
0.06955
0.05415
0.04084

SMAE

0.22
0.23
0.24
0.25
0.26
0.27

0.12512
0.10976
0.09433
0.07003
0.05950
0.05298

0.22
0.23
0.24
0.25
0.26
0.27

0.11200
0.09630
0.08710
0.06940
0.05630
0.04890

Table 4 Pareto Optimal Solutions from Case Il -
Gray Code

Random MOGA MODCGA
Search
t SMAE t
0.25 0.07003 0.25
0.26 0.05950 0.26
0.27 0.05298 0.27
0.28 0.03582 0.28
0.29 0.02312 0.29

0.30 0.02224 0.30

SMAE t

0.07145 0.25
0.05799 0.26
0.04235 0.27
0.03104 0.28
0.02182 0.29
0.01649  0.30

SMAE
0.07000
0.05720
0.04180
0.03190
0.02130
0.01810

t - Trajectory time (second)
SMAE - Sum of mean absolute tracking errors (rad)

find solutions that concentrate more on optimising
the trajectory time while the second case study
emphasises on the tracking error optimisation. The
smulation results for these two cases are summarised
in Tables 2-5. Note that the displayed results are the
combination of Pareto optimal solutions obtained
from five different smulation runs. In addition, the
initial populations used in both approaches of the



Table 5 Pareto Optimal Solutions from Case Il -
Integer- Based Code

Random MOGA MODCGA
Search
t SMAE t SMAE t SMAE
0.25 0.07003 0.25 0.06986 0.25 0.06950
0.26 0.05950 0.26 0.05371 0.26 0.05610
0.27 0.05298 0.27 0.04686 0.27 0.04600
0.28 0.03582 0.28 0.03014 0.28 0.03540
0.29 0.02312 0.29 0.01994 0.29 0.01910
0.30 0.02224 0.30 0.01760 0.30 0.01700

t - Trajectory time (second)
SMAE - Sum of mean absolute tracking errors (rad)

MOGA and MODCGA in each simulation run are
generated such that the resulting decision variables
are the same. In other words, the initial populations
used in the two approaches are equivaent in terms
of the decision variables obtained after decoding
the chromosomes.

7. Discussions and Conclusions

Prior to any analyses on the simulation results
can be carried out, a number of points are required
to be made clear. The Pareto front results are used
to represent two main aims of the search; these are
to find the range of variety in solutions and to
locate the solutions which are close to the true
Pareto optimal solutions of the problem. For this
path planning problem, the exact range of variety in
solutions is known. Such knowledge is gained by
inspecting the non-dominated solutions and their
corresponding objectives in the solution set itself.
This statement will be made clearer later on in the
discussions. Nonetheless, similar to the majority of
engineering applications, the theoretical, or true,
Pareto optimal solutions of the problem are not
known. Of course, there will be a possibility that
some of the Pareto optimal solutions found by one
technique can be dominated by the solutions found
by another technique. In order to compare the Pareto
optimal solutions obtained from each technique
objectively, both points of view on the variety in
solutions found and the number of solutions found
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which cannot be dominated by the solutions obtained
from other techniques need to be considered.
First of all, consideration is placed on the
simulation results from the first case study. Both
the MOGA with a Gray coding scheme and the
MOGA with an integer-based coding scheme can
locate seven distinct solutions while the random
search and both approaches of the MODCGA fail
to locate a solution with the trajectory time of 0.21
seconds. For this case study, there can be only seven
distinct solutions in the Pareto optimal solution set.
This is because the solution that has a trajectory
time of 0.21 seconds and still has the tracking error
within the target value is obtained for magnitudes
of torque limits which are close to the actua limits
on the actuator torque. In addition, there are only
seven distinct solutions which can occupy the
trajectory time solution space from t = 0.21 seconds
to t = 0.27 secondswith anincrement of 0.01 seconds
(the sampling period). With a close inspection, it is
noticeable that all solutions found by both approaches
of the MOGA and MODCGA dominate all optimal
solutions found by the random search. However,
after comparing the results found by both approaches
of the MOGA, it is found that the solutions with the
trgjectory times of 0.21, 0.23, 0.26 and 0.27 seconds
found by the MOGA with a Gray coding scheme
are dominated by the corresponding solutions found
by the MOGA with an integer-based coding scheme.
Atthesame time, the solutions found by the MOGA
with an integer-based coding scheme which have
trajectory times of 0.22, 0.24 and 0.25 seconds are
dominated by the solutions obtained by the MOGA
with a Gray coding scheme. In this respect, it can
be said that the search performances of the two
MOGA approaches are very close to one another.
In addition, itisobservable that the diversity control
effect embedded in the MODCGA worsen the search
performanceinthe caseof Gray coding scheme while
the same effect helps improving the search results in
the case of integer-based coding scheme. From the



simulation results, only the solution with the
trajectory time of 0.25 seconds identified by the
MODCGA with a Gray coding schemedominatesthe
corresponding solution found by the MOGA. In
contrast, the solutions found by the MOGA with an
integer-based coding scheme which have trajectory
times of 0.22, 0.23, 0.24 and 0.25 seconds are
dominated by the corresponding solutions obtained
by the MODCGA. Hence, the use of diversity control
in the multi-objective search is recommended only
in the case of integer-based coding scheme for the
first case study.

Moving onto the second case study: al search
techniques are capable of locating six distinct
solutions. Note that for this case study, there can
be a maximum of six distinct solutions in the Pareto
optimal solution set. This is concluded from the
results obtained from the first case study which
indicates that the solution which has the minimum
allowable tragjectory time and also has the tracking
error which is smaller than 0.07854 radians is the
one with the trajectory time of 0.25 seconds. With
the maximum alowable trgjectory time being limited
to 0.3 seconds by the search target and the sampling
period is set to 0.01 seconds, there are only six
distinct solutions with the trgjectory times ranging
from 0.25 to 0.30 seconds that can cover the whole
Pareto front. The simulation results in this case
study also reveals that al solutions found by the
MOGA with an integer-based coding scheme and
both approaches of the MODCGA dominates all
solutions found by the random search. In contrast,
the MOGA with a Gray coding scheme can only find
five solutions which dominate the solutions located
by the random search. Theonly solution found by the
MOGA with aGray coding schemewhich isdominated
by the solution found by the random search is the
one with thetrajectory time of 0.25 seconds. Among
the solutions found by the two MOGA approaches,
two solutions found by the MOGA with a Gray
coding scheme dominates the solutions |located by the
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MOGA with an integer-based coding scheme.These
two solutions are the solutions with the trgjectory
timesof 0.27 and 0.30 seconds. In contrast, the MOGA
with an integer-based coding scheme can locate four
distinct solutions that dominates the solutionsfound
by the MOGA with a Gray coding scheme: the
solutionswith thetragjectory timesof 0.25, 0.26, 0.28
and 0.29 seconds. In overdl, it can be noticed that
the performance of the MOGA with an integer-based
coding schemeisdightly higher thanthat of the MOGA
with a Gray coding scheme. Inaddition, itis noticesble
that the diversity control effect helpsimproving the
search results in both cases of chromosome coding
schemes. From the results, the solutions found by
the MOGA with aGray coding scheme which have
trajectory times of 0.25,0.26,0.27 and 0.29 seconds
aredominated by the corresponding solutions obtained
by theMODCGA. Moreover, the solutions identified
by the MOGA with aninteger-based coding scheme
which have trgjectory timesof 0.25, 0.27, 0.29 and
0.30 seconds are dominated by the corresponding
solutions generated by the MODCGA. In other words,
the use of diversity control isrecommended for both
cases of coding schemes in the second case study.

From the above discussions, it can be concluded
that for this closed-loop time-optimal path planning
problem, the integer-based chromosome is more
suitable than the Gray chromosome at representing
the decision variables. In addition, the use of diversity
control in conjunction with the integer-based coding
scheme is also recommended. Nonetheless, the use of
diversity control can also effect therangeof variety in
solutionsidentified by the genetic agorithm. Further
investigation is required in order to eliminate this
drawback.

References

1  Bobrow, J. E., Dubowsky, S. and Gibson, J. S.
“Time-optimal control of robotic manipulators
aong specified paths.” International Journal
of Robotics Research. 4, 3 (1985) : 3-17.



Shiller, Z. and Lu, H.-H. “Computation of path
congtrained time optima motions with dynamic
Transactions of the ASME.
Journal of Dynamic Systems, Measurement,
and Control. 114, 1 (1992) : 34-40.

Sahar, G. and Hollerbach, J. M. “Planning of
minimum-time trgjectories for robot arms.”

singularities.”

International Journal of Robotics Research.
5, 3 (1986) : 90-100.

Croft, E. A., Benhabib, B. and Fenton, R. G.
“Near-time optima robot motion planning for
on-line applications.” Journal of Robotic
Systemns. 12, 8 (1995) : 553-567.

Rana, A. S. and Zalzala, A. M. S. “Near time-
optimal collison-free motion planning of robotic
manipulators using an evolutionary algorithm.”
Robotica. 14, 6 (1996) : 621-632.

Shiller, Z.,Chang, H.and Wong,V.“ The practical
implementation of time-optimal control for
robotic manipulators.” Robotics and Computer-
Integrated Manufacturing. 12, 1 (1996) : 29-39.
Shiller, Z. “Time-energy optimal control of
articulated systems with geometric path
constraints.” Transactions of the ASVE. Journal
of Dynamic Systems, Measurement, and Control.
118, 1 (1996) : 139-143.

Chalyaratana, N. and Zazaa A. M. S
“Hybridisation of neural networks and genetic
agorithms for time-optimal control.” In The
1999 Congress on Evolutionary Computation
(CEC'99), 389-396. Washington, DC, 1999.
Chaiyaratana, N. and Zalzala, A.M.S. “Time-
optimal path planning and control using
neural networks and a genetic algorithm.” In
Proceedings of the 2001 ASME International
Mechanical  Engineering Congress and

Expogtion, DSC-24512/1-8. New York, NY, 2001.

19

10.

14

16.

nsmBmMIwsaanams:unswila 17 13 atuft 3n.a. -n.o. 2546
The Journal of KMITNB., Vol. 13, No. 3, Jul. - Sep. 2003

Fonseca, C. M. and Fleming, P. J. “Genetic
algorithms for multiobjective optimization:
Formulation, discussion and generalization.” In
Genetic Algorithms: Proceedings of the 5"
International Conference, 416-423. Urbana-
Champaign, IL, 1993.

Shimodaira, H. “DCGA: A diversity control
oriented genetic agorithm.” In The Second
International Conference on Genetic Algorithms
in Engineering Systems. Innovations and
Applications (GALES A 97), 444-449. Glasgow,
UK, 1997.

Freund, E. “Fast nonlinear control with arbitrary
pole-placement for industrial robots and
manipulators.” International Journal of
Robotics Research. 1, 1 (1982) : 65-78.
Fonseca C. M. and Fleming, P. J. “Multiobjective
genetic algorithms made easy : Selection,
sharing and mating restriction.” In The First
International Conference on Genetic Algorithms
in  Engineering Systems: Innovations and
Applications (GALESIA'95), 45-52. Sheffield,
UK, 1995.

Fonseca, C. M. and Fleming, P.J.“Multiobjective
optimization and multiple constraint handling
with evolutionary algorithms - Part 1: A unified
formulation.” |EEE Transactions on Systems,
Man, and Cybernetics. 28, 1 (1998) : 26-37.
Shimodaira, H. “A diversity-control-oriented
genetic algorithm (DCGA): Performance in
function optimization.” In The 2001 Congress
on Evolutionary Computation (CEC'01), 44-
51. Seoul, Korea, 2001.

Baker, J. E. “An anaysis of the effects of
Ph.D.
Dissertation, Department of Computer Science,
Vanderbilt University, Nashville, TN, 1989.

selection in genetic algorithms.”



