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Abstract
This paper presents the use of a multi-objective

diversity control oriented genetic algorithm (MODCGA)

for solving a closed-loop time-optimal path planning
problem. The MODCGA is a result of the integration

between  two  types  of  genetic algorithm: a multi-

objective genetic algorithm (MOGA) and a diversity
control oriented genetic algorithm (DCGA). The

MODCGA is benchmarked against the MOGA and a

random search in  the path planning problem which is
treated as a multi-objective optimisation problem. In

this case, the planning problem is represented by a

position control task which is given to a 3-dof revolute
joint  robot. From  the  optimisation  viewpoint, the

decision  variables consist of the magnitude of torque

limits for each joint and the initial and final positions of
a fixed length path at  which the robot end-effector  has

to track.The corresponding search objectives are thus

expressed in terms of the position tracking error and
trajectory time. Two chromosome coding schemes are

explored in this investigation: Gray and integer-based

coding schemes. The simulation results suggest that
the integer-based coding  scheme is more suitable at

representing the decision variables. In addition, the use

of diversity control in conjunction with the integer-based
coding scheme can further improve the search results.

Keywords : Genetic algorithm, path planning, robotics,
 time-optimal  control
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1.  Introduction
Time-optimal  control  has  been  one  of  the  major

research interests in robotics  during  the  past  decade.
Time-optimality  can  lead  to  an  overall  improvement

in  the  level  of  productivity  from  a  manufacturing

viewpoint  and  an  increase  in  the  effectiveness  of  a
task  execution  from  an  operational  viewpoint.  One

particular  aspect  of  research  is  the  theory  and

application  of  time-optimal  control  of  a  robot  arm
along  a  pre-defined  path.  An  algorithm  that  can  lead

to  time-optimality  of  this  kind  was  firstly  developed

by  Bobrow  et  al.  [1].  Over  the  years,  this  algorithm
has  undergone  a  number  of  refinements  and  one  of

the latest  modifications  has  been  described  in  Shiller
and  Lu  [2].  In  summary,  a  time-optimal  motion  of  a

robot  arm  along  a  pre-defined  path  is  achieved

when  the  motion  is  executed  with  either  the  maximum
possible  acceleration  or  deceleration  along  the  path.

This  can  be  done  when  one  of  the  actuators  on  the

robot  arm  is  always  saturated  and  the  other  actuators
adjust  their  torque  values  so  that  their  torque  limits

are  not  violated  [3].

Although  this  time-optimal  control  algorithm
has  been  proven  to  be  useful  in  a  number  of  tasks,

the  use  of  an  additional  path  planning  algorithm  is

usually  required.  This  is  because  one  necessary
input  for  the  time-optimal  control  algorithm  is  the

pre-defined  path  of  end-effector  in  the  Cartesian

space.  Since  the  time-optimal  control  algorithm  is
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developed   by   considering   only   the   open-loop

dynamics  of  the  robotic  system  [1-2],  early  works  in

the  area  of  time-optimal  path  planning  are  usually
carried  out  in  the  open-loop  mode  [4-5].  However,

closed-loop  path  planning  has  also  received  much

attention since  it  can  produce  a  more  accurate  result
in  terms  of  the  difference  between  the  desired  path

and the actual path obtained. This is because  the  closed-

loop dynamics has been  taken  into  the  consideration
during  the  planning  process.  Nevertheless,  the  use

of  the  time-optimal  control  algorithm  in  conjunction

with  closed-loop  path  planning  has  one  drawback;
actuator  dynamics  and  the  delays  caused  by  an  on-

line  feedback  controller  would  lead  to  a  reduction  in

the  efficiency  of  the  algorithm  [6].  Three  possible
methods  have  been  used  to  solve  this  problem.  The

first method is based on a  modification  of  the  original

time-optimal  control  problem  into  a  time-energy
optimal  control  problem  which  can  be  regarded  as

a lagrangian constraint optimisation  problem  and  can

only  be  solved  numerically  [7].  A  drawback  of  this
method  is  that  the  modification  also  leads  to  an

increase  in  the  resulting  trajectory  time.  The  second

method  is  based  on  the  use  of  a  simplified  friction
model  to  compensate  for  the  actuator  dynamics  and

the  implementation  of  a  trajectory  pre-shaping  to

account  for  the  dynamics  of  the  controller  [6].
Finally,  the  third  method  covers  the  use  of  a  neural

network  which  is  trained  using  either  feedback  error

learning  [8]  or  model-based  reinforcement  learning
[9]  as  an  additional  controller  in  the  control  loop.

The  primary  function  of  this  neural  network  is  to

compensate  for  modelling  errors  and  delays  caused
by the main controller in  the  system.  It  has  also  been

demonstrated  that  the  compensation  performance  of

the  neural  network  controller  is  higher  than  that  of
the  trajectory  pre-shaper.

The  works  initiated  by  Chaiyaratana  and  Zalzala

[8-9]  will  be  continued  in  this  paper  where  the
investigation  will  concentrate  only  on  the  treatment

on   the   closed-loop  time-optimal  path  planning

process  as  a  multi-objective  optimisation  problem.

The  interested   planning   problem   is   inspired   by   an

observation that many tasks in manufacturing systems
can  be  accomplished  using  lesser  processing  time

provided  that  the  trade-off  in  the  product  quality  is

acceptable.  For  instance,  in  tasks  like  welding  and
edge-deburring,  the  time  that  the  robot  end-effector

required  to  track  the  pre-programmed  path  can  be

reduced  if  the  allowable  tracking  error  bound is
increased. The  optimisation problem  interested involves

the  selection  of  torque  limit  combination  and  the

initial  and  final  positions  of  a  fixed  length  path
where  the  search  objectives  are  expressed  in  terms

of  the  position  tracking  error  and  trajectory  time.

An approach  on  multi-objective  optimisation  using  a
genetic  algorithm,  namely  a  multi-objective  diversity

control  oriented  genetic  algorithm  (MODCGA)  will

be  used  to  solve  the  problem.  The  MODCGA  is  a
result  of  the  integration  between  a  multi-objective

genetic  algorithm  or  MOGA  [10]  and  a  diversity

control  oriented  genetic  algorithm  or  DCGA  [11].
Note  the  additional  neural  network  controllers  as

described  in  Chaiyaratana  and  Zalzala  [9]  are  used  in

closed-loop  planning  process  in  order  to  minimise
the  effect  of  closed-loop  dynamics  on  the  planning

results.

This  paper  is  organised  as  follows.  The  time-
optimal control algorithm  as  described  by  Shiller  and

Lu [2]  is  briefly  explained  in  section  2.  In  addition,

the  use  of  additional  neural  network  controllers  in
the  closed  control  loop  is  also  explained  in  this

section. In section 3, the  overview  of  the  closed-loop

path  planning  problem  is  discussed.  In  section  4,
the  background  on  the  MOGA  and  DCGA  and  the

genetic  algorithm  integration  will  be  discussed.  The

application  of  the  MODCGA  on  the  closed-loop
time-optimal  path  planning  problem  will  be  explained

in   section  5.  The  simulation  results  obtained  after

applying  the  MODCGA  to  the problem are  shown  in
section  6.  Finally,  discussions  on  the  simulation

results  and  conclusions  are  given  in  section  7.
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2.  Time-Optimal  Control  Algorithm  and  Neural
Network  Controllers

In  summary,  the  time-optimal  control  algorithm
as  described  by  Shiller  and  Lu  [2]  can  be  used  to

generate  the  time-optimal  profiles  of  the  reference

joint  position  and  the  open-loop  control  torque
signal  provided  that  the  physical  properties  of  the

robot  arm  are  known  and  a  pre-defined  path  of  the

robot  arm  in  the  workspace  is  available.  In  particular,
the  torque  limits  on  the  actuators  within  the  robot

are  the  key  factors  which  have  a  major  influence  on

the  trajectory  time  obtained  from  the  algorithm.  As
stated  earlier,  the  time-optimal  motion  is  achieved

when  one  of  the  actuators  on  the  robot  arm  is

always  saturated  and  the  torque  values  of  other
actuators  are  within  the  bounds  of  the  corresponding

limits.  This  means  that  with  the  large  values  of  the

torque  limits,  the  obtained  trajectory  time  will  be
short.  On  the  other  hand,  with  the  smaller  values  of

the  torque  limits,  the  obtained  trajectory  time  will  be

relatively  larger.  A  schematic  diagram  describing
input  and  output  of  the  time-optimal  control  algorithm

is  given  in  Figure  1.  In  Figure  1,  the  time-optimal

control  algorithm  takes  the  robot  physical  properties
and  the  information  regarding  the  pre-defined  robot’s

path  as  inputs.  The  outputs  from  the  algorithm  are

the  reference  joint  position  and  the  open-loop  torque
profiles.

Nonetheless,  the  time-optimal  control  algorithm

will  produce  a  result  based  on  the  open-loop

dynamics  of  the  system.  This  means  that  a  certain

number  of  problems  will  arise  when  using  the

reference  joint  position  profile  obtained  from  the
algorithm  as  input  to  the  closed-loop  system  [6-7].  In

order  to  solve  the  problem,  Chaiyaratana  and  Zalzala

[8-9]  propose  the  use  of  neural  networks  as  additional
controllers  in  the  closed  control  loop  where  the

neural networks  have  a  role  of  compensating  for  the

dynamics  of  the  primary  controllers  and  the  possible
modelling  errors.  This  arrangement  is  illustrated  in

Figure  2.

In Figure 2, the  joint  sub-system block represents
a  linear  second  order  system  which  is  obtained

after  de-coupling  the  robot  model  using  a  non-
linear  de-coupled  feedback  control  scheme  [12].

With  the  use  of  additional  neural  network  controllers,

the  de-coupling  scheme  can  be  executed  with  high
efficacy  even  when  there  exists  modelling  errors  in

the  system  [8-9].  Note  that  in  this  paper  the  neural

network  controllers  utilised  during  the  planning
process  are  trained  using  a  model-based  reinforcement

learning  strategy.

3.  Close-loop  Time-Optimal  Part  Planning
The  interested  path  planning  problem  involves

the  use  of  a  3-dof  robot  in  a  position  control  task.
The  robot  is  required  to  track  a  one-metre  straight-

line  path  which  is  illustrated  in  Figure  3.  Referring

to  Figure  3,  point  A  (0.736,  0.226,  0.093)  is  the  initial
location  of  the  robot  end-effector  and  point  B  (0.0,

0.854, 0.354)  is  the  final  desired  location  of  the  robot

end-effector  on  this  path.  The  time-optimal  control
algorithm  is  then  used  to  generate  the  trajectory

Figure 1  Schematic  diagram  of  the  time-optimal

   control  algorithm.

Figure 2  Neural  network  and  PID  controllers  in

  each  joint  control  loop.
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time  history,  which  is  subsequently  used  as  the

input  to  the  position  control  loop.

In  practice,  the  maximum  torque  limits,  which
are  used  in  the  time-optimal  trajectory  calculation

process  for  a  closed-loop  control,  are  usually  less

than  the  actual  torque  limits  on  the  actuators.  This
safety  precaution  is  done  in  order  to  allow  some

margins of error for possible  discrepancies  introduced

to  the  system  by  modelling  errors  and  controller
dynamics  [6].  This  implies  that  for  a  given  set  of

the  actual  torque  limits  of  the  actuators,  there  is  a

set  of  admissible  torque  limit  combinations  that  can
lead  to  a  certain  level  of  time-optimality  within  an

acceptable  range  of  tracking  error.  In  addition,  in

certain  applications  such  as  welding  or  edge-
deburring  it  is  possible  to  modify  the  end-effector

trajectory  in  Cartesian  space  without  effecting  the

task  requirement  provided  that  the  position  and
orientation  of  the  work  piece  at  which  the  end-

effector has to  remain  in  contact  with  can  be  modified

accordingly.  The  position  control  task  discussed
above  is  an  example  which  reflects  such  applications.

By  modifying   the   initial   and   final   locations   of

the  straight-line  path,  the  task  description  in  the
application  viewpoint  would  remain  the  same  while

the  angular  trajectory  at  which  the  robot  joint  has

to  follow  would  be  different.  Such  change  in  the
angular  trajectory  would  lead  to  a  variation  in  the

position  tracking  error.  Combining  with  the  issue  on

torque  limits,  this  points  to  a  design  problem  in

robotic  applications.  The  objective  of  such  problem

is   to   find   a   combination   of   torque   limits   from   a

set   of   admissible   torque   ranges   and   the  initial
and  final  position  of   the  end-effector  which  will

lead  to  a  trajectory  which  meets  the  time-optimality

and  tracking   error  constraints.  This  is  a  multi-
objective  optimisation  problem  since  it  would be

highly  unlikely  to  obtain  a  single  trajectory  that  can

minimise  both  the  trajectory  time  and  tracking  error
simultaneously.  A  multi-objective  diversity  control

oriented  genetic  algorithm  (MODCGA) will  be  used

to  solve  the  problem   associated   with   the   torque
limit  and  end-effector position selection in  this  study.

The  description  of   the  MODCGA  will  be  given  in

the  next  section.

4.  Multi-Objective  Diversity  Control  Oriented
Genetic  Algorithm

The  multi-objective  diversity  control  oriented

genetic  algorithm  (MODCGA)  is  a  result  of  the

integration between a multi-objective genetic algorithm
or MOGA [10] and  a diversity control oriented  genetic

algorithm  or  DCGA  [11].  A  brief  description  of  the

algorithms  follows.

4.1  Multi-Objective  Genetic  Algorithm
The  multi-objective  genetic  algorithm  (MOGA)

was  first  introduced  by  Fonseca  and  Fleming  [10].

The  MOGA  functions  by  seeking  to  optimise  the

components  of  a  vector-valued  objective  function.
Unlike  single-objective  optimisation,  the  solution  to

a  multi-objective  optimisation  problem  is  a  family  of

points  known  as  the  Pareto  optimal  set.  Each  point
in the  set  is  optimal  in  the  sense  that  no  improvement

can  be  achieved  in  one  component  of  the  objective

vector  that  does  not  lead  to  degradation  in  at  least
one  of  the  remaining  components. Given a set of

possible solutions, a candidate solution is said to be

Pareto optimal if there are no other solutions in the
solution set that can dominate the candidate solution.

In other  words, the candidate solution would be a

Figure 3   Robot  and  the  straight-line  path.
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non-dominated solution. Assuming, without loss of

generality, a minimisation problem, an n-dimensional

cost vector  a  is  said to be dominating  another n-
dimensional cost vector b if, and only if, a is partially

less than b (a p < b), i.e.

iiii banibanip <=∃∧≤=∀↔< :,...,1:,...,1ba (1)

By  identifying  the  number  of  solutions  in  the
solution  set  that  dominate  the  solution  of  interest,

a  rank  value  can  be  assigned  to  the  solution.  In

other  words,  the  rank  of  a  candidate  solution  is
given  by  the  number  of  solutions  in  the  solution

set  that  dominate  the  candidate  solution.  After  a

rank  has  been  assigned  to  each  solution,  a  fitness
value  can  then  be  interpolated  onto  the  solution

where  a  genetic  algorithm  can  subsequently  be

applied in the optimisation  procedure.  Note  that  since
the aim of  a  search  by  the  MOGA  is  to  locate  Pareto

optimal  solutions,  in  essence  the  multi-objective

optimisation problem has also been  treated  as  a  multi-
modal  problem.  Hence,  the  use  of  additional  genetic

operators  including  the  fitness  sharing  and  mating

restriction  procedures  is  also  required.  However,  in
addition to the usual application of  the fitness sharing

and  mating  restriction  procedures  in  the  decision

variable space  [13],  they  can  also  be  carried  out  in
the  objective  value  space  [10].  A  comprehensive

description  of   the  MOGA  which  covers   other

advanced   topics   including   goal   attainment  and
priority assignment strategies can  be  found  in  Fonseca

and  Fleming  [14].

4.2  Diversity  Control  Oriented  Genetic  Algorithm
The  diversity  control  oriented  genetic  algorithm

(DCGA)  was  first  introduced  by  Shimodaira  [11].
Similar  to  other  single-objective  steady-state  genetic

algorithms,  the  parent  population  and  the  offspring

population  are  merged  together  during  the  DCGA
run  where  the  appropriated  individuals  are  extracted

from  the  merged  population.  However,  instead  of

selecting the highly fit individuals from the population

straightaway,  the  extraction  process  in  the  DCGA

starts  with  the  elimination  of  duplicated  individuals
in  the  merged  population.  The  remaining  individuals

are  then  sorted  according  to  their  fitness  values  in

descending  order.  Following  that  the  best  individual
from  the  remaining  individuals  is  determined  and

kept  for  passing  onto  the  next  generation.  Then

either  a  cross-generational  deterministic  survival
selection  (CDSS)  method  or  a  cross-generational

probabilistic  survival  selection  (CPSS)  method  is

applied  in  the  top-down  fashion  to  the  remaining
non-elite  individuals  in  the  sorted  array.  In  the  case

of  the  CDSS,  the  remaining  non-elite  individuals  will

have an  equal  chance  of  being  selected.  In  contrast,
a  survival  probability  value  is  assigned  to  each

non-elite  individual  according  to  its  similarity  to  the

best individual in the case of the CPSS.  If  the  genomic
structure  of  the  individual  interested  is  very  close

to  that  of  the  best  individual,  the  survival  probability

assigned  to  this  individual  will  be  close  to  zero.  On
the  other  hand,  if  the  chromosome  structure  of  this

individual  is  quite  different  from  that  of  the  best

individual,  its  survival  probability  will  be  close  to
one. Each  individual  will  then  be  selected  according

to  the  assigned  survival  probability.  If  the  total

number  of   all   selected   individuals   including   the
pre-selected  elite  individual  does  not  reach  the

required  population  size  after  the  survival  selection

loop,  randomly  generated  individuals  will  be  added
to   the   individual   array   until   the   required   number

is  met.  A  comprehensive  description  of  the  DCGA

and  its  benchmarking  performance  in  various  test
problems  can  be  found  in  Shimodaira  [15].  Note

that  in  this  investigation,  the  DCGA  mechanism  that

is  a  part  of  the  MODCGA  is  the  one  which  utilises
the  CPSS  method.

4.3  Genetic  Algorithm  Integration
By  combining  the  MOGA  and  the  DCGA

together,  the  resulting  algorithm  can  be  referred  to
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as  a  multi-objective  diversity  control  oriented  genetic

algorithm  or  MODCGA.  Similar  to  the  MOGA,  the

rank  of  each  individual  will  be  obtained  after
comparing  it  with  the  remaining  individuals.  However,

the  comparison  will  be  made  among  individuals  in

the  merged  population  which  is  the  result  from
combining  parent  and  offspring  populations  together.

Since  the  best  individuals  in  the  MOGA  are  the

non-dominated  individuals,  there  will  be  more  than
one  survival  probability  value  which  can  be  assigned

to  each  dominated  individual.  In  this  study,  the

lowest  value  in  the  probability  value  set  is  chosen
for  each  dominated  individual.  After  the  survival

selection  routine  is  completed  and  the  fitness  values

have  been  interpolated  onto  the  individuals,  the
standard  genetic  operations  can  then  be  applied  to

the  population  in  the  usual  way.

5.  Application  of  the  MODCGA  on  the  Closed-Loop
Time  Optimal  Path  Planning  Problem

The  multi-objective  diversity  control  oriented
genetic  algorithm  (MODCGA)  will  be  used  to  solve

the  closed-loop  time-optimal  path  planning  problem.

The  problem  formulation  and  the  genetic  operators
used  are  discussed  as  follows.

5.1  Decision  Variables
A  3-dof  robot  with  the  task  of  tracking  a

straight-line   path   in   Cartesian   space   presented

earlier  is  used  to  demonstrate  this  multi-objective
optimisation  problem.  The  decision  variables  of  the

problem  consist  of  the  torque  limit  combination  and

the  initial  and  final  positions  of  the  end-effector.
Assuming  that  the  magnitudes  of  the  maximum  and

minimum  torque  limits  are  the  same  for  each  actuator,

the  torque  limit  part  of  the  decision  variables  would
consist  of  the  magnitude  of  the  torque  limits  of

each  joint.  In  this  study,  the  range  of  the  magnitudes

of  the  torque  limits  on  joints  1,  2  and  3  are  set  to
15-30,  25-40  and  5-20  Nm,  respectively.  The  lower

bounds  of  the  limits  (i.e.  15,  25,  5)  are  based  on  the

maximum  allowable  trajectory  time  requirement  of

0.3  seconds,  while  the  upper  bounds  of  the  torque

limits  (i.e.  30,  40,  20)  are  set  by  the  actual  torque
limits  of  the  actuators.

Moving  onto  the  part  of  decision  variables

which  involves  the  positions  of  the  end-effector.  In
order  to  create  a  fixed-length  path  in  Cartesian

space,  two  vectors  are  required:  the  position  vector

for  the  initial  position  of  the  end-effector  and  the
direction  vector  pointing  from  the  initial  position

toward  the  desired  final  position  of  the  end-effector.

This  requirement  can  be  achieved  by  setting  up
two  search  variables.  The  first  variable  will  be  the

initial  location  of  the  end-effector  while  the  second

variable  will  be  another  point  in  the  robot  workspace
at  which  a  direction  vector  pointing  from  the  initial

position  of  the  end-effector  toward  this  point  can  be

established.  In  this  investigation  the  search  range
for  the  initial  position  of  the  end-effector  is  given  by

(0.721-0.751,  0.211-0.241,  0.078-0.108)  in  the  x,  y  and  z

directions,  respectively.  In  contrast,  the  search  range
for  the  location  of  the  other  point  in  the  robot

workspace  is  set  to  (-0.015-0.015,  0.839-0.869,  0.339-

0.369)  in  the  x,  y  and  z  directions,  respectively.  Note
that  the  search  ranges  for  these  two  points  are  in

the  vicinity  of  the  initial  and  final  positions  of  the

straight-line  path  described  earlier  in  section  3.

5.2  Objective  Variables
There  are  two  optimisation  objective  variables

in  this  problem:  the  tracking  error  and  the  trajectory

time  objectives.  The  tracking  error  objective  is

expressed  in  terms  of  the  sum  of  the  mean  absolute
errors  over  three  joints,  calculated  over  the  whole

trajectory.  The  trajectory  time  objective  is  the  optimal

trajectory  time  obtained  from  the  time-optimal  control
algorithm.  Note  that  the  sampling  period  used  in

the  simulation  of  this  3-dof  robotic  closed-loop

system  is  0.01  seconds.  Hence,  the  trajectory  time
will  always  be  in  the  form  of  0.01m  where  m  is  a

positive  integer.
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5.3  Chromosome  Coding
Nine  decision  variables  -  the  magnitudes  of  the

torque  limits  from  all  three  joints  and  the  co-
ordinates  along  three  axes  of  the  two  points  for

identifying  the  straight-line  path  -  are  concatenated

together  and  coded  to  form  a  chromosome.  Two
chromosome  coding  schemes  are  explored  here:

Gray  and  integer-based  coding  schemes.  The  torque

ranges  for  all  three  joints  are  discretised  using  a
search  step  of  0.5  Nm.  This  leaves  31  search  points

for  the  magnitude  of  the  torque  limits  of  each  joint.

In a similar way, the search ranges  of  the  co-ordinates
of  the  two  points  for  dictating  the  location  of  the

straight-line path  are  discretised  using  a  search  step

of  0.001  m.  This  also  leaves  31  search  points  for  the
co-ordinate  in  each  axis.  With  the  use  of  a  Gray

coding scheme, a  Gray  code  of  length  5  can  be  used

to represent a  decision  variable.  The  total  length of
the  chromosome  in  this  case  would  be  equal  to  45.

Note  that  there  are  certain  search  points  obtained

after  decoding  the  chromosome  which  lie  outside
the required search space. These points are mapped

back  into  the  feasible  region  by  changing  the  most

significant  bit  of  the  Gray  code section  representing
the  particular  decision  variable  that  violates  the

feasibility  constraint  into  zero. In contrast  to the case

of  the  Gray coding scheme, with  the  use  of  an  integer-
based coding system a single gene can be used to

represent a decision variable. Each gene can then take

an allele value from a set which is composed of 31
integers ranging from 0 to 30. The chromosome length

in this case would be equal to nine.

5.4  Fitness  Assignment  and  Fitness  Sharing
The  ranking  method  as  described  in  Fonseca

and   Fleming  [10]   is   used   to   rank   each   individual
in  the  population.  Following  that,  a  linear  fitness

interpolation is used to assign fitness to each individual.

Fitness  sharing,  with  the  use  of  triangular  sharing
function,  is  then  carried  out  in  normalised  objective

space.

5.5  Selection,  Crossover  and  Mutation  Methods
Stochastic universal sampling  selection [16] is

used in the fitness selection.Then a standard one-point
crossover  technique  is  used  in  the  recombination.

Two  individuals  are  allowed  to  perform  crossover  if,

and  only  if,  they  are  within  the  mating  restriction
distance  from  each  other.  For  simplicity,  the  mating

restriction radius is set  to  equal  to  the  sharing  radius

and  the  consideration  on  the  distance  between  the
two  individuals  is  also  done  in  normalised  objective

space.  For  the  case  of  chromosome  coding  using  a

Gray  code,  a  standard  bit-flipped  operation  is  used
for  the  mutation.  In  contrast,  the  value  1  will  be

added  to  or  subtracted  from  the  allele  value  of  the

mutated  gene  to  achieve  mutation  in  the  integer-
based  coding  system.

5.6  Diversity  Control
After  offspring  individuals  are  created,  they

are  combined  with  parent  individuals  where  duplicate

individuals  in  the  merged  population  are  eliminated.
The  remaining  individuals  are  then  sorted  according

to  their  ranks  in  descending  order.  Following  that

the  non-dominated  individuals  from  the  remaining
individuals  are  determined  and  kept  for  passing

onto  the  next  generation.  Then  a  cross-generational

probabilistic  survival  selection  (CPSS)  method  is
applied to  the  remaining  dominated  individuals  where

a  probability  value  is  assigned  to  each  individual

according  to  its  similarity  to  the  genomically  closest
non-dominated  individual.  The  survival  probability

of  an  individual  is  given  by

{ }αcLhcps +−= /)1( (2)

where  p
s  
 denotes   the   survival   probability,   h

is   the   genomic  difference  between  the  interested

individual  and  its  closest  non-dominated  individual,

L is  the highest possible  genomic  difference  between
two  individuals,  c  is  the  shape  coefficient  and  α  is

the  exponent  coefficient.  Each  individual  will  then
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be  selected  according  to  the  assigned  survival

probability.  If  the  total  number  of  all  selected

individuals including  the  pre-selected  non-dominated
individuals  does  not  reach  the  required  population

size  after  the  survival  selection  loop,  randomly

generated  individuals  will  be  added  to  the  individual
array  until  the  required  number  is  met.

For  the  purpose   of  comparison,  the  MOGA

and  the  random  search  technique  is  also  used  to
find  the Pareto  optimal  solutions  in  this   study.  The

parameter  settings  for  the  MOGA  and  MODCGA

are  summarised  in  Table  1.  The  description  of  the
case  studies  explored  and  the  simulation  results  will

be  given  in  the  next  section.

6.  Simulation  Results
Two case studies  are  investigated  in  this  paper.

The  aim  of  the  first  case  study  is  to  find  a  set  of

torque  limit  combinations  and  straight-line  paths

which  lead  to  trajectories  with  the  sum  of  the  mean
absolute  tracking  errors  ≤ 0.15708  radians  (3  degrees

per  joint)  and  the  trajectory  time  ≤  0.27  seconds.

The  aim  of  the  second  case  study  is  to  find  a  set
of  torque  limit  combinations  and  straight-line  paths

which  lead  to  trajectories  with  the  sum  of  the  mean

absolute   tracking   errors   ≤  0.07854   radians  (1.5
degrees  per  joint)  and  the  trajectory  time  ≤  0.30

seconds.  The  purpose  of  the  first  case  study  is  to

find  solutions  that  concentrate  more  on  optimising

the  trajectory  time  while  the  second  case  study
emphasises  on  the  tracking  error  optimisation.  The

simulation  results  for  these  two  cases  are  summarised

in  Tables  2-5.  Note  that  the  displayed  results  are  the
combination  of  Pareto  optimal  solutions  obtained

from  five  different  simulation  runs.  In  addition,  the

initial  populations  used  in  both  approaches  of  the

Table 1  Parameter  Settings  for  the  MOGA  and

         MODCGA
Parameter Value 

Chromosome length  
   Gray code 45 
   Integer-based code 9 
Crossover probability 0.8 
Mutation probability  
   Gray code 0.2 
   Integer-based code 0.01 
Sharing and mating restriction radii 0.03 
Diversity control (MODCGA only)  
   Shape coefficient, c 0.235 
   Exponent coefficient, α 0.51 
Population size 30 
Number of generations 30 

 

Random 
Search 

MOGA MODCGA 

t SMAE t SMAE t SMAE 
0.25 0.07003 0.25 0.07145 0.25 0.07000 
0.26 0.05950 0.26 0.05799 0.26 0.05720 
0.27 0.05298 0.27 0.04235 0.27 0.04180 
0.28 0.03582 0.28 0.03104 0.28 0.03190 
0.29 0.02312 0.29 0.02182 0.29 0.02130 
0.30 0.02224 0.30 0.01649 0.30 0.01810 

 

Table   4 Pareto  Optimal  Solutions  from  Case  II  -

Gray  Code

t  -  Trajectory  time  (second)

SMAE  -  Sum  of  mean  absolute  tracking  errors  (rad)

Random 
Search 

MOGA MODCGA 

t SMAE t SMAE t SMAE 
  0.21 0.14403   

0.22 0.12512 0.22 0.12255 0.22 0.11200 
0.23 0.10976 0.23 0.10061 0.23 0.09630 
0.24 0.09433 0.24 0.08789 0.24 0.08710 
0.25 0.07003 0.25 0.06955 0.25 0.06940 
0.26 0.05950 0.26 0.05415 0.26 0.05630 
0.27 0.05298 0.27 0.04084 0.27 0.04890 

 

Table   3 Pareto  Optimal  Solutions  from  Case I -

Integer - Based  Code

Random 
Search 

MOGA MODCGA 

t SMAE t SMAE t SMAE 
  0.21 0.14613   

0.22 0.12512 0.22 0.11324 0.22 0.11340 
0.23 0.10976 0.23 0.10090 0.23 0.10160 
0.24 0.09433 0.24 0.08179 0.24 0.08670 
0.25 0.07003 0.25 0.06801 0.25 0.06970 
0.26 0.05950 0.26 0.05544 0.26 0.05360 
0.27 0.05298 0.27 0.04156 0.27 0.04450 

 

Table   2 Pareto  Optimal  Solutions  from  Case I
Gray  Code

t  -  Trajectory time (second)

SMAE - Sum of mean absolute tracking errors (rad)



17

 The Journal of KMITNB., Vol. 13, No. 3, Jul. - Sep. 2003
วารสารวิชาการพระจอมเกล้าพระนครเหนือ ปีท่ี 13 ฉบับท่ี 3 ก.ค.  - ก.ย. 2546

MOGA  and  MODCGA  in  each  simulation  run  are

generated  such  that  the  resulting  decision  variables

are  the  same.  In  other  words,  the  initial  populations
used  in  the  two  approaches  are  equivalent  in  terms

of  the  decision  variables  obtained  after  decoding

the  chromosomes.

7.  Discussions  and  Conclusions
Prior  to  any  analyses  on  the  simulation  results

can  be  carried  out,  a  number  of  points  are  required

to  be  made  clear.  The  Pareto  front  results  are  used

to  represent  two  main  aims  of  the  search;  these  are
to  find  the  range  of  variety  in  solutions  and  to

locate  the  solutions  which  are  close  to  the  true

Pareto  optimal  solutions  of  the  problem.  For  this
path  planning  problem,  the  exact  range  of  variety  in

solutions  is  known.  Such  knowledge  is  gained  by

inspecting  the  non-dominated  solutions  and  their
corresponding  objectives  in  the  solution  set  itself.

This  statement  will  be  made  clearer  later  on  in  the

discussions.  Nonetheless,  similar  to  the  majority  of
engineering  applications,  the  theoretical,  or  true,

Pareto  optimal  solutions  of  the  problem  are  not

known.  Of  course,  there  will  be  a  possibility  that
some  of  the  Pareto  optimal  solutions  found  by  one

technique  can  be  dominated  by  the  solutions  found

by another technique.  In  order  to  compare  the  Pareto
optimal  solutions  obtained  from  each  technique

objectively,  both  points  of  view  on  the  variety  in

solutions  found  and  the  number  of  solutions  found

which  cannot be dominated  by  the  solutions  obtained

from  other  techniques  need  to  be  considered.

First  of  all,  consideration  is  placed  on  the
simulation  results  from  the  first  case  study.  Both

the  MOGA  with  a  Gray  coding  scheme  and  the

MOGA  with  an  integer-based  coding  scheme  can
locate  seven  distinct  solutions  while  the  random

search  and  both  approaches  of  the  MODCGA  fail

to  locate  a  solution  with  the  trajectory  time  of  0.21
seconds. For this case study, there  can  be  only  seven

distinct  solutions  in  the  Pareto  optimal  solution  set.

This  is  because  the  solution  that  has  a  trajectory
time  of  0.21  seconds  and  still  has  the  tracking  error

within  the  target  value  is  obtained  for  magnitudes

of  torque  limits  which  are  close  to  the  actual  limits
on  the  actuator  torque.  In  addition,  there  are  only

seven  distinct  solutions   which  can  occupy  the

trajectory  time  solution  space  from  t  =  0.21  seconds
to  t  =  0.27 seconds with an increment of  0.01 seconds

(the  sampling  period).  With  a   close  inspection,  it  is

noticeable  that  all solutions  found  by both  approaches
of  the  MOGA  and  MODCGA  dominate  all  optimal

solutions  found  by  the  random  search.  However,

after comparing the  results  found  by  both  approaches
of  the  MOGA, it  is  found  that  the  solutions  with  the

trajectory  times  of  0.21,  0.23,  0.26  and  0.27  seconds

found  by  the  MOGA  with  a  Gray  coding  scheme
are  dominated  by  the  corresponding  solutions  found

by  the  MOGA  with  an  integer-based  coding  scheme.

At the same  time,  the  solutions  found  by  the  MOGA
with  an  integer-based  coding  scheme  which  have

trajectory  times  of  0.22,  0.24  and  0.25  seconds  are

dominated  by  the  solutions  obtained  by  the  MOGA
with  a  Gray  coding  scheme.  In  this  respect,  it  can

be said  that  the search performances of  the  two

MOGA  approaches  are  very  close  to  one  another.
In  addition, it is observable  that the diversity control

effect  embedded  in  the  MODCGA  worsen  the  search

performance in the case of  Gray coding scheme  while
the same effect helps improving the search results in

the case of integer-based coding scheme. From the

Random 
Search 

MOGA MODCGA 

t SMAE t SMAE t SMAE 
0.25 0.07003 0.25 0.06986 0.25 0.06950 
0.26 0.05950 0.26 0.05371 0.26 0.05610 
0.27 0.05298 0.27 0.04686 0.27 0.04600 
0.28 0.03582 0.28 0.03014 0.28 0.03540 
0.29 0.02312 0.29 0.01994 0.29 0.01910 
0.30 0.02224 0.30 0.01760 0.30 0.01700 

 

Table   5 Pareto  Optimal  Solutions  from  Case  II  -
Integer-  Based  Code

t  -  Trajectory  time  (second)

SMAE  -  Sum  of  mean  absolute  tracking  errors  (rad)



18

 The Journal of KMITNB., Vol. 13, No. 3, Jul. - Sep. 2003
วารสารวิชาการพระจอมเกล้าพระนครเหนือ ปีท่ี 13 ฉบับท่ี 3 ก.ค.  - ก.ย. 2546

simulation   results,  only  the  solution  with  the

trajectory  time  of   0.25  seconds  identified  by  the

MODCGA  with  a  Gray  coding  scheme dominates the
corresponding   solution   found  by   the   MOGA. In

contrast, the  solutions  found  by  the MOGA with  an

integer-based  coding  scheme  which  have  trajectory
times  of  0.22,  0.23,  0.24  and  0.25  seconds  are

dominated  by  the  corresponding  solutions  obtained

by  the  MODCGA. Hence,  the  use  of  diversity  control
in  the  multi-objective  search  is  recommended  only

in  the  case  of  integer-based  coding  scheme  for  the

first case study.
Moving  onto  the  second  case  study:  all  search

techniques  are  capable  of  locating  six  distinct

solutions.  Note  that  for  this  case  study,  there  can
be  a  maximum  of  six  distinct  solutions  in  the  Pareto

optimal  solution  set.  This  is  concluded  from  the

results  obtained  from  the  first  case  study  which
indicates  that  the  solution  which  has  the  minimum

allowable  trajectory  time  and  also  has  the  tracking

error  which  is  smaller  than  0.07854  radians  is  the
one  with  the  trajectory  time  of   0.25  seconds. With

the  maximum  allowable  trajectory  time  being  limited

to 0.3 seconds by the search target and the sampling
period is  set  to  0.01  seconds,  there  are  only  six

distinct  solutions  with  the  trajectory  times  ranging

from 0.25 to 0.30 seconds that can cover the whole
Pareto  front. The  simulation  results  in  this  case

study  also  reveals  that  all  solutions  found  by  the

MOGA  with  an  integer-based  coding  scheme  and
both  approaches  of  the  MODCGA  dominates  all

solutions  found  by  the  random  search. In contrast,

the MOGA with a Gray coding scheme can only find
five solutions which dominate the solutions located

by the random search. The only solution found  by  the

MOGA with a Gray coding scheme which is dominated
by  the  solution  found  by  the  random search  is  the

one  with  the trajectory  time  of  0.25 seconds. Among

the solutions found by the two MOGA  approaches,
two  solutions  found by the  MOGA  with  a  Gray

coding scheme dominates the solutions located by the

MOGA with an integer-based coding scheme.These

two  solutions  are  the  solutions  with  the  trajectory

times of 0.27 and  0.30  seconds. In  contrast, the  MOGA
with an integer-based coding scheme can  locate  four

distinct  solutions  that  dominates  the solutions found

by  the  MOGA  with  a  Gray  coding  scheme:  the
solutions with the trajectory times of  0.25,  0.26,  0.28

and  0.29   seconds.  In  overall, it  can  be  noticed  that

the performance of the MOGA with an integer-based
coding scheme is slightly higher than that of  the  MOGA

with  a  Gray coding  scheme. In addition, it is  noticeable

that  the  diversity  control  effect  helps improving  the
search  results  in  both  cases  of chromosome coding

schemes. From  the  results, the  solutions  found  by

the  MOGA with a Gray coding  scheme  which  have
trajectory  times  of   0.25, 0.26, 0.27 and  0.29  seconds

are dominated by the corresponding solutions obtained

by  the MODCGA.  Moreover, the  solutions  identified
by  the  MOGA with an integer-based  coding  scheme

which  have  trajectory  times of  0.25,  0.27,  0.29  and

0.30 seconds are dominated  by  the  corresponding
solutions  generated  by  the  MODCGA. In other  words,

the use of diversity control is recommended  for  both

cases of coding schemes in the second case study.
From the above discussions, it can be concluded

that for this closed-loop time-optimal path planning

problem,  the  integer-based  chromosome  is  more
suitable  than  the  Gray  chromosome  at representing

the  decision variables. In addition, the use of diversity

control in conjunction  with  the  integer-based  coding
scheme  is  also  recommended. Nonetheless, the  use  of

diversity control can also effect the range of  variety in

solutions identified  by  the  genetic  algorithm. Further
investigation  is  required  in  order  to  eliminate  this

drawback.
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