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Abstract

This paper presents a reward-related synaptic modification method of a spiking neuron model. The proposed algorithm determines
which synapse is eligible for reinforcement by a reward signal. According to the proposed algorithm, a synapse is determined to be
eligible when a presynaptic spike occurs shortly before a postsynaptic spike. A pre- and postsynaptic spike correlator (PPSC) is defined
and used to determine synaptic eligibility, and to modify synaptic efficacy in cooperation with a reward signal. A simulation is conducted
to demonstrate how the interaction between the PPSC and the reward signal influences synaptic plasticity.
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1. Introduction

Reinforcement learning is useful for developing an
intelligent agent without a teaching set. A reward signal
during interaction with the environment can be thought as
a source of learning. Several pioneering studies on animal
behavior show the evidence of reinforcement learning in
animals [8,19]. With the advancement in brain activity
measurement, measuring the reinforcement learning activ-
ity through spiking patterns became possible. For example,
we can measure the spiking pattern within a monkey’s
brain while he learns to push a button for a drop of sweat
juice as a reward. In this experiment, the activity of
dopamine neurons represents the reward signal (juice
drop). This paper provides a biologically inspired algo-
rithm that explains how the dopamine-like reward signal
modifies the synaptic weights of a spiking neural network.
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When animals learn in a reinforcement learning experi-
ment, the learning sequence can be simplified as the
following procedures:

1. A stimulus is given from environment.

2. An action is conducted by the neurons’ spiking patterns

generated by the stimulus.

. The action changes environment.

4. The environmental change results in reward or punish-
ment.

5. The given reward or punishment is converted to reward-
related neuronal activity such as an elevation of
dopamine concentration.

6. The reward/punishment signal modifies synaptic weights
to increase/decrease the linkage between the stimulus
and the selected action.

(98]

When we derive a synaptic reinforcement algorithm
based on the above procedures, the algorithm has to
consider two aspects: eligibility and duration. First, the
algorithm should be able to determine which synapses
are to be potentiated or depressed by the reward signal. In
this paper, the term ‘eligible synapse’ is referred to the
synapse that contributed to reward-earning. Second, when
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a synapse is determined as an eligible synapse, the eligibility
has to sustain for a period of time. In general, a reward or
punishment consequent upon an action does not come
immediately. The temporal gap between an action and a
reward or a punishment ranges from seconds to minutes.
TD learning, a dynamic programming based reinforcement
learning algorithm, uses ‘eligibility trace’ for this purpose.

The synaptic reinforcement has been studied by other
researchers. Seung proposed a release-failure antagonism
[14], in which the synaptic efficacy is potentiated by a reward
signal when a presynaptic spike succeeds in releasing a
postsynaptic spike. Conversely, when a presynaptic spike
fails to release a postsynaptic spike, the synaptic efficacy is
depressed. The premise of this paper is in general agreement
with the basic idea of Seung’s release-failure antagonism,
and provides the explanations for different dynamics of the
synaptic plasticity related to the reward signal. In the
proposed algorithm, unlike the study of Seung, success or
failure to release a postsynaptic spike is not determined at
the time of every presynaptic spike, but determined by the
dynamic model of intracellular substances. This dynamic
model associates a postsynaptic spike with all presynaptic
spikes prior to its time. Pfister et al. developed an optimal
rule of synaptic change for STDP and related the result to
reinforcement learning. In their model, the postsynaptic
spike linked to a reward will be recreated by the synapse at
the same time [9]. Their synaptic reinforcement model
focuses on modifying the synaptic weight to make a
postsynaptic spike occur at an exact timing to maximize
the reward. However, our model focuses on finding synapses
that are contributing to the reward and on modifying the
eligible synapses by the reward signal.

2. Eligible synapse

The term ‘eligible synapse’ denotes a synapse that has
contributed in obtaining a reward. Fig. 1 shows a situation
in which signal flows in the brain cause a reward, such as
dopamine secretion. For a series of neuronal activities, not

| stimulus |

reward
signal

| effectors |

Fig. 1. Determination of eligible synapses. The number denotes the order
of firing time.

all synapses of the neural network are contributing to the
reward-carning; therefore, it is necessary to select only
synapses that are eligible. In Fig. 1, the bold arrows denote
the neuronal signal flows that may be considered for
eligible synapse. Each number indicates the order of firing
of neurons. The four dark areas, (a—d), represent four
different cases of pre- and postsynaptic spike timing and
can be described as:

(a) Only a presynaptic neuron fires without a postsynaptic
spike (pre only).

(b) Only a postsynaptic neuron fires without a presynaptic
spike (post only).

(c) A postsynaptic spike precedes a presynaptic spike
(post-pre).

(d) A presynaptic spike precedes a postsynaptic spike (pre-
post).

Synapses for cases (a) and (b) do not contribute to
reward-carning and are not reinforced. For case (c), the
synapse has to be weakened if the STDP rule is to be
applied, but the synapse is left alone as it can be considered
unrelated to reward-earning. The synapses satisfying case
(d) are considered contributing to reward-earning and will
be denoted as ‘eligible synapse.” The determination of an
eligible synapse is similar to the causal part of STDP, as
they both have relevance to temporal causality.

Once a synapse is determined to be eligible for reinforce-
ment, the synapse is eligible for rewards only in the near
future. Such phenomenon can be justified in an example
where an eligible synapse a year before should be thought as
irrelevant to the current reward. Simply, a recent eligible
synapse receives higher level of reinforcement compared to
an older eligible synapse. It is reasonable to consider that the
eligibility of a synapse monotonically decreases. Similarly, in
TD learning, ‘eligible trace’ is defined as a mechanism for
determining the magnitude of an update, and it decreases
exponentially [17]. The proposed algorithm includes this
feature and its detailed dynamics will be described in the
following section.

3. Pre- and postsynaptic spike correlator (PPSC)

The temporal spike order is important in the determina-
tion of eligible synapses. As explained in Section 2, when a
presynaptic spike precedes a postsynaptic spike, the
synapse gains eligibility to be reinforced by future rewards,
and then the synaptic eligibility decreases over time.
A candidate for a dynamic equation that can determine
eligible synapses is proposed as follows:

deS:(Z) = a(1 — PSI(t — £)3pe(1) - w
PSI
APPSCU) _ ppSi(1)(1 — PPSC(1 — e))3pon (1) — oo =)
dl TPPSC

(1)
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where Opre(f) = > oo 0(z — (ith presynaptic spike time)),
Spost(?) = D2, 8(1 — (ith postsynaptic spike time)), 6(7) is a
Dirac delta function, o and f§ are constants, tps; and Tppsc
are time constants, and ¢ is a small time delay (0<e<1).

In order to determine eligible synapses, at least two
intracellular substrates have to be introduced. One
substrate, which increases when a presynaptic spike occurs,
is termed a ‘presynaptic spike indicator (PSI).” The other
substrate, which increases when a presynaptic spike
precedes a postsynaptic spike within a short period, is
termed a ‘pre- and postsynaptic spike correlator (PPSC).’
Both the PSI and PPSC decrease exponentially and are
bounded from 0 to 1. The PPSC not only determines an
eligible synapse but also indicates the eligibility trace within
a certain time period.

There may be more than two substrates for determining
eligible synapses in real brains, and the dynamics are likely
much more complicated and highly nonlinear. Using this
simple model, several different patterns of pre- and
postsynaptic pairs were tested as shown in Fig. 2: one
presynaptic spike to one postsynaptic spike (a, e), one
presynaptic spike to bursting postsynaptic spikes (b, f),
bursting presynaptic spikes to one postsynaptic spike (c, g)
and periodic spikes with a certain phase delay (d, h). In
Fig. 2a—d, postsynaptic spikes precede presynaptic spikes.
Therefore, the magnitude of PPSC is very small, indicating
that the synapse is not eligible for reinforcement by the
reward signal. In Fig. 2e—h, presynaptic spikes precede
postsynaptic spikes, thus the value of PPSC shoots up and
decreases exponentially. This indicates that the synapse is
eligible for a certain period.

When a reward signal such as dopamine arrives while the
PPSC has a positive quantity, the synaptic efficacy is
modified by Eq. (2).
dw fw>1l—->w=1
ar ~ MR PPSC {ifw<0—>w=0 @
where R is the reward and # >0 is the learning rate.

The synaptic efficacy w is bounded between 0 and 1. The
reward signal R represents the dopamine concentration
around the synapse. Reynolds and Wickens provided a
function that shows the relationship between dopamine
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Fig. 2. A simple test of PSI and PPSC.

concentration and synaptic change (See Fig. 4 in their
paper) [10]. According to their function, a low dopamine
concentration induces long term depression (LTD) and a
high concentration induces long term potentiation (LTP).
Therefore, it is assumed that R can be either positive or
negative. This paper does not cover the modeling of
dopamine concentration, which can be determined by the
spike pattern of dopamine neurons, and R does not take
the form of spike coding.

If R is assumed to be a positive constant, Eq. (2) is
similar to the causal part of STDP. The main difference of
the proposed reinforcement learning from STDP is that
both LTP and LTD occur in a causal case (pre-before-
post). Table 1 summarizes the relationship among spike
timing, reward, STDP and reinforcement learning. In
STDP, LTP occurs in a causal case and LTD occurs
in an acausal case (post-before-pre). On the other hand, in
reinforcement learning, both LTP and LTD occur in the
causal case but the sign of the reward signal determines
either LTP or LTD. In an acausal case, the proposed
reinforcement learning does not change the synaptic
efficacy because it is considered that the later presynaptic
spike does not contribute to the sooner postsynaptic spike
and the accompanying reward. Mathematically, this
implies that the negative eligibility (PPSC<0) is not used.

Fig. 3 explains the mechanism of synaptic plasticity
using the synaptic spike order, PSI, PPSC, and the reward
signal. The reward signal is simplified as a rate-value rather
than a spike-form though the dopamine concentration in
the real brain is determined by the spike trains of dopamine

Table 1
Comparison between STDP and reinforcement learning

Spike timing Sign of reward
R>0 R=0 R<0
STDP
Pre-post LTP LTP LTP
Post-pre LTD LTD LTD
Reinforcement learning
Pre-post LTP No change LTD
Post-pre No change No change No change
pre ! >
post : I, ,\

PSI M M
PPSC —,\\';C
] — ¢
0

Fig. 3. Synaptic modification using PPSC and reward.
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neurons. The dopamine system not only generates the
reward signal but also learns the reward events and predicts
them [4,5,12]. The modeling of a dopamine system
compatible with the present algorithm is essential, but is
not covered in this paper.

Although the proposed eligibility-determining algorithm
is mathematically derived from the viewpoint of temporal
causality, there is biological evidence supporting the
algorithm. The calcium ion in synapses is believed to be
related to the synaptic plasticity according to various
experimental studies [2,3,11,16,21,22]. In these studies, a
high calcium concentration causes LTP while a low calcium
level causes LTD. The calcium concentration is determined
by the synaptic spike orders. Senn et al. also developed a
kinetic model of a NMDA receptor and calcium-activated
secondary messenger for STDP [13]. The secondary
messenger S, in their model behaves similar to PPSC in
the proposed algorithm but the time constant of PPSC is
larger than the time constant of S, because PPSC has to be
associated with the reward that usually comes several
seconds or minutes later. Although the aforementioned
studies are related to the reward-independent synaptic
plasticity such as STDP, there are several examples of
biological evidence which suggest that the intracellular
calcium interacts with the dopamine signal to contribute to
reinforcement or memory [6,18]. Wickens and Kotter
compiled ample studies to account for the dopamine
reinforcement from various viewpoints for the require-
ments of plasticity, a calcium—dopamine relationship, an
eligibility trace and a dopamine prediction [20]. For now,
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we do not specify the PPSC as the calcium level because
other Ca” " -activated substance such as calcium/calmodulin-
dependent protein kinase II (CaMKII) can also be a
candidate for the PPSC. Although the time constant of the
intracellular calcium concentration is a nonlinear function
of the concentration level, it can be roughly considered to
be within 150ms [15,16]. However, the time constant of
calcium concentration is too short to be associated with the
rewards because the rewards usually come after a few
seconds or minutes later. Therefore, from the viewpoint of
time constant, CaMKII seems to be a more reasonable
candidate as it can sustain for a much longer period due to
its autophosphorylation property [1,7]. After a more in-
depth study, the PPSC could be shown to be the calcium
ion, another intracellular substance activated by the
calcium ion, or a completely different substance.

4. Simulation

In order to examine how the PPSC works in a spiking
neural network, a simple simulation was conducted as
follows (Fig. 4). A virtual robot flying over a 1m x 1 m
workspace has a vision sensor of a 9 x 9 pixel array and
four motors allowing movement with two degrees of
freedom. The goal is located in the middle of the workspace
and its location is detected by the 9 x 9 vision sensory
array. The flying robot should try to position itself above
the goal. Each motor is connected to one motor neuron.
The motor neurons cause a small amount of motion in each
direction (forward, backward, left, and right). All vision

b

Motor neurons

85 neurons
324 synapses

Sensory neurons

w(i, J)—backward

Fig. 4. Simulation setup.
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sensor neurons are connected to the motor neurons
(Fig. 4b) and the synaptic efficacies between the sensory
neurons and the motor neurons are denoted by w
forward> W(ij)— backward> W(i,j)— left and W(i,j)— rights where (lz])
indicates the position of the sensor pixel (Fig. 4c). The
sensory neurons are attached to the robot so that they
detect the relative position between the robot and the goal.

The dynamics of the sensory and motor neurons follows
a linear integrate-and-fire neuron model:

du(?)
m—— = —u(t) + R (¢
T = —u(t) + Rl (1)
if u(r)>=1, thenu < 0: generate a spike (3)

where u is the nondimensional membrane potential, 7, is
the membrane time constant, I is the synaptic input
current, and R,, is the membrane resistance.

The nondimensional membrane potential u is bounded
between 0 and 1 as u(?) = (v(t)—v,)/(vg—v,) wWith the actual
membrane potential v(z), the threshold vy, and the rest
potential v,.

For the sensory neurons, a constant input current (I = 2)
is given when the sensory neuron detects the goal. For the
motor neurons, the input current is determined by the
presynaptic spikes of the sensory neurons and the synaptic
efficacies by Eq. (4).

10 =35 Quuors oo (- £ 000~ 1 4
T s s

where Qp.x 1S the total charge when the synaptic efficacy w;
is 1, 74 is the time constant for the input current, #; is jth
firing time of the presynaptic neuron i, and ©(¢) is the
Heaviside step function with ©(f) =1 for =0 and
O(f) = 0 for 1<0.

There is one reward signal that dominates synaptic
reinforcement. This reward signal can be either positive or
negative. When the robot is at the goal, the reward signal is
positive (R = +7v), while the signal is negative when the
robot is out of the goal position (R = —y). A positive or
negative reward signal causes the eligible synapses to be
potentiated or depressed. The initial values of synaptic
weights are randomly chosen between 0.1 and 0.3. The
initial values of u, PSI and PPSC are all 0. The simulation
parameters are oo = 0.1, f = 0.1, tpg; = 10ms, Tppsc = 35,
n=1, tn=10ms, R, =1, QOnax = 0.02, 7, = 10ms, and
y = 0.1. The simulation time step is 1 ms. Pseudo-code of
the learning stage is provided in Fig. 5.

Each spike of the motor neurons generates a small
displacement (I mm) of the robot in the corresponding
direction. The direction and velocity of the movement are
determined by the firing rates of the motor neurons. For
example, if the firing rates of the motor neurons are 10, 32,
24, and 14Hz for the directions of left, right, forward,
and backward, respectively, then the direction and velocity
of the robot movement will be as shown by the bold
arrow in Fig. 6.

FOR ( ALL_SYNAPSE ) { Initializes ynapses
w = randombetween ( 0.1 , 0.3 ) }

WHILE (SIMULATION_PERIOD ) {

Robot moves randomly

ROBOT (RANDOM_WALK)

IF(ROBOT_AT_G OAL) R=+y

ELSE IF(ROBOT_OUT_OF_GOAL) R=-y

Calculate reward

FOR (ALL_NEURONS) {
u=u+(~u+RI) 7, -At
IF(u=1) u=0, GENERATE A SPIKE }

Calculate neuron dynamics

FOR (ALL_SYNAPSE) {

PSI = PSI — PSI At
Trst
ppsc =ppsc-LP5C
Tppsc

IF (PRESYNAPTIC_SPIKE) {
PSI = PSI +¢-(1— PSI)}
IF (POSTSYNAPTIC_SPIKE) {
PPSC = PPSC + f3- PSI -(1- PPSC)}

Calculate eligibility

w=w+n-R-PPSC-At
IF(w>1) w=1
IF(w<0) w=0 }

Update synaptic efficacy

Fig. 5. Pseudo-code for simulation.

32

A 4

24

<&
<

10

Fig. 6. An example for determining robot movement.

After learning for 1000s, the behavior of the robot is
illustrated in Fig. 7. The small circles denote the initial
positions of the flying robot while the X-marks represent
the final positions. The bold lines represent the velocity at
which the robot moves. From every starting position, the
robot approaches the goal position successfully. The time
history of the synaptic efficacies is recorded in Fig. 8. There
are four square patterns which denote the synaptic
efficacies of the sensory-motor connections. The intensity
of each pixel of the sub-square pattern indicates the
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synaptic efficacies between the sensory neurons and motor
neurons; a darker pixel indicates a higher synaptic efficacy.
If the robot is positioned as shown in Fig. 4a, the goal
is detected by the vision sensor at (2,8) and the sensor
neuron (2,8) is activated consequently. This activation
influences the motor neurons with the synaptic efficacies
Of W(2.8) - forwards W(2.8)—backward> W(2.8)—lefts a0 W(2.8) - right
and is represented by four dots at 200s in Fig. 8. As time
passes, the synaptic efficacies gradually turn into a
distinctive pattern such that the robot achieves a behavior
to move toward the goal. As a result, the synaptic efficacies
for forward and right movements (W(.s8)—forwarda and
W(2.8)—right) are strengthened as depicted by darker shade,
while the synaptic efficacies for left and backward move-
ments (Wogyoiert aNd W(28)backward) are weakened as
depicted by much lighter shade.

Fig. 7. The movement of the robot after 1000s of learning (drawn in the
global coordinate of the workspace).

W, JH—forward

5. Conclusions and future work

The use of the PPSC is proposed for reinforcement
learning in a spiking neural network. The PPSC is used to
determine the synaptic pathway eligible for reward, and
each synapse was reinforced only if the postsynaptic spike
occurred shortly after a presynaptic spike. The magnitude
of synaptic update exponentially decreases as a function of
time due to the property of the PPSC. The proposed
method was evaluated through a simulation with 85
neurons and 324 synapses for a goal-finding task based
on the input from the 9 x 9 pixel array of a vision sensor.
Training the neurons for 1000s resulted in the propensity
of the neurons to drive the mobile unit of the robot to the
goal.

Some may argue that the biologically inspired approach
is difficult to justify due to its inherent difficult nature of
performing experiment. But this should not confine us
within the intellectual domain where every phenomenon
has been already verified with experiments. Our history
revealed that synthesizing a model which cannot be verified
at the time of its establishment should not be ruled out.
When the Hebbian learning was first introduced from
Hebb’s postulate, he did not prove its validity through
biological experiments at that time. But now, we all accept
its validity. We believe that both the computational
neuroscientists and the biological neuroscientists should
look at each other’s approaches to complement the need in
explaining how nature takes its course.

In regard to the contribution of the present research, we
must say it is the method of determining the eligible
synapses using the dynamic models of two intracellular
substances. This introduction of intercellular substances is
expected to provide inspiration to biological experiments.

W(2.8)—forward

WR.8)—left

i L

W2.8)—rikht

8

N RS

!

2

)—backwald I

400 sec

0 0.5 1

synaptic efficacy

W(i, J)—backward 200 sec
0 sec
800 sec 1000 sec

Fig. 8. Transition of synaptic efficacies during learning.
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Understanding the relationship between the parameters
(o, B, tpsi, and tppgc) in the PSI and PPSC and the rate of
environment change is critical for learning efficiency. A fast
environmental change would require smaller values of the
time constants, but the optimal parameters with respect to
different rates of environmental change have yet to be
determined. The modeling of a dopamine system compa-
tible with a spiking neural network is also required for
reward prediction. In an animal test that examines the
dopamine prediction, it has been shown that the animals
can learn from an experimental environment and make
decisions better due to dopamine prediction and reinforce-
ment learning [12]. In a certain reinforcement case, an
earlier action should be encouraged rather than a later
action. For example, in the game of ‘noughts and crosses,’
the first move is more important than the last move. This
example might mislead us into believing that the eligibility
of the first move should be larger than that of the last
move. However, the reward prediction property of
dopamine neurons can explain this. The predicted reward
causes less dopamine release than the unpredicted reward.
Therefore, if the reward is predicted at the time of
performing the last move by repetitive learning, the
synaptic change for the last move by dopamine reinforce-
ment becomes weak. The STDP, reinforcement learning
and dopamine prediction model will be integrated and
tested using a mobile robot in a real-world environment.
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