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Abstract

We present a multi-population dynamic neural
network model with binary activation and a ran-
dom interaction pattern. The weights parame-
ters have been speci�ed in order to distinguish
excitatory populations from inhibitory popula-
tions. Under speci�c parameters, we design func-
tional modules composed of two populations, one
of excitatory neurons, one of inhibitory neurons.
Such modules are found to display a weak chaotic
activity, and to react toward incoming stimula-
tions with increasing synchronization. We also
present the design of topologically structured neu-
ral maps. We then combine such modules for the
design of a perception/action network composed
of one sensory module and two concurrent mo-
tor modules. Such a network is coupled with the
dynamics of an inverted pendulum, showing spon-
taneous phase transitions toward various attrac-
tors, each attractor corresponding to a particular
structural coupling within the agent/environment
system. This spontaneous versatility is then
exploited in a reinforcement learning paradigm
where two separate reinforcement path are de-
�ned, one for the positive rewards, the other for
the negative rewards. The learning experiment
shows a fast adaptation to the constraints, fol-
lowed by a slower phase where the behavior is im-
proved. No degradation of the behavior is found
for continuing learning, i.e. the learned behavior
is preserved for long lasting time.

1. Introduction

Brain structures at di�erent scales are in majority
composed of self-feeding connections, and the connec-
tions between di�erent structures/areas are always
reciprocal (see for instance (Hupé et al., 1998) for the

visual cortex). This massive recurrence suggests a
major role of self-feeding dynamics in the processes of
perceiving, acting, and learning, and more generally
in maintaining the organism alive. Lot of simulation
and theoretical work has been done about the spon-
taneous dynamic properties of massively connected
recurrent neural networks (Sompolinsky et al., 1988,
Doyon et al., 1993, Cessac, 1995,
Ben-Yishai et al., 1995, Hansel and Sompolinsky, 1996,
Camperi and Wang, 1998, Wang, 1999,
Compte et al., 2000, Moynot and Samuelides, 2002,
Izhikevich, 2003, Daucé, 2004), whereas lot remains to
be done on the question of the learning processes taking
place in such networks (Hertz and Prugel-Bennett, 1996,
Daucé et al., 1998, Daucé et al., 2002).
Reinforcement learning o�ers a relevant framework for

the study of such learning processes in large recurrent
networks. Reinforcement learning is a well-known semi-
supervised learning paradigm, where the environment
occasionally sends to the agent reinforcement signals,
which may be positive (reward) or negative (penalty).
The aim of a reinforcement learning algorithm is to mod-
ify the agent's behavior in order to maximise the re-
ward (and/or to minimize the penalty). This paradigm
is of course well adapted in case an agent has to ex-
plore an unknown environment, where foes and traps
have to be avoided and feeding sources and strategies
have to be found. The agent is supposed to adapt by
its own means, i.e. one can not select agents over gen-
erations, like in genetic algorithms. Every reinforcement
learning method needs an exploratory process in order
to test and experiment various structural couplings and
a selection process in order to retain the most appro-
priate ones. For instance, in statistical reinforcement
methods(Sutton, 1988, Watkins and Dayan, 1992), the
transitions probabilities are initially random and uni-
form in order to explore the largest scope of interactions,
so that learning tends to reduce the uncertainty, through



the selection of the most appropriate transitions.
The aim of this paper is to use some of the native

dynamical properties of large networks, such as chaos,
attractor switching and synchronization, as the core of
the exploratory process. We also want to bring reinforce-
ment methods one step closer to biological plausibility.
The paper is organized as follows. We �rst present the

formalism of the multi-populations neural model, com-
posed of several populations, which can either be purely
excitatory or purely inhibitory (section 2.). We then
present in section 3. some simulations showing the spon-
taneous dynamics of di�erent "modules" composed of ex-
citatory and inhibitory populations. Section 4. presents
the controller architecture. This controller is composed
of 3 functional modules : one sensory module an two mo-
tor modules. The last section presents our Hebbian re-
inforcement method, through di�erent protocols (closed
loop and on-line protocols), and simulations giving the
convergence properties under various parameter settings.

2. A dynamic network model

The full model formalism is given here. We tried by the
way to make this paper self-explanatory and testable1.

2.1 Model setting

Our model is a discrete-time dynamical system with par-
allel update, where the state of the system at time t both
depends on the previous state of the system x(t−1) and
on the input u(t− 1), i.e

x(t) = f(x(t− 1),u(t− 1)) (1)

where x is a state array, u is an input array and f is
a global (nonlinear) operator. One can notice that our
system is deterministic as soon as the input signal is set
according to a deterministic process.
A network is de�ned as a pool of P interacting popu-

lations of neurons, of respective sizes N (1), ..., N (P ). The
global number of neurons is N =

∑P
p=1 N (p). The synap-

tic weights from population q toward population p are
stored in a matrix J(pq) of size N (p) × N (q) (possibly
sparse). The state vector of population p at time t is

x(p)(t), of size N (p). The initial conditions x
(p)
i (0) are

set according to a random draw in {0, 1}.
At each time step t ≥ 1, ∀(p, q) ∈ {1, .., P}2,

h(pq)(t) = J(pq)x(q)(t− 1) (2)

is the local �eld array of population q toward population
p.
We also consider spatio-temporal input signals u(p) =

{u(p)(t)}t=1..+∞, where u(p)(t) is an input array of size

1Matlab code can be obtained by simple demand at
dauce@esm2.imt-mrs.fr.

N (p). The input u(p)(t) acts like a bias on each neuron2.
Then, the global equation of the dynamics is :

∀t ≥ 1,∀p ∈ {1, ..., P}

x(p)(t) = H

(
−θ(p) + u(p)(t− 1) +

P∑
q=1

h(pq)(t)

)
(3)

The activation potential, which corresponds to a lin-
ear combination of a�erent local �elds and input minus
activation threshold θ(p), is a real valued array. The ac-
tivation function H is the Heaviside function so that the
neuron state is a binary array, which takes its values in
{0, 1}.

2.2 Weights setting

2.2.1 Random Recurrent Neural Networks

Our network belongs to the category of Random Re-
current Neural Networks (RRNNs), so that the weights
obey to a random draw. The principal consequence of
this setting is the "almost sure" non-symmetry of the
connectivity pattern, so that one can not ensure the con-
vergence of the dynamics toward a �xed point attractor.
Autonomous RRNN's (i.e. ∀t,u(t) = 0 in eq.(1)) are
discrete time dynamical systems, that can for instance
display a generic quasi-periodicity route to chaos while
progressively increasing the gain of a continuous transfer
function (Doyon et al., 1993).
Each family of weights J(pq) (weights from popula-

tion q toward population p) are set according to a
uniform distribution. The main parameters are J̄ (pq)

(weights mean), σ
(pq)
J (weights standard deviation) and

ρ(pq) (weights sparsity), such that the expectation of

the weights is E
(
J

(pq)
ij

)
' J̄(pq)

N(q) and the variance is

var
(
J

(pq)
ij

)
'

(
σ

(pq)
J

)2

N(q) . The precise weights settings are

given in Annexe A.
The activation threshold θ(p) have scalar values (they

are identical for every neuron of a given population).

2.2.2 Biological constraints

In this paper, in order to remain coherent with elemen-
tary biological requirements, we rule the weights of a
given population q ∈ {1, ..., P} to be either purely exci-
tatory or purely inhibitory. This constraint implies addi-
tional dependencies between J̄ (pq), σ

(pq)
J , N (q) and ρ(pq).

The parameter ρ(pq) is derived from J̄ (pq) and σ
(pq)
J such

that :

• When J̄ (pq) > 0, the weights lower bound is 0, such
that every weight is positive or null.

2On the contrary to Hop�eld system (Hop�eld, 1982), the input
doesn't correspond to the initial state x(p)(0) of the network.



• When J̄ (pq) < 0, the weights upper bound is 0, such
that every weight is negative or null.

Details are in Annexe A.

3. Excitatory-inhibitory interactions

Most of the cortical an sub-cortical layers are composed
of interacting populations of excitatory and inhibitory
neurons. We present in this section a large scale struc-
ture of interaction that we further call a "module".
In order to take into account some basic physiological
features, we suppose that our two-populations module
grossly models a cortical column, such that :

• local dynamics dominate incoming signals.

• excitatory neurons can receive and send signals, in-
hibitory neurons only act locally.

• excitatory neurons represent 70-90% of the total pop-
ulation.

The parameters setting globally de�nes the way the
two populations interact, independently of the popula-
tion sizes (i.e. the dynamic properties are invariant with
the sizes, provided the sizes are larger enough, i.e. >50).
Two di�erent parameter settings are given in the follow-
ing sections.

3.1 Simple modules

The excitatory population is population 1. The in-
hibitory population is population 2. Inputs are only dis-
played on the excitatory layer, i.e. ∀i,∀t, u(2)

i (t) = 0 (see

eq.(3)). We take binary inputs such that ∀i, ∀t, u(1)
i (t) ∈

{0, 1}. We set the population sizes to N (1) = 1000,
N (2) = 200.
We de�ne two global parameters k and d which help

to de�ne the interaction pattern. The way the two pop-
ulations interact are characterized by the asymmetry k
between excitatory and inhibitory in�uences. Parameter
k acts on the mean value of weights distributions. The
eccentricity d mostly acts on the scattering/standard de-
viation of the weights such that :

J̄ =
(

1
2 −k

2
k
2 −k

2

)
σJ =

(
1
2d

√
k

2d√
k

2d

√
k

2d

)
The activation threshold relates to the individual ex-
citabilities. The thresholds are small, so that a small
excitation can initiate the neuron to spike. The thresh-
olds are of the order of 1/10 of the expanse of the weights
interval, i.e. θ(1) = 0.1, θ(2) = 0.1k.
We present on �gure 1 the reaction of a network to-

ward input presentation. Once the system de�ned, the
dynamical system (2-3) is initialized with a binary ran-
dom vector taking values in {0, 1}. The spontaneous ac-
tivity (without input) is displayed from t = 1 to t = 100.

This activity is weak, irregular, with a slight synchro-
nization (synchronous bursts appear as small peaks on
the mean activity). The synchronization is stronger on
inhibitory population. Then, an input is sent on 15 ex-
citatory neurons. This input appears as a black band
on �rst population activity. The network then tends to
become more synchronous with almost periodic bursts
of activity. This synchrony appears to be stronger in
the inhibitory population. When the input is removed,
the network turns back to its initial spontaneous weak
activity.

Figure 1: Input presentation. The network is composed

of N (1) = 1000 neurons and N (2) = 200 neurons. The ef-

fective sparsity are ρ(11) = 0.8%, ρ(12) = 11%, ρ(21) = 2%,

ρ(22) = 11%. An input is sent at time 100-200 on neurons

585-600. Upper left : global activity of the excitatory layer.

Lower left : mean activity on excitatory layer. Middle

right : global activity of the inhibitory layer. Lower right :

mean activity on inhibitory layer. Upper right insets :

distribution of the sum of incoming weights from excitatory

and inhibitory populations, for 1000 excitatory neurons (left)

and 200 inhibitory neurons (right).

The dynamical transition toward input presentation
can be compared to a phase transition, i.e. the cross-
ing of a bifurcation point in the parametric space.
This kind of phase transition during input presenta-
tion has been observed for long time in neurobiology,
see for instance (Skarda and Freeman, 1987), and also
(Mac Leod and Laurent, 1996). More generally, syn-
chronizing behaviors in unitary delays networks depend
on the asymmetry k, i.e. inhibition has to dominate exci-
tation for the network to produce synchrony. This point
has still be noted in simulation works, see for instance
(Bush and Sejnowski, 1996, Izhikevich, 2003).



3.2 Topologically organized modules

Topologically structured dynamical systems are de�ned
by a space (or a map, which de�nes a distance), a �eld,
possibly representing the states of uniformly distributed
units, and a process by which those units interact. The
nature of this interaction process is supposed to depend
on the distance. Topologically structured dynamical sys-
tems have been introduced in neural modeling with the
Neural Field of Amari (Amari, 1977).
Our maps are derived from Amari's neural map. We

thus introduce a topology in the weight structure: We
de�ne a parameter r(pq) which represents the neighbor-
hood density from population q toward population p
(also called neighborhood radius). The weights are thus
adapted according to the (normalized) distance between
neuron i and neuron j. The smaller is r(pq), the tighter is
the neighborhood. Close links are strongly enhanced (ac-
cording to the initial random draw) whereas distant links
fade to zero. One can notice that introducing a neighbor-
hood factor tends to increase the sparsity of the weights.
In concrete terms, every link such that d

(pq)
ij > πr(pq) is

suppressed, i.e. set to zero, such that for r(pq) ≤ 1, the
e�ective sparsity is ρ(pq)′ = r(pq)ρ(pq). We take a simple
1D closed ring geometry. Map settings are in Annexe B.
Topological maps are used as perceptual modules in

the next section. More details on random recurrent neu-
ral maps (as models of short term memory) can be found
in (Daucé, 2004).

4. Perception-action network

The 2-population networks we have described in previ-
ous sections are now combined in order to build a percep-
tion/action network. A functional module is composed
of 2 populations of neurons : one excitatory population
and one inhibitory population. As previously said, a
module can be seen as a rough approximation of a cor-
tical column. A module can own a topology or not :

• topologically structured modules are associated with
the perception processes;

• unstructured modules are associated with the action
processes.

Designing a perception-action network also means to
specify the environment through which the system in-
teracts, and also to specify a task. As a �rst lookahead,
we made the choice to minimize the environment com-
plexity and apply our system on a very well known and
documented task : the control of an inverted pendulum.
The environment is thus composed of 2 variables : the

angular position ϑ and the angular velocity ϑ̇, and its
dynamics is given by :{

dϑ
dt = ϑ̇
dϑ̇
dt = g sin(ϑ)− 2ϑ̇ + F

where g = 9.81 is the earth attraction and F is an exter-
nal force (coming by the control system). We suppose
that a measure of angular position ϑ can be done every 5
ms. The force F is also updated every 5 ms. The system
stable �xed point is ϑ = π. The task consists in main-
taining the angular position within given bounds, say
[−π/15, π/15], whereas the natural pendulum tendency
is to fall toward ϑ = π.

Figure 2: Motor output production. The upper �gure

gives an example of layer 3 activity, in case layer 3 is com-

posed of 20 neurons. The middle �gure presents layer 5 ac-

tivity in the same conditions. In that simulation, the two

layers are synchronized. The lower �gure presents the re-

sulting force, which comes from the di�erence of population

activities. Time is in ms.

The control system is composed of 3 modules, each
module owning two populations. In order to allow fast
simulations, we limited the module sizes to 260 neurons
(i.e. 200 excitatory neurons and 60 inhibitory neurons).

• The sensory module "S1" corresponds to populations
1 (excitatory) and 2 (inhibitory). Its topology is de-
�ned by r(11) = 0.2, r(12) = 0.6. The input is sent
on layer 1. It activates 2% of the neuron around the

reference position
⌊
N (1) ×

(
15ϑ(t)

2π + 1
2

)⌋
.

• Two motor modules are de�ned. Module "M1" corre-
sponds to populations 3 (exc.) and 4 (inh.), and mod-
ule "M2" corresponds to populations 5 (exc.) and 6
(inh.). The force F is de�ned as the di�erence be-
tween the mean activities of populations 3 and 5, i.e.

F (t) = 50
(
m(3)(t)−m(5)(t)

)
where m(p)(t) is the mean activity on layer p
(m(p)(t) ∈ [0, 1]). Modules M1 and M2 act concur-
rently, one leading to the left, the other leading to
the right. An example of network output is given on
�gure 2.



Figure 3: Interconnection pattern for the perception-

action network The network is composed of 6 populations.

Filled arrows represent excitatory connections. Un�lled ar-

rows represent inhibitory connections. A functional module is

composed of two strongly interconnected populations, one ex-

citatory and one inhibitory. Sensory module S1 is composed

of populations 1 and 2, motor module M1 of populations 3

and 4, motor module M2 of populations 5 and 6. Module

S1 owns a topology in its interconnection pattern (topolog-

ical links are mentioned with symbol �T�). The 3 modules

are interconnected through excitatory links (the inhibitory

neurons only act locally). Module S1 sends (excitatory) sig-

nals toward modules M1 and M2. Modules M1 and M2 can

inhibit each other through the excitation of their neighbor

inhibitory layer (dotted links). Those lateral interactions are

initially set to zero.

The global interconnection pattern is given on �gure 3.
The weights and threshold settings are comparable with
the ones of sections 3.. Weights parameters are k = 3
and d = 6 with :

J̄ =



1
2 − k

2 0 0 0 0
k
2 − k

2 0 0 0 0
1
2 0 1

2 − k
2 0 0

0 0 k
2 − k

2 0 0
1
2 0 0 0 1

2 − k
2

0 0 0 0 k
2 − k

2



σJ =



1
2d

√
k

2d
0 0 0 0√

k
2d

√
k

2d
0 0 0 0

1
2d

0 1
d

√
k

d
0 0

0 0
√

k
d

√
k

d
0 0

1
2d

0 0 0 1
d

√
k

d

0 0 0 0
√

k
d

√
k

d



We present on �gure 4 the spontaneous behavior of
the network/pendulum system. The initial pendulum
position is randomly set in interval [− π

30 , π
30 ] rad, and

the velocity is randomly set in interval [−0.2, 0.2] rad/s.
Some remarks can be made :

• Layer 1 activity directly adapts to the input, and
develops a local "bundle" attractor in the vicinity
of the stimulation. This attractor is driven by the
input. Its radius of this is of the order of 10% of the
map.

Figure 4: Spontaneous dynamics of the net-

work/pendulum system. Left : layer 1 activity. The in-

put (red trace) corresponds to the pendulum position which

is measured every 5 ms (i.e. one time step corresponds to

5 ms). The pendulum overtakes the perceptual �eld around

t = 2s. Upper right : layer 3 activity. Lower right : layer 5

activity. Middle right : network motor output, which is the

di�erence between layer 3 mean activity and layer 5 mean

activity. Time is in s.

• The activity of layers 3 and 5 organize under layer
1 in�uence. As in �gure 1, They tend to display a
synchronized activity when they get stimulated. The
property of synchrony allows to reach a signi�cant
global activity, which de�nes the force to be sent to
the output. The mean force amplitude is of the order
of 5 N. The maximum force amplitude is of the order
of 20 N.

• Even synchronized, the activity of layers 3 and 5 re-
mains chaotic, and their pattern of activity is both
driven by layer 1 activity and local reentrant activity
(the activity of layer 5 between 0.2 and 0.5 s is thus
mostly a self-feeding activity). This strong versatil-
ity in motor activity allows the system to explore and
experiment various motor responses.

• The activities of layers 3 and 5 are balanced, i.e. the
probability of a left command is almost the same as
the probability of a right command. There may be
only one layer to react to a given perceptual con�g-
uration, which can cause fast angular variations (for
instance between 0.2 and 0.5 s).

More generally, the network/pendulum system is found
to display a complex activity pro�le, where phase tran-
sition from one chaotic attractor to the other can be
observed within the pattern of activity (i.e. it is not
caused by an external parametric change). Such dy-
namics are often called itinerant chaotic dynamics, see



for instance (Tsuda, 1991). This property is of course
of great interest in the perspective of a sensory-motor
exploration where every attractor may correspond to a
structural coupling between the agent and the environ-
ment (Varela et al., 1991).

5. A Hebbian reinforcement learning

paradigm

5.1 Hebbian reinforcement in dynamic neural

networks

Our exploratory process relies on the self-generated
chaotic activity. We thus have to de�ne a selection pro-
cess through which the better con�gurations will be sta-
bilized (see introduction). We use for this purpose the
principle of the Hebbian trace. In an active network,
a Hebbian reinforcement factor can be de�ned accord-
ing to the pre-synaptic and post-synaptic activities, i.e.
∀(p, q) ∈ {1, ..., p}2

H(pq)
J (t) =

α(pq)

N
(pq)
a�

x(p)(t)x(q)(t− 1)
T

where x(q)(t− 1)
T
is the transpose of x(q)(t − 1). This

Hebbian term represents the correlated activities from
population q toward population p. In order to re�ne
the weight selection, we add a local factor called the
cooperative limitation factor. This factor is based on the
local �eld of the target neuron, i.e. ∀(p, q) ∈ {1, ..., p}2

H(pq)
J (t) =

α(pq)

N
(pq)
a�

[(
1−H(h(pq) − θ(p))

)
.x(p)(t)

]
x(q)(t− 1)

T

(4)

where the "." operator represents a term to term prod-
uct. It namely means that a weight adaptation will be
allowed if (and only if) the activation of the target neu-
ron relies on the cooperation between several local �elds,
i.e. for instance a cooperation between local recurrent
stimulation and distant stimulation. If the source neu-
ron is the only cause of target neuron activation, then no
adaptation is done (for it is not necessary to reinforce a
still strong connection). This factor reduces by 80-90%
the number of selected links.
Those Hebbian terms are calculated every time step,

and stored in a Hebbian trace with a slow decay, i.e.

T (pq)
J (t) = βT (pq)

J (t− 1) +H(pq)
J (t)

with β = 0.95, so that the "half-life" of a Hebbian trace is
20 time steps, i.e. 100 ms. The Hebbian trace thus mem-
orizes the most recent correlated activities from layer q
toward layer p.
The Hebbian trace being stored, the most delicate as-

pect of Hebbian reinforcement is the choice of the e�ec-
tive weights reinforcement according to positive or neg-
ative reward. In case of positive reward, the rule has to

Figure 5: The reinforcement path.

simulate and stabilize the current attractor. In case of
negative reward, the rule has to favor the transition to-
ward a di�erent pattern of activity, i.e. to "inhibit" the
current attractor. We thus de�ned two reinforcement
path, one devoted to positive rewards, the other devoted
to negative rewards (see �gure 5) :

• In case of positive reward, we both reinforce the exci-
tatory path between the sensory module and the mo-
tor modules (visuo-motor path), and also the lateral
connection toward the neighbor module inhibitory
population, in order to reinforce the most active
module in case of asymmetric activity (motor lateral
path).

• In case of negative reward, we only reinforce the path
corresponding to the motor module self inhibition, in
order to weaken the most active module in case of
asymmetric activity (local path).

Those reinforcements only take place on excitatory links,
and the learning rule is such that the selected links can
only be strengthened. The learning parameters are small
enough for the weights adaptation to remain weak ac-
cording to the weights initial values. We concretely set
α(31) = 0.1, α(51) = 0.1, α(63) = 0.15, α(45) = 0.15
for the positive reinforcement path, and α(43) = −0.15,
α(65) = −0.15 for the negative reinforcement path. The
other α(pq)'s are equal to zero.

5.2 Closed loop protocol

The closed-loop learning protocol is the following. The
angular position and velocities are randomly set accord-
ing in intervals [− π

30 , π
30 ] and [−0.2, 0.2]. Then, the

network/pendulum dynamics is iterated until a rein-
forcement signal is generated. The reinforcement signal
mainly relies on the pendulum velocity. The aim is to
maintain the velocity as small as possible i.e. :



• R(t) = 1 if t > 300 ms and |ϑ̇(t)| < 0.05 rad/s.

• R(t) = −1 if |ϑ̇(t)| > 0.5 rad/s or |ϑ(t)| > π
15

The weights are then modi�ed according to the Hebbian
trace :

If
(
R(t)T (pq)

J (t) > 0
)

J(pq) ← J(pq) + R(t)T (pq)
J (t)

Due to the decay term, only the most recent correlations
get reinforced through the current Hebbian trace. The
system is resetted after every trial. This series of op-
erations is repeated for numerous trials, while the the
weights get progressively modi�ed according to the re-
wards.

(a) (b)

(c)

Figure 6: Control adaptation during a learning exper-

iment. (a) Layer 1 activity displaying the pendulum control

after 200 trials. Time is in s on the x-axis. (b) Layer 1 ac-

tivity displaying the pendulum control after 1000 trials. (c)

Rewards evolution during 3000 trials with their mean value

on a sliding window of 100 trials (white line).

The result of a typical learning simulation is presented
on �gure 6. The experiment is repeated for 3000 trials.
The successive reward values are shown on �gure 6(c).
The main observations are :

• The mean reward rapidly increases during the �rst
steps of the experiment. Figure 6(a) shows that the
network is already controlling the pendulum after 200
trials, which is a rather fast result, even if the task

complexity is not too strong. The pendulum tra-
jectory owns a periodicity, with various amplitudes.
The network has learned to associate a negative force
with the upper map activity (i.e. layer 5 dominates
layer 3), and a positive force with the lower map ac-
tivity (i.e. layer 3 dominates layer 5), whereas the
two layers activities remain balanced in the middle
of the map. The pendulum amplitude is found to
increase so that it reaches the bound after 10 s.

• Then the mean reward slowly increases and seems to
reach a plateau between 1000 and 1500 trials. This
period corresponds to a control improvement. The
resulting control is more accurate and tight, as shown
on �gure 6(b). Most of the activity takes place on
the center of the map, where the two motor modules
balance each other, with small �uctuations on one
side or the other, so that the pendulum remains in
the vicinity of π = 0 for unbounded time.

• The control can be said to be achieved after 1000 tri-
als. However, we extended the number of trials in
order to test the preservation of the learned behav-
ior. Despite the slow reward decrease, we observed
no signi�cant alteration of the pendulum control ac-
curacy.

This experiment illustrates the feasibility of a rein-
forcement learning protocol on a dynamic neural net-
work using two separate Hebbian path which tend to
stabilize favorable interaction patterns. The learning of
the pendulum control is found to be very reproducible
and robust, and the learning protocol, although relying
on a simple Hebbian process, is found to be fast, giving
signi�cant results in 100-200 trials, and although capable
of a slow improvement.

5.3 On-line protocol

For the on-line protocol, we allow several rewards during
one trial, and there is no di�erence between exploration
and exploitation processes. The only reset condition is
the crossing of the angular bounds, so that the trial du-
ration is equal to the control duration. In order to ex-
periment various situations, we however limited the trial
duration to 1000 time steps (i.e. 5s), so that our on-line
protocol is not a "pure" on-line protocol.
Three improvements are moreover introduced in order

to avoid weight drift :

• The rewards are adaptive, i.e. the reward amplitude
depends on its probability of appearance (habitua-
tion principle). When most of the rewards are neg-
ative, a positive reward is more signi�cant. On the
contrary, when most of the rewards are positive, a
negative reward is more signi�cant. We thus de�ne
a mean reward trace r, initially equal to 0. Then,



r′ = 0.9r + 0.1 in case of positive reinforcement, and
r′ = 0.9r−0.1 in case of negative reinforcement, such
that R(t) = (1 − r′)/(r′ + 1) in case of positive re-
inforcement, and R(t) = (1 + r′)/(r′ − 1) in case of
negative reinforcement. Then, r is updated with the
value of r′, and the process goes on until the next re-
inforcement. A typical series of reinforcement values
is given on �gure 7.

• A slight forgetting term is added on the Hebbian rule,
i.e.

If
(
R(t)T (pq)

J (t) > 0
)

∆J(pq) ←
(
1− R(t)

1000

)
×∆J(pq) + R(t)T (pq)

J (t)

J(pq) ← J(pq)
0 + ∆J(pq)

with ∆J(pq) initially set to 0 and J(pq)
0 is the initial

weight matrix.

• The minimal interval between 2 di�erent rewards is
20 time steps i.e. 100 ms.

Figure 7: Series of reward values in a typical on-line

learning session.

With those improvements, we empirically tested the con-
vergence properties of our method, under three condi-
tion. Every condition has been tested on 20 networks.
The �rst condition corresponds to the reinforcement
path given in �gure 5. In the second condition, the pos-
itive path is limited to the visuo-motor path (no lateral
reinforcement). In the third condition, the positive path
is limited to the motor lateral path (no visuo-motor re-
inforcement). Under those three conditions, we tested
the median control duration over the 20 networks, for
increasing trial numbers (i.e. ongoing learning process).
the median control duration is measured over 20 net-
works, in a 10 trials width window (i.e 100th control
duration over 200 control duration values around trial
number +/-5). Note that every simulation was stopped
after 5s of control, so that the mean would not be repre-
sentative of the real control duration. Results are given
on �gure 8.

Figure 8: Median control duration under three rein-

forcement conditions. Trial number is on the x-axis, me-

dian control duration over 20 networks is on the y-axis (in

seconds). The plain line corresponds to the full positive re-

inforcement path condition. The dashed line corresponds to

the single visuo-motor path. The dotted line corresponds to

the single motor lateral path.

This �gure is self explanatory. First of all, the dual
learning path (visuo-motor/motor-motor) is robust and
operant over every network we tested. 40 to 50 trials
are necessary for displaying a robust pendulum control
(often less!). Second, single local path reinforcement or
single visuo-motor path reinforcement do not display any
signi�cant increase of the control duration. A tight co-
operation between the two processes is thus found to be
necessary for the process to converge. The activation of
the two path thus appears as a necessary condition for
the learning process to be e�ective.
The nature of the process taking place during learning

is not fully highlighted at present time. We can however
give some clues :

• The negative reinforcement path doesn't seem to take
much part in the reinforcement process. This mostly
relies on limitations induced by the cooperative fac-
tor (eq. 4). Indeed, the local excitatory population
is initially the only source of activation for the in-
hibitory population, until the learning process allows
lateral inhibition to be activated. In the current set-
tings of the network, the negative reinforcement path
is not fully operant in the �rst steps of the learning
process.

• The selection of a proper motor command relies on an
exploration/selection process, where the exploration
grounds on the versatility of spontaneous chaotic ac-
tivity. The positive rewards often occur when one of



the two motor layers overtakes the other, so that a
light inbalance tends to be twice consolidated by the
process : the stronger layer receives a supplementary
activation from the sensory layer through the visuo-
motor path, and simultaneously weakens the activity
of its neighbor throuh the motor lateral path.

• There are however some severe limitation in the com-
petition process which avoid the learning process to
diverge. First, the cooperative limitation factor pre-
vents the motor layers to be too strongly driven by
the sensory layer (the sensory layer activation can
not overtake local activation). Second, the indi-
rect neighbor inhibition prevents to extinguish the
neighbor activity. It must indeed be known that lo-
cal excitatory-inhibitory interactions tend to produce
synchrony. An indirect e�ect of the lateral inhibition
reinforcement is to increase the synchrony (and thus
the cooperation) between the two motor layers.

• Why is one path such necessary to the other for the
full process to collapse in case one is missing? One
can just conjecturate that the two path may balance
each other, as the visuo-motor path feeds the mo-
tor excitatory layers and the lateral path feeds the
inhibitory layers, so that the global level of activ-
ity may remain approximately equal. When one of
the two path is missing, the network activity may
diverge, either with an excess of excitation or inhibi-
tion.

6. Outlook

So the main results of our simulation experiment is to
demonstrate the feasibility of reinforcement learning us-
ing the intrinsic dynamical properties of large random re-
current networks, and a biologically compatible Hebbian
learning rule. The reinforcement experiment we pre-
sented can be seen as a �rst lookahead toward more com-
plex and realistic learning tasks, possibly taking place on
real robotic agents. There is a need of intensive simu-
lation toward various constraints, environments and re-
inforcement signals in order to stabilize the parameters,
learning protocol and operational/generalization capa-
bilities. One can also ask whether several concurrent
behaviors may be learned in the same network. One can
for instance imagine a robotic agent with several sensory
modules exciting several concurrent motor modules, each
one devoted to the control of a particular muscle �exion
or extension.
More generally, this article aimed to demonstrate the

relevance of a dynamic system framework in neural mod-
eling and control, which may provide a uni�ed approach
at di�erent scales, including the neural level, the struc-
tural level and the agent/environment interaction level
(Guillot and Daucé, 2002). Such an approach could help
to shed new lights on biological functions and structures,

and also to give new protocols and methodologies for the
design of arti�cial life-like systems. This work is thus to
be completed.

Annexe A : Weights settings

For two given populations p and q, we set ρ0 =

(
J̄(pq)

)2

3
(

σ
(pq)
J

)2
N(q)

and

ρ(pq) = 4ρ0
1+3ρ0

, which is the sparsity. We also set σ∗ =
σ
(pr)
J√

4−3ρ(pq)
,

which is the e�ective weights deviation and N
(pq)
a� = ρ(pq)N(q) rep-

resents the expectation of the number of a�erent weights arriving

from population q. N
(pq)
a� is such that

∣∣∣∣ J̄(pq)

N
(pq)
a�

∣∣∣∣ − √
3

N
(pq)
a�

σ∗ = 0,

i.e. N
(pq)
a� =

(
J̄(pq)

)2

3(σ∗)2
.

A given weight J
(pq)
ij is then equal to 0 with proba-

bility 1 − ρ(pq), and takes its value randomly in inter-

val

[
J̄(pq)

N
(pq)
a�

−
√

3

N
(pq)
a�

σ∗, J̄(pq)

N
(pq)
a�

+
√

3

N
(pq)
a�

σ∗

]
, with probability

ρ(pq), i.e.

J
(pq)
ij =


J̄(pq)

N
(pq)
a�

+ σ∗√
N

(pq)
a�

b with probability ρ(pq)

0 with probability (1− ρ(pq))
(5)

where b is set according to U(0, 1), which is a uniform distribution
in [−

√
3,
√

3].

Annexe B : Map settings

∀i ∈ {1, ..., N(p)}, ∀j ∈ {1, ..., N(q)}, we calculate the distance

δ
(pq)
ij = 2π ×min

(∣∣∣i/N(p) − j/N(q)
∣∣∣ , 1−

∣∣∣i/N(p) − j/N(q)
∣∣∣)

so that δij ∈ [0, π], and then we calculate a gaussian normalized
neighborhood factor

ν(pq)(δ) =

√
2π

r(pq)
exp

(
−

1

2

(
δ/r(pq)

)2
)

We �nally modify the weights according to this neighborhood fac-
tor

J̃
(pq)
ij = J

(pq)
ij × ν(pq)

(
δ
(pq)
ij

)
Knowing that

•
∫∞
0 ν(pq)(δ)dδ = π, and, for small r(pq),

∫ π
0 ν(pq)(δ)dδ ' π.

• The repartition of δ
(pq)
ij 's is uniform in [0, π],

For r(pq) < 1, weights enhancements and weights decays are glob-
ally balanced, so that the expectation of the weights remains un-
changed by this transformation. On the contrary, the weights stan-
dard deviation is increased by a factor of the order of 1/r(pq). In
order to avoid too large weights distortion, we de�ne a adaptation
factor which is designed in order to approach 1/r(pq) for r(pq) < 1,

and 1 for r(pq) ≥ 1, i.e. κ(pq) = 1 +
exp

(
−

(
r(pq)

)2
)

r(pq) and the

weights standard deviation is set to σ(pq)′ = σ(pq)√
κ(pq)
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