o

Sy,
ZKTHS

VETENSKAP
3% OCH KONST 9%

Srsss®

KTH Computer Science
and Communication

Embodied Evolution of Learning Ability

STEFAN ELFWING

Doctoral Thesis
Stockholm, Sweden 2007

TRITA-CSC-A 2007:16

ISSN-1653-5723 KTH School of Computer Science and Communication
ISRN-KTH/CSC/A--07/16--SE SE-100 44 Stockholm
ISBN 978-91-7178-787-3 SWEDEN

Akademisk avhandling som med tillstand av Kungliga Tekniska hogskolan framlég-
ges till offentlig granskning for avlaggande av teknologie doktorsexamen méandagen
den 12 november 2007 kl. 10.00 i sal F3, Lindstedtsvagen 26, Kungliga Tekniska
hégskolan, Stockholm.

© Stefan Elfwing, november 2007

Tryck: Universitetsservice US AB

Abstract

Embodied evolution is a methodology for evolutionary robotics that mimics
the distributed, asynchronous, and autonomous properties of biological evolu-
tion. The evaluation, selection, and reproduction are carried out by coopera-
tion and competition of the robots, without any need for human intervention.
An embodied evolution framework is therefore well suited to study the adap-
tive learning mechanisms for artificial agents that share the same fundamental
constraints as biological agents: self-preservation and self-reproduction.

The main goal of the research in this thesis has been to develop a frame-
work for performing embodied evolution with a limited number of robots, by
utilizing time-sharing of subpopulations of virtual agents inside each robot.
The framework integrates reproduction as a directed autonomous behavior,
and allows for learning of basic behaviors for survival by reinforcement learn-
ing. The purpose of the evolution is to evolve the learning ability of the
agents, by optimizing meta-properties in reinforcement learning, such as the
selection of basic behaviors, meta-parameters that modulate the efficiency of
the learning, and additional and richer reward signals that guides the learning
in the form of shaping rewards. The realization of the embodied evolution
framework has been a cumulative research process in three steps: 1) investiga-
tion of the learning of a cooperative mating behavior for directed autonomous
reproduction; 2) development of an embodied evolution framework, in which
the selection of pre-learned basic behaviors and the optimization of battery
recharging are evolved; and 3) development of an embodied evolution frame-
work that includes meta-learning of basic reinforcement learning behaviors
for survival, and in which the individuals are evaluated by an implicit and
biologically inspired fitness function that promotes reproductive ability. The
proposed embodied evolution methods have been validated in a simulation
environment of the Cyber Rodent robot, a robotic platform developed for
embodied evolution purposes. The evolutionarily obtained solutions have
also been transferred to the real robotic platform.

The evolutionary approach to meta-learning has also been applied for au-
tomatic design of task hierarchies in hierarchical reinforcement learning, and
for co-evolving meta-parameters and potential-based shaping rewards to ac-
celerate reinforcement learning, both in regards to finding initial solutions
and in regards to convergence to robust policies.

Keywords: Embodied Evolution, Evolutionary Robotics, Reinforcement Learn-

ing, Shaping Rewards, Meta-parameters, Hierarchical Reinforcement Learn-
ing, Learning and Evolution. Meta-learning, Baldwin Effect, Lamarckian
Evolution.

iii

iv

Contents

Contents

1 Introduction

1.1 Scientific Contributions
1.2 Outline
1.3 Acknowledgments Lo
2 Reinforcement Learning
2.1 Introduction
2.2 Basic Concept e
2.3 Markov Decision Process L.
2.4 Temporal-Difference Learning
2.5 Eligibility Traces e
2.6 Action Selection
2.7 Generalization by Value Function Approximation
3 Meta-Properties in Reinforcement Learning
3.1 Introduction
3.2 Shaping Rewards
3.3 Meta-Parameters Lo oo
3.4 Hierarchical Reinforcement Learning
3.4.1 Semi-Markov Decision Process
342 Options e
3.4.3 The MAXQ Framework
344 MAXQExample
4 Artificial Evolution
4.1 Genetic Algorithms o
4.2 Genetic Programming oL oo
4.3 Learning and Evolution
4.4 Evolutionary Robotics 0.
4.5 Embodied Evolution 0o,
4.6 The Cyber Rodent Robot

19
19
20
22
23
24
24
26
28

vi Contents

5 Summary of Included Papers 47
5.1 Paper I: Multi-Agent Reinforcement Learning: Using Macro Actions
to Learn a Mating Task 47
5.2 Paper II: Biologically Inspired Embodied Evolution of Survival . . . 48
5.3 Paper III: Darwinian Embodied Evolution of the Learning Ability
for Survivalo 48
5.4 Paper IV: Co-Evolution of Shaping Rewards and Meta-Parameters
in Reinforcement Learning 49
5.5 Paper V: Evolutionary Development of Hierarchical Learning Struc-
tureso 50
6 Concluding Remarks 51
6.1 Future Research Directions 52
Bibliography 55
Paper I 63
Paper 11 71
Paper III 81
Paper IV 117

Paper V 139

Chapter 1

Introduction

The topic of this thesis is meta-learning in an evolutionary context. The research
has been conducted within the Cyber Rodent project (Doya and Uchibe, 2005), and
the objective of the thesis is well summed up in the goal of the project: to investi-
gate the origins of our reward and affective systems by building artificial agents that
share the same intrinsic constraints as biological agents, namely self-preservation
and self-reproduction. More specifically, the main objective of thesis is the devel-
opment of a framework for performing embodied evolution with a limited number
of robots, by utilizing time-sharing of subpopulations of virtual agents inside each
robot. Embodied evolution (Watson, Ficici, and Pollack, 2002) is a methodology
for evolutionary robotics (Nolfi and Floreano, 2000), where a population of robots
freely interact with each other, and the evaluation, selection, and reproduction are
performed in an autonomous and distributed manner between the robots, without
any need of human involvement. A distinctive feature of evolutionary robotics and
embodied evolution is the design of the fitness function. Ideally, the fitness func-
tion should only consider the behavioral outcome and consists of as few components
as possible. The proposed embodied evolution framework applies an implicit and
biologically inspired selection scheme, in which there is no explicit representation
or communication of the individuals’ fitness information. An individual can only
reproduce offspring by exchanging genotypes with individuals that control other
robots in the environment, and the probability of reproducing offspring is depen-
dent on the individual’s “health” at the mating occasion. The standard approach in
evolutionary robotics is to directly evolve the behaviors of the individuals, which are
typically controlled by a neural network. In this thesis, the evolutionary objective
is instead to evolve the learning ability of the individuals, by optimizing parameters
that: 1) control the selection of basic learning behaviors according to the current
environmental state and the individual’s internal energy level; 2) directly influence
the learning updates or controls the exploration of the environment, called meta-
parameters, and 3) modulate additional and richer reward signals in the form of
shaping rewards. The combination of learning and evolution used in this thesis is

2 CHAPTER 1. INTRODUCTION

related to the work by Floreano and Mondada (1996) and Urzelai and Floreano
(2000). Instead of directly evolve the weights of a neural controller, they evolved,
for each synapse, the learning rule for updating the strength of the synapse and a
meta-parameter that controlled the learning rate of the update.

Reinforcement learning is a computational approach to learning from the in-
teraction between an agent and its environment, to achieve a goal. Reinforcement
learning algorithms have been successfully applied to play backgammon at master
human level (Tesauro, 1994, 1995), perform space shuttle pre-launch scheduling bet-
ter than NASA’s engineers (Zhang and Dietterich, 1995), and perform autonomous
helicopter flight on a real RC helicopter (Abbeel, Coates, Quigley, and Ng, 2007).
There is also strong evidence for believing that reinforcement learning is a plausible
learning mechanism in animals. For example, Schultz, Dayan, and Montague (1997)
showed in monkey experiments that the activation of dopamanergic cells predicts
rewards according to reinforcement learning theory. The common characteristic of
all successful reinforcement learning applications for robotics and control systems
is that they require tuning of meta-properties of the reinforcement learning algo-
rithms, in the form of domain knowledge provided by the human designer. In this
thesis, all properties that are not specified by the reinforcement learning algorithms
are considered meta-properties. From an engineering perspective, the optimization
of meta-properties is a difficult issue, because of the large search space of potential
solutions, and because of the perspective of the human designer differs from the
perspective of the agent performing the task. The agent’s behavior is an emer-
gent property of sensorimotor interactions between the agent and the environment,
which are difficult to predict in advance. From our more biological perspective, it
is natural to use an evolutionary approach to meta-learning. At least this is true in
nature, since learning in animals is the result of an evolutionary process, albeit a
very long process. Advantages of an evolutionary approach include that: 1) evolu-
tionary computation methods are global and model-free search techniques; 2) it is
possible to co-evolve different meta-properties that may influence each other; and
3) the specifics of the task and environment are naturally considered. In addition to
the development of the embodied evolution framework, the evolutionary approach
to meta-learning is also applied as a design tool for automatic optimization of meta-
properties in reinforcement learning. The considered applications in this thesis are:
1) decomposition of an overall task into suitable subtasks and, thereby, construct-
ing a task hierarchy that is adapted to both the task and the environment, and 2)
co-evolution of meta-parameters and shaping rewards to improve the learning both
in regards to initial performance and in regards to convergence speed to robust
policies.

1.1. SCIENTIFIC CONTRIBUTIONS 3

1.1 Scientific Contributions

This thesis is based on five papers presented at conferences or published in, or
submitted to, journals related to machine learning, robotics, adaptive behavior,
autonomous artificial systems, and evolutionary computation.

The five appended papers are

I. Stefan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. (2004).
Multi-Agent Reinforcement Learning: Using Macro Actions to Learn a Mat-
ing Task. In Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS-2004), pages 3164-3169.

II. Stefan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. (2005).
Biologically Inspired Embodied Evolution of Survival. In Proceedings of the
IEEFE Congress on Evolutionary Computation (CEC-2005), pages 2210-2216.

ITI. Stefan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. (2007).
Darwinian Embodied Evolution of the Learning Ability for Survival. Submit-
ted to Adaptive Behavior.

IV. Stefan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. (2007).
Co-Evolution of Shaping Rewards and Meta-Parameters in Reinforcement
Learning. Submitted to Adaptive Behavior.

V. Stefan Elfwing, Eiji Uchibe, Kenji Doya, and Henrik I. Christensen. (2007).
Evolutionary Development of Hierarchical Learning Structures. IEEE Trans-
actions on Evolutionary Computations, 11(2):249-264.

1.2 Outline

This thesis is organized around five appended papers. Before the papers, the back-
ground chapters present the technical background, and my perspectives and moti-
vations behind this work.

Chapter 1 is a general introduction. Chapter 2 presents the technical back-
ground of standard reinforcement learning, eligibility traces, and value function ap-
proximation. Chapter 3 discusses the limitation of the knowledge-free assumption
in standard reinforcement learning, and presents and motivates three approaches
to introduce domain knowledge in reinforcement learning. Chapter 4 introduces
the background of genetic algorithms, genetic programming, evolutionary robotics,
and embodied evolution. Chapter 4 also presents and motivates the specifics of the
evolutionary meta-learning approaches used in this thesis. Chapter 5 summarizes
the appended paper and highlights the scientific contributions. The background
concludes with Chapter 6, which also discusses possible future research directions.

4 CHAPTER 1. INTRODUCTION

1.3 Acknowledgments

My graduate studies have been a joint collaboration between Sweden and Japan.
I would first like to thank the persons who made this arrangement possible, my
supervisors Henrik I. Christensen and Kenji Doya. I thank Eiji Uchibe for his
extensive knowledge of everything related to robotics and the software development
of the Cyber Rodents, without which this work could not have been done. T am
grateful to all three for inspirational ideas, valuable feedback, and support from the
start of my graduate studies to the completion of this thesis.

This work has been supported by a shared grant from the Swedish Founda-
tion for Internationalization of Research and Education (STINT) and the Swedish
Foundation for Strategic Research (SSF). The funding is gratefully acknowledged.

This thesis is dedicated to my wife Myriam and our two sons Marcel and Jack.

Chapter 2

Reinforcement Learning

This chapter presents the basic theory of reinforcement learning, eligibil-
ity traces, and value function approximation. The focus is on model-free
temporal difference learning, which is the basis for all learning in this
thesis. Along the way pointers are given to alternative reinforcement
learning approaches.

2.1 Introduction

Reinforcement learning (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998) is
a computational approach to learning from the interaction between an agent and its
environment to achieve a goal. The main difference between reinforcement learning
and supervised learning is that there is no teacher telling the agent which actions
to take. Instead, the only feedback received by the agent, from the environment,
are scalar reward values, indicating the values of the state transitions. The rein-
forcement learning agent has to learn, by trial-and-error search, which actions yield
most rewards over time. The trade-off between exploiting and exploring is a distin-
guishing feature of reinforcement learning. The ezploitation-exploration dilemma is
also a major challenge for reinforcement learning, because the agent has to exploit
its accumulated knowledge to obtain rewards, but at the same time, the agent has
to explore the environment to gain new knowledge and, thereby, be able to make
better action selections in the future. This is especially true for stochastic tasks, in
which each state-action pair has to be tried repeatedly to get a reliable estimate of
its expected reward.

In most interesting problems, an action not only affects the immediate reward,
but also the next state and, thereby, all subsequent rewards. Delayed rewards are
another distinguishing feature of reinforcement learning. The agent may have to
select a long sequence of actions, receiving insignificant rewards, to reach a state
with large reward. The reward feedback then has to be propagated back along
the path of preceding states to give correct estimates of the values in the earlier

5

6 CHAPTER 2. REINFORCEMENT LEARNING

states. Consider the example of a reinforcement learning agent playing chess. The
agent receives a reward of +1 for a won game, —1 for a lost game, and 0 for a
draw. If a game ends after 40 moves, how much credit for the final outcome should
the agent assign to the action performed at move 207 This problem, the temporal
credit assignment problem, is another major challenge that has to be addressed for
effective learning.

In problems with large or continuous state spaces, i.e., the interesting domain for
robotic tasks, the reinforcement learning agent has to address a second assignment
problem, the structural credit assignment problem. In such problems the agent can
not visit all possible states and thereby not estimating the value of each state-
action pair directly. Therefore, the agent has to generalize over the state space, by
assigning similar estimated values to states with similar structures.

2.2 Basic Concept

This section contains the description of the basic concept of reinforcement learning.
The state space, the action space, and the time steps are assumed to be discrete.
Each time step the learner, called an agent, executes an action, which immedi-
ately changes the environmental state, and the agent receives a reward from the
environment (Figure 2.1).

state action

Environment

Figure 2.1. The agent-environment interaction in reinforcement learning.

Formally, in each time step, t = 0,1,2,..., the agent receives a representation
of the state of the environment, s; € S, where S is the set of all possible states.
On the basis of s; the agent selects an action, a; € A(s), where A(s) is the set
of all possible actions in state s;. The environment then makes a transition from
S¢ to Sty1, and the agent receives a scalar reward, m.11 € 8. The goal of the

2.3. MARKOV DECISION PROCESS 7

reinforcement learning agent is to learn a state-action mapping, called a policy, m,
that maximizes the reward over time. m;(s,a) = P(a|s;) is the probability of that
action a; = a, given state s; = s. The most common goal used in reinforcement
learning, and the goal used in this thesis, is to maximize the expected accumulated
discounted reward over time, called the discounted return, R;, defined as

o0
Ry = Aripksa, (2.1)
k=0

where the parameter 0 < v < 1 is called the discount rate. v determines the value
of future rewards at the current state, and thereby how farsighted the agent is.
If ~ is zero, then the agent only tries to maximize the immediate rewards. As 7
approaches one, future rewards are more strongly weighted in the calculation of R;.
An alternative to discounting is to maximize the average reward per time step
(Mahadevan, 1996), which, in theory, is more appropriate for cyclic tasks.

2.3 Markov Decision Process

Almost all reinforcement learning algorithms realize the goal of maximizing the
expected discounted return by estimating wvalue functions. Value functions are
functions of states (or of state-action pairs) that estimate the value, with respect
to a policy, of a given state (or a given action in a given state). The estimation of
value functions is based on the assumption that reinforcement learning problems
satisfy the Markov property and can be considered a finite Markov decision process
(MDP). A reinforcement learning problem is a finite MDP if the state space and
the action space are finite, and if the state at time ¢ + 1, s¢y1, only depends on the
previous state, s¢, and action, a;. A finite MDP is defined by the state and action
spaces, and the one-step dynamics of the environment. Given a state, s, and an
action, a, the transition probability of the each possible next state, s’, is

P(s'|s,a) = P(sy11 = §'|s¢ = s,a; = a), (2.2)
and the expected value of the next reward, R(s'|s,a), is
R(s'|s,a) = E{rii1]s: = s,ar = a, 8441 = §'}. (2.3)

For a MDP, the value of state s under a policy m, the state-value function V™, is
the expected return when starting in state s, and following the policy :

V™(s) = Ex{R¢|st = s} = E, {Z Yorerglse = s} . (2.4)

k=0

Similarly, the value of selecting action a in state s under a policy 7, the action-value
Sfunction Q7, is defined as

Q" (s,a) = Ex{R¢|st = s,a; = a} = E, {Z 'ykrt+k+1|st =s,a; = a} . (2.5)

k=0

8 CHAPTER 2. REINFORCEMENT LEARNING

The state-value for any state s and policy 7, V™ (s), can be recursively defined,
using dynamic programming techniques (Bellman, 1957), by the Bellman equation
for V™, as

V7™(s) = Z (s,a) ZP (s'|s,a) [R(s|s,a) + vV (s")]. (2.6)

The Bellman equation for Q™ is defined as

a) = ZP(8'|5,LL) R(s'|s,a) + ’yZW(s',a')Q”(s',a') . (2.7)

*

For a finite MDP the optimal policy, 7%, i.e., the objective of the learning, can
be defined exactly. A policy is optimal, 7* > 7, if and only if V™ (s) > V7™(s)
for all s € S and all policies 7 . The optimal policies (there is at least one policy
that is better or equal to all other policies) share the same state-value function, the
optimal state-value function V*. The Bellman equation for V* is defined as

V*(s) = max V™ (s maXZP "Is,a) [R(s']s,a) + yV*(s")]. (2.8)

s

The optimal polices also share the same optimal action-value function, @*, defined
as

Q*(s,a) = maXQ’T (s,a) ZP "Is,a [(s'|s,a) +’ymz}xQ*(s',a')] . (29

Given the optimal action-value function, the computation of the optimal policy is
straightforward. For all states, the optimal policy is equal to the greedy policy,
defined as

m*(s) = arg max Q*(s,a). (2.10)

An alternative to value function-based reinforcement learning is policy gradient
reinforcement learning (Williams, 1992; Sutton, McAllester, Singh, and Mansour,
2000; Baxter and Bartlett, 2001), which has attracted attention in recent years.
Instead of estimating the value function and using that estimate to derive the policy,
policy gradient reinforcement learning algorithms estimate the parameterized policy
directly, using gradient-descent techniques.

2.4 Temporal-Difference Learning

The probably most central and novel idea proposed in reinforcement learning the-
ory is temporal-difference (TD) learning. TD-learning combines ideas from Monte
Carlo methods, i.e., learning from experience without a model of the environmen-
tal dynamics, and dynamic programming, i.e., updating the estimates of the value
function based on other learned estimates, without the need to wait for the final

2.4. TEMPORAL-DIFFERENCE LEARNING 9

result, called bootstrapping. Bootstrapping is a key feature of TD algorithms, be-
cause it makes it natural to implement TD algorithms on-line in a fully incremental
fashion. The central part of TD-learning is the T'D-error, &, defined as

value prediction

—_—
(St = Tt4+1 + ’YV(SIH»I) —V(St) (211)

In TD-learning the agent learns the value function by the difference between tem-
porally successive value predictions. For the simplest TD method, TD(0), the value
function is updated as

Ot
Vi(st) < Vi(st) + 04[%4—1 +9V(s¢41) — V(St)], (2.12)

where 0 < a < 1 is a step-size parameter called learning rate. For any fixed policy
7, TD(0) is guaranteed to converge to V'™, given sufficient decay of « and that there
is sufficient exploration of the environment.

The extension of TD-learning to action-value functions are straightforward. The
two probably most popular and well studied TD-learning algorithms are Sarsa (Rum-
mery and Niranjan, 1994; Sutton, 1996) and Q-learning (Watkins, 1989), and they
are the basis for all learning in this thesis. Sarsa is an on-policy algorithm, learning
an estimate of the action-value function while the agent follows a particular policy.
For simplest version of Sarsa, Sarsa(0), the Q-values are updated according to

&¢

Q(Su at) — Q(St, at) + Oé[Tt-H + 7Q(3t+17at+1) - Q(3t7at> } (2-13)

Q-learning is an off-policy algorithm, learning an estimate of the action-value func-
tion independently of the policy followed by the agent. For the simplest version of
Q-learning, one-step Q-learning, the @-values are updated according to

0t

Q(se,ar) — Q(s¢,ar) + a[rtH + 'yrr}le,mx Q(st11,a") — Q(s¢, ar)] (2.14)

Both Sarsa and Q-learning are proved to converge with a probability of 1 to the
optimal policy and action-value function. However, the convergence proof for Q-
learning is stronger, enabled by the fact that Q-learning estimates the optimal value
function directly, without reference to the agent’s exploratory policy.

Both Q-learning and Sarsa are model-free algorithms. The alternative is to learn
an optimal policy by learning a model of the problem, i.e., the transition probability
P(s'|s,a) and the expected reward function R(s’|s,a). Examples of this approach
are the Dyna algorithm by Sutton (1990), and Prioritized Sweeping by Moore and
Atkeson (1993)

10 CHAPTER 2. REINFORCEMENT LEARNING

2.5 Eligibility Traces

Eligibility traces is a basic mechanism for temporal credit assignment, and, thereby,
to increase the efficiency of reinforcement learning algorithms. For action-value-
based algorithms, each state-action pair is associated with a memory, the eligibility
trace, e¢(s,a). The TD-error, d;, is propagated back along the trajectory of state-
action pairs leading to state s;, decaying by v per time step. The eligibility traces
versions of Sarsa(0) and one-step Q-learning are called Sarsa(A) and Q(A), and both
update the Q-values according to

Q(s,a) — Q(s,a) + adies(s, a) for all s, a (2.15)

where 0, is defined as in Equation 2.13 for Sarsa()), and as in Equation 2.14 for
Q(A). There are two basic implementations of traces, called accumulating traces
and replacing traces. Accumulating traces for Sarsa(\) are defined as

et(s,a) = { L+72e-1(s,0) if s =5 and a = ay; for all s, a, (2.16)

yAer—1(s,a) otherwise.

where the trace-decay rate, 0 < A < 1, controls the exponential decay of the traces.
Q-learning is more difficult than Sarsa to combine with eligibility traces, because
the learned policy, the greedy policy, is different than the policy used for selecting
actions. The straightforward combination of accumulating traces and Q-learning,
called Watkins’s Q(X) (Watkins, 1989), works like Sarsa(\), except that all traces
are set to 0 whenever an exploratory, non-greedy action, is selected. However, this
approach loses much of the advantage of using traces, especially in the beginning of
the learning when the agent usually needs to explore the environment frequently.

A potential problem with accumulating traces is that the trace for a state-action
pair can incrementally become greater than 1, if the agent revisits a state and selects
the same action. Replacing traces avoids this by setting the trace for the current
state-action-pair to 1, instead of 1 + yAe;—_1(s,a). For some tasks replacing traces
can significantly increase the learning performance compared with accumulating
traces (Sutton, 1984). The implementation of eligibility traces for Sarsa(\) used in
this thesis, as recommended by Singh and Sutton (1996), is called replacing traces
with optional clearing, and is defined as

1 if s =s; and a = ay;
et(s,a) =4 0 if s=s; and a # ay; for all s, a (2.17)
yAer—1(s,a) if s # sq.

The optional clearing (the second line) sets the traces for all non-selected actions
from the revisited state to 0.

In a naive implementation the computational cost of eligibility traces becomes
very expensive, since it requires that the action values and the traces are updated
for all state-action pairs in every time step. In practice this is not a major problem,
because most state-action pairs have zero or very small traces. A simple solution is

2.6. ACTION SELECTION 11

therefore to truncate the traces and only store the traces for a limited number, m,
of the most recent state-action pairs, i.e., the state-action pairs for which e;(s,a) >

(YA)™.

2.6 Action Selection

In contrast to supervised learning, reinforcement learning agents have to explicitly
explore the environment. The trade-off between exploitation of the current policy
and exploration to gain new information is a fundamental dilemma. Unfortunately,
there exist no formal justified techniques for exploring that scale to multi-state
delayed reward tasks (Kaelbling, Littman, and Moore, 1996). Instead, two simple
ad-hoc strategies are widely used in most reinforcement learning algorithms. The
simplest and probably most popular exploration strategy is e-greedy. The agent se-
lects the greedy action most of the time, but with a probability of € a random action
is selected. A variation of this strategy is to start with a large € value, to increase
the initial exploration, and then slowly decrease e as the learning converges. The
obvious objection to e-greedy is that it does not discriminate between non-greedy
actions when exploring. A more advance alternative is softmaz action selection
with a Boltzmann distribution. The selection probability of action a in state s is
defined as

Qs,0)/7

Plals) = <=7
22, Q)

(2.18)

where the parameter 7 > 0, controlling the exploration rate, is called the temper-
ature. Higher temperatures decrease the differences between the action selection
probabilities, and lower temperatures increase the differences between the action
selection probabilities. For the same reason as for the e-greedy strategy, it is com-
mon to decay 7 over time, either linearly, exponentially (7 = k - 7¢—1, where k is a
constant), or hyperbolically (14 = 79/(1 + k - t), where ¢ is the initial temperature,
and k is a constant).

A simple alternative to use an explicit stochastic policy is, e.g., to use greedy ac-
tion selection together with optimistic initial values. Optimistic initialization means
that all initial @-values are uniformly assigned to a value that is larger than the
optimal values. In the beginning of learning, whichever action the agent selects the
reward will be less than the current estimated value. The agent is therefore forced to
explore all actions several times before the value estimates converge. For example,
this selection strategy is normally used in the mountain-car task (Moore, 1990), a
standard benchmark task for continuous reinforcement learning. The mountain-car
task is described in detail in Paper IV, where it is used as at testbed for validation
of our evolutionary approach of co-evolving meta-parameters (see section 3.3), and
potential-based shaping rewards (see section 3.2).

12 CHAPTER 2. REINFORCEMENT LEARNING

2.7 Generalization by Value Function Approximation

To calculate the optimal value functions we have assumed that the values for all
states, or state-action pairs, can be stored explicitly in a lookup table. In practice
this is not a feasible solution, except for small discrete problems, due to computa-
tional time and memory requirements. In general, the learning time grows expo-
nentially with the size of the state space, often called the “curse of dimensionality”.
This means that for most problems the optimal solution is intractable, and we have
to settle for near-optimality, i.e., an approximation of the optimal value function
and the optimal policy. The key to learning in high-dimensional or in continuous
state spaces is generalization, i.e., to generalize knowledge acquired in small sub-
set of the state space to a larger subset. The type of generalization required for
reinforcement learning is called function approzimation and is, fortunately, a very
well studied topic in supervised learning. In principal, any standard supervised
technique that support noisy training examples can be applied to reinforcement
learning, such as neural networks, pattern recognition, and statistical curve fitting.
However, in practice the techniques often have to be adjusted to the specifics of the
reinforcement learning algorithm and the task.

In this thesis two popular linear gradient-descent methods have been used: nor-
malized radial basis function networks (Broomhead and Lowe, 1988) and tile cod-
ing (Sutton, 1996), also called CMAC (Albus, 1971, 1981). For linear gradient-
descent methods, the approximated value function, Vi(s) ~ V™(s), is a linear
function of a column parameter vector, 8; = (6;(1),0,(2),...,0:(n))” (T denotes
transpose), which gives

Vi(s) = 0,7, = 3 0:(0)64 1), (2.19)

i=1

where ¢, is a column vector of features with the same length, n, as ;. The
gradient of the approximated value function with respect to the parameters, 6,, is
easily computed as

Vo Vil(s) = o.. (2.20)
It is therefore natural for linear methods to use gradient-descent to update the
parameter vector as

0111 =0;+ad;Ve,Vi(s) = 0; + adropg, (2.21)

where
0t =141 +YVi(se41) — Vilse). (2.22)

This is the linear gradient-descent version of TD(0) (Equation 2.4).
It is straightforward to apply linear gradient-descent function approximation to
action-value-based algorithms, such as Sarsa and Q-learning. The approximated

2.7. GENERALIZATION BY VALUE FUNCTION APPROXIMATION 13

action value function, Q¢(s,a) = Q™(s,a), is parameterized by the matrix @; of
size n x |A| (assuming an equal number of actions for all states), and defined as

Qi(s,a) =Y O4(i,a)¢s(i), for all a € A. (2.23)
i=1
The column parameter vector 82 = (04(1,a),0(2,a),...,0:(n,a))”, for action

a = aq, is updated as
0) 11 = 0} + a0 Ve:Qi(s,a) = 0] + adi @, (2.24)
where, for Sarsa, the TD-error, ¢;, is defined as

Or = reg1 + YQe(St41, arp1) — Qi (54, ar), (2.25)

and for Q-learning ¢; is defined as
0r = reg1 +ymax Qi(ser1,a') — Qu(se, ar), (2.26)

A natural function approximation for continuous state input is normalized ra-
dial basis function (RBF') networks. Typically, a normalized RBF network has
normalized Gaussian features, ¢, defined as

_lls—e4ll?

e 2ai

Z;’l:1 € 275

The response of a feature i, ¢s(i), depends only on the distance between the

Figure 2.2. Five one-dimensional normalized radial basis functions

current state, s, and the center of the feature, ¢;, and the width of the feature,
0;. Figure 2.2 shows an example of five one-dimensional normalized RBFs using

14 CHAPTER 2. REINFORCEMENT LEARNING

Algorithm 2.1: Watkins’s Q(A) with normalized RBF network function ap-
proximation

Variables: n, number of features (RBFs)
O, parameter matrix (n X |A])
¢, RBF features for state s (n x 1)
e, eligibility trace for all features and actions (n x |.A|)
Q,, Q-values for all actions a € A, a, in state s (1 x |A])

Initialize the parameter matrix @ arbitrarily
foreach episode do

e—0

s « initial state of episode

for i — 1 to n do

6u() — e (~LE53E) /50, e (L)
Q, — ¢.'©

Select initial action @ using policy derived from Q,
repeat
for i — 1 ton do
e(i,a) — e(i,a) + ¢s(i)
Execute action a, observe reward r, and next state s’
§d—r—Q,a)

for i — 1 ton do

I .12 ! . 2
by (i) — exp (_HSQU?H)/Z?:l exp (_||S2U?|I)

Qs/ — ¢s/T®

0 — d +~vymax, Q,

® — O + ade

Select next action a using policy derived from Q.

if a = argmax, Q, (a’) then
e—"y\e

else
e—0

s« s

Qs — Qs/

d)s — d)s’

until s is terminal

Euclidean distance metric. The advantage of RBF networks is they produce smooth
and differentiable approximated functions. The major drawbacks of RBF networks
are that they add computational complexity and that it can be difficult to design the
features. This is especially the case for high-dimensional state spaces, which require
a very large number of features to cover the state space. It is also problematic to
combine RBF networks and eligibility traces, because there is no discrimination

2.7. GENERALIZATION BY VALUE FUNCTION APPROXIMATION 15

between different states. Algorithm 2.1 shows the pseudo-code for Watkins’s Q(\)
with normalized RBF network function approximation. This method was used to
approximate the value functions in the MAXQ framework (see section 3.4.3) in
Paper V, and for learning with options (see section 3.4.2) in Paper 1.

In contrast to RBF networks, tile coding is a weak generalization method that
is very effective for on-line learning. Tile coding performs only local generalization,
i.e., a change in a feature only affects a limited part of the approximated function.
Tile coding represents the value of a continuous variable as a large binary feature
vector with many Os and a few, m, 1s. The idea is to partition the state-space mul-
tiple times, where the partitions are called tilings and the elements of the tilings
are called tiles (or receptive fields). For each state exactly one tile is active in each
tiling, corresponding to the 1s in the binary feature vector. The computation of the
value function is therefore very simple, by summation of the m << n components
of the parameters corresponding to the non-zero features. The simplest version of

tiling #2

tiling #1

2D state

Figure 2.3. Two grid-like tilings in a 2D state space.

tile coding is when grid-like tilings are used, as illustrated for the two-dimensional
state space in Figure 2.3. Each tiling is represented by an uniform grid, offset by
a different amount, either randomly or by predefined design. The active tile for
each tiling is easily computed given the coordinates (marked by x in the figure) for
the current state. The generalization achieved by tile coding is determined by the
number of tilings, and the shape of the tiles. A large number of tilings increases
the accuracy of the function approximation, but also increases the computational
cost. Broader features give smoother function approximation, but, in general, the
design of the shape of the tiles has little effect on the final learning performance.
Algorithm 2.2 shows the pseudo-code for Sarsa(A) with tile coding function approx-
imation and replacing traces with the optional clearing. This method is used for

16 CHAPTER 2. REINFORCEMENT LEARNING

approximating the action-value function in Papers II, III, and IV.

Algorithm 2.2: Sarsa(\) with tile coding and replacing traces with the op-
tional clearing

Variables: n, number of features (tiles)
N, number of tilings
©, parameter matrix (n X |A])
e, eligibility trace for all features and actions (n x |A|)
I, Indexes of non-zeros features in state s (IV x 1)
Q,, Q-values for all actions a € A, a, in state s (JA| x 1)

Initialize the parameter matrix @ arbitrarily
foreach episode do
e—20
s « initial state of episode
I, — set of non-zero features present in s
Qs - Ziels @(Zv a’)
Select initial action a using policy derived from Q,
repeat
e «— yle
foreach i € I, do
e(i,a) «— 1 /* replacing traces */
forall o’ € A do
if o’ # a then
e(i,a’) <0 /* optional clearing */
Execute action a, observe reward r, and next state s
§e—1—=> 5. 00,a)
I, — set of non-zero features present in s
Qs — Eie[s 6(1’ a)
Select next action a using policy derived from @,
60+ e, Oi,a)
for s — 1 ton do
forall o’ € A do
if e(i,a’) > 0 (> (yA)™ for truncated traces) then
O(i,a’) — O(i,a’) + ade(i,a') /N
until s is terminal

Value function approximation is, in general, an open question in reinforcement
learning, due to the lack of mathematical proofs for convergence of the learning.
There are several studies (Bradtke, 1993; Baird, 1995; Boyan and Moore, 1995)
showing, usually by simple counter-examples, that off-policy reinforcement learn-
ing, such as Q-learning, with value function approximation can diverge to infinity.
Fortunately, on-policy bootstrapping methods, such as Sarsa()), with linear value
function approximation can be shown to converge, under standard assumptions,

2.7. GENERALIZATION BY VALUE FUNCTION APPROXIMATION 17

such as sufficient exploration and decreasing «. The asymptotic mean square error,
MSFE(6) is bounded according to

L= sk, (2.28)

MSE(8.,) <
-7

where 0 is the minimum-error parameter vector.

Chapter 3

Meta-Properties in Reinforcement Learning

This chapter discusses the limitations of the knowledge-free assumption
of the basic TD-learning framework presented in the previous chapter.
Three approaches used to introduce domain knowledge into the rein-
forcement learning framework are presented and motivated. A common
characteristic of the approaches is that they require that the knowledge
is provided in advance by the designer. In this thesis all properties of
reinforcement learning that are not specified by the algorithms them-
selves are called meta-properties. The next chapter presents our evolu-
tionary computation approach to meta-learning of the meta-properties
discussed in this chapter.

3.1 Introduction

One of the main attraction with reinforcement learning, and especially with TD-
learning algorithms, is that is a tabula rasa, i.e., knowledge-free, approach to learn-
ing. In this naive view the designer does not have to worry about the specifics
of the task or the environment. The designer only has design a reward function
specifying the goal of the task and then, almost magically, the agent will learn an
optimal, or near optimal, behavior. Unfortunately, this approach only works for
small discrete simulation problems. In real-world applications, the specifics of the
task and the environment plays a major role for successful learning. This insight
is far from new. For example, in the 1996 reinforcement learning survey by Kael-
bling, Littman, and Moore (1996), they observed that the most striking common
feature of all the five successful robotics and control applications they studied in
detail, was that they required domain knowledge provided by the designer. For
these tasks a knowledge-free approach could, maybe, find a good solution in theory,
but in practice it would not have accomplished acceptable performance within the
finite lifetime of the robots.

A good example of the limits of the knowledge-free approach, and the im-

19

20 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

portance of the specifics of the problem is the backgammon player TD-Gammon
developed by Tesauro (1992, 1994, 1995), usually considered the most successful
reinforcement learning application to date. Tesauro used TD-learning with little
pre-programmed backgammon knowledge, and trained the system by letting it play
against itself hundreds of thousands of times. However, the success of the of TD-
Gammon was dependent on Tesauro’s skillful design of a non-linear multilayered
neural network, used for value function approximation in the Backgammon domain
consisting of approximately 10?° states. The results of TD-gammon are very im-
pressive (Sutton and Barto, 1998). The final version of TD-Gammon, TD-Gammon
3.0, plays at the level of the world’s best professional players. However, this re-
quired that domain knowledge was provided to the learning system in the form of
a selective three-ply search for selecting moves. The basic version, TD-Gammon
0.0, without any domain knowledge, played at par with the best computer player at
the time, Neurogammon (Tesauro, 1989), but not at professional human level. The
success of the TD-gammon seems to an exception in field of two-player games. Al-
though, reinforcement learning has been applied to other major board games, such
as checkers (Samuel, 1959), chess (Thrun, 1995), and go (Schraudolph, Dayan, and
Sejnowski, 1994), no other application has been close to top human-level perfor-
mance. The reason for this has probably to do with nature of backgammon (Kael-
bling, Littman, and Moore, 1996). In backgammon, independent of the agent’s
action selection strategy: 1) a game ends within finite time, and 2) relevant states
are continually visited, because the state transitions are inherently stochastic, de-
termined by the rolls of the two dices.

The previous chapter presented the basic reinforcement learning techniques for
temporal credit assignment, i.e., eligibility traces, and structural credit assignment,
i.e., generalization by value function approximation. This chapter presents and
motivates the three additional methods used in this thesis to increase the efficiency
of reinforcement learning: 1) introduction of hierarchies structures in hierarchical
reinforcement learning methods; 2) introduction of an additional and richer reward
signal by potential-based shaping rewards, and 3) optimization of meta-parameters.
The common characteristic of these methods is that they require the designer to
provide domain knowledge in advance to agent, typically by a time consuming trial-
error process. The evolutionary methods used for meta-learning in this thesis are
presented in the next chapter.

3.2 Shaping Rewards

Shaping rewards (Dorigo and Colombetti, 1998) is a popular technique for improv-
ing the efficiency of reinforcement learning for delayed reward problems. Delayed
reward problems are characterized by that the agent receives very sparse reward
signals from the environment. Typically, the agent receives zero reward for all state
transactions, except for the transition to the absorbing goal state, for which the
agent receives a positive reward. Delayed reward problems are difficult for rein-

3.2. SHAPING REWARDS 21

forcement learning in two regards: 1) finding initial solutions, because the agent
has to rely on a more of less random search to find the rewarding states in the
initial learning phase, and 2) convergence to an optimal solution, because the de-
layed rewards have to be propagated back along, potentially very long, sequences
of state-action pairs. This is especially problematic in stochastic large-scale tasks,
in which the likelihood for a successful random search is very low, and each path
to a rewarding state has to be tested several times to get a reliable value estimate.

The idea of shaping rewards is to provide the agent with knowledge in the form
of an additional more informative reward signal that guides the learning towards
highly rewarded states. The concept of shaping in reinforcement learning is bor-
rowed from the psychology literature, where the term was originally coined by the
famous behavioral psychologist Burrhus Frederic Skinner (1938). In psychology,
shaping is a training technique for guiding the learning of animals in complex tasks.
The animal is rewarded for the completion of subgoals that progresses the behavior
towards the overall goal. Shaping has been successfully used for learning animals
complex behaviors such as pigeons pecking at a selected spot (Skinner, 1953, p. 93),
and pigs eating at a table and vacuum cleaning a floor (Atkinson, Atkinson, Smith,
Bem, and Nolen-Hoeksema, 1996, p. 242). One of the first successful real robot
experiments in reinforcement learning was conducted by Mataric (1994, 1997).
She used shaping rewards, called progress estimators, to learn a high-dimensional
multi-robot foraging task. The shaping rewards were used to decompose the overall
goal into subgoals.

A potential problem with shaping rewards is that, if they are not carefully
designed, the agent can be trapped in a suboptimal behavior, i.e., the learning
converges to a solution that is optimal in the presence of the shaping rewards, but
suboptimal for the original problem. For example, Randlgv and Alstrgm (1998)
used shaping rewards to speed up the learning for a simulated bicycle agent. The
task was to ride the bicycle to predefined location, and the agent was given an addi-
tional reward for each action moving the bicycle closer to target location. Initially,
the resulting learned behavior was to ride in tiny circles close to the starting posi-
tion, because there was no penalty for moving away from the goal. As suggested
by the bicycle example, the shaping rewards must obey certain conditions to be
theoretically justified, i.e., conditions for optimal policy invariance under reward
function transformations. Ng, Harada, and Russell (1999) proved, under standard
assumptions, that for potential-based shaping rewards (the shaping rewards de-
pends only on the difference of a function of successive states), an optimal policy
for a MDP augmented with shaping rewards will also be optimal for the original
MDP. They define a potential function ®(-) over states, where the shaping reward
for the transition from state s; to sg+1, F(s¢,8141), is defined as the discounted
change in potential:

F(st, s041) = 7®(s141) — B(s1), (3.1)

where v is the discount factor of future rewards. The shaping reward is added to
original reward function in each learning update, which, e.g., changes the updates

22 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

of the Q-values for Sarsa(0) to

Q(st,at) — Q(st,ar) + a [re1 + Y(Q(St41, ary1) + P(se41)) — Qse, ar) — @(S(t)] -)
3.2

Wiewiora (2003) complimented the this work, by showing that using potential-
based shaping rewards are equivalent to using the same potential function as a
non-uniform initial action-value function, Q(s,a) = ®(s). If the agent uses an
advantage-based policy, which is defined as a policy that selects an action in a given
state with a probability that is determined by differences in the QQ-values, not their
absolute magnitude, then the updates of the Q)-values are equivalent in both cases.
Given the fact that almost all reinforcement learning polices are advantage-based,
e.g., greedy, e-greedy, and softmax, this result is applicable for most reinforcement
learning applications. The result by Ng, Harada, and Russell (1999) is important
because it gives the necessary and sufficient conditions for shaping reward con-
struction. However, it gives no guide to the designer how to construct the shaping
rewards, i.e., how to assign the “correct” potential for each state in the state space,
for a specific task and environment. From our evolutionary robotics perspective
the potential-based shaping rewards formulation is attractive, because 1) it does
not add any additional parameters to the system, and 2) it is only dependent on
the states of the agent, which makes it easy to approximate the potential func-
tion for the shaping rewards with standard function approximation methods used
in reinforcement learning. The parameters of the function approximation can be
optimized in a straightforward manner by evolutionary computation methods.

In this thesis, the evolutionary optimization of potential-shaping rewards is a
major factor in increasing the learning efficiency in our embodied evolution frame-
work (see Paper III). Another interesting result is that proper shaping rewards
guiding the learning can reduce the amount exploration required for efficient learn-
ing. In both Papers III and IV the evolutionary obtained action selection strategy
is equal to the greedy policy. This result is consistent with the theoretical ana-
lyzes conducted by Laud and DeJong (2003). They analyzed shaping in terms of
a reward horizon, which is a measure of the number of decisions the agent must
take before experiencing accurate reward feedback. For example, if the agent only
receives a delayed reward at the goal state, then the reward horizon is equal to the
task length, and if the potential function of the shaping rewards is equal to the
optimal value function, V*, then the reward horizon is equal to 1.

3.3 Meta-Parameters

The performance of reinforcement learning algorithms depend critically on few
meta-parameters that directly influence the updates in the learning algorithms or
the exploration of the environment (Doya, 2002). The relevant meta-parameters in
this thesis are the learning rate, «, the discount factor of future rewards, -y, the de-
cay rate of the eligibility traces, A, and the parameters controlling the exploration
rate, € or 7. In general, to find the optimal settings of the meta-parameters re-

3.4. HIERARCHICAL REINFORCEMENT LEARNING 23

quires an extensive and time-consuming search of the multi-dimensional parameter
space. In addition to the difficulty to set the values of meta-parameters, it is often
desirable to decay or vary some of the meta-parameters over the learning time. As
described in the previous chapter (see section 2.6), it is common to decrease the
exploration over time as the learning converges, but it is difficult to decide in ad-
vance which decaying scheme to use, and what the initial exploration rate should
be. A standard assumption of convergence proofs in reinforcement learning is that
the learning rate decays over time, but, once more, that does not specify which
decaying scheme that is desirable for a specific problem. It has also been suggested
that it may be preferable to vary A according to the certainty of the value estimate
of each state (Sutton and Singh, 1994).

In general, the setting of the meta-parameters is an overlooked issue in reinforce-
ment learning studies. Normally, the authors simply state the values of the meta-
parameters, but do not motivate the specific values used in their experiments. The
evolutionary approach to meta-learning used in this thesis makes the optimization
of meta-parameters straightforward (see Papers III and IV). Each meta-parameter,
or each constant in the functional expression of the meta-parameter, is coded as a
real-valued gene and optimized by the evolutionary search process. There are sev-
eral earlier studies that use an evolutionary approach to optimize meta-parameters
in reinforcement learning (Unemi, Nagaoyoshi, Hirayama, Nade, Yano, and Ma-
sujima, 1994; Augustsson, Wolff, and Nordin, 2002b; Eriksson, Capi, and Doya,
2003). The probably most studied meta-parameter is the learning rate, a. Sut-
ton (1992a,b) proposed three algorithms for dynamic setting of the learning rate
based on previous learning experience and statistical methods, such as Kalman fil-
tering and least squares. Bowling and Veloso (2002) introduced the WoLF (“Win
or Learn Fast”) principle for varying the learning rate in multi-agent reinforcement
learning. The basic idea is that an agent should adapt quickly (large «) if it per-
forms worse than expected, and adapt more slowly (smaller «) if it performs better
than expected.

3.4 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning algorithms (Dayan and Hinton, 1993; Parr and
Russell, 1997; Sutton, Precup, and Singh, 1999; Dietterich, 2000) are methods for
introducing temporal abstractions and domain knowledge into the reinforcement
learning framework. The idea is to capture hierarchical structures in complex
MDPs, by breaking down the original problem into smaller set of suitable subprob-
lems. This gives a task hierarchy of the problem where the actions of a subtask is
other subtasks or primitive actions. There are three main approaches to defining
the subtasks. The first approach, used in the option formalism by Sutton, Pre-
cup, and Singh (1999), defines subtasks (called options) in terms of a fixed policies
provided by the designer. The second approach, used in the hierarchy of abstract
machines (HAM) method by Parr and Russell (1997), defines subtasks in terms

24 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

of non-deterministic finite-state controllers. The designer provides partial policies
for the subtasks that limits the set of actions that can be executed. The third
approach, used in the MAXQ framework by Dietterich (2000), defines the subtasks
in terms of termination predicates and local reward functions.

The learning performance for all hierarchical reinforcement learning methods
depends on the provided task hierarchy. The hierarchy limits the actions that can
be executed and thereby, also, limits the number of policies that can be considered.
Reinforcement learning with options, HAM, and MAXQ are guaranteed, under
standard assumptions, to converge to the best policy given the provided definition
of the subtasks. However there is no guarantee that this policy is equal to the
optimal policy for the original MDP.

3.4.1 Semi-Markov Decision Process

The mathematical foundation of hierarchical reinforcement learning is the theory
of semi-Markov Decision Processes (semi-MDPs). A discrete-time semi-MDP is
a generalization of the MDP, in which the actions are extended in time and can
take a variable number of time steps to complete. For a semi-MDP the transition
probability (see Equation 2.2) is extended to be a joint distribution of the result
state, s’, and the number of time steps, N, to complete action a in state s at time
t:

P(s',N|s,a) = P(sixn = ', N|s; = s,a; = a). (3.3)

Similarly, the expected reward (see Equation 2.3) can be defined as
R(s',N|s,a) = E{res1, 7742, 7" 'rgnlse =s,a = a, 5048 =5’} (3.4)

The modification of the Bellman equations for semi-MDPs are straightforward. The
state-value function for a policy w, V'™, is defined as

V™(s)=> m(s,a) Y P(s',Nls,a) [R(s', N|s,a) + YN V()] , (3.5)

a s’ N

and the action-value function, Q™, is defined as

Q"(s,a) =Y P(s',Nls,a) |R(s',N|s,a) + 7V Y (s, a")Q7(s',d')| . (3.6)
s',N

a’

The only differences compared with the Bellman equations for MDPs, are that that
expectation is computed with respect to both s’ and N, and that ~ is decayed
exponentially by the number of time steps, N, it takes takes to complete action a.

3.4.2 Options

The option formalism (Sutton, Precup, and Singh, 1999) was developed to, by mini-
mal extension of the reinforcement learning framework, include a general treatment

3.4. HIERARCHICAL REINFORCEMENT LEARNING 25

of temporally abstract knowledge and actions. Options are generalizations of prim-
itive actions (normal one-step actions) to include actions that are extended in time.

Definition 3.1 An option o is a three-tuple, (Z,m,3), defined as

o T, the initiation set, is a subset of the state space, S. An option o can only
be selected in state s if and only if s € T.

e m is a predefined policy.

e (3 is a stochastic termination condition. If an option o is selected, then actions
are selected according to the option’s policy, m, until the option terminates
according to 8. In some cases it is useful to introduce a timeout to an option,
in which case the option terminates after a fized number of time steps, even
if the termination condition is not satisfied.

A primitive action, a, is a special case of an option that is available in all states
that the primitive action is available (I = {s such as a € A(s)}), always terminates
after one time step (B(s) =1 for all states s € S), and selects the primitive action
a with a probability of 1 (m(s,a) =1, for all states s € T).

For example, consider an option called capture-battery for a mobile robot,
which consists of a policy for moving to and, thereafter, docking with external
batteries to be able to recharge the robot’s internal battery. The option might
only be available in states, Z, in which an external battery is visible. Then, the
termination condition 8 could be defined to be 1 when no battery is visible, s ¢ Z,
and when the robot has successfully docked with a battery.

The semi-MDP version of Sarsa(0) updates, after termination, the Q-value of
an option o; € O(st), executed in state s;, and terminated in state s, n, as

Q(st,01) = Q(s¢,01) +

N
D oA T YN Qs 04 n) — Qlst, Ot)] , (3.7)
i=1

and the updates for the semi-MDP version of one-step Q-learning are defined as

Q(sta Ot) = Q(Sta Ot) + «

N
Z’Yi_lrtﬂ‘ +yN max Q(st4n,0') — Q(st, Ot)] - (3.8)
i=1

The learning in Paper I combines a simple version of options and the Watkins’s
Q(M) algorithm (see Algorithm 2.1) to learn a mating behavior between two Cyber
Rodents (see section 4.6). All options in the study are designed to force the agent
to repeat a primitive action for several time steps, which makes the learning more
stable and, thereby, the behavior more predictable for the mating partner.

26 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

3.4.3 The MAXQ Framework

The heart of the MAXQ method (Dietterich, 2000) is the MAXQ value function
decomposition, which decomposes the value function for a MDP and a policy into
a collection of value functions for suitable subtasks, and sub-subtasks, recursively.
The decomposition gives a tree graph representation, called MAXQ graph, of the
problem. The MAXQ graph, which has to be provided in advance by the designer,
consists of two types of subtasks: 1) primitive subtasks/actions (the leaf nodes in
the graph) that executes commands to the agent, and 2) composite subtasks (inner
nodes in the graph) that selects other subtasks, primitive or composite, to solve
their tasks. An important feature of the MAXQ framework is that it allows state
abstraction within the subtasks.

Formally, the MAXQ decomposition takes a given MDP M and decomposes it
into a finite set of subtasks {My, My, ..., M, }, where My is the root subtask.

Definition 3.2 A subtask M; is a three-tuple, (Tj, A;, R;), defined as

o T; is a termination predicate that partitions S into a set of active states, S;,
and a set of terminal states, T;. The subtask M; can only be selected if and
only if s € S;, and it terminates immediately if the MDP enter a state s’ € Ty,
during its execution.

o A; is the set of actions that can be selected to solve subtask M;. These actions
can either be primitive actions, a € A, for the MDP M, or composite subtasks,
denoted by their index i. The MAXQ graph may not include any cycles, i.e.,
no subtask can invoke itself recursively, neither directly nor indirectly.

. Ri(s’) is the pseudo-reward function, which specifies a deterministic pseudo-
reward for each transition to a terminal state s’ € T;. The pseudo-reward
function is only used for learning within the composite subtask, and tells how
desirable each of the terminal states is for the subtask.

Each primitive action, a € A, for the MDP M is a primitive subtask in the MAXQ
decomposition such that a is always executable, it always terminates immediately
after execution, and its pseudo-reward function is uniformly zero.

In the MAXQ method, each subtask M; has its own policy, m;. In the option
terminology a subtask’s policy is a deterministic option, i.e., 8(s) = 0 if s € S;,
and ((s) = 1if s € T;. The set of policies for all subtasks is called a hierarchical
policy, @ = {m,72,...,m}. The natural objective in hierarchical reinforcement
learning is to learn a hierarchical optimal policy, i.e., a policy that achieves the
highest cumulative reward among all policies consistent with the given task hierar-
chy. For example, Parr and Russell (1997) showed that HAMQ learning converges
to a hierarchical optimal policy, and Sutton, Precup, and Singh (1999) showed that
semi-MDP learning with options converges to a hierarchical optimal value function.
However, the objective of the MAXQ method is to learn a recursively optimal pol-
icy, which is a weaker form of optimality than hierarchical optimality. Recursively

3.4. HIERARCHICAL REINFORCEMENT LEARNING 27

optimality makes it possible to learn the policy of each subtask without reference to
the policy of the parent subtask. This makes it easier to share and re-use subtasks,
and it is also a key to successful state abstraction within the subtasks.

Formally, a recursively optimal policy for MDP M with MAXQ decomposition
{My, My, ..., M,} is a hierarchical policy, , such that for each subtask M;, the
corresponding policy 7; is optimal for the semi-MDP defined by the set of states
S;, the set of actions A;, the state transition probability function P (s’, N|s,a),
and the reward function given by the sum of the original reward function R(s'|s, a)
and the pseudo-reward function Ri(s’). The major drawback of seeking recursively
optimality in the MAXQ method is that it requires careful design of the pseudo-
reward function, R. In the worst case scenario, the design of the pseudo-reward
can make the recursively optimal policy arbitrarily worse than the hierarchically
optimal policy. A practical solution to this problem is to specify that goal terminal
states are always preferable over non-goal terminal states, by assigning a pseudo-
reward of 0 to goal terminal states and an uniform negative pseudo-reward to all
non-goal terminal states.

The value functions learned by the MAXQ method is called the projected value
functions. The projected value function of hierarchical policy 7 on subtask M;,
V7™ (i,s), is the expected cumulative discounted reward of executing m; (and the
policies of all children of M;) starting in state s until M; terminates. The projected
value function for subtask i in state s is recursively defined as

x| Q7(@,s,m(s)) if 7 is a composite subtask
Vi 5) = { > o P(s'|s,i)R(s|s,i) if i is a primitive subtask, (3.9)
and Q™ (i, s,a) is recursively defined as
Q™ (i,8,a) =V™(a,s) + C™(i, s, a). (3.10)

The completion function, C™ (i, s, a), is the expected discounted cumulative reward
of completing subtask M; after invoking the subtask M, in state s, defined as

C™(i,s,a) = »_ PF(s',N|s,a)y" Q™ (i, s, m(s")) (3.11)

s',N

The Equations 3.9, 3.10, and 3.11 are called the decomposition equations, and
tell how to decompose the projected value for the root, V7(0,s), into projected
value functions for the individual subtasks {M;, Ms,..., M, }, and the individual
completion functions C™(j, s,a) for j = 1,...,n. The projected value functions are
stored explicitly as V' values for all primitive actions and implicitly as C' values
for all composite subtasks. In general, the decomposition of the projected value
function can be expressed as

V™(0,s) = V™ (am,) +C™ (am-1,8,am)+---+C™ (a1, s,a2) +C™(0, s,a1), (3.12)

where ag,ay,...,a,, is the path of subtasks in the MAXQ graph, from the root
node to a leaf node, selected by the hierarchical policy .

28 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

The learning algorithm in the MAXQ framework is called MAXQ-Q. To be able
to learn recursively optimal policies MAXQ-Q uses two completion functions, C'
and C. C is the completion discussed so far and it is used by the parent task to
compute V (i, s), the expected cumulative reward for performing action ¢ starting
in state s. The second completion function, C, is only used inside subtask i to
discover the local optimal policy for M;. C uses both the original reward function
for the MDP, R(s'|s,a), and the pseudo-reward function, R;(s’). The MAXQ-Q
algorithm uses batch updating of the completion functions. If subtask i invokes
action a which terminates after N time steps in state s, then C' and C' are updated
for the sequence of visited state while invoking a, {s,} forn =0,...,N — 1, as

Cii1(iysp,a) — Ciliysn,a) + ay(i) [’y”“ (Rz(s') + Cy(i,s',a*) + Vi(a*, sn))
— Ciy(i, sy, 0)] (3.13)

Ci1(iysp,a) — Cyli,sn,a) + au(i) [y (Co(i, s, a*) + Vi(a*, 8))
— C’t(i,sn,a)}, (3.14)

where a* = arg max,/ (Cy(i,s',a’) + Vi(d’, s')) is the “recursively” greedy action.

The update of the projected value function for the primitive subtasks are very
simple, i.e., Sarsa or Q-learning with v = 0. If the primitive subtask ¢ is executed
in state s, receiving reward r, then V (i, s) is updated as

Vit (4, 8) «— Vi(4,) + ae(2)[r — Vi (4, 9)] (3.15)

Algorithm 3.1 shows the pseudo-code for the recursive MAXQ-Q algorithm, where
the projected value function for state s and subtask i is computed recursively accord-
ing to Equation 3.9. After convergence the recursively optimal policy is computed
for each subtask 7 and state s, as the action a that maximizes Cy(i, s, a) + Vi(a, s).

3.4.4 MAXQ Example

To illustrate the MAX(Q method consider the simple taxi problem suggested by
Dietterich in his original paper (Dietterich, 2000). Figure 3.1 shows the taxi domain,
a b x b grid-world with four taxi stands marked with the letters R,G,B, and Y. In
each episode the taxi is placed at a random location. The task for the taxi agent is
to pickup a passenger at one randomly selected taxi stand (the “source”) and then
put down the passenger at another randomly selected taxi stand (the “destination”),
which ends the episode. There are six primitive subtasks: four navigation actions
that moves the taxi one square in the directions North, South, East, or West, a
Pickup action, and a Putdown action. There is a negative reward for each action of
—1. Additionally, there is a reward of +20 for putting down the passenger at the
“destination”, and a reward of —10 for illegal execution of Pickup or Putdown. If

3.4. HIERARCHICAL REINFORCEMENT LEARNING 29

Algorithm 3.1: The MAXQ-Q learning algorithm.
Main Program
Initialize V, C, and C' arbitrarily
MAXQ-Q(root node 0, initial state sg)

Function MAXQ-Q(subtask i, state s)
seq «— () /* sequence of visited states */
if 7 is a primitive subtask then
Execute 7, receive r, and observe next state s’
Vi (i, 8) = Vili, s) + (i) [r = Vi(i, 5)]
Push s onto the beginning of seq

else
count «— 0

while T;(s) is false do
Select action a according to the subtask’s policy m;
childSeq «— MAXQ-Q(a, s)
Observe result state s’
a* — arg max, [Cy(i,s',a') + Vi(d/, 8')]
N« 1
foreach s € childSeq do
Ciy1(i,s,a) — Ci(i, s,a) + o (i) [vV (Ri(8) + Co(d, 8, a*)
+ Vi(a*, s)) —

— Cy(i, s,a)]
N — N-+1
Append childSeq onto the front of seq

s ¢
return seq

the taxi is moved to hit a wall, then the taxi remains at the previous location, but
there is no extra punishment.
Dietterich defines four composite subtasks for solving the overall task:

« Navigate(t) to move the taxi from its current location to one of the four taxi
stands, indicated by the parameter t.

¢ Get to move the taxi from its current location to the “source” and pick up
the passenger.

e Put to move the taxi from its current location to the “destination” and put
down the passenger.

¢ Root is the overall taxi task.

The suggested MAXQ graph for the taxi problem is shown in Figure 3.2. The graph
contains two types of nodes. The triangular nodes, called Max nodes, represent the

30 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

R G
@)

Y B

Figure 3.1. The taxi domain: a 5 X 5 grid-world with four taxi stands, marked
with letters R,G,B, and Y in the figure.

subtasks. Each Max node representing a primitive subtask, i, stores the values of
V™(i,s), for all states s € S;. The rounded rectangular nodes, called Q nodes,
represent the actions of the subtasks. Each Q node representing parent subtask ¢
and child subtask a stores the values of C™ (4, s,a), for all states s € ;.

Suppose that in the current state, s1, the taxi is located as shown in Figure 3.1,
and the passenger is located at taxi stand R and wants to go to taxi stand B. If
the agent follows a hierarchical policy that is equal to the optimal policy, 7*, then
the value of state s; is 10: a reward of —1 to move north to taxi stand R, a reward
of —1 to pick up the passenger, a accumulated reward of —7 to move to taxi stand
B, a reward of —1 to put down the passenger, and, finally, a reward of +20 for
completing the task. Figure 3.2 shows how the MAXQ method computes this value
as the projected value function for the Root node, V™ (Root, s;) (see Equation 3.12)
as

V™ (Root,s1) = V™ (North,s;)+ C™ (Navigate(R), s1, North) +
C™ (Get, 51, Navigate(R)) + C™ (Root, 51, Get)
= (-1)+0+(-1)+12
10 (3.16)

The taxi problem highlights both the strengths and weaknesses of the MAXQ
method. Obviously, the MAXQ method supports temporal abstraction in the form
of actions that are extended in time. The MAXQ method also support state abstrac-
tion within subtasks, by the definition of S;. Dietterich introduces five relatively
complicated conditions under which state abstractions are theoretically justified.
For the MAXQ graph of the taxi problem, the size of the state space can thereby
be reduced from 3000 distinct values (state-action pairs) for flat Q-learning to 632
distinct values. Finally, the MAXQ method supports sharing of subtasks. For ex-
ample, in the MAXQ graph for the taxi problem, both Get and Put use Navigate

3.4. HIERARCHICAL REINFORCEMENT LEARNING 31

axNavigate(t) ™\ Putdown

0 (QNorth(t)) (QEast()) (Qsouth) (Qwesty)

Figure 3.2. Suggested MAXQ graph of the taxi problem. The values in the
figure show the computation of v (Root, s1), when the taxi is located as shown
in Figure 3.1, and the passenger is located at taxi stand R and wants to go to taxi
stand B. For the path of subtasks given by 7*, the C values are shown next to the
Q nodes, and the V values are shown next to the arcs.

to move the taxi to the specified location. The drawback of the MAXQ method is
that the designer not only have to provide the complete decomposition of the overall
task, the MAXQ graph, but also the state abstractions within the subtasks and the
meta-parameters for the subtasks. For example, in the reported experiments for
the taxi problem, Dietterich used different values of the temperature 7 for softmax
action selection for all four composite subtasks, and the values varied for different
settings of the MAXQ-Q algorithm (e.g., with or without state abstraction). The
learning rate, «, was also varied depending on the algorithm setting: 0.5, without
state abstraction, and 0.25 with state abstraction. These issues are duly noted in
the introduction of Dietterich’s paper, and he suggested that MAXQ framework
should be viewed as a computer program, where the designer has to fill in the
“implementation” of each of the subtasks and how the subtasks invoke each other.
Dietterich also expressed the hope that subsequent research would be able to au-
tomate most of the work that is required of the designer to do. An important part
of this thesis (see Paper V) is to realize a part of this goal, by automation of the
construction of the task hierarchy in the MAXQ method by genetic programming

32 CHAPTER 3. META-PROPERTIES IN REINFORCEMENT LEARNING

techniques (see section 4.2).

Chapter 4

Artificial Evolution

Artificial evolutionary methods are global and model-free search tech-
niques inspired by biological evolution. This chapter introduces four
evolutionary computation methods: 1) standard genetic algorithms; 2)
genetic programming, i.e., evolution of computer programs; 3) evo-
lutionary robotics, i.e., automatic creation of control systems of au-
tonomous robots; and 4) embodied evolution, i.e., applying evolutionary
robotics to a colony of autonomous robots. This chapter also presents
and motivates the specifics of the evolutionary approaches to meta-
learning used in this thesis.

4.1 Genetic Algorithms

Genetic algorithms (Holland, 1975; Goldberg, 1989) is a computational methodol-
ogy for optimization that is inspired by the Darwinian principle of selective repro-
duction of the fittest (Darwin, 1859). In a genetic algorithm the potential solutions
are represented by a population of competing individuals. Each individual is rep-
resented by an artificial chromosome, the genotype (or genome), which encodes the
characteristics of the individual, the phenotype. In the simplest case, the genotype
is represented by a fixed length bit-string that, e.g., encodes the value(s) of the vari-
able(s) of a mathematical function. Initially all genotypes are randomly created.
The fitness, f;, of the phenotype, x;, of each individual, i, is evaluated by a fitness
function, ®: f; = ®(x;), where higher fitness values are better. The fitness function
is the designer’s tool for defining the goal of the genetic algorithm. Unfortunately,
there are no general principles for fitness function design. Often a suitable fitness
function for a particular task has to be searched for by a potentially time consuming
trial-and-error process. This is a major difference between artificial evolution and
biological evolution. In nature, there is no explicit fitness function. Instead, the
reproductive success of the genes determine the frequencies of the genes in the gene
pool of the individuals in the population.

33

34 CHAPTER 4. ARTIFICIAL EVOLUTION

After evaluation, a new generation of individuals are created by applying se-
lective reproduction and genetic operations. Selective reproduction means that
individuals with higher fitness values have higher probability of reproduce their
genotypes to the next generation. A standard implementation of selective repro-
duction is roulette wheel selection. The selection probability, P(i|f;), of an individ-
ual, i, is proportional to its fitness value, f;, normalized by the total fitness of the
population of N individuals:

fi
Z;‘Vzl fi ’

Another widely used selection method is tournament selection. In tournament se-
lection with a tournament size of k, k individuals are chosen randomly with uniform
probability and the individual with the highest fitness value, among the randomly
chosen, is selected. After the reproductive selection of N individuals (assuming a

P(ilf:) = fi>0. (4.1)

Crossover
pol nt

[0/1]ojo0/0[1/0]0[1]
Parents :

[o[ol1[1lof1[1]1]0]

[OliloA[oAEIil0]
Children
Io\o\liowomom\il

Figure 4.1. One-point crossover between two bit-string genotypes.

constant population size of N), the new population is randomly paired and crossover
is applied to each pair according to a given probability. The simplest version of
crossover, called one-point crossover (shown in Figure 4.1), switches substrings be-
tween two parent chromosomes, around a randomly selected crossover point. After
crossover, mutation is applied to each gene of the chromosomes in the new pop-
ulation, with a given mutation probability. In the case of binary representation,

4.2. GENETIC PROGRAMMING 35

mutation normally means that the binary value of a gene is flipped, from 0 to 1, or
1 to 0.

This process of evaluation, reproductive selection, crossover and mutation is
continued until a predefined termination condition is fulfilled, e.g., that a desired
fitness value has been reached by the best individual, or that a maximum number
of generations has been produced. The general scheme of a genetic algorithm is
shown in Algorithm 4.1

Algorithm 4.1: General genetic algorithm scheme

Initialize the population, P, of N chromosomes of length n randomly
for i —1to N do
x; «— Evaluate (P))
fi — @(zy)
repeat
for i — 1 to N do
P, — ReproductiveSelection (P,f)
P « random permutation of P
for i — 1 to N/2 do
r « random number [0, 1]
if r < crossover probability then
[P;, Py ny2] < Crossover (P, Piiy/2)
for i — 1 to N do
for j «— 1 to n do
r « random number [0, 1]
if r < mutation probability then
P.(j) « Mutate (P,(j)
for i — 1 to N do
x; «+ Evaluate (P;)
fi = ®(xi)
until termination condition is fulfilled

4.2 Genetic Programming

Genetic programming (Koza, 1992, 1994) is relatively new evolutionary methodol-
ogy for evolving computer programs. Instead of evolving a solution to a problem,
genetic programming evolves a program to solve the problem. The overall evolu-
tionary scheme is the same as for standard genetic algorithms (see Algorithm 4.1),
but the representation of the genotypes and the implementation of the genetic oper-
ations for mutation and crossover are different. Genetic programming operates on
a tree representation, normally implemented as Lisp-like expressions. The genetic
programming tree representation consists of two types of nodes: 1) the function
set, the inner nodes in the tree representation, typically consists of mathematical

36 CHAPTER 4. ARTIFICIAL EVOLUTION

K+ (X, (X3%C)) et (+,X 1, (/1 X,0 (%,X5,C)))

Figure 4.2. Tree representation of computer programs in genetic programming.

expressions, or if-else statements, and 2) the terminal set, the leaf nodes in the tree
representation, consists of variables and constants. Figure 4.2 shows the parse tree
representation of the expression X; + (X2/(X3 x C)), which is read from left to
right as (+, X1, (/, X2, (x, X3,0))).

The crossover operation between two parent tree representations is performed
by switching subtrees at randomly selected crossover nodes, which is shown in
Figure 4.3. Mutation is accomplished by either deleting a randomly selected node
or creating new random subtrees.

In this thesis genetic programming is applied in an unconventional manner (see
Paper V). Instead of evolving computer programs, we apply the genetic program-
ming crossover operator to construct task hierarchies, MAXQ graphs, in the MAXQ
framework (see section 3.4.3). We have also used a form of strongly typed genetic
programming (Montana, 1995). Strongly typed genetic programming allows the
designer to assign a type to the arguments and the return value of each function,
and, thereby, limits the number of tree representations that can be constructed.
In our case this means that we restrict which subtasks that can be parent nodes
to other subtasks, based on the design of state spaces and termination conditions.
Related work that combines reinforcement learning and genetic programming tech-
niques has been performed by Iba (1998), Downing (2001), and Kamio and Iba
(2005).

4.3 Learning and Evolution

Learning and Evolution are two types of biological adaptations that occur on dif-
ferent time-scale and operate on different parts of an organism. Learning is lifetime
adaptations occurring within a single agent. Learning operates only on the phe-
notype. The resulting modifications cannot directly affect the genotype and are,
therefore, not inherited by the offspring. Evolution operates on a macro-scale over

4.3. LEARNING AND EVOLUTION 37

Parent 1 Parent 2
-
&) (/) & ®
& ®
& ©
Offspring 1 Offspring 2

Figure 4.3. Crossover operation in genetic programming, by switching subtrees
between the parents.

generations, by slowly changing the frequencies of the genes in the gene pool of the
individuals in the population. Evolution can only capture slow changes in the envi-
ronment, while learning makes it possible to adapt to faster environmental changes
that occurs during the agent’s life. In short, evolution determines the innate abil-
ities of an agent, and learning represents the abilities acquired during an agent’s
lifetime.

In addition to giving the agent abilities to adapt to changes that occurs during
the agent’s lifetime, learning can also help and guide the evolutionary process. In
1896, Baldwin (Baldwin, 1896) proposed that behaviors that were learned during an
organism’s lifetime could accelerate the rate of evolution, by indirect assimilation
of learned traits. The reasoning behind Baldwin’s theory, called the Baldwin effect,
is that an animal discovers and learns a new useful skill. If this new behavior is
imitated by the other individuals in the population, then the selection pressure is
changed. Individuals who learn the new skill reproduce more offspring. However,
as learning has a cost, i.e., the behavior will be suboptimal during the learning
phase, evolution will tend to select individuals who have have innate abilities that
otherwise would have to be learned. The Baldwin effect has been supported by

38 CHAPTER 4. ARTIFICIAL EVOLUTION

scientific evidence (Waddington, 1942) and also been proved to real in computer
simulations of artificial evolution (Hinton and Nowlan, 1987; Turney, Whitley, and
Anderson, 1996). Mayley (1996) showed two conditions for genetic assimilation
by the Baldwin effect: that the search space for the learning is correlated with
evolutionary search space and that the evolutionary cost of learning is not too
high.

Our evolutionary approach to meta-learning in reinforcement learning, can be
considered as a Baldwinian evolution process. The Baldwin effect is a form of
knowledge transfer. Features that have to be learned in early generations become
innate abilities in later generations. In our case this means the innate learning
abilities of the agents are increased over evolutionary time as the meta-parameters,
shaping rewards, or tasks hierarchies are being optimized

Superficially, the Baldwin effect sounds like the biologically disproved theory
of Lamarckian evolution (Lamarck, 1809). Lamarck’s theory of evolution was pro-
posed 50 years before Darwin’s and suggested that acquired characteristics by learn-
ing were imprinted back into the genotype and inherited to the offspring. Although
Lamarckian mechanisms are not to be found in nature, they can be more effective
than Darwinian evolution in artificial evolution. In general, Ackley and Littman
(1991) showed that Lamarckian evolution is more effective in a stationary environ-
ment, while Sasaki and Tokoro (1997) showed that Darwinian evolution outperforms
Lamarckian evolution in a non-stationary environment or when different individu-
als encounter different learning experiences. In Paper V Lamarckian mechanisms
are explored, as a method for accelerate the learning of the policies of the sub-
tasks in the MAXQ method. Because the MAXQ method seeks recursively optimal
policies, it is possible to continue the learning over generation for the subtrees in
the MAXQ graphs not affected by the genetic programming crossover operations.
This minimizes the need for re-learning the policies of the subtasks, and, thereby,
increases the learning performance compared with Darwinian evolution.

4.4 Evolutionary Robotics

Evolutionary robotics (Husbands, Harvey, and Cliff, 1993; Nolfi and Floreano, 2000;
Walker, Garrett, and Wilson, 2003) is a methodology for automatic creation of
control systems of autonomous robots, using evolutionary computation techniques.
The main attraction of evolutionary robotics and other artificial intelligence ap-
proaches is that the design of control systems for autonomous robots are difficult,
even for simple problems. This is clearly shown by fact that there exists almost
no autonomous robots assisting humans in their daily life. The main reason why
robotic control systems are difficult to design is that the robot’s behavior is an emer-
gent property of the dynamic interaction between the robot and its environment,
which makes it difficult to predict the behavior in advance for a designer.

An important difference between evolutionary robotics and the “normal” en-
gineering approach to evolutionary computation, is the objective of the evolution,

4.4. EVOLUTIONARY ROBOTICS 39

i.e., the design of the fitness function. From an engineering perspective the objec-
tive of the evolution is functional, i.e., to optimize a number of parameters for a
well defined control problem in a predictable environment with known properties.
In evolutionary robotics the objective is behavioral, i.e., to evolve the behavior
of autonomous robots in unpredictable and partially known environments. Nolfi
and Floreano (2000) define a 3D space for the classification of fitness functions for
different evolutionary objectives:

e The dimension functional-behavioral indicates whether the fitness function
considers the behavioral outcome or the specific function of the controller.

e The dimension explicit-implicit specifies the number of components, variables
and constraints in the fitness function. An explicit fitness function has many
components and an implicit fitness function has few components.

e The dimension external-internal indicates whether the agent relies on global
or local state information. An external fitness function includes global state
information that cannot be accessed by an autonomous robot. A “pure”
internal fitness function includes only local state information that are available
through the robot’s sensors.

In general, fitness functions for engineering purposes are located in the functional-
explicit-external part of the 3D space, and require human expert knowledge. In
contrast, fitness functions for evolutionary robotics are, ideally, located in the
behavioral-implicit-internal part of the space, and require little domain knowledge.

Evolutionary robotics and reinforcement learning are applicable to the same
types of problems, but solve them in different manners. Both methodologies search
the space of policies, and often use the same type of representation of the policies,
in the form of a neural network. The basic difference is that evolutionary methods
change the policies of all individuals after the final outcome of the task, while
reinforcement learning methods change the policy of an agent continuously during
the execution of the task. This is also the basic difference between learning and
evolution in nature. Learning is lifetime adaptations of the phenotype, which do
not, directly, affect the genotype, and evolution is adaptations of the genotypes
over generations of individuals in the population.

Another difference between reinforcement learning and evolutionary robotics is
that evolutionary methods do not specify a specific type of controller. In principle,
any control system that posses evolvability, i.e., the ability of random variations
to sometimes produce improvements (Wagner and Altenberg, 1996), can be used
in evolutionary robotics. The three main approaches (Nolfi and Floreano, 2000)
in evolutionary robotics are to: 1) evolve neural network controllers; 2) optimize
parameters of predefined controllers, and 3) evolve the computer programs them-
selves using genetic programming. Of these three, the most common approach is
to evolve some type of neural controller. The evolution of neural controllers is well
illustrated by a series of experiments by Floreano and Mondada (Mondada and

40 CHAPTER 4. ARTIFICIAL EVOLUTION

Floreano, 1995; Floreano and Mondada, 1996, 1998). Their task was to evolve a
neural controller for navigation in a small looping maze. The goal of the robot was
to move as fast as possible forward without colliding with the walls, and the fitness
function was designed to encourage straight motion and obstacle avoidance, defined
as

o = v(1—m)(1—i)
0<V <1
0<Av <1
0<i<l1, (4.2)

where V' is sum of wheel speeds of the two wheels, Av is absolute value of the
difference in velocity between the two wheels, and 7 is the normalized activity of
the infrared distance sensor with the highest activity. The fitness of an individual
was evaluated for each sensory-motor loop and the total fitness of an individual
was computed as the sum of the fitness values for all evaluations, divided by the
number of evaluations.

In the first experiment (Mondada and Floreano, 1995), they used the small
round Khepera robot, and the genotype consisted of the real-valued weights of a
recurrent Elman neural network (Elman, 1990) controller. The network had eight
input units, corresponding to the Khepera’s eight infrared proximity sensors, and
two sigmoid output units, corresponding to the wheel velocities of the two wheels.
After 50 generation, the best individuals, in a population of 100 individuals, had
obtained a smooth navigation behavior, where the robot did not collide with the
walls. In the second experiment (Floreano and Mondada, 1996), they tested re-
adaptation of the neural controllers to a new morphology and sensorimotor system.
The neural controllers was first evolved for 106 generations on the Khepera for the
navigation task described above. The controllers were then moved to the much
larger Koala robot and evolved for 44 more generations (totally 150 generations) in
a scaled-up looping maze. In addition to the difference in size, the Koala robot has
a different shape and proximity sensor layout compared with the Khepera robot.
After an initial drop in fitness, it took about 30 generations of evolutionary re-
adaptation to reach similar performance level as the individuals in the last genera-
tion on the Khepera robot. In the third experiment (Floreano and Mondada, 1996),
they used the Khepera robot and the looping maze task to investigate the evolu-
tion of learning mechanisms. Instead of evolving the weights of neural controller
directly, they evolved the learning rules and learning rates of the synaptic weights
of controller. Each weight of the neural network was changed continuously during
the individual’s lifetime according to one of four genetically determined Hebbian
learning rules (Hebb, 1949):

Wy = W—1 + NAwy, (4.3)

where 1 was the genetically determined learning rate of the synapse, and the change
of the weight, Aw;, was computed as a function of the activations of the presynaptic

4.5. EMBODIED EVOLUTION 41

and postsynaptic units, according to the specific Hebbian learning rule. The re-
sulting behaviors and obtained fitness levels were similar to the results in previous
experiment without learning, described above. The initial learning phase was very
short. The best obtained individuals needed only approximately 10 times steps,
i.e., sensory-motor loops, of initial adaptations to be able move forward without
colliding with the walls.

A good example of the second evolutionary robotics approach of optimizing pa-
rameters of a predefined controller is the experiment conducted by Hornby, Fujita,
Takamura, Yamamoto, and Hanagata (1999). They evolved two types of dynamic
locomotion gaits for the quadruped AIBO robot. The predefined locomotion con-
troller had 20 real-valued parameters, specifying the position and orientation of the
body, the swing trajectory and speed of the legs, the oscillation of the body loca-
tion and orientation, and three additional gain parameters. Artificial evolution was
used to optimize the values of the parameters on the physical robot, using a fitness
function that promoted fast straight-forward motion. The fitness of an individual
was computed as a product of the average velocity and the straightness of the loco-
motion. The experiment had mixed results. One of the evolved gaits was not truly
dynamic, dragging one of the front legs along the ground, and could, therefore, not
achieve high speeds. On the other hand, the result for the other locomotion gait
was impressive. The obtained gait of the best individual was almost twice as fast
as the best handcoded controller.

There are few studies using genetic programming to evolve control systems on
physical robots. An exception is the work by Nordin and Banzhaf (1997). They
applied a specialized variant of genetic programming to evolve an obstacle avoidance
behavior on a Khepera robot, using a similar fitness function and task setting
as in the study by Mondada and Floreano (1995). Their genetic programming
method operates directly on the machine code of the onboard computer of the
robot, and they developed a special crossover operator that can be applied on
linear chromosomes of variable length consisting of machine instructions. The used
a steady-state genetic programming population, where only a few individuals in the
population were tested in each evaluation loop. The results of the experiment are
impressive. It took only 40-60 minutes in real time to evolve a good program for
obstacle avoidance. Augustsson, Wolff, and Nordin (2002a) applied the same type
of genetic programming to evolve a feasible flying (flapping) behavior on a physical
robot.

4.5 Embodied Evolution

Watson, Ficici, and Pollack (2002) introduced the embodied evolution methodology
for evolutionary robotics. Embodied evolution was inspired for the case where a
large number of robots freely interact with each other while performing some task
in a shared environment. The robots produce offspring by mating, and, naturally,
the probability for a robot to produce offspring is regulated by the robot’s per-

42 CHAPTER 4. ARTIFICIAL EVOLUTION

formance of the task. Embodied evolution mimics the distributed, asynchronous
and autonomous properties of biological evolution. The main difference between
embodied evolution and other evolutionary robotics approaches is that reproduc-
tion is integrated with other autonomous behaviors. The evaluation, selection and
reproduction are carried out by cooperation and competition of the robots, without
any need for human intervention. There is no centralized mechanism performing
selection and applying genetic operation objectively from a “God’s” point of view.
Watson, Ficici, and Pollack (2002) validated their approach by successfully apply
embodied evolution to a simple phototaxis task. They used 8 small mobile robots
to evolve a very simple neural network controller. The controller had two input
nodes. One binary input, indicating which of the two light sensors receiving more
light, and one bias node. The input nodes were fully-connected to two output mo-
tor neurons, controlling the speed of the wheels, giving totally four integer weights.
In their experiments mating was not a directed behavior. Instead, an agent broad-
casted its genotype according to a predefined scheme and the other robots within
communication range could then pick up the genotype. Differential selection was
achieved by that more successful agents broadcasted their genotypes more often
and were less inclined to accept genotypes broadcasted by other robots. A similar
approach was used by Nehmzow (2002). He used embodied evolution to evolve
three different sensory-motor behaviors, using two small mobile robots. In the ex-
periments, the two robots first evaluated their current behavioral strategies, and
after a fixed amount of time the robots initiated a robot seeking behavior. The
robots then performed an exchange of genetic material via IR-communication, and
genetic operations were applied according to the fitness values. Each robot stored
two genotype strings: the currently active string and the best solution so far. If
the genetic algorithm did not produce an improved result, then the best solution
was used in the next generation.

Our general objective is to investigate the adaptive mechanisms of artificial
agents under the same fundamental constraints as biological agents, namely self-
preservation and self-reproduction (see the description of Cyber Rodent project
in the next section 4.6). This gives some specific requirements on the embodied
evolution:

e Reproduction should be truly integrated as a directed autonomous behav-
ior. The individuals have to find mating partners and physically exchange
genotypes with the mating partners.

o Maintaining the internal energy levels of the individuals is a natural constraint
of the embodied evolution. Battery power is in general considered a limita-
tion of evolutionary robotics (Mataric and Cliff, 1996), because the robots
have to interrupt their activity for a considerable amount of time to recharge
their batteries. In evolutionary robotics studies using the Khepera robot the
battery supply issue is often solved by connecting the Khepera to an external
battery source through a thin cable and rotating contacts. Another popular
solution used in the embodied evolution study by Watson, Ficici, and Pollack

4.6. THE CYBER RODENT ROBOT 43

(2002) is to use an electrified floor that provides power to the robots. From
our biological perspective, the recharging of the individuals internal batteries
is a biological constraint that is necessary for survival. The individuals have
to find and recharge from external battery sources to be able to stay alive.

e The individuals should not be evaluated for their performance on some ar-
bitrary task. Instead the individuals should be evaluated for their survival
ability, i.e., their ability to forage food, in the form of external batteries, and
to perform mating with selected mating partners. Ideally, there should be no
explicit fitness function promoting a certain behavior. Instead, like in nature,
the performance of an agent should be determined by its reproductive ability.

Another difference between our approach and standard evolutionary robotics and
the embodied evolution studies described above is the purpose of the evolution.
The role of the evolution, in this thesis, is not to evolve correct low-level map-
pings between sensory input and motor output. Instead the genotype encodes the
meta-properties of learning by reinforcement learning, such as meta-parameters,
potential-based shaping rewards, and switching of primitive behaviors. The role of
the evolution is to accomplish meta-learning by optimizing these meta-properties.
Our approach is clearly related to the evolution of learning rules in neural con-
trollers (Floreano and Mondada, 1996; Urzelai and Floreano, 2000). An obvious
difference between these approaches is algorithmical. In the evolution of learning
rules, the weights of the neural controller is modified by Hebbian learning and the
learning has no explicit goal of its own. In our approach the learning is accomplished
by TD-learning and each learning behavior has its own goal defined by a reward
function. The similarity of these two approaches was demonstrated in the work
by Niv, Joel, Meilijson, and Ruppin (2002) and Ruppin (2002), where they showed
that optimal learning rules for a reinforcement learning agent could be evolved in a
general Hebbian learning framework. Unfortunately, it seems very difficult to scale
up their method to more complex robotic applications.

An important issue that has be considered in embodied evolution for more
complex robotic tasks is the limited number of available physical robots. In the
original embodied evolution framework each physical robot equals one individual
in the population. Although this may be the ideal case, it makes the methodology
inapplicable for more complex evolutionary robotics tasks, because of the large
number of robots required for an appropriate population size. To overcome this
limitation, we have embedded a subpopulation of virtual agents inside each robot.
The virtual agents are evaluated in the survival task by time-sharing, i.e., taking
control over the robot for a limited period of time.

4.6 The Cyber Rodent Robot

The research presented in this thesis has been conducted within the Cyber Rodent
project (Doya and Uchibe, 2005). The goal of the Cyber Rodent project is to

44 CHAPTER 4. ARTIFICIAL EVOLUTION

understand the origins of our reward and affective systems by building artificial
agents that share the same intrinsic constraints as natural agents: self-preservation
and self-reproduction. The robotic platform, the Cyber Rodent, was developed
with the embodied evolution objectives outlined in the previous section 4.5 in mind.
The Cyber Rodent (see Figure 4.4) is a rat-like mobile robot, 22 c¢m in length and

Figure 4.4. Four Cyber rodents and three battery packs with different colored
(Red, Green, and Blue) LEDs mounted on top.

1.75 kg in weight. The robot has a variety of sensors, including a wide-angle C-
MOS camera, an infrared range sensor, seven infrared proximity sensors, gyros, and
accelerometers (see Figure 4.5). It has two wheels and a maximum speed of 1.3
ms~!, and a magnetic jaw that latches onto battery packs. It also has a speaker, two
microphones, a three-color LED for audio-visual communication, and an infrared
communication port. It is further equipped with USB and wireless communication
ports for connection with a host computer.

The “brain” of the Cyber Rodent CR is a Hitachi SuperH-4 CPU chip, which
allows fully on-board, real-time learning and control. It also has a FPGA chip for
real-time visual processing, such as color blob detection. The programs for the
Cyber Rodent are coded in C on top of the real-time operation system eCos. The
hardware was manufactured by Robos (Nagoya, Japan) and its basic software was
developed by R-Lab (Tokyo, Japan). The two main features of the Cyber Rodent
robot is the ability to recharge from external battery packs in the environment,
for self-preservation, and the ability to exchange genetic information by infrared
communication, for self-reproduction. To our knowledge the Cyber Rodents are the
first autonomous robots that realize survival by recharging and evolution by local
communication. The project currently has four Cyber Rodents. Most experiments
in this thesis have been performed in a Matlab simulator, mimicking the real Cyber

4.6. THE CYBER RODENT ROBOT 45

Sensors Actuators Communication

IR port
CMOS camera Motor for latching R/G/BLED |wheel Motors

Range sensor the battery
IR proximity x7 Microphone x2 3D accelerometer/gyro

Figure 4.5. The sensors, actuators and communication devices of the Cyber Ro-
dent.

Rodents and their environment.

Research in Cyber Rodent project includes: 1) the evolution of neural controllers
for sequential navigation (Capi and Doya, 2003, 2004); 2) evolution of the meta-
parameters « and 7 for a foraging task where the number of battery packs change
over the learning time (Eriksson, Capi, and Doya, 2003); 3) development of a novel
reinforcement learning method, where an appropriate policy is selected from a set
of heterogeneous reinforcement learning modules and the policies of all modules,
including those not selected, are improved, using importance sampling (Uchibe and
Doya, 2004), and 4) the demonstration of a sustaining colony of four Cyber Ro-
dents for hours of operation, where the supplementary reward signals of three basic
reinforcement learning behaviors were evolutionary optimized (Doya and Uchibe,
2005).

Chapter 5

Summary of Included Papers

This chapter summarizes the included papers and highlights the sci-
entific contributions. The first three papers show the cumulative re-
search process of the development of the embodied evolution framework.
The fourth paper investigates the co-evolution of meta-parameters and
potential-based shaping rewards. The fifth paper proposes an evolu-
tionary approach to the automatic construction of task hierarchies in
the hierarchical reinforcement learning method MAXQ.

5.1 Paper |: Multi-Agent Reinforcement Learning: Using Macro
Actions to Learn a Mating Task

This paper is the first step towards the development of an embodied evolution
framework, by studying the learning of mating between two Cyber Rodent robots in
isolation. Standard reinforcement learning is not well suited for learning cooperative
multi-agent tasks, because the success of an agent’s behavior depends strongly on
the dynamic interaction with other agents, and not only with the interaction with
a static environment, which is the standard assumption in reinforcement learning.
For mating, the main challenge relates to the fact that it is difficult to predict the
actions of the other, autonomous, agent, which increases the uncertainty in the
outcome of the agent’s actions, i.e., the state transitions and the reward signals.
We introduce a few simple macro actions, i.e., actions that are extended in time
for more than one time step, to make the agent’s behavior more predictable for the
mating partner. The macro actions are implemented as options and force the agent
to repeat the same action for several time steps. The simulation results show a
significant increase in performance for learning with macro actions, both in regards
to the initial learning performance and in regards to the obtained learned policy
after learning.

In hindsight, the conclusion that macro-actions are required for learning the
mating behavior was premature. In the subsequent studies (see Papers II and III),

47

48 CHAPTER 5. SUMMARY OF INCLUDED PAPERS

learning of mating without macro-actions works satisfactory, after changing the
algorithm from Q-learning to Sarsa, and, most importantly, changing the function
approximation from a normalized radial basis function network to tile coding with
finer resolution. However, this confirms one major argument in this thesis, that the
design of meta-properties in reinforcement learning is difficult from an engineering
perspective, and it shows the need for automatic meta-learning methods.

5.2 Paper ll: Biologically Inspired Embodied Evolution of
Survival

In this paper we propose a framework for performing embodied evolution with a lim-
ited number of robots, by utilizing time-sharing for evaluation of subpopulations of
virtual agents inside each robot. We apply an autonomous selection scheme, where
each virtual agent stores the genotype of the best estimated mating partner. The
genotypes and the estimated fitness of the other agents are received via mating, a
pair-wise exchange of information with virtual agents controlling other robots. In
this study, there is no within-generation learning of the basic behaviors. Instead,
the policies of basic behaviors are learned in advance, in isolation, by reinforcement
learning. The behavior of a virtual agent is genetically determined by a linear
feedforward neural network that selects basic behaviors according to the current
environmental state and the virtual agent’s internal battery level, and computes
the recharge time when the virtual agent has captured an external battery pack.
We define the fitness as the number of batteries captured during the lifetime of
a virtual agent. To validate the proposed method, we compared the evolutionary
performance with evolution with standard centralized selection. The simulation
results show that the individuals in evolution with centralized selection captures
more batteries, which is explicitly promoted by the fitness function. However, the
individuals in our proposed method perform more matings, which is only implic-
itly promoted by fact that virtual agents that mates more frequently have higher
probability of spreading their genotypes in the population.

We also present experimental results for the implementation of our embodied
evolution framework in hardware. We, first, evolved the virtual agents in simulation
for 40 generations and, then, transferred the obtained genotypes to the real Cyber
Rodent robots. In hardware, we evolved the virtual agents for approximately 10
additional generations, and for all three robots used in the experiments the average
fitness values increased significantly.

5.3 Paper lll: Darwinian Embodied Evolution of the Learning
Ability for Survival

In this paper we propose an improved embodied evolution framework, compared
with Paper II, for for performing embodied evolution with a limited number of
robots. Within this framework we combine within-generation learning of basic be-

5.4. PAPER IV: CO-EVOLUTION OF SHAPING REWARDS AND
META-PARAMETERS IN REINFORCEMENT LEARNING 49

haviors by reinforcement learning, and evolutionary adaptation of parameters that
modulate the learning ability of the basic behaviors. A top-layer neural network
selects learning modules, corresponding to the basic behaviors, according to the cur-
rent state. The learning modules learn their behaviors by the reinforcement learn-
ing algorithm Sarsa(\), and the learning is modulated by additional reward signals,
implemented as potential-based shaping rewards, and the global meta-parameters.
We introduce an implicit and biologically inspired selection scheme, in which there
is no explicit representation or communication of the virtual agents’ fitness infor-
mation. A virtual agent can only reproduce offspring by mating with virtual agents
controlling other robots, and the probability that the virtual agent will reproduce
offspring in its own subpopulation is dependent on the virtual agent’s energy level
at the mating occasion. Differential selection is achieved by that virtual agents
that perform more reproductive matings have higher probability of transferring its
offspring to the next generation.

The experimental results in simulation show that the proposed method has
similar evolutionary performance compared to evolution with standard centralized
selection. We also transfer the best obtained solutions in simulation to the hardware
using two real Cyber Rodent robots. Very encouragingly, the learning performance
in hardware of the two basic behaviors, mating and foraging, are similar to the
simulation results under the same environmental conditions. An interesting result
is that meta-parameter 7, which controls the trade-off between exploration and
exploitation in softmax action selection, quickly evolves to become 0, and thereby
makes the action selection greedy for both learning modules. There are also a
highly significant correlation between the number of matings the virtual agents
performed in the last generation in all 20 simulation runs (used as estimate of
the efficiency of the shaping rewards of the mating behavior) and the values of
the meta-parameter A, which controls the decay of the eligibility traces. For virtual
agents that perform more matings, the obtained A-values are smaller, which suggests
that more optimized shaping rewards reduce the need to propagate the reward
information to preceding state-action pairs.

5.4 Paper IV: Co-Evolution of Shaping Rewards and
Meta-Parameters in Reinforcement Learning

In this paper we explore the co-evolution of shaping rewards and meta-parameters,
using the mountain-car task and a foraging task for the Cyber Rodent robot, as
testbeds. The simulation results for the mountain-car task show that the best
obtained solution improves the initial performance by factor larger than 10 and
improves the convergence speed to robust policies by a factor larger than 60. We
also transferred the best obtained solution for the foraging task to the real Cyber
Rodent. Similar to the results in Paper III, there was no significant difference
between the learning performance in hardware and in simulation. This suggest
that the co-evolution of shaping rewards and meta-parameters could be used as an

50 CHAPTER 5. SUMMARY OF INCLUDED PAPERS

effective method for bridging the difference between idealized computer simulation
and real hardware experiments. Also similar to the results in Paper III, the action
selection tends to be become greedy very early on in the evolutionary process and
the obtained trace-decay meta-parameter,)\, for the optimized shaping rewards is
small.

5.5 Paper V: Evolutionary Development of Hierarchical
Learning Structures

Hierarchical reinforcement learning algorithms can learn a policy faster than stan-
dard reinforcement learning algorithms. However, the applicability of hierarchical
reinforcement learning algorithms depends critically on the decomposition of the
task into suitable subtasks, which has to be performed in advance by the human de-
signer. In this paper we propose a Lamarckian evolutionary approach for automatic
construction of task hierarchies in the hierarchical reinforcement learning method
MAXQ. In the proposed method the MAX(Q method learns the policy based on the
task hierarchies obtained by genetic programming, while the genetic programming
explores the appropriate hierarchies using the results of the MAXQ method. In the
MAXQ method the learning of a subtask’s policy is independently of the policy of
its parent subtask’s policy, which makes it possible to reuse learned policies of the
subtasks over the generations in a Lamarckian fashion.

We validate the proposed method in simulation, using a foraging task for the
Cyber Rodent robot. The task for the Cyber Rodent is to find and capture a battery
pack, and then return the battery pack to the robot’s nest. The main results from
the experiments are that: 1) it is a strong interconnection between the obtained task
hierarchy and the given task environment; 2) the genetic programming tries to find
a minimal solution, which minimizes the number of primitive subtasks that can be
executed in each type of situation; 3) Lamarckian evolution can have an advantage
over standard Darwinian evolution, given that the environmental setting is difficult
enough to require a mix of primitive subtasks to accomplish the subgoals, and 4)
it is important to take both the task and the environment in consideration when
performing task decomposition.

Chapter 6

Concluding Remarks

This thesis has explored meta-learning in reinforcement learning from an evolu-
tionary perspective in two contexts: 1) as a method for equipping agents with
meta-learning capabilities for survival in an embodied evolution framework (Pa-
per IIT), and 2) as a design tool for automatic optimization of meta-properties in
reinforcement learning (Papers IV and V).

This thesis proposed a framework for realizing embodied evolution with a lim-
ited number of robots, by utilizing time-sharing of subpopulation of virtual agents
(Paper IIT). The framework integrates meta-learning of basic reinforcement learn-
ing behaviors for survival, i.e., capturing and recharging from external batteries,
and pair-wise mating between robots to exchange genotypes for reproduction. The
framework applies an implicit and biologically inspired selection scheme, whereas
in nature an agent can only reproduce offspring by mating with agents that con-
trol other robots in the environment. In addition, the probability of reproducing
offspring is dependent on the agents’ “health” at the mating occasions. Simulation
results show that our proposed method has similar performance to evolution with
standard centralized selection. The only notable difference is that the proposed
method has higher initial performance. We also transferred the best obtained so-
lution to the real Cyber Rodent robot, and the learning performance was similar
in both hardware and simulation. This result was confirmed in Paper IV, where
we transferred, for a foraging task, shaping rewards and meta-parameters obtained
in simulation to a real Cyber Rodent robot. In both Paper III and IV, the ex-
perimental results show that shaping rewards can drastically reduce the amount of
exploration required for efficient learning. In both studies the action selection tends
to be greedy very early on in the evolutionary process. Also, both studies show that
more optimized shaping rewards, by giving more accurate reward feedback for the
state transitions, can reduce the need to propagate received rewards back to pre-
ceding states. Simulation results for the mountain-car task (Paper IV) show that
co-evolution of shaping rewards and meta-parameters can greatly improve both the
initial performance and the convergence speed to robust policies.

o1

52 CHAPTER 6. CONCLUDING REMARKS

This thesis proposed a Lamarckian evolutionary method for automatic construc-
tion of task hierarchies in hierarchical reinforcement learning method MAXQ), using
genetic programming techniques (Paper V). The results of the simulation experi-
ments for different environmental settings of a foraging and homing task showed
that there is strong relation between the obtained task hierarchy and the environ-
mental setting. This demonstrates the importance of taking the environment into
consideration when performing task decomposition in hierarchical reinforcement
learning. The results also showed that Lamarckian evolution can be more effec-
tive than standard Darwinian evolution, because Lamarckian evolution allows the
learning of the policies of the subtasks to be continued over the generations.

6.1 Future Research Directions

The main unrealized goal of this thesis is the validation of the proposed methods
in hardware experiments on the Cyber Rodent robots. The evolutionary method
for automatic construction of task hierarchies in the MAXQ method (Paper V) is
relatively difficult to transfer directly to the physical robots. The main obstacle
is related to computational capacity of the Cyber Rodents and the high computa-
tional cost, both for the computation of the projected value functions needed for
action selection and for the computation of the batch updating of the completion
functions for learning in the subtasks. It would probably also be wise to change
function approximation method from normalized radial basis functions networks to
tile coding, to reduce the computational requirements.

The two biggest issues that have be addressed to implement the embodied evolu-
tion framework (Paper IIT) on the Cyber Rodents are how to sustain the power level
of the robot’s internal batteries for an extended period of time, and the time re-
quired for evolution and learning. The simplest solution to the first problem would
be to pre-program the recharging scheme of the external battery packs (Doya and
Uchibe, 2005). This is, of course, not an ideal solution. In an embodied evolution
framework intended for the investigation of learning mechanisms under biological
constraints, the agent should learn or evolve the ability to sustain the internal en-
ergy level of the robot. The Cyber Rodent project is now developing the second
generation hardware platform. One of the design objectives of the new robot is
that it should be easier to monitoring the robot’s internal battery level, and also to
improve the ability to control the recharging from external batteries. The project
will also produce considerably more second generation robots than the four Cyber
Rodents the project currently has in its possession. This will most likely reduce the
required number of virtual agents inside each robot, and thereby reduce the total
evolution time. To accelerate the evolutionary process, a possible source of inspi-
ration is the evaluation approach proposed by Whiteson and Stone (2006). They
introduced explicit selection within the generations. Instead of selecting individuals
for evaluation randomly, they selected individuals according to standard reinforce-
ment learning action selection strategies, e.g., e-greedy or softmax. They showed

6.1. FUTURE RESEARCH DIRECTIONS 53

that explicit selection within the generations can improve the efficiency of the evo-
lution, for evolutionary meta-learning of function approximation in Q-learning.

An interesting result in the embodied evolution study is that there are variations
in the obtained shaping rewards for the mating behavior in the different simulation
runs. Combined with the fact that the shaping rewards are gradually improved
throughout the evolution, this suggests a feedback dynamics between the within-
generation learning of the mating behavior and the evolutionary adaptation of the
learning ability for mating. If this result is related to Baldwinian evolution, then
the within-generation learning of the mating should influence the shaping rewards
in subsequent generations.

The distributed and multi-agent nature of embodied evolution makes it particu-
lar suited for the study of several interesting issues. In the current implementation,
the agents are completely honest about their health, i.e., the implicit expression of
the fitness. It would be interesting to explore settings where the agents can deceive
the mating partner, and also have the ability to resist deception. Another mating
related issue is, under which circumstances different mating strategies are more
appropriate, e.g., whether to use a liberal mating approach or to use a more con-
servative approach, by searching for high-performance mating partners. Embodied
evolution is also a natural framework for studying the evolution of multi-agent be-
haviors. Suitable tasks for the Cyber Rodents could be cooperative foraging of
batteries, or competition for limited sources of energy. In multi-agent tasks it also
seems natural to explore the communication between the agents. In the colony of
Cyber Rodents, communication in the form of visual or audio signaling, displaying
the state or intention of the agents, could be used as a means to aid the coopera-
tion between the robots. Some form of communication for the display of the agents’
fitness would also be required to study different mating strategies.

Bibliography

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. 2007. An Application of Rein-
forcement Learning to Aerobatic Helicopter Flight. To appear in Proceedings of
Advances in Neural Information Processing Systems (NIPS-2007).

D. H. Ackley and M. L. Littman. 1991. Interactions between learning and evolution.
In Proceedings of the Conference on Artificial Life, volume 2, pages 478-507.

J. S. Albus. 1971. A theory of cerebellar function. Mathematical Biosciences, 10:
25-61.

J. S. Albus. 1981. Brain, Behavior, and Robotics. Byte Books.

R. L. Atkinson, R. C. Atkinson, E. E. Smith, D. J. Bem, and S. Nolen-Hoeksema.
1996. Hilgard’s Introduction to Psychology, 12 edition. Harcourt Brace College
Publishers.

P. Augustsson, K. Wolff, and P. Nordin. 2002a. Creation of A learning, flying
robot by means of evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2002), pages 1279-1285.

P. Augustsson, K. Wolff, and P. Nordin. 2002b. The evolution of variable learning
rates. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2002), pages 52-59.

L. C. Baird. 1995. Residual algorithms: Reinforcement learning with function ap-
proximation. In Proceedings of the International Conference on Machine Learning
(ICML-1995), pages 30-37.

J. Baldwin. 1896. A new factor in evolution. American Naturalist, 30:441-451.

J. Baxter and P. L. Bartlett. 2001. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15:319-350.

R. E. Bellman. 1957. Dynamic Programming. Princeton University Press.

D. P. Bertsekas and J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena
Scientific.

95

56 BIBLIOGRAPHY

M. Bowling and M. Veloso. 2002. Multiagent learning using a variable learning
rate. Artificial Intelligence, 136:215-250.

J. A. Boyan and A. W. Moore. 1995. Generalization in reinforcement learning:
Safely approximating the value function. In Proceedings of Advances in Neural
Information Processing Systems (NIPS-1995), volume 7, pages 369-376.

S. J. Bradtke. 1993. Reinforcement learning applied to linear quadratic regulation.
In Proceedings of Advances in Neural Information Processing Systems (NIPS-
1993), volume 5, pages 295-302.

D. S. Broomhead and D. Lowe. 1988. Multivariable functional interpolation and
adaptive networks. Complex Systems, 2:321-355.

G. Capi and K. Doya. 2003. Evolving recurrent neural controllers for sequential
tasks: A parallel implementation. In Proceedings of the Congress on Evolutionary
Computation (CEC-2003), volume 1, pages 514-519.

G. Capi and K. Doya. 2004. Evolution of neural architecture fitting environmental
dynamics. Adaptive Behavior, 13:53-66.

C. Darwin. 1859. On The Origin of Species by Means of Natural Selection, or the
Preservation of Favoured Races in the Struggle for Life. John Murray.

P. Dayan and G. E. Hinton. 1993. Feudal reinforcement learning. In Proceedings
of Advances in Neural Information Processing Systems (NIPS-1993), volume 5,
pages 271-278.

T. G. Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227-303.

M. Dorigo and M. Colombetti. 1998. Robot Shaping: An Experiment in Behavior
Engineering. MIT Press/Bradford Books.

K. L. Downing. 2001. Adaptive genetic programs via reinforcement learning. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-
2001).

K. Doya. 2002. Metalearning and neuromodulation. Neural Networks, 15(4).

K. Doya and E. Uchibe. 2005. The cyber rodent project: Exploration of adaptive
mechanisms for self-preservation and self-reproduction. Adaptive Behavior, 13
(2):149-160.

J. L. Elman. 1990. Finding structure in time. Cognitive Science, 14(2):179-211.

A. Eriksson, G. Capi, and K. Doya. 2003. Evolution of meta-parameters in rein-
forcement learning algorithm. In Proceedings of the IEEE/RSJ Conference on
Intelligent Robots and Systems (IROS-2003), pages 412—417.

57

D. Floreano and F. Mondada. 1996. Evolution of plastic neurocontrollers for sit-
uated agents. In Proceedings of the International Conference on Simulation of
Adaptive Behavior (SAB-1996), pages 401-410.

D. Floreano and F. Mondada. 1998. Evolutionary neurocontrollers for autonomous
mobile robots. Neural Networks, 11(7-8):1461-1478.

D. E. Goldberg. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional.

D. O. Hebb. 1949. The Organization of Behavior. Wiley and Sons.

G. E. Hinton and S. J. Nowlan. 1987. How learning can guide evolution. Complez
Systems, 1:495-502.

J. H. Holland. 1975. Adaptation in natural and artificial systems. Ann Arbor, MI:
The University of Michigan Press.

G. S. Hornby, M. Fujita, S. Takamura, T. Yamamoto, and O. Hanagata. 1999. Au-
tonomous evolution of gaits with the sony quadruped robot. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-1999), volume 2,
pages 1297-1304.

P. Husbands, I. Harvey, and D. Cliff. 1993. An evolutionary approach to situated
AL In Proceedings of the conference of the Society for the Study of Artificial
Intelligence and the Simulation of Behavior (AISB-1993).

H. Iba. 1998. Multi-agent reinforcement learning with genetic programming. In
Proceedings of the Annual Conference on Genetic Programming (GP-1998).

L. P. Kaelbling, M. L. Littman, and A. P. Moore. 1996. Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237-285.

S. Kamio and H. Iba. 2005. Adaptation technique for integrating genetic pro-
gramming and reinforcement learning for real robots. IEEE Transactions on
Evolutionary Computation, 9(3):318-333.

J. R. Koza. 1992. Genetic Programming: On the programming of Computers by
Means of Natural Selection. MIT Press.

J. R. Koza. 1994. Genetic programming II: automatic discovery of reusable pro-
grams. MIT Press.

J. B. Lamarck. 1809. Philosophie Zoologique. Chez Dentu.

A. Laud and G. DeJong. 2003. The influence of reward on the speed of reinforcement
learning: An analysis of shaping. In Proceedings of the International Conference
on Machine learning (ICML-2003), pages 440-447.

58 BIBLIOGRAPHY

S. Mahadevan. 1996. Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results. Machine Learning, 22(1-3):159-195.

M. Mataric. 1994. Reward functions for accelerated learning. In Proceedings of the
international conference on Machine learning (ICML-1994).

M. Mataric. 1997. Reinforcement learning in the multi-robot domain. Autonomous
Robots, 4(1):73-83.

M. Mataric and D. Cliff. 1996. Challenges in evolving controllers for physical robots.
Robotics and Autonomous Systems, 19:67-83.

G. Mayley. 1996. Landscapes, learning costs, and genetic assimilation: Modeling
the evolution of motivation. Fvolutionary Computation, 4(3):213-234.

F. Mondada and D. Floreano. 1995. Evolution of neural control structures: Some
experiments on mobile robots. Robotics and Autonomous Systems, 16(2—4):183—
195.

D. J. Montana. 1995. Strongly typed genetic programming. Fvolutionary Compu-
tation, 3(2-4):199-230.

A. W. Moore. 1990. Efficient Memory-based Learning for Robot Control. PhD
thesis, University of Cambridge.

A. W. Moore and C. G. Atkeson. 1993. Prioritized sweeping: Reinforcement learn-
ing with less data and less time. Machine Learning, 13:103-130.

U. Nehmzow. 2002. Physically embedded genetic algorithm learning in multi-robot
scenarios: The PEGA algorithm. In Proceedings of the international Workshop
on Epigenetic Robotics and Robotics (EPIROB-2002).

A. Ng, D. Harada, and S. Russell. 1999. Policy invariance under reward trans-
formations: theory and application to reward shaping. In Proceedings of the
international conference on Machine learning (ICML-1999), pages 278-287.

Y. Niv, D. Joel, I. Meilijson, and E. Ruppin. 2002. Evolution of reinforcement
learning in uncertain environments: a simple explanation for complex foraging
behaviors. Adaptive Behavior, 10(1):5-24.

S. Nolfi and D. Floreano. 2000. Ewolutionary Robotics. The Biology, Intelligence,
and Technology of Self-organizing Machines. MIT Press.

P. Nordin and W. Banzhaf. 1997. An on-line method to evolve behavior and to con-
trol a miniature robot in real time with genetic programming. Adaptive Behavior,
5(2):107- 140.

59

R. Parr and S. Russell. 1997. Reinforcement learning with hierarchies of machines.
In Proceedings of Advances in Neural Information Processing Systems (NIPS-
1997), volume 10, pages 1043-1049.

J. Randlgv and P. Alstrgm. 1998. Learning to drive a bicycle using reinforcement
learning and shaping. In Proceedings of the international conference on Machine
learning (ICML-1998).

G. A. Rummery and M. Niranjan. 1994. On-line Q-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR 166, Cambridge University
Engineering Department.

E. Ruppin. 2002. Evolutionary autonomous agents: A neuroscience perspective.
Nature Review Neuroscience, 3:132—-141.

A. Samuel. 1959. Some studies in machine learning using the game of checkers.
IBM Journal on Research and Development, 3:210-229.

T. Sasaki and M. Tokoro. 1997. Adaptation toward changing environments: Why
darwinian in nature? In Proceedings of the Furopean Conference on Artificial

Life (ECAL-1997), volume 4, pages 145-153.

N. N. Schraudolph, Peter Dayan, and Terrence J. Sejnowski. 1994. Temporal dif-
ference learning of position evaluation in the game of go. In In Proceedings of
Advances in Neural Information Processing (NIPS-1994), pages 817-824.

Wolfram Schultz, Peter Dayan, and P. Read Montague. 1997. A neural substrate
of prediction and reward. Science, 275:1593-1599.

S. P. Singh and R. S. Sutton. 1996. Reinforcement learning with replacing eligibility
traces. Machine Learning, 22(1-3):123-158.

B. F. Skinner. 1938. The Behavior of Organisms: An Ezperimental Analysis. Pren-
tice Hall.

B. F. Skinner. 1953. Science and Human Behavior. Collier-Macmillian.

R. S. Sutton. 1984. Temporal Credit Assignment in Reinforcement Learning. PhD
thesis, University of Massachusetts.

R. S. Sutton. 1990. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML-1990), pages 216-224.

R. S. Sutton. 1992a. Adapting bias by gradient descent: an incremental version
of the delta-bar-delta. In Proceedings of the National Conference on Artificial
Intelligence.

60 BIBLIOGRAPHY

R. S. Sutton. 1992b. Gain adaptation beats least squares? In Proceedings of the
Yale Workshop on Adaptive and Learning Systems, pages 161-166.

R. S. Sutton. 1996. Generalization in reinforcement learning: Successful examples
using sparse coarse coding. In Proceedings of Advances in Neural Information

Processing Systems (NIPS-1996), volume 8, pages 1038-1044.

R. S. Sutton and A. G. Barto. 1998. Reinforcement Learning: An Introduction.
MIT Press.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. 2000. Policy gradient
methods for reinforcement learning with function approximation. In Proceedings
of Advances in Neural Information Processing Systems (NIPS-2000), volume 12,
pages 1057-1063.

R. S. Sutton, D. Precup, and S. P. Singh. 1999. Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning. Artificial Intel-
ligence, 112(1-2):181-211.

R. S. Sutton and S. P. Singh. 1994. On step-size and bias in temporal difference
learning. In Proceedings of the Eighth Yale Workshop on Adaptive and Learning
Systems, pages 91-96.

G. Tesauro. 1989. Neurogammon wins computer olympiad. Neural Computation,
1:321-323.

G. Tesauro. 1992. Practical issues in temporal difference learning. In Proceedings
of Advances in Neural Information Processing Systems (NIPS-1992), volume 4,
pages 259-266.

G. Tesauro. 1994. Td-gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6(2):215-219.

G. Tesauro. 1995. Temporal difference learning and td-gammon. Communications
of the ACM, 38(3):58-68.

S. Thrun. 1995. Learning to play the game of chess. In Proceedings of Advances in
Neural Information Processing Systems (NIPS-1995), pages 1069-1076.

P. Turney, D. Whitley, and R. Anderson. 1996. Introduction to the special issue:
Evolution, learning, and instinct: 100 years of the baldwin effect. Ewvolutionary
Computation, 4(3):iv—viii.

E. Uchibe and K. Doya. 2004. Competitive-cooperative-concurrent reinforcement
learning with importance sampling. In Proceedings of the International Confer-
ence on Simulation of Adaptive Behavior (SAB-2004), pages 287-296.

61

T. Unemi, M. Nagaoyoshi, N. Hirayama, T. Nade, K. Yano, and Y. Masujima.
1994. Differentiation of learning abilities — a case study on optimizing parameter
values in g-learning by a genetic algorithm. In Proceedings of the International
Workshop on the Synthesis and Simulation of Living Systems, pages 331-336.

J. Urzelai and D. Floreano. 2000. Evolutionary robotics: Coping with environ-
mental change. In Proceedings of the Genetic and FEvolutionary Computation
Conference (GECCO-2000), pages 941-948.

C. H. Waddington. 1942. Canalization of development and the inheritance of ac-
quired characters. Nature, 150:563-565.

G. P. Wagner and L. Altenberg. 1996. Complex adaptations and the evolution of
evolvability. Evolution, 50:967-976.

J. Walker, S. Garrett, and M. Wilson. 2003. Evolving controllers for real robots: A
survey of the literature. Adaptive Behavior, 11(3):179-203.

C. J. Watkins. 1989. Learning from delayed rewards. PhD thesis, Cambridge Uni-
versity.

R. Watson, S. Ficici, and J. Pollack. 2002. Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. Robotics and Autonomous
Systems, 39(1):1-18.

S. Whiteson and P. Stone. 2006. Evolutionary function approximation for reinforce-
ment learning. Journal of Machine Learning Research, 7:877-917.

E. Wiewiora. 2003. Potential-based shaping and Q-value initialization are equiva-
lent. Journal of Artificial Intelligence Research, 19:205—208.

R. J. Williams. 1992. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8:229-256.

W. Zhang and T. G. Dietterich. 1995. A reinforcement learning approach to job-
shop scheduling. In Proceedings of the International Joint Conference on Artifi-
cial Intellience.

