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Abstract

In many domains, the task can be decomposed into a set of independent sub-
goals. Often, such tasks are too complex to be learned using standard techniques
such as Reinforcement Learning. The complexity is caused by the learning system
having to keep track of the status of all sub-goals concurrently. Thus, if the
solution to one sub-goal is known when another sub-goal is in some given state, the
known solution must be relearned when the status of the other sub-goal changes.

This dissertation presents a modular approach to reinforcement learning that
takes advantage of task decomposition to avoid unnecessary relearning. In the
modular approach, modules are created to learn each sub-goal. Each module
receives only those inputs relevant to its associated sub-goal, and can therefore
learn without being affected by the state of other sub-goals. Furthermore, each
module searches a much smaller space than that defined by all inputs considered
together, thereby greatly reducing learning time. Since each module learns how
to achieve a separate sub-goal, at any given time it may recommend an action
different from that recommended by other modules. To select an action that best
satisfies as many of the modules as possible, a simple arbitration strategy is used.
One such strategy, explored in this dissertation, is called greatest mass which
simply combines action utilities from all modules and selects the one with the
largest combined utility.

Since the modular approach limits and separates information given to the
modules, the solution learned must necessarily differ from that learned by a stan-
dard, non-modular approach. However, experiments in a simple driving world
indicate that while sub-optimal, the solution learned by the modular system only
makes minor errors when compared with that learned by the standard approach.
A complex task can thus be learned very quickly, using only small amounts of
computational resources, with only small sacrifices in solution quality, using the
modular approach.
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1 Introduction

Many complex tasks can be subdivided into a set of sub-goals. Figure 1.1 shows
a domain where the agent driving the car shown in the bottom right corner must
navigate through city streets while avoiding obstacles, following street signs and
negotiating streetlights.

The complexity of the task is a result of the the number of different types of
objects that can appear in the world. Without any prior information about the
layout of the world the agent must be prepared to handle all possible combinations
of objects occurring in any given situation. Furthermore, it would be difficult to
design a control program for an agent in this domain that could correctly handle
all possible situations. A learning approach is more suitable, allowing the agent
to gradually gain experience about what types of situations occur in the world
and learn the appropriate course of action.

However, learning how to drive through the type of driving world shown re-
mains difficult. Machine learning approaches that perform well on simple tasks
typically become impractical to use once the complexity of the task increases. In
the driving world each sub-task might be simple to learn in isolation; their com-
bination dramatically increases the complexity of the problem. Since the core of
the agent’s computation in learning a task is search, it is clear why combining
several tasks leads to this increase in complexity. Each task requires some state
information (for example, there is an obstacle to the left, the streetlight is yellow,
and there is an intersection ahead) all of which must be combined to fully describe
any given state of the world. The more sub-tasks are present, the larger the space
of possible world states, and possibly the number of states that must be searched
before a solution is found. Furthermore, the agent will be forced to relearn so-
lutions to sub-tasks when it is not necessary. For example, if the driving agent
above learns to turn to follow a street sign while there is an obstacle ahead, it
must relearn how to follow the sign if there is no obstacle in view, or if the obstacle
is in a slightly different position. That is, any time the configuration of sub-tasks
differs from what has been previously experienced, the agent is in an apparently
completely new part of the search space, and must relearn how to achieve all of its
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Figure 1.1: A simple driving domain. Though the agent’s task is complex it can
be decomposed into sub-tasks. The modular reinforcement learning architecture
takes advantage of such a decomposition to learn a task that would be intractable
for other, monolithic methods.



sub-tasks. In some cases it may be appropriate to relearn the sub-task. Avoiding
an obstacle might require different types of maneuvering depending on whether
or not the agent must also make sure that it does not go through a red light in
the process, but often the previously learned solution will be appropriate.

This thesis focuses on the driving task described above (and specified in more
detail in Chapter 5). As such, it represents an instance of a class of tasks and
domains that are characterized by allowing themselves to be decomposed into
fairly independent sub-tasks. Other examples are planetary rovers that must
concurrently navigate a terrain, avoid obstacles, and gather samples while moving
towards a goal location, or an office robot that delivers mail, keeps printers stocked
with papers, and recycles soda cans. For these types of domains, the agent de-
signer often has good domain knowledge regarding how the overall task separates
into largely independent sub-tasks. This thesis investigates an approach using this
domain knowledge to set up a learning framework for the agent so that unnec-
essary relearning can be avoided. The approach extends a form of reinforcement
learning with a modular architecture that learns all sub-tasks independently but
concurrently. The learned solutions are combined through a simple arbitration
strategy, which selects the action to execute at each given step. Each sub-task is
learned by a module that receives only those inputs relevant to its task, thereby
avoiding the relearning caused by a change in irrelevant inputs. The approach is
described in detail in Chapter 4.

Reinforcement learning is used as the basis for our approach because the a pri-
ori knowledge required by the agent designer consists only of a good specification
of the task to be learned, little or no information about the effects of actions, and
no detailed semantic information about the agent’s inputs. This type of domain
knowledge corresponds to what is available in domains with multiple tasks as we
described above. Given the driving domain, it is known that the task consists
of driving on the streets while acting appropriately when faced with obstacles,
streetlights, and other objects in the world. This knowledge can then be encoded
as a reward function which is used as the learning signal in reinforcement learning.
The reward function encodes task information by providing a scalar reinforcement
value at each state, evaluating the agent’s progress towards the given task.

Though information about the task might be available, the agent designer may
not have good information about the effects of actions in all possible states or what
action sequences actually accomplish the task. Using reinforcement learning, the
agent can learn this information. Initially, the agent must explore its domain by
blindly executing actions and observing the results. As reward sources are discov-
ered, the agent starts to associate actions with utilities that indicate their value
towards accomplishing the task. As the agent continues to explore its domain, it
gradually refines its solutions to become more efficient. However, because of the
amount of exploration necessary to both initially discover reward sources, and to
find the most efficient way to reach them, the learning process can be quite slow.



Reinforcement learning can thus be characterized as a search in a space whose size
is determined by the complexity of the domain. As we described above, adding
sub-tasks can cause the size of the search space to increase dramatically.

In [Whitehead et al., 1992] we illustrate the utility of the modular approach
in a simple grid world domain. The domain is an m x m grid, with n cells des-
ignated as goal locations, as shown in Figure 1.2 (a). Goals are either active or
inactive, with an active goal becoming inactive when visited by the agent. An
inactive goal turns active with some probability at each time step. The agent
can move horizontally and vertically, and has sensors providing it with its (z,y)
coordinates as well as a bit vector indicating the activation status of each of the
goals. The size of the state space is then O(m?*2"), which can become very large,
even for relatively small m and n. In experiments with a 20 x 20 grid and 10
goal locations, it would have been almost impossible for a standard reinforcement
learning agent to learn the task. A modular approach to reinforcement learning
was therefore proposed as a way by which the task could be learned. The modular
approach takes advantage of the structure of the task by using separate modules
to learn each sub-task. Each module considers only those inputs necessary for its
sub-task (the activation status of the sub-goal and the agent’s current location,
in grid world) and receives reward only when its sub-task has been achieved. By
limiting the inputs to each module, the size of a module’s state-space is consid-
erably smaller than the space defined when all inputs are considered together.
Learning time is therefore reduced, and since all modules learn concurrently, but
do not depend on each other, adding more goals to the task does not greatly
affect performance. An approximation algorithm is used to combine the actions
recommended by each module, selecting the single action that is most appropriate
for all sub-tasks combined. Figure 1.2(b) shows the number of time steps needed
by a monolithic agent and by two modular agents using different approximation
strategies, to reach a predefined performance criterion. As the number of goals in-
creases, the learning time increases almost exponentially for the monolithic agent,
while increasing very slowly for the modular approach. If the number of goals
increases further, learning the optimal paths between all possible combinations
of active goal locations becomes infeasible. However, the modular system rapidly
learned a solution that was a good approximation to the optimal solution.

The simple grid world example is a good example of the type of multi-goal
domain for which our modular approach to reinforcement learning is intended.
The problem is equivalent to the NP-complete Hamiltonian Path problem, mean-
ing that learning the optimal solution is impractically expensive for large problem
sizes [Garey and Johnson, 1979]. However, the sub-goals are clearly identifiable,
and the associated reward functions and sensory inputs can be decomposed into
components relevant to individual sub-goals only. Furthermore, in grid world.,
we can be satisfied with an approximate solution. The modular agent learned
a “nearest neighbor” solution, which is known to be a good approximation for
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Figure 1.2: A simple grid world. The agent in the bottom row must visit all four
“active” goal states (shown as grey circles) using as short a path as possible. As
the size of the grid and the number of goal locations increases, the learning time
using standard reinforcement learning becomes prohibitive. The arrows indicate

the path learned by the modular policy.

the Hamiltonian path problem [Johnson, 1990]. A drawback to the grid world
domain is that all goals are goals of achievement. There are no negative sources
of rewards, or states the agent must learn to avoid. Therefore, an arbitration
strategy designed to learn a nearest neighbor solution would necessarily perform
well. However, in a more realistic domain, the reward structure is more complex,
containing both positive and negative reward sources. In such domains, a nearest
neighbor approximation would be less useful. Thus the grid world is too simple to
exhibit the complexities of learning multiple goals. To extend this we developed a
SImple Driving domain (SID) to explore these more complex issues. The different
sub-tasks are different aspects of driving down a street, such as staying in the right
lane and avoiding obstacles. In addition to the task being easily decomposed, the
driving domain is one where an approximate solution is acceptable. As long as
the agent avoids major collisions, occasional small errors such as running over pot
holes, going through yellow lights, or driving in the wrong lane, can be forgiven.
It may be possible to eventually learn the optimal way to traverse the domain.
making no mistakes. However, the computational resources necessary to learn
this solution makes it impractical to attempt it.

The modular approach is thus intended for domains where

o The task is too complex to be solved by a standard reinforcement learning
system.

o Sub-tasks are identifiable a priori.

o It is clear which input sensors are relevant to which sub-tasks.



o The reward function can be decomposed into a set of independent reward
functions, each of which evaluates a different sub-task.

e An approximate solution must be acceptable, since the optimal solution is
unattainable.

1.1 Statement of thesis

This thesis defines a modular extension to the reinforcement learning algorithm
known as Q-learning [Watkins, 1989]. By using modules, a complex task can
be decomposed into a set of independent sub-tasks. Each module is devoted to
learning one sub-task, and all modules learn independently and in parallel. Since
learning how to accomplish one sub-task is separated from learning the other
sub-tasks, the above described problem of having to re-learn sub-tasks does not
occur. However, while separating the sub-tasks avoids unnecessary relearning, it
also prevents necessary relearning. That is, in some situations sub-tasks interact
in such a way that solutions that are sufficient independently do not produce the
desired results when the sub-tasks are combined. Tt is the thesis of this dissertation
that for the types of decomposable task we describe an agent using the modular
approach with a simple arbitration scheme to select which action to execute based
on information provided by the modules, can learn a good approximation of the
optimal policy in a short time. Whether the approximation is good enough to
be usable will depend on the specific task to be solved, but with complex enough
tasks, the optimal solution is unattainable in any reasonable amount of time.

1.2 Contributions

The contributions of this dissertation are as follows:

o The development of a simulated driving domain as a test bed for agents
learning to solve multiple goals.

o Experiments showing that a modular approach to reinforcement learning
can be used to learn a strategy that achieves satisfactory performance.

e An extension to the modular approach using an activation function that
dramatically improves performance to a level that in some cases surpasses
that of the monolithic approach.

e An analysis of the modular approach that illustrates its limitations caused
by hidden state, perceived shorter paths to reward, and approximation errors
caused by combining policies for different sub-goals.



1.3 Outline

In Chapter 2 other techniques for learning tasks decomposed into sub-goals are
described and classified according to what type of decomposition they are designed
for.

Chapter 3 provides a brief review of reinforcement learning, focusing on the
Q-learning algorithm. We subsequently describe in some detail different issues
in designing an appropriate reward function, especially in a multi-goal domain.
Since the reward function is how agent designers control how the agent should
behave, it is important to specify it correctly. In a multi-goal environment where
different goals receive different rewards of different magnitudes, it is especially
difficult to predict the resulting behavior.

The modular approach to Q-learning is described in Chapter 4, with a brief
analysis of the limitations of the approach. Though a numerically exact approx-
imation is not necessary for the modular approach to produce optimal behavior.
it is clear that an agent using modules only will learn a policy that occasionally
makes mistakes. We describe some extensions to the modular approach, including
the use of an activation function that can limit the number of sub-tasks being
considered at any give time.

In chapters 5 and 6 we describe the simple driving domain used for experiments
and present the results for the modular approach and its extensions. Though
the experiments show that the significant differences between the modular policy
and a policy learned using standard reinforcement learning are limited to the
expected small set of states, the proposed extension to the modular system is
largely unsuccessful in correcting those differences. Only when we can apply more
domain knowledge to determine when modules have relevant information do we
see marked improvements in behavior.

We further analyze the experiments with the modular approach in chapter 7
and describe some of the inherent limitations of the algorithm preventing it from
learning the optimal policy.

In chapter 8 we conclude and map out possible future areas of research to more

fully understand the modular approach, and to discover better ways to augment
it.



2 Related Work

The problem we are investigating is that of achieving multiple goals by arbitrating
between and combining separate, task specific, control modules. We assume that
these modules are independent and can be concurrently active. The modules are
independent in that the reward (in a reinforcement sense) they receive, does not
depend on the state of any other module. Furthermore, the reward is relevant
to that module only, in that it is a measure of how well the module is achieving
its local task. Since the modules are independent, several can be active at the
same time. This leads to the problem of arbitration — selecting which module
should control the agent at any given instance. More interestingly, it is possible
to combine the policies of several active control modules, to generate actions that
satisfy several modules a the same time. This modular architecture is defined in
detail in Chapter 4.

Below we discuss previous approaches to task decomposition and policy arbi-
tration. These approaches are often described as being behavior based, because
of the emphasis on the set of behaviors that need to be satisfied, rather than on
a global goal which has been subsequently decomposed into sub-goals. We clas-
sify them into hierarchical, sequential, and independent approaches, depending
on how they organize modules or behaviors. In contrast to our approach, most of
them only allow one module to be active at a single time, and many do not in-
volve learning the sub-tasks. Last, some of the approaches described below do not
subdivide the state-space, but require learning in the entire global search-space.

2.1 Hierarchical approaches

Many complex tasks seem to lend themselves to a hierarchical decomposition.
For example, buying groceries can be decomposed into the sub-tasks of driving
to the grocery store, purchasing the needed items, and driving back home. Each
of these tasks can then be further decomposed into more sub-tasks, for example
pulling out of the drive-way, driving to the main road and on to the store, finding



a parking space, and parking. Finally, at the lowest level, the tasks correspond
to actual motor commands. Though the total amount of information that needs
to be considered by the system as a whole may be staggering, each level of the
hierarchy need only concern itself with a small amount of that information. When
deciding how to drive to the store, the system need only consider navigational type
information, and disregard sensory feed-back from the gas-pedal, for example.
Similarly, it only needs to consider the behaviors possible at that level, and not
low-level motor commands. Also, low-level behaviors need not be concerned with
high-level information but can focus on tasks such as “move forward 1 meter”.
The information needed at each level is therefore limited, making the search-space
smaller.

Brooks’ subsumption architecture is a hierarchical behavior-based approach
[Brooks and Connell, 1986],[Brooks, 1985]. Lower levels control “instinctive” be-
haviors and higher levels control tasks that are regarded as more abstract. In a
mobile robot for example, a low level behavior might be obstacle avoidance, while
a high level behavior controls path planning. Each behavior consists of a fixed
finite state machine, that generates an action based on the current inputs. An
obstacle avoidance behavior thus has a state where an obstacle is detected, which
leads to an “avoid” state that generates a new heading for the robot, until the
obstacle is no longer a danger. A higher level behavior, searching for soda cans to
recycle, for example, would also be implemented as such a finite state machine.
Since both behaviors attempt to control the heading of the robot, which can only
move in one direction at a time, the obstacle avoidance behavior will set a status
flag to “busy”, when it needs to control the agent in order to avoid a collision. The
search behavior will defer to the lower level behavior when the “busy” status is set.
However, high level behaviors can influence low-level ones through subsumption
links. These links can either inhibit the lower levels completely, or influence their
behavior. The search behavior can therefore influence the direction in which the
obstacle avoidance behavior turns away from an obstacle, perhaps also moving it
closer to a soda can.

In the subsumption architecture, the hierarchy reflects authority rather than
any notion of abstraction. That is, each behavior uses some subset of the inputs,
but the inputs used by low-level behaviors are not a super-set of those used by
high-level ones. Thus there is no sense in which the high-level modules use more
abstract information. Instead, one module is higher on the hierarchy if it needs
to influence another module. The hierarchy is therefore more of an artificial
limitation on what types of interactions are allowed between behaviors. It is
possible that for some tasks more complex interactions should be allowed, with
modules influencing each other, or one module influencing modules that are both
above and below it in the hierarchy.

The large limitation of the subsumption architecture is its complexity. Though
each behavior may be implemented as a simple state-machine, creating correct
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subsuming and inhibitory links into other behaviors requires detailed knowledge of
how the other modules, and the system as a whole, function. In order to implement
the search behavior described above, the designer must know exactly where in
the obstacle avoidance behavior a link to influence the robot’s heading will be
effective. The designer must also consider whether there are other behaviors
also attempting to influence the avoidance module, and whether that will affect
the system’s overall behavior. Furthermore, since there is no centralized control.
there can be no arbitration to determine which behavior is actually controlling the
agent’s actions. This arbitration seems to be handled by using status variables
such as “busy”, set by the individual modules. Without a global overview over
which modules are simultaneously competing for resources, however, such a system
will rapidly become very complex, and highly dependent on the exact configuration
of behaviors.

Thus, the subsumption architecture depends on the designer to have a large
amount of knowledge of how individual modules achieve their sub-tasks, and what
the possible interactions are. Since abstraction is not taken advantage of, the
hierarchical organization brings little advantage and may be too limiting for some
tasks.

In contrast, Spector and Hendler discuss a hierarchical approach called “knowl-
edge strata” [Spector and Hendler, 1990] that makes explicit use of the hierarchy.
There can be several modules on any level of the hierarchy, each operating in
parallel. Modules communicate with each other, and with the levels immediately
above and below, through separate storage locations called blackboards. The
modules do not need to know about each other’s internal construction as in the
subsumption architecture, but simply reason about the information available on
the blackboards. Since there are separate blackboards at each level of the hier-
archy, different types of information are kept separate, limiting the amount of
reasoning that needs to be done. Each behavior can be implemented in whatever
fashion is most suitable, whether they be neural-networks or full-blown planning
systems (as long as they can be used with the blackboards). The hierarchy is fixed
into levels corresponding to different parts of an event structure. The highest level
is the conventional level, that is intended to reason about facts which are true by
convention. This is meant to indicate high-level goals, such as empty soda cans
“belonging” in a recycling bin. The remaining levels are causal, temporal, spatial.
and sensory-motor. The names indicate what type of knowledge and goals are
handled at that level. Path-planning goals reside in the spatial level, for example,
whereas the sensory-motor level only reports direct sensor inputs and contains
operators for manipulating the agents actuators.

By limiting the set of operators at each level to those needed for the associated
types of goals (above, below,or on, for example, at the spatial level), any type of
search or planning done by modules is also limited, allowing the system to take
full advantage of the decomposition. Furthermore, the lowest level controls the
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actuators, and thus implements the final decision on how they are used, avoiding
the problems with resource allocation in the subsumption architecture. However,
modules at the same level must still be aware of each other, in order to avoid
mutual interference. There is no clear mechanism to arbitrate between competing
goals (eg. wanting to move towards two different locations). Presumably, this
arbitration occurs via communication on the blackboard, requiring each behavior
to be aware of what other behaviors exist that might cause interference.

Thus, as with the subsumption architecture, individual modules must have
good knowledge of the operations of the other modules. The knowledge neces-
sary for these approaches thus concerns solutions to the individual sub-problems.
rather than simply information about the problem itself. We are considering do-
mains where solutions are unknown and must be learned. Approaches such as the
subsumption architecture and knowledge strata that require modules to be pro-
grammed to, in effect, modify each other’s solutions would therefore be difficult
to apply.

Wixson [Wixson, 1991] proposes a mechanism to use a hierarchical organiza-
tion of behaviors in reinforcement learning. The hierarchy is created by defining
modules completely responsible for a subset of both inputs and outputs. To cre-
ate a module 7, the agent designer must identify a sub-task that is achieved by
starting in some set of initial states, I; and reaching some set of goal-states G,
using only a subset A; of the total actions available. The input-space is also de-
composed, so that only a subset of the inputs S; is used by the module. The
actions A; and inputs S; are then unavailable to any other module, but the ac-
tion invoke; is added to the set of actions. Thus, another module can use the
invoke; action effectively using module 7 as a building block towards the solution
of its own sub-task. When the invoke; action is executed, the “calling” module
is suspended, and the “called” module takes control and learns using the reward
received. Once the sub-goal has been achieved, the calling module is resumed,
with the total reward received by achieving the sub-task used as the reward for
executing the invoke; action.

This approach mirrors the concept of abstraction in classical planning ([Sacer-
doti, 1974], [Sacerdoti, 1975], [Tenenberg, 1988]), where information is limited in
higher levels using lower levels as building blocks. Though the approach appears
simple, creating elemental building blocks out of frequently used sub-goals, the
difficulty lies in identifying appropriate sub-tasks. Also, by not allowing modules
to share inputs and outputs, the number of sub-tasks that can co-exist are severely
limited. In domains where the only actions are navigational ones for example, one
is limited to sub-tasks such as “go east or north to the goal” and “go west or
south to the goal”. While this type of decomposition may reduce the amount of
search necessary to learn the goals, it does not reflect a natural decomposition
of a task into sub-goals. Rather the decomposition is in the solution space, ie.
the agent designer must decide what types of actions can be grouped together to
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form part of the solution. Furthermore, though the author intends for modules
to be reusable by many other modules, this is not possible in the algorithm as
stated. Once invoke;j is used by one module, it is removed form the set of actions
available to the creation of others. Lastly, the approach is highly tailored towards
goals of achievement, decomposed into a sequence of sub-goals, with a clearly
defined set of initial and goal states. It does not seem to be extensible towards
domains with a more complex reward function, allowing partial goal-satisfaction.

Another approach to using learned sub-tasks as building blocks for learning
higher level tasks is discussed in [Lin, 1993al. A robot must learn to recharge
its battery by finding a battery charger in another room. The state-space is
large and continuous, thus making the problem too difficult for an agent not
decomposing the task in some way. The agent designer decomposes the task into
3 sub-tasks: wall-following, passing through a door, and docking with the battery
charger. Each sub-task is solved by a module with a pre-defined reward function
and application space. The application space is not defined by a subset of the
possible inputs, but is rather a subset of the state-space as a whole. It is thus
analogous to a precondition, that indicates under which circumstances a sub-task
must be achieved. The application spaces may overlap, and the elementary tasks
are learned by training them separately in the corresponding application spaces.
Once the elementary tasks have been learned, the agent must learn to apply them
in order to achieve the global task. In contrast to the approach proposed by
Wixson, elementary skills do not need to have a clear termination condition. The
agent must therefore learn how to switch between its sub-tasks. This forces the
agent to make a decision at each time-step, since a switch may be necessary at
any given time. Thus the agent is learning in the monolithic state-space, but
using the sub-tasks, rather than individual actions. This learning succeeds where
monolithic learning does not, which is attributed by the authors to the fact that
the agent must switch skills less often than switching between primitive actions.
However, it seems that much of the performance improvement must be the result
of the number of elementary skills being less than the number of actions, and the
fact that the sub-tasks are already learned, making a complete solution easier to

find.

Curiously, in this approach the definition of a module’s application space is
presumed to be unknown when learning how to compose the sub-tasks. Since
this knowledge must be known in order to define the modules, there is no reason
why it should not be applied in later stages of learning, thereby facilitating the
process. The agent would then only have to learn to switch between modules
whose application spaces overlap. Using the application spaces in this way, the
method becomes similar to our extension to the modular approach using activation
functions described in Section 4.3.2. However, the approach assumes that the task
is decomposed sequentially, and there can be no concurrently active sub-tasks that
can cooperate.
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Decomposing a task hierarchically is a good way to limit the search-space that
must be considered at any given level. However, as shown by the subsumption
architecture and knowledge strata, the way hierarchies can be constructed often
seems arbitrary. However, even when the hierarchy is strictly based on what
sub-task can be used as a building block for another sub-tasks, there is no clear
mechanism to allow sub-behaviors to be composed. Either the system requires
a large amount of knowledge of how each module accomplishes its sub-task, or
the main focus of the system is to simply switch between a sequence of sub-tasks.
Since the modular approach we propose does allow for multiply active sub-goals,
and requires only knowledge about the structure of the task, it is possible that it
can be used within one level of a hierarchy.

2.2 Sequential approaches

If there is no clear way to decompose a task hierarchically, it is often possible to
decompose it as a sequence of sub-tasks. At any given time, the agent only needs
to try to accomplish the next sub-task in the sequence, rather than the complete
task. Furthermore, the only arbitration between modules that is necessary is to
determine when one sub-task is complete and the next one should be started.
Since it is known in advance what the sequence of sub-tasks is, how to design
such an arbitration strategy will also usually be known.

Mahadevan and Connell use a subsumption based design for an agent learning
to find a box and push it against a wall [Mahadevan and Connell, 1990]. The task
is divided into finding a box to push, pushing it against a wall, and “unwedging”
from the wall. Each task is assigned to a module consisting of a transfer function
and an applicability condition. The transfer function determines how the agent
should act given the current sensory information. This function is learned using
reinforcement learning, with a separate reward function for each behavior. The
applicability condition determines whether the action output by the module’s
transfer function should be executed or not. The applicability condition is defined
by the agent designers and is also similar to the activation function we describe
in Section 4.3.2. The applicability conditions are not aware of other modules,
and can thus not prevent several modules from being active at the same time.
To ensure that only one module is in control at any given time, subsumption
architecture suppression links are used to implement a priority ordering. Thus,
unwedging suppresses box-pushing, which in turn suppresses box-finding. This
prioritizing establishes the sequence of find a box, push the box against a wall.
and unwedge to be free to search for a new box, that makes up the entire task.

The described architecture would allow each module to limit its inputs, re-
ducing the size of the state-space, so that learning could be accomplished more
quickly than with a monolithic learner. The authors do not perform any such
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limitation however, but rather use a “statistical clustering” algorithm to combine
sets of similar states. The search-space then consists of the set of clusters which
is much smaller than the set of all states. Since the similarity metric used for
clustering includes the utility of taking an action, the clusters found by each mod-
ule will differ from each other, and those of a monolithic agent. Unfortunately
the authors do not provide any analysis of how the modular and monolithic agent
differ in terms of the clusters found and the size of the resulting search space.
Furthermore, in the described experiments the monolithic agent is given a reward
function that provides much less information than that given to the modular agent.
It is therefore difficult to assess how much the performance difference between the
agent is the result of modularization, and how much is caused by the different
reward functions. A different clustering method using only a weighted Hamming
distance leads to similar results, suggesting that any performance difference is
caused mainly by the difference in reward functions.

It might not be possible to use the simple priority ordering described above to
control the sequence of sub-task if the decomposition is more complex than three
behaviors, or the exact sequence is unknown. In [Maes, 1989], Maes describes an
architecture that allows for more complex types of interactions between modules.
Modules are arranged as nodes in a small network. A node can be linked to an-
other node if executing the first node causes a precondition of the other node to be
either true or false (making the node either excitatory or inhibitory). These links
are used to spread activation through the network. The activation is generated by
the current state of the world and unsatisfied goals. The current state activation
is sent to nodes whose preconditions are being met by the current state, and then
spreads forward through the excitatory links. Similarly, nodes whose execution
would accomplish unsatisfied goals are also given activation which is then spread
backwards through the network. Out of those nodes whose preconditions are all
satisfied in the current state, the node that first reaches a pre-defined threshold,
is allowed to execute. This network architecture allows for a sequential decompo-
sition of a complex task, where the ordering of sub-tasks need not be completely
specified. However, a large amount of domain knowledge is necessary to determine
how sub-task interfere with each other so that the network can be constructed.

In later work, Maes has designed methods by which the topology of the network
of links is learned, based on past experience [Maes, 1992]. Statistical methods are
used to correlate actions with results corresponding to preconditions of other mod-
ules. Positive correlations lead to links being created and negative ones lead to the
deletion of links. These correlations must be learned in the monolithic state-space
however, requiring the large computational resources that modular approaches
are intended to avoid. Furthermore, since explicit links between modules that
interfere or assist one another are required, yet another combinatorial problem
must be addressed. If learning to achieve the sub-tasks is desired in addition to



15

learning the structure of the network, it seems likely that the task would become
intractable with even only a small number of modules.

Singh proposes an architecture that reuses learned elemental tasks to learn
arbitrary sequential tasks [Singh, 1992]. Elemental tasks are learned using Q-
learning and are defined to accomplish goals of achievement, with only one goal
state. A positive reward is given in the goal state of an elemental task and
nowhere else. Composite tasks consist of a sequence of elemental tasks. A set of
“augmenting” bits specify the task sequence that is to be achieved. For example,
if the elemental tasks are to reach locations A, B, and C, a composite task might
be to first goto location C, and then to A. A particular configuration of the
augmenting bits denotes that this is the current task to be solved. The elemental
tasks are learned by modules who receive the same perceptual inputs. A scheduling
module 1s used to determine which module controls the agent at any given time
and therefore receives any reinforcement signal. The scheduling module is adapted
from the modular gating architecture by Jacobs, described below. It learns which
module produces the best estimate of the )-values for the current sub-task. The
winning module receives the reinforcement, thereby learning to improve its utility
estimate. The scheduling module thus partitions the state space into regions each
of which is best handled by one module.

Singh’s approach is intended for situations when elemental tasks need to be
reused in many different composite tasks. If the agent was instructed to accom-
plish several composite tasks, each consisting of a different sequence of elemental
tasks, a monolithic approach could not use any previously learned knowledge when
attempting a new composite task. This modular approach allows the elemental
tasks to be learned separately and be used to achieve the composite task. The
scheduling module learns how to order the elemental tasks, which also continue
to learned better and hetter.

However, the limitations on the structure of the task and reward function
severely constrain the types of domains in which the algorithm is applicable.
Only goals of achievement are allowed and there is no possibility of specifying
that a goal can be partially satisfied. The strength of this algorithm is the ability
to learn the task decomposition. Though this incurs extra learning time, it is
still an advantage over a pre-defined decomposition (as long as the extra time
needed is still significantly less than the time needed by a monolithic algorithm).
However, since the algorithm assumes that the goal state of each sub-task be
known in advance (so that the reward function can be properly defined), the task
decomposition must effectively be part of the agent designer’s knowledge.

In the sequential algorithms described above, the module decomposition de-
pended entirely on separating the task into a sequence of sub-tasks. However, if
the sequence is known a priori, there does not seem to be much need to learn how
the sub-tasks are to be ordered, as is done in Singh’s method. Maes’ behavior net-
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works learn how to order themselves based not so much on a pre-defined sequence
of tasks, but depending on interactions between sub-goals that may not be known
in advance. Even in that case however preconditions and effects of behaviors are
known in advance making the task amenable to some planning algorithm or other
off-line method.

All the described methods could benefit from limiting the state-space of each
behavior (if appropriate) in order to improve learning time as compared with a
monolithic approach. Decomposing only to limit what task is currently being
attempted does not by itself simplify the task. It is only if the agent must repeat-
edly learn different sequences of the same sub-task that modularity brings any
significant advantage (as in the experiments described by Singh), since learned
knowledge can be reused.

2.3 Independent behaviors

Not all tasks can be decomposed hierarchically or sequentially. In many domains.
the task consists of a set of independent sub-tasks that do not need to be achieved
in any particular sequence. In these domains, the agent must learn to arbitrate
between tasks, as well as learn to achieve the tasks themselves. At any given time,
the agent must decide which of several active sub-tasks should be attempted, or
whether there is some course of action which brings a group of them closer to
completion. The agent thus needs an arbitration strategy as well as the knowl-
edge necessary to accomplish each individual sub-task. Different approaches for
artificial agents differ not only in the types of methods used for both of these
parts, but also whether to use learning in either one.

Firby’s reactive action packages (RAPS) use no learning for either the behav-
iors or arbitration strategy. Fach behavior is handled by a RAP that encodes the
knowledge necessary for achieving a task in several different ways. Each RAP is
placed in a queue, and the arbitration is a simple “first-come, first-served” ap-
proach. When a RAP gets executed it either places new RAPs at the end of the
queue or executes a primitive action. Each RAP detects whether it has succeeded
and removes itself from the queue if its sub-task is achieved. In case of failure.
the RAP places itself back at the end of the queue, to attempt to achieve the goal
again, using a different method.

Firby’s method emphasizes execution monitoring rather than learning behav-
iors or arbitration schemes. A lot of prior knowledge is required to design RAPs
that contain several different solutions for one goal, and the ability to monitor the
success or failure of each. Similarly, using a queue to decide which RAP to exe-
cute may not work well where the sub-task interact with each other and penalizes
behaviors which call several sub-RAPs (since they are placed at the end of the
queue).
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Maes and Brooks designed a six-legged robot that learned the arbitration strat-
egy for its behaviors [Maes and Brooks, 1990a). Their architecture contains a set
of binary perceptual conditions, a set of behaviors, a positive feedback generator,
and a negative feedback generator. Each behavior has a precondition list testing
the status of a set of perceptual conditions. A behavior may become active and
perform some action if all of its preconditions are met. The feedback generators
are binary and global so that at any given time all behaviors receive the feedback.
The systems learns to gradually change the list of preconditions for behaviors so
that behaviors only become active if they are relevant and reliable. A behavior
is relevant if it is positively correlated to positive feedback, and is reliable if it
receives consistent feedback. The agent learns to activate behaviors by monitor-
ing how the preconditions affect the behavior’s consistency and relevance. If the
behavior receives positive or negative feedback in an inconsistent way, a new per-
cept is added to the precondition list. The agent then monitors how well the new
precondition correlates with positive or negative feedback. If a positive correlation
is found, it is added permanently to the list of preconditions.

In the six-legged robot each leg has a move-forward and a move-backwards
behavior, giving the agent a total of 12 behaviors. Positive feedback is received if
forward motion is detected, and negative feedback results from the robot falling
on its belly. At any given time the agent has to select which behavior affecting an
actuator (ie. a leg) to execute and learn how to coordinate the motion of all six
legs. Among the active behaviors, the agent chooses the one that is most relevant
and reliable. With the above learning strategy the agent successfully learns to
walk in a fairly short time (dependent on whether additional heuristic are used to
determine in which order to monitor the perceptual conditions).

The above method works well because reinforcement is immediate and the
individual behaviors do not need to be learned. It is therefore easy to compute
correlations between various conditions and the agent’s performance. It is also
ideally suited for the task of coordinating multiple actuators, since despite the
presence of a large number of behaviors, only two compete for any given leg. Fur-
thermore, the behaviors are in direct opposition to each other (move forwards and
move backwards) making the strategy of selecting one with the highest promise
of generating positive feedback appropriate. However, in domains where several
behaviors are using the same actuators this type of competitive approach may
not be appropriate. Allowing behaviors to cooperate by searching for actions to
further several sub-tasks may produce better results than simply trying to achieve
each sub-task one at a time. Furthermore, as we discuss in Chapter 7 a “winner-
take-all” strategy based on what behavior leads to the most positive feedback will
ignore other behaviors that avoid negative feedback.

In contrast, Mataric uses a reinforcement learning approach to learn how to
coordinate behaviors, allowing the use of more complex reward functions [Mataric,
1994]. The domain consists of a workspace of multiple robots gathering pucks
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and transporting them to a home location. At any given time the agent can chose
between three behaviors: search, disperse, and home. The agent has three other
behaviors, avoid, grasp-puck, and drop-puck, which are triggered automatically
under the proper conditions (eg. if a puck is within the robots gripper it is
grabbed, and if the robot is carrying a puck and is in the home location, the puck
is dropped). The agent’s reward is decomposed into a set of functions, and are
classified as either rewarding a goal directly, or estimating the agent’s progress.
The first class rewards the pre-coded behaviors, giving positive rewards when a
puck is grasped or dropped in the home location, and negative reward if a puck
is dropped in some location other than home. The progress measurements are
triggered by an external event (detecting another robot or grasping a puck), and
give positive feedback if the agent moves in the right direction (away from the
other robot or towards home) and negative feedback otherwise. After a set period
of time, the agent is forced to switch behaviors and the monitoring is turned off.
The separate reward functions are added together and used as the learning signal
to learn which behavior to use at any given time. This learning is accomplished
by simply keeping a cumulative sum of the reward received in each state, given
which behavior was active.

Since the agent is learning when to activate behaviors, it must necessarily learn
in the global state-space. The presented benefit of this work is the speed of learning
achieved by using the progress monitoring reward functions. Though it is clear
that the more information is provided through the reward function the faster the
agent will learn, since this method of learning when to activate behaviors does not
limit the state-space at all, it will not be practical in more complex environments.
In the described domain, there is not much difference between the behaviors, so
that it is possible to find a puck even if the agent is not explicitly executing a search
behavior, for example. Thus learning is simpler since several behaviors can lead to
good performance at any given time. Furthermore, since the learning scheme only
counts cumulative reward for any given state, there is no mechanism for domains
where the reward is delayed. While this work illustrates the benefit of using
prior domain knowledge encoded as reward functions, simply using reinforcement
learning to learn how to arbitrate between behaviors is probably not feasible in
most complex domains.

Arkin proposes an arbitration scheme similar to our greatest mass technique
[Arkin, 1990]. Each behavior is defined as a schema, implemented as a potential
field. These fields can be easily added to each other resulting in a field taking
information from all behaviors into account. Thus the arbitration scheme is a
simple vector sum. However, each behavior has an associated weight, which the
agent can learn to vary depending on the current situation.

The task domain is a simple navigational task so the potential fields can have
a topology similar to the actual geometry of the work-space, with valleys point-
ing towards goals and peaks representing obstacles. Arkin discusses two possible



19

learning schemes. The first modifies the different weights of behaviors using ge-
netic algorithms. After 200 generations the number of collisions and number
of steps required to reach the goal are both reduced significantly. This result
demonstrates the value of dynamically modifying the weights on the behaviors
to achieve a good performance. Arkin also proposes an online rule-based mech-
anism to modify the weights. Rules monitor certain pre-defined conditions such
as no-progress-with-obstacles and no-progress-no-obstacles. Depending
on which condition is triggered, weights of certain behaviors are increased or de-
creased. For example, if the system detects that little progress has been made
towards the goal, but there are many obstacles nearby, the goal behavior’s influ-
ence is lessened, while the obstacle behavior’s influence is increased. This allows
the agent to escape from the obstacles (which may have been creating a local
minimum in the potential field) before moving towards the goal again.

The technique of using a vector sum to compose behaviors is simple and intu-
itive and also used successfully in our greatest mass approximation. It depends
on being able to encode behaviors in a numerical form, such as potential fields
or Q-values. Predefined potential fields as used by Arkin, are simple to generate
in a navigational domain, but not in other tasks where the utility space being
navigated has an unknown topology. The great improvements in performance
achieved by learning how to weight behavior illustrates the importance of getting
the relative magnitudes of the fields correct. Unfortunately the methods presented
for learning these weights are probably not widely applicable. Genetic algorithms
typically require a large number of test cases over several hundred generations,
and the rule-based driven learning requires an amount of domain knowledge that
usually will not be available.

The above methods are all similar in that they assume that the individual
behaviors are pre-programmed and limit themselves to learning how to arbitrate
between them. Jacobs and Jordan have developed a neural network architecture
that learns not only the arbitration, but how to decompose the task into sub-tasks,
and learn each individual sub-task as well [Jacobs and Jordan, 1991]. Arbitration
is done by a “gating network” that selects the output of one of a set of “expert
networks” assigned to sub-tasks. For any given state, the gating network selects
the expert network that provides the best solution. Each expert network therefore
learns to perform well in one part of the state-space only, effectively decomposing
the task. Though all the expert networks receive the same input, the learning
task is made simpler by only having to be accurate in a small region of the global
state-space. This approach has also been extended hierarchically, with gating
networks at the lowest level feeding into a higher level of networks [Jordan and
Jacobs, 1993]. This approach has been applied successfully to various classification
schemes, as well as robot control.

A significant difference between this approach and our modular reinforcement
learning is the way the task is decomposed. Jacobs and Jordan partition the
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state-space into separate regions, each of which is handled by a separate expert
network. Thus, at any given time only one network is relevant to the task. In the
modular reinforcement learning approach however, each module sees only those
inputs relevant to its sub-task, but is not relegated to any particular region of
the global state-space. All modules therefore provide input to the current situa-
tion. The former approach is useful in those domains (such as classification tasks)
where sub-tasks are clearly independent and need to be achieved separately, and
the latter approach is better suited for dealing with tasks where many sub-tasks
need to be considered at once. Lastly, Jacobs and Jordan depend on a neural
network approach requiring a form of supervised learning where the error of the
network’s output is immediately available. As described above, Singh partially
adapted this method to work in a reinforcement learning setting but was forced to
apply limitations on the types of reward functions allowed. In more complex do-
mains with reward functions allowing for partial satisfaction of goals (or progress
measurement ) and where there is much delayed reinforcement, the neural network
approach is not applicable.

Humphrys has developed an approach similar to ours, using a fixed arbitration
scheme, and learning the individual sub-tasks [Humphrys, 1996]. Modules limit
their inputs and have individual reward functions that are separate from the global
reward used as an evaluation metric. Several different arbitration strategies are
attempted, varying which measure to use (eg. maximize happiness or minimize
unhappiness) to determine a winner in a competition for control of the agent. This
measure, called the W-value, is based on the Q-values learned by the individual
modules. The module with the largest W-value executes an action, and all other
modules update their W-values, so that they may potentially become the winner
next time the state is encountered. Each module also updates its Q-value, based on
its associated reward function. These reward functions are not directly related to
the global reward function but seem to correspond to sub-goals, or components of
sub-goals of the task. A genetic algorithm is used to determine the best magnitude
for each of these rewards. The system manages to learn an approximate solution,
though no mention is made of how the learning time compares with that of a
monolithic agent. Humphrys regards the lessened memory requirements of the
modular approach compared with a monolithic implementation to be the main
advantage. However, the comparison is made with regards to the size of the space
of all possible states. The space of states actually encountered during a typical
experiments will be much smaller, making memory considerations less important.
Furthermore, by only considering competitive arbitration strategies, the approach
may be limited in what types of goals it can handle. As our experiments show,
a competitive approach may completely ignore one or more sub-goals, potentially
leading to poor performance.

Most of the approaches dealing with independent sub-tasks concentrate on
behavior arbitration, assuming that solutions to the individual sub-tasks are al-
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ready available. This assumption greatly simplifies the learning task since any
errors made by the agent can then be attributed to the arbitration process which
can then be adapted. Having to learn both the behaviors themselves and the
arbitration the agent would need to handle the credit assignment problem to de-
termine whether to adapt one (or more) behaviors, or the arbitration scheme. The
approach proposed by Jacobs and Jordan is able to learn both since the super-
vised learning scheme allows them to determine which expert network performs
best in any particular region of state-space and direct the arbitration based on
that criteria. Our modular approach to reinforcement learning can be seen as re-
lated to Arkin’s composition of potential fields, but differs from it (and the other
architectures) by having a fixed arbitration scheme while learning each individual
behavior. If decomposition is to be used to speedup the learning of complex tasks,
one cannot assume that solutions to sub-tasks are available and must therefore he
learned.

2.4 Arbitration and merging techniques

In chapter 4 we discuss two arbitration techniques: nearest neighbor and greatest
mass. These are simple techniques that have been used in many other circum-
stances. Maes strategy of selecting the behavior that first reaches a certain thresh-
old of activation, described above, is essentially a nearest neighbor approach, for
example. An interesting property of nearest neighbor however, is its relationship
to approximation algorithms of the Traveling Salesman Problem. The similarity
of TSP to policy arbitration is perhaps easiest to see in a grid world example, with
some set of cells corresponding to goal locations. An agent wanting to optimize
its traveling distance to achieve all its goals, must essentially find the shortest
tour of the equivalent traveling salesman problem (in fact, since we do not require
that the agent returns to its original location, the agent needs to find the shortest
Hamiltonian path). As we described in Chapter 1, our experiments show that
the nearest neighbor strategy performs close to optimal in the grid world. This
is not surprising when one realizes that nearest neighbor is a good approxima-
tion algorithm for TSP, achieving the optimal tour within a constant factor in
Euclidian spaces, and shown experimentally to do extremely well on cases with
large numbers of cities [Johnson, 1990]. Even outside the grid world, one might
be able to generalize the problem of achieving multiple goals to a variant of TSP.
If all goals are goals of achievement, the problem might be viewed as finding the
shortest path in state-space to all goal states. However, the more complex the
task, the less likely it is that the state-space is Euclidian, so nearest neighbor
might no longer be a good approximation algorithm.

The greatest mass has also been used in solutions in other problems. Using

potential fields for path planning [Khatib, 1986],[Arbib and House, 1987], uses
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the same techniques of gathering utilities, or potentials, from different sources
(obstacles and goal locations) and then summing them.

Using the greatest mass technique is one possible way the agent can merge
policies, rather than simply selecting one to execute. This may result in executing
actions that are suboptimal to each local module, but have a high global utility.
Foulser, Li, and Yang, have studied this type of policy combination, using tra-
ditional, non-linear plans as their representation [Foulser et al., 1990]. However,
their work has been concentrated on the problem of finding the set of merging op-
erations, that produce the optimal combined plan. This assumes that it is already
known what parts of the plans can be merged, and how that is accomplished. In
our setting, we do not have access to a set of non-linear plans, but must perform
the merging immediately prior to executing the action. Without using lookahead,
it would be difficult to determine whether a particular merging operation should
be deferred, so that a better one might be performed in the future.
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3 Reinforcement Learning

This chapter reviews the learning technique known as Reinforcement Learning.
Reinforcement learning describes a large class of techniques characterized by the
fact that the main learning signal is a reinforcement or reward function. We will
discuss the nature and the importance of the reward function as one of the main
sources of domain knowledge. Though there are several reinforcement learning
algorithms available, we have based our method on Watkins’ Q-learning algorithm.
We briefly review Q-learning here, and a more in-depth description is available in

[Watkins, 1989].

Reinforcement learning draws much of its inspiration from conditioning mech-
anisms observed in animals subjected to positive and negative stimuli [Minsky,
1954]. Animals often can not be directly instructed on how to perform a task, but
can be taught by administering feedback that is pleasurable or painful, depending
on the animal’s performance. As an intelligent control mechanism, reinforcement
learning is also referred to as “learning with a critic” [Barto et al., 1983]. For
both biological and artificial systems the basic idea is to give the agent only some
indication of how well it is performing or has performed a given task, without
communicating the exact nature of the task or how it might be solved. The main
advantage of this approach is that all task information has been condensed into a
form easily interpreted by the agent. There is no need to design a more elaborate
knowledge representation in order to describe the desired goal. As we will discuss
below, a disadvantage is that it may be difficult to use the simple language of
reinforcement to effectively and correctly describe more complex tasks.

An important aspect of Q-learning is its ability to cope with delayed rewards.
Many supervised learning techniques, such as neural networks, learn to associate
input-output pairs, (z,z) where x is the input and z the corresponding output.
After the learning stage, the system can produce the correct output z when pre-
sented with only the input x. In this type of learning the feedback is immediate,
since the system’s output can be immediately compared with the correct output
z. In many domains, including the driving world described in Chapter 1, such
immediate feedback is not available. Instead of a simple input-output pair, the
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agent is presented with a sequence of steps and some corresponding outcome, eg.
(21,22, 23,...,2,,2). In the driving domain, each step z; would correspond to the
1'th state visited, and the outcome z might describe an event such as crashing into
an obstacle. A learning system presented with this type of input must decide at
which point in the sequence the decision was made that is most responsible for the
outcome (this decision is also known as the credit assignment problem). Though
the state immediately prior to crashing into the obstacle seems a likely candidate,
the cause of the crash might be traced further back in the sequence. If the agent
decided to turn into an alley known to be completely blocked by obstacles, the
state at which the turn was made is largely responsible for causing the crash.

By waiting until the entire sequence is complete, a learning system can restruc-
ture the inputs into pairs: (21, 2), (22,2),...,(2,, z), and apply normal supervised
learning techniques. However, incremental approaches, where the learning can be
made at each time step, before the sequence is complete and the outcome known,
have been shown to be more efficient [Sutton, 1988]. Using an incremental ap-
proach, the learning system can’t compare the output given the current state with
the desired future outcome, but rather compares it with the output correspond-
ing to the next state. If outputs are viewed as predictions of the ultimate out-
come, then the learning process can be seen as gradually propagating improved
predictions of the outcome back through the sequence of visited states, as the
agent repeats its experience. One early application of an incremental approach
was Samuel’s checker player, which adjusted its evaluation of the current board
state based on the evaluation of the board layout after the move [Samuel, 1963].
Sutton formalized the approach, terming it TD(A), and proved its convergence
to an optimal solution [Sutton, 1988]. TD()) has been further generalized (and
the generalization shown to converge) to include cases where information used in
learning is not limited to immediately adjacent time steps, but can stem from any
arbitrary state [Dayan, 1992]. The approach has also been applied successfully in
some domains, most notably in a backgammon player [Tesauro, 1992].

However, the TD(A) algorithm still depends on the presence on a final outcome.
Thus, it is mostly suitable for tasks with a single goal of achievement. Q}-learning
can be viewed as type of TD learning that has been modified to allow learning
different types of goals, by predicting a discounted measure of future reward (de-
scribed in more detail in section 3.3). However, Q-learning retains the incremental
aspect of TD learning by making updates based on subsequent predictions rather
than making comparisons with some final result.

In the below description of Q-learning we use the grid-world domain shown in
Figure 1.2 as an illustrative example. In this domain, the agent can move to grid
cells that are vertically or horizontally adjacent. Its task is to reach all those goal
locations currently marked as “active”. An active goal location becomes inactive
once the agent reaches it, and may be active again with some small probability at
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any given time step. The agent’s inputs include a list of all of the goal’s current
activation status, as well as the row and column of the cell it currently occupies.

3.1 The agent model

Though in general, reinforcement learning allows for complex models of the agent
and its domain, we simply model the world and the agent as interacting finite state
machines (see Figure 3.1). The agent executes discrete actions to change the state
of the world. The agent detects the current state of the world, modifies its internal
state, and selects a new action to execute. In reinforcement learning, the agent’s
action selection mechanism is controlled by a learning system whose inputs are
derived from the external sensors and internal state variables, and a reinforcement
signal. The output of the system is the action to execute. The learning system’s
inputs and outputs are thus abstractions of the inputs and outputs of the agent’s
embodiment (whether it is a physical machine or a software agent). When we refer
to the agent’s inputs and actions, we will be referring to these abstractions, since
our interest focuses on the learning system. We can thus describe a reinforcement
learning agent as a triple, (5, A, R), corresponding to the agent’s inputs, actions,
and reinforcement, or reward function.

State,s Environment

Reward,r Action,a

Agent

Figure 3.1: The reinforcement learning model. The agent in state s, executes
action a, and receives a reward r. The action changes the state of the world, and
the sequence repeats.



26

3.1.1 Inputs

Though it would be possible to use the raw sensor data as inputs, it is usually
more practical to abstract and simplify the agent controls as much as possible.
Thus the agent can be provided with sensors that report high-level information,
such as the distance to the nearest wall, the color of the streetlight, or whether
some location is clear or obstructed. How this information is gathered, whether
its by using cameras, sonar, or laser range finders for example, is irrelevant to the
learning system, and only affects the accuracy of the inputs. In our grid-world
example the agent’s inputs are

S = (row,col,as,ay,...,an)

where row and col describes the agent’s location and a; indicates whether
the 1’th goal location is currently active. The agent’s location may be determined
by any number of methods, such as GPS positioning, dead-reckoning, or reading
barcodes placed in each grid cell. The choice of which method is used is determined
by what resources are available and how much accuracy is needed.

It is possible that the same inputs result in situations that differ from each
other to some degree. It is the agent designer’s responsibility to ensure that, any
differences in situations that result in the same inputs are insignificant relative
to the agent and its task. However, it is unrealistic to assume that all sensors
can perform flawlessly in all situations, so any control system depending on the
sensors for input needs to be able to handle uncertainty and noise from its inputs.

The set of inputs S = {sg,51,...,8,.} is thus a combination of processed
perceptual data and internal state variables. We assume that each input can take
on only a discrete range of values and that we can neglect the time needed to
compute the input values, so that at any given time the inputs reflect the current
state of the world. The values of the inputs thus determine the agent’s current
state, and we denote the set of all possible states, or state-space, by X = 2", Thus,
in the grid-world, the state-space consists of m x m x 2" states each describing a
unique agent location and set of currently active goals.

There is no assumption of independence between inputs and therefore not all
combination of inputs will actually occur. For example, one input may simply
report the presence or absence of an obstacle, and another gives the distance to
the obstacle, or 0, if no obstacle is present. States where there is no obstacle, and
the distance input reports value other than 0 will therefore never occur normally.
Though it is possible to design the inputs to avoid such dependencies, other de-
pendencies are domain dependent and cannot be avoided. For example, inputs
detecting two different types of objects would be dependent in some domains where
those objects never occurred concurrently, but independent in domains where they
did. Such dependencies can not be known without a large amount of prior domain
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knowledge. It is often easier to assume that the inputs are independent, and let
the agent learn any dependencies that occur in the domain.

The agent is given no semantic knowledge about the inputs, and thus cannot a
priori treat different inputs as being more salient to the task than others. As the
agent explores the world, it attempts to learn the transition function 7': X x A —
X, that governs how it can traverse the state-space in order to accomplish its task.

3.2 Actions

The agent’s set of actions, A = {ag, ay,...,a,,} are assumed to be discrete and to
need equal time to complete. Any cost of executing actions can be encoded in the
reward function, as described in Section 3.3. If the agent’s physical embodiment
i1s a machine or a robot, actuators are likely to be controlled by, for example,
regulating the current going to a set of motors. Though it would be possible to
learn to control the robot using this low-level interface, one can often provide
a simpler, more abstract interface, without losing too much generality. Thus,
the learning system may be learning when it is appropriate to execute high level
actions, such as “move forward 50 centimeters”, “turn 10 degrees to the left”,
or “pick up the coke can”. In the grid-world domain, the actions are even more
abstract: A = {up,down,right,left}.

In a robot, it is likely that all actions will be limited by some level of uncer-
tainty. World states that appear the same to the agent may differ enough that
the same action leads to different results. Other environmental conditions such
as the ground texture, or dust accumulating on gears and axles, may also lead to
inconsistent results. As with the input sensors, the agent designer must attempt
to limit the uncertainty as much as possible, but the control system still needs to
be able to cope with actions with non-deterministic results. The agent is given no
prior knowledge about the expected results of actions, but attempts to learn the
range of possible results through experimentation in the domain.

3.3 The reward function

Often researchers describing their model of agent/world interaction, depict the
reinforcement signal as coming from the environment or world to the agent [Peng
and Williams, 1992][Watkins, 1989]. In a biological system this may be true. The
brain translates different stimuli into pleasant or unpleasant sensations depend-
ing on the current task and context. In artificial reinforcement learning, this is
modeled by a reward function that translates the agent’s perceptions into a real
number. Many researchers recognize that for any real artificial agent implemen-
tation, there is no convenient reward function in the world inserting appropriate
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values into the agent. The reward function is thus depicted as a part of the agent
that translates the observed state into a reward value [Whitehead and Ballard,
1989][Kaelbling, 1989]. That is, part of the agent’s a priori knowledge is the

ability to recognize states and assign a value to them.

A reinforcement learning agent must be provided with its reward function from
an external source, typically a human designer. In order to define the reward
function, the designer distills a large amount of task specific knowledge into a
number. For example, the reward function designer will encode a notion of what
classes of states represents the agent’s goal. The designers of the walking robot
Genghis constructed a reward function that encoded the knowledge that keeping
a touch sensor on the robot’s “belly” from being activated, and keeping a motion
sensor on the robot’s tail activated, was the most desirable state [Maes and Brooks,
1990b]. Similarly, agents in simulated worlds have been given reward functions
encoding the information that desirable states are those where the sensors detect
simple features, such as: the presence of cheese [McCallum, 1992], a particular
color block in the agent’s gripper [Whitehead, 1991], or some other distinctive
marker [Lin, 1993b][Tenenberg et al., 1992]. In all these cases, the human designer
of the reward function had a clear idea of which classes of states (defined by the
values of a small set of the sensors available to the agent) corresponded to the
agent correctly accomplishing some task.

In general, the reward function, R, can be as complex as desired. It can be
defined to depend not only on the current state, and the action that led to it, but
also any other circumstances in the agent’s past history. However, the learning
method we use as the basis of our system, Q-learning, requires that the reward
depend only on the current state. The cost of the action executed to reach that
state may also be included in the reward. In our experiments, we assume that
any such costs are negligible. Given a state therefore, the reward function returns
a scalar real value (R: X — R).

Since the reward function is the agent’s only indication of how well it is meet-
ing its goals, it must be designed with great care. For all practical purposes, the
reward function defines the agent’s task. For complex problems, it may be nec-
essary to refine the reward function as an agent discovers ways to get the reward
without accomplishing the actual task. For example, a garbage collection robot
gets a small reward for picking up a piece of trash, and a larger reward for de-
positing it into a garbage can. The robot may easily discover that it can quickly
accumulate the small reward several times in succession, by repeatedly dropping
and picking up the garbage (perhaps even repeatedly retrieving and depositing
it into the garbage can!). The reward function then needs to be modified, for
example by giving a large negative reward, or punishment, for dropping garbage
anywhere but the garbage can (and for picking up objects from the garbage can).

In order to design a correct reward function, there must first be a clear idea
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of what the agent’s goals should be. In the field of decision theory and planning,
there is a growing amount of research on how to properly assign utility to goals,
whether they be goals of achievement, avoidance, or maintenance [Haddawy and
Hanks, 1990]. Given a simple goal, it is fairly straightforward to define a reward
function leading to the proper behavior. For an achievement goal for example, the
reward function returns a positive value in the goal state, and 0 in all other states.
Similarly, an avoidance goal can be encoded by a negative value in the state that
is to be avoided, and 0 reward elsewhere. The task in grid-world is to reach a
state where all the goals are inactive (ie. all goal locations have been reached at
least once), so the reward function could be designed to give out a reward of 1 if
all goals are inactive, and 0 otherwise.

As long as there is one goal state, or a class of states where the goal has been
achieved equally well, the reward function remains simple. However, reinforcement
learning gains much of its power from the ability to use the reward function to
specify different degrees of goal satisfaction, and identify sub-goals of a complex
task. Thus, if our grid-world task was setup as a set of repeated trials with a
fixed time-limit, the reward function could assign a reward at the end of each trial
that was proportional to the number of goals that had been reached. This would
speedup learning, because partial solutions would be seen as useful, and used as
starting points for more successful solutions.

In a similar fashion the reward function may be defined to give out rewards
when sub-goals of the overall task have been accomplished. Rewarding sub-goals
is one way to encode domain and task knowledge. In the garbage collecting robot
described above, it seems clear that the agent must first pick up a piece of trash,
before it can deposit it into the garbage can. Giving a small positive reward
when the sub-goal of picking up the trash is achieved is akin to giving the agent
a “hint” that it is moving in the right direction. The agent will thus learn more
quickly to pick up the trash than if it only got rewarded after it has successfully
picked up and deposited the trash in the garbage can. Similarly, in the grid-world,
rewarding the agent at the moment it reached an active goal-location would be a
good way to specify that reaching each individual goal is a sub-goal towards the
task of reaching all goal-locations.

Apart from the risk of making the type of errors in the reward function defi-
nition described previously, rewarding sub-goals may also bias the agent against
finding efficient but unforeseen solutions to the problems. In our example, if the
garbage robot could use a leg to kick the trash into the garbage can, attempts to
learn this solution would be abandoned once it was learned that reward can be
acquired by picking up the trash with an arm. Thus, though kicking the trash
might be more efficient, the reward function is biased against any solution that
does not involve picking up the trash first.

Increasing the complexity of the reward function can clearly speed up learning



[Mataric, 1994]. The rewards can be used to guide the agent in what is deemed to
be a desirable direction towards the goal, thereby limiting the amount of random
exploration that must be undertaken before a solution is found. Also, rewards can
be used to steer the agent away from situations that are known to be undesirable
(eg. the edge of a cliff, or walls).

However, great care must be taken to ensure that the reward function leads to
the desired behavior. The relative magnitudes of the reward need to reflect the
relative importance of the states being rewarded. One could prioritize sub-goals
by assigning rewards of greater magnitude to the more important ones. It is not
sufficient however, to use the reward to create an ordering among sub-goals. If the
reward for one goal is twice as large as for another, then an agent that achieves
the second goal twice, will receive as much reward as one achieving the first one
once. In this case, the performance of the two agents must be considered to be
of equal quality, since the same amount of reward is accumulated. Therefore, the
relative magnitude of rewards is significant, in addition to the ranking they create.

The implicit “meta-goal” of a reinforcement learning agent is to maximize
some measure of the reward. In order for this goal to be meaningful, there must
be some finite time limit after which this measure is assessed [Seidenfeld, 1985]. A
correct reward function therefore, must rank all possible trajectories through the
state-space of a length corresponding to the finite time limit in order of desirability.
That is, if the agent is to learn a task within NV time-steps, then the total reward for
a sequence of NV steps should exceed the total reward for any other sequence, only
if the second sequence is less desirable (in terms of achieving a task) than the first.
For example, in the grid-world domain, at each time step, an inactive goal becomes
active again with some small probability p. If the task is modified so that while the
most desirable outcome is that all goals are inactive when the time limit is reached.,
there is one location, in a corner for example, that is deemed less important than
the others, and can thus be ignored, if necessary. If a reward of 1 is given for
the other goals, the lower priority of the corner goal could be indicated by giving
a smaller reward when that goal is reached. The difficulty lies in determining
the magnitude of that reward, given that it is unknown with what frequency the
corner goal will be reactivated. If the reward is set to 0.1, for example, reaching
that location 11 times, as well as reaching 4 other goal locations, is defined to be
preferable to reaching 5 goal locations, not including the corner goal. That reward
setup could therefore lead to undesired behavior if the corner goal was both easily
reached, and reactivated with a very high frequency. Thus, when there are several
sub-goals that must be prioritized, and whose frequency of occurrence is unknown,
designing the reward function can become very difficult. Often it is not practical
to attempt to rank all possible sequences of state and design a reward function
that produces that ranking. In domains with complex reward functions, it may be
necessary to perform experiments testing the correctness of the reward. Only by
placing the agent in the world and observing undesirable behavior due to improper



reward magnitudes, can one gradually adjust the reward function so that a good
solution to the task can be found.

3.4 Q-learning

The reward function may provide some non-zero reward for only a subset of states
(the states where the task has been achieved, for example), so the agent must learn
how to accomplish its task though the reward function may only provide a useful
learning signal in a very small part of the domain. To accomplish this, the agent
estimates the expected utility, called the Q-value, of executing an action from a
given state. The Q-value, Q) ;(x, a) is defined as the expected discounted reward of
executing action a, from the state x, and then following the policy f, thereafter.
A policy is simply a function that determines which action to execute in any given
state.

Q-learning is designed to maximize expected future discounted reward. This
quantity is also called the return, and is defined as

r(t) = Z ’YZRtH
=0

where R;; refers to the immediate reward received at time ¢ 4, and 7 is a tempo-
ral discount factor, with magnitude between 0 and 1. Thus, Q-learning attempts
to learn a policy that will gather as much reward as possible, but prioritizing, ac-
cording to the value of v, rewards reachable in the short-term over more uncertain
rewards that may be achieved further in the future. In highly dynamic domains
the temporal discount factor may be low, reflecting the uncertainty of whether
rewards can be attained in the future.

The policy is defined to execute the action with the highest Q-value in the
current state,

f(z) = argmax Q(z, a).

If action a is executed in state x, moving the agent to state y, the Q value is
updated according to the following formula,

Qulw,a) = (1 = @)Qi1(z,a) + a[R(y) +7U(y)]

where « is the learning rate, v the temporal discount factor, R(y) the reward
associated with state y, and

Uly) = maxQ(y,a)

a€A



It is assumed that the domain is such that at any given time, the agent has
enough information to be able to decide what the optimal action is. This is known
as the Markov property, and entails that any time an agent is in a given state,
the optimal action remains the same. The Markov property does not preclude
stochastic domains, since the optimal policy maximizes expected future reward.
Given a stochastic domain with a distribution of possible outcomes for each action
in a state, the Q-values will reflect the expected utility of each of the actions. If
the Markov property does not hold, the result may appear similar to the stochastic
case: at different times the same action will lead to different, results. The difference
is that there may not be a well defined distribution of possible outcomes, and thus
the Q-value computed will not reflect a real expectation.

By also assuming that the agent employs an exploration strategy that occa-
sionally deviates from the policy determined by the Q-values (thereby allowing the
discovery of new solutions), and an infinite number of time steps, Q-learning can
be shown to converge to an optimal policy [Watkins and Dayan, 1992]. The two
last assumptions are necessary to ensure that once a solution is found, the agent
continues to attempt to improve it. Without exploration, the agent would stay
with the first solution found, which typically has a lot of room for improvement.
The agent must search for an infinite number of time steps in order to provably
find the optimal solution. Clearly this is not possible in practical applications.
Typically however, a finite number of steps suffice, and the learning rate and ex-
ploration rate are both decayed, so that after a certain time point the agent is not
searching for new solutions [Thrun, 1992].

It is possible therefore, that an optimal solution is not found by an agent
that limits its exploration and learning. However, since optimality is defined by
“maximizing expected future discounted reward”, it is often the case that sub-
optimal solutions can still be used to achieve the task. Though there might be
a loss of efficiency, the optimal solution may differ from a sub-optimal one in
insignificant details only. As described in Section 3.3, defining reward magnitudes
can be difficult, and different amounts of total rewards may not be a good measure
of the difference in quality of solutions. Furthermore, in some cases, an optimal
solution might not be achievable given the resources available. This is often true
in the complex domains where several different tasks need to be achieved. In
these situations, sub-optimal solutions that nonetheless achieve the task must be
acceptable.

Q-learning is an attractive learning algorithm, because it requires only very
little prior knowledge of the domain. However, as the agent’s task and domain
increases in complexity, the learning time may increase dramatically. Since the
size of the state-space may be as large as 2", adding more features to the domain,
necessitating an increase in the agent’s inputs, can cause an exponential increase
in the size of the state-space. Since the agent may need to explore the entire



state-space to find the optimal solution to its task, the increase in the state-space
size may also lead to an exponential increase in the learning time.



4 Modular Q-learning

The main weakness of Q-learning is the amount of time necessary to learn the
task. In the grid-world example shown in Figure 1.2, the task is simply to find a
path from the starting position that visits each goal location at least once. The
agent begins each trial at the starting position, and a trial ends when all goals have
been reached. Given no prior domain knowledge, and no reward until the goal has
been reached, the agent must essentially perform a random search, until the goal
has been found in the first trial. It can be shown that in domains with certain
properties (such as having reversible actions), the time to find the goal state in
the first trial is exponential in the number of states in the domain [Whitehead,

1991].

To a large extent, the long search time cannot be avoided. Given that the agent
has no domain knowledge, it must explore every state in order to guarantee that
the optimal solution is found. If there is some prior knowledge available about
what sub-goals need to be achieved, or other forms of partial solutions, the reward
function or initial Q-values can provide that information to the agent. However,
in the complex tasks we are studying, the available domain knowledge does not
pertain to the solution to the task that the agent must learn, but rather to the
structure of the task. With tasks that are composed of largely independent sub-
tasks, such as keeping the office printer stocked with paper, recycling soda cans,
and delivering mail to individual office, the agent designer may not know how
each individual sub-task can be accomplished by the agent, but does have some
knowledge about the independence of the task. Yet, using standard Q-learning the
independence of tasks cannot be exploited. If the agent learns to find and dispose
of a soda can while the printer is fully stocked, that knowledge will be unavailable
when the printer is only half full. Because the input indicating the status of the
printer has changed, the agent is now operating in a part of the state-space it has
previously not seen. It will have to relearn how to dispose of soda cans, since it
does not know that the status of the printer is largely irrelevant to the process of
picking up garbage. Similar changes in inputs relevant only to other tasks, will
also necessitate relearning the same procedure. The more concurrent sub-tasks



the agent must handle, the larger the state space grows, as more inputs are needed
to handle specific tasks. Standard reinforcement learning provides no mechanism
allowing the agent to utilize a previously learned method to accomplish a sub-task
when the only inputs that differ are only relevant to other sub-tasks.

This chapter describes the modular architecture. This architecture allows an
agent designer to apply domain knowledge about sub-tasks, by creating indepen-
dent modules whose inputs are relevant to a specific sub-task only. Since no
module depends on any sub-task other than that assigned to it, the relearning
described above can be avoided.

In the below sections, the following topics are addressed:

o The definition of the modules. We describe the input and output of the
modules in this architecture.

o The definition of the modular algorithm. We show how the modules are
used in the system as a whole.

o The definition of approximation functions. Since each module learns how to
accomplish its sub-task only, a mechanism is needed to merge the knowledge
gathered by the modules so that the best action overall can be executed.
This is the role of the approximation function, which, since it arbitrates
between the different modules is also referred to as an arbitration strategy.
We describe two different arbitration strategies called greatest mass and
nearest neighbor.

e Extensions to the approach. We describe two extensions to the modular
architecture, designed to improve its performance. In the first, modules
are used to initialize a monolithic system, and in the second an activation
function is used to limit interactions between modules.

4.1 Module definition

We have developed a modular -learning architecture that allows the agent to take
advantage of the independence of sub-tasks. Figure 4.1 illustrates an agent using
the modular architecture. As with standard Q-learning, the agent executes actions
to alter the state of the world, and detects the new state through its sensors and
other inputs. However, rather than considering all inputs concurrently, thereby
learning all sub-tasks in the same monolithic state-space, the modular approach
separates inputs according to what sub-task they are relevant to. A separate
module is pre-defined for each sub-task, which receives only that input information
relevant to its task. Thus, the sub-tasks are learned independently, but in parallel
with each other.
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Figure 4.1: An agent using the modular architecture receives inputs from the
world and executes actions to change its world state. However, the inputs are
separated into modules which then learn in much smaller state-spaces.



More formally, we define for each module ¢, three functions that specify its
associated sub-task and relevant information:

e m; is a selection function, that selects only those parts of the state-description
relevant to the given sub-task. Each m; thus defines a new state-space which
is an abstraction of the original state-space.

e R; is a reward function that assigns reward based only on how well the
sub-task is being accomplished, independent of the state of the task as a
whole.

o (); is a Q-function that estimates expected reward from the sub-task reward
function.

Figure 4.2 illustrates how these functions are used in the modular architecture.
Given the input from sensors and internal state variables, each module uses its
selection function and reward function to maintain its own Q) function. Therefore.
while m; and R; are defined by the agent designer, the modules learn their own
Q-functions. These Q-functions are then used by an arbiter to determine which
action the agent should execute. We will refer to the state-space, reward function,
and Q function, related to the modules as local, as compared to global equivalents
of a non-modular system.

4.1.1 The selection function

The agent’s inputs S = {sq, $1,. .., 8.}, determine what it can distinguish in its
domain. In the above office robot example, the agent would have inputs determin-
ing the paper level in the printer, detecting soda cans, measuring the distance to
obstacles, and many others. However, the agent’s task consists of many sub-tasks,
and not all inputs are relevant to all sub-tasks. For example, it is not necessary
to know about the presence of soda cans in order to keep the printer stocked with
paper. In order to use the modular approach to reinforcement learning, the agent
designer must be able to identify the sub-tasks, and what inputs are relevant to
them. In the grid-world domain, the inputs are

S = (row,col,as,ay,...,an)

and the sub-tasks correspond to reaching one of the goal location. Therefore, for
each sub-task, the relevant inputs consist of the row and col inputs, and one of
the activations «a;, only.

This filtering of the inputs is accomplished with a selection function m;. The
selection function is defined to return only those inputs relevant to the given
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Figure 4.2: In the modular architecture, each module uses only that part of the
input z, returned by the selection function m;, and its reward function r;, to
estimate Q-values relative to its sub-task. These Q-values are then used by the
arbiter to select an action to execute.



sub-task. Thus, just as the set of inputs S define a state-space X, each module
considers only a subset of inputs 5;, defining a smaller state-space X;. The selec-
tion function can then be viewed as a projection of the global state-space X onto
the local state-space X;. Each state in X; corresponds to a set of states in X. For
any state x; C X; this set is easily defined as

{z|z C X,;m;(z) = z;}

The state-space X; can be thought of as an abstraction of the global state-space,
since it disregards part of the available information. In machine learning, having
a set of states be represented by a single state is typically referred to as hidden
state or perceptual aliasing. Hidden state is usually the result of the agent having
insufficient information about its current state, leading to different results when
the same action is executed in apparently the same state. Since this inconsis-
tency can hamper learning, it is usually combated by attempting to gather more
information about the state [Whitehead, 1991], or using some form of short term
memory [McCallum, 1996]. However, sometimes hidden state can be useful to
an agent, eliminating irrelevant detail from the state description (This case is de-
scribed as passive abstraction by Agre [Agre, 1988]).In our modular approach for
example, we deliberately introduce hidden state in order to reduce the size of the
state-space each module must learn in. This reduction of the state-space size is
a way to achieve generalization, since one state in the local state-space X; covers
a set of states in the global state-space X. Since the information that is omitted
from the module is information that has been deemed irrelevant to the associated
sub-task, it is unnecessary to distinguish between the global states corresponding
to any given local state. For example, if a module was defined to handle keeping
the printer stocked with paper, one of the local states might be that the paper
tray was completely empty. This state could correspond to several global states,
distinguished perhaps by whether or not a coke can was on the floor of the printer
room. However, for the sub-task of keeping the printer stocked, it would not be
necessary to distinguish between those states.

Of course, it is often difficult to determine whether or not some information
is relevant to a sub-task. One might imagine that the presence of a coke can in
the room might be relevant if the printer is almost out of paper. The agent could
then judge whether the optimal path would be to first dispose of the coke can
and then refill the printer, or go to the printer first since it is likely to run out of
paper before the coke can is taken care of. These types of interactions between
tasks are handled by the approximation function and thus do not necessitate the
inclusion of more inputs in one or more modules. We cannot define an exact
algorithm to determine what the selection function m; should be for each module.
A reasonable heuristic seems to be that to only include that information which
would seem necessary if the given sub-task were the only task the agent needed
to handle.
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4.1.2 The reward function

The reward function is how the agent designer defines the agent’s task. In a
simple task, the reward function will simply assign no reward to most states and
some positive reward to a goal state. In a complex task composed of multiple,
concurrent sub-tasks, the reward function might consist of some combination of
several sub-reward functions. The office robot described above, for example, could
have separate reward functions evaluating the different sub-tasks. The global
performance is evaluated by some linear combination of the individual reward
functions. It is these types of tasks that the modular architecture is best suited
to. In these domains, there are a number of sub-tasks that must be attended
to, each of which is clearly delineated from the others. A reward function can
be designed to evaluate each sub-task, independently of the status of the other
sub-tasks. The total reward of the agent is defined as

R(z) = f;z%i(mi(x))

where x is the state being evaluated, n,, the number of modules, and m; the
selection function defined previously. In the grid-world example, the individual
reward functions could be defined as:

1 if row and col correspond to the location of goal 1,
Ri({row,col,a;}) = and a; = 1 (ie. goal ¢ is active)
0 otherwise

The agent’s total reward then consists of the sum of the individual rewards.

It is possible to assign weights to each of the individual reward functions,
indicating priorities, or even use a more complex algorithm than a simple sum to
evaluate the agent’s global performance. Unless otherwise indicated however, we
assume that a simple sum is sufficient, and that any relative priorities between sub-
tasks are reflected in the magnitude of the rewards given by the reward functions.

4.1.3 The approximation function

Each module has its own state-space and its own reward function, and is thus
equipped to learn its sub-task using any reinforcement learning mechanism. Using
Q-learning, a module applies the standard update formula to define a local Q-
function. This Q-function is defined for the module’s state-space and reflects
estimates of the module’s reward only. We can thus write the update formula for
the local Q-function, Q);, as

Qi(mi(z),a) = (1 — @)Qi(mi(), a) + a( Ri(mi(y)) + yUi(mily)))
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where
Ui(mi(y)) = max Qi(mi(y), a)

As the agent performs actions in the world and receives reward, all modules
update their Q-functions independently and in parallel. Since the agent has no
global state information, any estimation of the global Q-function must be done
using the local information gathered by the modules.

Though there are many different ways one might combine the local Q-functions
to estimate the global Q-function, we have focussed mainly on an algorithm termed
“greatest mass”, while also briefly examining a method termed “nearest neighbor”.

The greatest mass approximation algorithm simply sums the local Q-values to
estimate the global Q-value. The estimate, @, is thus given by

ng(:zz,a) = nz:n;Qz(ml(x)v a)

As discussed in Chapter 2, the greatest mass algorithm is similar to potential
field methods used in path planning, for example. In path planning one can
assign attractive potential fields to goal locations and repulsive fields to obstacles.
Combining the fields leads to a “path of least resistance” avoiding the obstacles,
leading to the goal. Analogously, the local Q-functions define positive and negative
utilities, which when combined point to a path towards the goal in state-space.
Adding the Q-values to estimate the global Q-value can lead to actions being
selected that, while sub-optimal relative to the sub-tasks, represent a compromise
that takes into account information from all the sub-tasks. For example, one
module might assign a large positive utility towards going forward (to reach a
soda can perhaps), while an obstacle avoidance module assigns a large negative
utility to the same action (if there is an obstacle in the way). In the greatest mass
approximation, the positive utility from the first module would be offset by the
negative utility by the obstacle avoidance module. However, an action that moves
around the obstacle would be given a positive utility by both modules, since it
moves in the general direction of the goal, and avoids the obstacle. The sum
of these Q-values would then exceed that of the action moving directly forward.
In this manner, actions that are sub-optimal to any given module, but the best
when all sub-tasks are considered together, can be selected by the greatest mass
approximation method. Finally, since the global reward is derived from the sum of
the individual local rewards, and the local Q-functions are dependent on the local
rewards, it is not unreasonable to assume that the sum of the local Q-functions
will be a good approximation of the global Q-function in many cases.

Another approximation strategy we have investigated, though not to the same
extent as greatest mass, is the nearest neighbor strategy. In this approach the
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global Q-value estimate is arrived by choosing the maximum of the local Q-values.

That is,
Qun(z,a) = max Q:(mi(z),a)

1<i<nm

This approximation algorithm is called nearest neighbor since it essentially leads
the agent to attempt to reach the nearest reward first. This can lead to the
agent achieving one sub-task while ignoring the others. In some domains, such
as grid world, where all the goals are goals of achievement, for example, this is a
reasonable strategy, and analogous to the nearest neighbor approximation strategy
for solving the traveling salesman problem. However, in domains where there is a
mixture of goal types, including avoidance goals, ignoring any sub-task is unwise.

For both of these approximation methods, and any other method of estimating
the global Q-function using the local information, it is not necessary that the
estimate is numerically equivalent to the true global Q-function. In order for the
estimate to be accurate, it need only provide the same ranking of actions in any
given state. In fact, as long as the both the estimate and the true Q-function
simply agree on what is the best action in all states, the same behavior will result.

4.2 The modular Q-learning algorithm

The modular Q-learning algorithm is outlined in Fig 4.3. It proceeds along the
same lines as the regular Q-learning algorithm, differing only in how the policy is
updated and the action to execute is selected. We have left the issue of exploration
largely unexamined. Exploration is done by executing a random action with some
probability, instead of the action recommended by the policy. There are much
better exploration strategies available for Q-learning (see [Thrun, 1992] for an
overview) that could possibly be adapted to the modular approach. For example,
counter-based approaches, that try to guide the exploration towards actions which
have been executed less frequently could also be used in the modular system.
However, since different modules act in different state-spaces, it is possible for the
agent to be in a well explored part of the state-spaces of some modules, and in
relatively unknown parts of other modules state-spaces. Some mechanism would
have to be designed to properly arbitrate between the differences in the value of
exploration in a given direction for the different modules.

4.3 FExtensions

As will be seen in the experimental results and analysis, the modular approach is
necessarily limited in the level of the performance it can reach. By decomposing
the task into modules, separating reward and input information, we may have
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1. For the current state x, select the action to execute. Either:

(a) with some probability (eg. 10%) perform exploration by randomly
selecting an action, or

(b) find the action a such that ¢ = argmax,ea Qym(x,a). If there is a
set of actions corresponding to the maximum value, let @ be randomly
selected from this set.

2. Execute action a, leading to the new state y

3. Update each module according to the update formula: @Q;(m;(z),a) = (1 —
a)Qi(mi(x), a) + a(Ri(mi(y)) + yUi(mi(y)))

4. repeat, with y set to the current state.

Figure 4.3: The modular Q-learning algorithm.

rendered the system incapable of learning the optimal policy in situations where
all information needs to be considered in conjunction. We have therefore devel-
oped some extensions to the modular approach that allow the system to relax
the decomposition and recombine the information. The first method completely
abandons the modular approach after it has reach a certain level of performance.
The learned policy is used to initialize the monolithic system, which then con-
tinues to learn. The second extension we discuss, in effect removes information
from the system, rather than trying to add it. A standard difficulty in systems
that use decomposition is that of interfering sub-goals. It may be that in some
situations a given module may be influencing the approximation method (greatest
mass or nearest neighbor) adversely, even though it may not be relevant. To avoid
such interference, one can provide an activation function that ensures that only
relevant modules influence the current action selection.

4.3.1 Initializing a monolithic system with modules

In this method, the modular system is used to avoid the initial poor performance
of the the standard monolithic system. The algorithm proceeds as follows:

1. Use the modular approach to try to learn the task

2. At some point in time, switch to the standard monolithic approach, initial-
izing the system with the policy learned using the modules

3. Use the monolithic approach to continue learning the task
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If the modular system can learn a policy that is optimal in most cases, and
only makes mistakes in a small set of states, this approach can work well. By
using the modular approach initially, most of the policy is learned correctly in a
short period of time. Once the switch to the monolithic system is made, it is only
necessary to correct the policy in a few states.

One difficulty lies in determining when to switch to the monolithic system.
In our experiments, we simply switch at a given time-step. However, it might be
more efficient to attempt to monitor the agent’s performance and make the switch
at the point in time when learning using the modular method does not lead to
any improvements.

When the switch is made, the monolithic Q-function is initialized using the
Q-estimate produced by the modular system. If the greatest mass algorithm is
used for example, the monolithic Q-function, (), would receive an initial value, for
each state/action pair, according to the formula

Qz,a) = Qgm(z,a)

Qz,a)= nz_m;@(mz(l)a a).

When the monolithic policy has been initialized in this way, it will lead to the
same behavior as the modular policy. As the agent arrives in situations where the
modular policy leads to a sub-optimal action, the monolithic system will be able
to make the necessary correction.

This extension assumes that all that is necessary to correct the modular pol-
icy, is to alter the recommended action in a small set of states. It is possible
however, that the modular policy has learned a sub-optimal solution that differs
greatly from the optimal one, and small corrections will not be sufficient. In these
situations, the entire policy will have to be re-learned, and initializing with the
modular policy will harm more than it helps.

4.3.2 Activation

A complex agent, biological or artificial, has a large number of goals it attempts to
satisfy over time. At any given time however, only a few of those goals influence
the agent’s behavior. As a human drives to the store, his actions aren’t influenced
by the way he will park the car once he reaches his destination. Similarly, the
effect of food gathering goals on the action selection process may vary depending
on how hungry the agent is. In an artificial agent using the modular approach,
each module corresponds to one sub-task. We can extend the modular system by
adding an activation level for each task. A module is active if it is relevant to
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the current situation, and inactive if not. It is possible to have the activation be
real-valued, indicating varying levels of influence, as in the example with hunger.
In the following we only consider binary values for the activation levels however.

The activation levels are added to the modular system by introducing an acti-
vation function, p;, for each module. Each activation function returns the module’s
activation level in the input state. Each module continues to learn and update its
policy regardless of its activation level; it is only in the action selection step of the
algorithm that activation has an influence. Thus, when the greatest mass approx-
imation of the global Q-values are computed, each module’s Q-value is weighted
by its activation level:

Qo) = 3 pimi () Qi) o)

With binary activation levels, irrelevant module’s will thus be disregarded in the
action-selection process.

The activation levels is another mechanism by which domain knowledge can
be introduced. In the grid-world example (and when using activation to indicate
hunger as mentioned above), the activation level is part of the task definition.
That is, the agent receives no reward for achieving an inactive task, such as
reaching a previously visited goal. In this extension however, activation levels
do not influence the reward function. Instead they are intended to provide a
heuristic mechanism allowing the agent to ignore certain goals. In an office robot
for example, the goal of checking the paper supply of printers could be set to
be active only when the robot was in a room with a printer present. This might
prevent the robot from learning an optimal route to the printer rooms incorporated
with accomplishing its other tasks. However, using the activation function would
decrease the time to learn the task as a whole, since the time necessary to learn
the optimal path can be eliminated. The danger of course is that the robot will
never enter the printer room if it is ignoring its goal of checking the printers.
However, if it is known that the printers are in a central location that will be
visited during the performance of the robot’s other tasks (such as in the mail-
room), the activation function can be used with some assurance that the printer
goal will be attended to.

It should be stressed that these activations are a heuristic mechanism that
could prevent the agent from learning an optimal policy. Strictly speaking, a
module is only “irrelevant” in situations where all the actions have the same utility,
and will therefore not influence the action selection mechanism. Activations can
be used by the agent designer to trade-off learning time with solution quality, by
specifying situations where certain goals should be ignored so that the agent can
learn solutions to other, more immediate goals.

In our experiments with this extension, the activation functions were defined
by the agent designer, using available domain knowledge. The activation could
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also be set by some higher level planning module, or perhaps even be learned. In
the above formulation, the activation functions p; are given the same perceptual
inputs as the corresponding module. This assumes that the information given
to each module is sufficient to determine whether it should be active or not.
However, if it is necessary to use the activation to control complex interactions
between modules, the activation functions may need access to all inputs.

4.4 Summary

In the modular approach, sub-tasks are identified by the agent designer and are
learned by modules using complete )-learning systems. Since the modules learn
independently of each other, in separate state-spaces, the enormous state-space
size necessitated by many sub-tasks in the monolithic approach is avoided. Learn-
ing can therefore proceed much more quickly, though the solutions may not be
optimal. By decomposing the inputs into separate modules, the global overview of
the task is lost. The system thus depends on the approximation function to pro-
duce Q-values from the modules’ local Q-values, that lead to a good approximate
policy. We described two approximation strategies: greatest mass and nearest
neighbor. The first has the capability to consider several sub-tasks concurrently,
and the second implements a simple greedy approach. Which strategy is appro-
priate depends on the type of task given the agent.

Since the modular approach produces an approximate solution, we consider
two extensions to attempt to improve their quality. In the first, the modular
policy is used to initialize a monolithic system. The monolithic agent could then
possibly avoid the initial random search in order to find a solution to the task. This
extension could then combine the fast learning time of the modular architecture
with the promise of an optimal solution given by the monolithic approach. The
second extension uses an activation function to limit the number of modules that
need to be considered at any given time. The agent can therefore be capable of
solving a large number of sub-tasks, but at any given time, only a relevant subset
needs to be considered. This will reduce interference hetween modules which
might otherwise lead to poor performance.

The modular architecture and its extensions thus provide different techniques
by which domain knowledge about the task can be applied to improve the agent’s
performance.
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5 The Simple Driving Domain

The modular architecture is designed for domains where the task to be learned
is composed of a set of relatively independent sub-tasks. Furthermore, since the
modular approach trades-off the increased learning speed with a lesser quality
of the problem solution, the most suitable tasks will be those that have either
alternate possible solutions, or allow for partial satisfiability. The simple driving
domain (SID) was designed with these constraints in mind, to provide a good
test-bed for experiments with the modular architecture.

SID is a discrete world that is simple enough to enable analysis of different
possible situations and agent behaviors, yet still allows for complex tasks and goal
interactions. There is no overriding global goal for the agent in SID, but simply a
set of different tasks that must be handled properly in order for it to traverse the
world correctly. It is thus easy to add new tasks to be solved, or to experiment
with only a subset of the possible tasks.

5.1 SID world organization

The SID domain consists of a network of unevenly distributed vertical and hori-
zontal roads, separated by sidewalks. The world is divided up into discrete cells,
and any object in the world, including the agent, can occupy only one cell at a
time. Figure 5.1 shows an example situation, where the agent is approaching an
intersection. The scene shows a grid of 4x4 cells (the agent car and the moose
each occupy one full grid cell). A street sign indicates that the agent should make
a right turn, and the moose in front of the car represents a large obstacle that
must be avoided. At the beginning of each experiment, a new 80x80 grid of roads
is created. All the roads span the entire length or breadth of the world, so that
there are no dead-ends or U-turns. The world is toroidal, so that an agent driving
off one edge of the world, immediately appears at the opposite side.

Time is discrete, and agents decide how to proceed in the time between two
consecutive time steps. We assume that the time needed for the agent to select an
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Figure 5.1: An example situation in SID. The agent is approaching the intersection
and must follow the sign while avoiding the obstacle.

action is several orders of magnitude smaller than the time to actually execute it.
Since reinforcement learning, and our modular approach, are reactive techniques
that do not include a large amount of deliberation, it is reasonable to ignore the
time needed for computation.

Figure 5.2 shows all the objects that can appear in the world. Objects can
in general only appear in certain locations relative to other objects, as described
below:

1. street Street objects form streets that lead either vertically or horizontally
through the center of a block. Each street is two street objects wide, so that
there are two lanes.

2. sidewalk Sidewalks generally border the streets. A block containing no
streets will contain only sidewalk.

3. small and large obstacles Obstacles appear only in the street. Small and
large obstacles differ only in the effect they have on cars that run into them.

4. streetlights Streetlights appear only in the street. Their state changes from
green, to yellow, to red, and back to green at each time step. Streetlights
can appear in either lane of the street, but are intended to regulate the flow
of traffic in either direction regardless of which lane they appear in.

5. turn sign Turn signs can appear only at intersections pointing either to the
left or to the right. A turn sign will only be placed on the sidewalk at the
corners of intersections.
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(e) () (9)

Figure 5.2: The different objects in SID. (a) street, (b) small obstacle, (c) large
obstacle, (d) streetlights (green, yellow, and red) (e) sidewalk, (f) agents car, (g)
street signs

6. agent car The agent can move throughout a block. If the agent’s movement
cause it to land on a sidewalk, it will bounce back to its previous position
at the next time step, regardless of its action. The action executed can
change the car’s direction however (if the car runs into the sidewalk, and
then turns right, the car will end up in it’s previous position, but turned
towards the right). The car will have the same behavior when running into
a large obstacle or another car. Running over a small obstacle will have no
effect on the next action.

5.2 The SID driver

The agent in the SID domain has actions and sensors that are highly specific to
its task. In the current implementation, the agent’s reward function can define up
to four sub-tasks, though in any given experiment, only a subset of the sub-tasks
may be part of the task as a whole. There is thus no global goal, such as reaching
some specified location or finding an object — the agent’s only task is to navigate
through the world, coordinating the sub-tasks that are currently defined.



5.2.1 Actions

The agent has 6 actions available, as shown in Fig 5.3. Apart from knowing the
number of actions available, the agent has no prior knowledge about the expected
effect of the actions. Each action takes one time-step, and the agent must execute
one of them at each time step (the stop action can be used to stand still). The
actions are deterministic and always lead to the destination cell, except in two
cases: 1) If the agent is “crashed”, ie. a previous action has brought the agent to
a cell that is occupied by sidewalk, or a large obstacle, the agent will bounce back
to its previous position, no matter what action it executes. 2) The jump-left
and jump-right actions cause the agent to move similarly to a knight on a chess
board. Unlike in chess however, the path must be clear for the agent to reach
its destination cell. Thus, if the agent attempts one of the jump moves, and
the cell diagonally to the right or left (depending on the direction of the jump)
is occupied by sidewalk or a large obstacle, the agent stops in that cell, and is
considered “crashed”.

jumpleft jumpright

Figure 5.3: The arrows indicate five actions available to the agent in SID. The
sixth action is stop, which causes the agent to remain in the same cell.

5.2.2 Sensors

The agent has a large number of highly specialized sensors providing information
about the environment. As with the agent’s actions, we do not model any form
of noise, so that the information given by the sensors always accurately reflects
the state of the world. The agent’s sensor range is limited to a small area around
it, and coordinates named in sensors are relative to a coordinate frame where the
agent is at the origin (thus, (—1,0) refers to the cell to the agent’s immediate
left). The agent has no semantic information about the meaning of the sensors
and their values, though from the agent designer point of view, a large amount of



knowledge and assumptions about the domain were used to select what sensors
should be provided to the agent.

Table 5.1 shows all the defined sensors.

sensor values

roadAt(z, y) true, false

obstType large,small, none
obstRow 0,1,2

obstCol -1,0,1

lightColor red, green, yellow, none

lightRow 0,1,2

signRow 0,1,2

signDir up, down, right, left, none

Table 5.1: The sensors available to the SID agent

The roadAt(x, y) sensor, is short-hand for a set of sensors, detecting the
presence of a road or a sidewalk at the cells described by the x.y coordinates.
The range of this sensor is limited to a 3x3 grid with the agent in the center of
the bottom row (as shown in Figure 5.3). When the sensors that report none as
one of their possible values, obstType for example, the corresponding sensors that
otherwise report the position of the object, return 0. Though the return values
shown in the table are highly descriptive, they are returned to the agent in integer
form. The agent thus has no prior semantic knowledge that would enable it to
interpret the different significance of the values corresponding to none and large,
for example.

The design of the sensor is relatively unimportant for reinforcement learning.
Given the above sensors, there are certain states that will never occur, suggesting
that the sensors define a state-space that is too large. However, the agent is not
learning in the space of all possible sensor value combinations, but in the space
of all possible world states. We may therefore design sensors that perhaps encode
the world state inefficiently, without affecting the agent’s learning performance.
The design of the sensors are important for the modular approach however. It
must be possible to separate the sensory information into the different modules.
If the sensory input is just the raw image from a camera for example, it would
be impossible to separate the input into modules in any meaningful way. The
modular approach depends on the availability of inputs returning information on
a level of abstraction commensurate with the level at which the sub-tasks are

defined.



5.2.3 The reward function

The agent does not have a global goal to accomplish, but is instead driven by
a set of sub-tasks. We can describe each sub-task as a behavior that the agent
must master and be able to coordinate with other behaviors. We have defined
the following behaviors for the agent to coordinate as it is navigating through the
world.

¢ Driving down the road. The agent should strive to drive straight down
the road, in the right lane, and not run up on the sidewalk. It should not
turn unnecessarily, or stop for no reason. This behavior will be learned by
the road module whose inputs come from the roadAt sensor.

¢ Avoiding obstacles The agent should avoid all obstacles, large and small.
While driving into a large obstacle constitutes a crash, a small obstacle can
be considered equivalent to a pot-hole — it does not crash the car or slow
it down to run over one, but in the long run the effect can be damage to
the car. The obstacle module will learn how to avoid obstacles, using the
obstType, obstRow, and obstCol sensors.

e Negotiate streetlights. The agent should not drive through red lights, and
avoid going through yellow lights if possible. This behavior will be learned
by the streetlight module using the 1ightColor and lightRow sensors

o Follow street signs. At certain intersections, arrows will point to one
of the four possible directions. The agent should follow the direction of
the arrow, turning if necessary. The sign module will be used to learn this
behavior using the signRow and signDir sensors.

These behaviors are defined by the agent’s reward function. We define the
reward function so that by learning to maximize reward, the agent will develop a
policy that coordinates all of the above behaviors. Since the behaviors are fairly
independent of each other, we can define reward functions for each one. The
agent’s reward function will then be a linear combination of all the sub-reward
functions:

R(l’) = Rroad(ﬂi) + Robstacle + Rlight + Rsign

In SID, the individual reward functions are defined as follows:

0.06  if the agent is in the right lane of the road moving forward
Ryoad = 0.04  if the agent is in the left lane of the road
—0.06 if the agent is on the sidewalk



—0.2 if the agent is on a small obstacle
Robstacle = —0.6 if the agent is on a large obstacle
0 otherwise

—0.6 if the agent is passing through a red light
R . B —0.2 if the agent is passing through a yellow light
streetlight — 0.6  if the agent is passing through a green light
0 otherwise

R B 0.6 if the agent is passing by an up sign
sign 0  otherwise
References to “being on” something indicate that the agent and the object
occupy the same cell. Similarly, the agent is “passing” an object if it occupies the
same row (relative to the agent’s orientation).

The relative magnitudes of the reward constants prioritize the behaviors. The
reward values must be carefully chosen so that no behavior is ignored and ensur-
ing that an easily attainable reward source does not dominate the agent’s global
behavior. In our experiments, those events considered to be important were given
rewards of magnitude 0.6, and those of lesser significance were given rewards of
magnitude 0.2. After the first run of experiments it was evident that the reward
for the road module completely determined the agent’s behavior. The road re-
wards were then scaled down so that despite the ease of obtaining the rewards,
they did not over-shadow the rewards for the other behaviors.

Using the individual reward functions each module defines and learns its own
local Q-function, ();. The local Q-values estimate the utility of executing actions
with regard to achieving the sub-task.



6 Experimental Results

This chapter presents the results of experiments with the modular architecture
in the SID domain. For simple achievement tasks, it is customary to organize
experiments into sets of “runs”, each consisting of several “trials”. During each
run, the goal configuration remains constant, and the agent retains what it has
learned previously over all trials. Each trial is terminated after the goal has been
reached or after some fixed time period. Since in SID the agent’s task is to drive
around the world as well as possible, rather than to achieve a specific goal-state,
the experiments are not organized in runs or trials. Rather, each experiment
consists of the agent taking a fixed number of steps, with the performance being
measured continuously. Unless otherwise stated however, the results are averaged
over 10 experiments.

The most frequent measurement used in our experiments is cumulative reward.
While the reward is a useful to gauge relative performance between methods, it
does not indicate what the agent’s actual behavior is. The fact that one method
leads to a lower cumulative reward than another, does not indicate how much
worse we would judge the actual performance. Depending on the magnitude of
the rewards, the difference can be the result of only a few mistakes, such as occa-
sionally running a red light, or of systematic bad behavior. Therefore, in addition
to the reward we also provide results showing how often certain situations (such
as going through a green light, or running into an obstacle) occur. Comparing two
policies and noting which states lead to different recommended actions provides a
direct way of comparing the performance of a modular agent with that of a mono-
lithic one. However, because of the non-deterministic nature of the experiments
and learning procedures, neither the monolithic, nor modular strategy will learn
exactly the same policy in every experiment. When policy comparisons are done,
we attempt to present results representative of several experiments.

In order to evaluate the performance of the modular approach, a comparison
with an optimal solution is desirable. We know that because of the design of the
modular architecture that the optimal solution is unattainable, but in order to
judge the quality of the approximate solution learned, some comparison must be



made. Though the premise of this thesis is that the optimal solution is practically
unattainable in a complex domain such as SID, we use the performance of the
standard monolithic approach as our optimality measure. By running the simula-
tor on a powerful SGI Onyx multiprocessor, extending the experiments to 30,000
steps becomes possible. We assume that this is sufficient time for the monolithic
approach to reach its performance limit, providing us with the desired comparison.
In a real-world domain however, extending the learning beyond a few thousand,
or even a few hundred, steps would be considered excessive. For an agent moving
in the real world, even taking one step can last several seconds, making thousands
of repetitions seem interminable. Therefore, while the performance limits shown
in the experiments are useful to gauge the quality of solutions, special attention
should be paid to the system’s initial behavior. The performance level reached
after a few thousand steps indicates what is attainable if the modular approach
is employed in a non-simulated domain.

We describe the results of the following experiments:

e A comparison of the monolithic approach with the modular architecture
using “greatest mass” approximation. We show the effects of having different
numbers of behaviors to learn, and compare the differences in policies learned
by the modular and monolithic approaches, as well as the differences in total
reward accumulated.

e A comparison of the monolithic approach with the modular architecture
using the “nearest neighbor” approximation strategy.

o The effect of decaying the exploration rate. By gradually decreasing the
rate of exploration the agent can focus on achieving the task rather than
searching for more efficient ways. However, if exploration is decreased too
quickly, only poor solutions will be found. We compare the effect on the
monolithic and modular approaches using different rates of decay.

o The effect of using a modular system to initialize a monolithic one. The
time at which the initialization is done is varied to see if there is a point at
which the modular approach reaches a good approximation.

o The effect of an activation function. The monolithic approach is compared
to a modular system using a pre-defined activation function.

The results indicate that the modular strategy very quickly learns a good policy
for driving through the world. The monolithic strategy learns a slightly better
policy given enough time, but the benefit of the improved policy is overshadowed
by the increase in learning time.



6.1 Modular vs. Monolithic

6.1.1 Greatest mass

Figure 6.1 shows five sample states with the action prescribed by the greatest mass
policy learned at the end of the experiments in a domain with a road, obstacles,
and streetlights. The selected states are not intended to be representative of the
most “important” or most frequently encountered states, but simply illustrate a
few situations that might occur.
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Figure 6.1: A few sample states and the action learned by the greatest mass policy.
The grey circle in the streetlight indicate its current state, (ie. green, yellow, and
red from bottom to top). The light changes color at each time step, so by moving
forward when a green light is seen in (d), the agent will pass through the light
when it is yellow. In the states shown, the modular policy has learned appropriate
actions. In (e), the agent crosses over a small obstacle, but avoids the more severe
mistake of running a red light.

As the figure shows, the modular policy picks appropriate actions in these
sample situations. In particular, it avoids the large obstacle, and does not run
through the red light. Though the agent runs the yellow light in (d), it favors
crossing a small obstacle to running a red light (avoiding the obstacle with a



jump-left action, for example, places the agent by the streetlight as it turns red.)
(e). This is consistent with our stated goals of learning a policy that attempts to
partially satisfy all sub-goals if the optimal performance is unattainable. Viewing
the simulation in progress also bears this impression out.

For a more quantitative measure of the modular policy’s performance we can
examine the cumulative reward as well as simply counting the number of times
significant events occur. Figure 6.2 compares the cumulative reward of agents
using the modular and monolithic approach, in a domain with a road, obstacles,
and streetlights.
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Figure 6.2: Cumulative reward over time for modular and monolithic agents. In
this experiment, the agent needed to learn the road, obstacle, and streetlight
behaviors. The large negative cumulative reward gathered by the monolithic
agent in the first 3000 steps indicate its poor initial performance. In contrast the
modular agent does well initially, and quickly reaches a level of performance where
its net reward gain is positive.

Initially, the modular agent’s performance is better than that of the monolithic
agent, and quickly reaches a limit. This performance limit is indicated by the con-
stant slope of the graph, suggesting that the modular approach quickly learns the
best policy possible using the greatest mass policy. The monolithic agent gradu-
ally improves and eventually surpasses the modular agent’s rate of reward intake.



Thus the modular agent achieves better initial performance and faster learning,
but learns an apparently slightly worse policy than that ultimately reached by the
monolithic agent. To illustrate the differences in the policies learned, we can look
at the individual reward functions. Figures 6.3,6.4, and 6.5 show the cumulative
rewards from the three individual reward functions.
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Figure 6.3: Cumulative reward for modular and monolithic agents generated by
the road reward function only. Though the agent is learning road, obstacle, and
streetlight behaviors, the graph shows that it is differences in the ‘road” behavior
that accounts for most of the overall difference in global performance.

These figures indicate that the modular policy performs as well as, or better
than, the monolithic policy in terms of avoiding obstacles and negotiating street-
lights. The largest difference however, is due to less reward being gained from the
road reward function.

Differences in cumulative reward gathered during an experiment do not provide
much information on how the two policies differ in quality. We can count the
number of times the agent entered a state with certain properties considered good
or bad by the reward function. Figure 6.6 shows the number of times the agent
entered a state considered less than optimal by the road reward function. This
includes all states where the agent is not in the right lane of the road, moving
forward. As can be seen, the main differences in the modular and monolithic
policies is that the modular agent spends a larger amount of time in the left lane,
and also spends slightly more of its time not moving forwards (ie. turning or
standing still). However, in terms of crashing into the sidewalk the modular agent
performs as well as, or better than, the monolithic agent. Thus the modular agent



Figure 6.4: Cumulative reward for modular and monolithic agents generated by
the obstacle reward function only. The modular agent performs better than the
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monolithic agent initially, and quickly reaches a level of performance which is
eventually equaled, but not surpassed, by the monolithic agent.

Figure 6.5: Cumulative reward for modular and monolithic agents generated by
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the streetlight reward function only. The modular agent performs better than
the monolithic agent which requires longer time to reach the same level of perfor-

mance.
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Figure 6.6: Counts of events significant to the road reward function over time.
The graph shows that over 30,000 steps, the modular agent spent almost 15,000 in
the left lane. While this relatively minor error occurred often, the agent crashed
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accomplishes the most important part of the sub-task (crashing into the sidewalk
generates the largest magnitude reward), while making some compromises on the
other parts of the task.

Examining the counts of events relevant to the other modules reveals that the
modular agent’s performance is close to that of the monolithic agent in terms of
achieving their associated sub-goals. Figure 6.7 shows how often the modular and
monolithic agent run into small and large obstacles. Again, the modular agent’s
superior initial performance is evident, and the performance difference at the end
of the experiment does not seem significant.

Figure 6.8 compares the modular and monolithic agent’s performance with
regards to streetlights. Though the modular agent runs through more red lights
than the monolithic one, it does better with yellow and green lights (leading to
a higher cumulative reward, as seen in Figure 6.5). It is interesting to note that
the modular agent encounters around 100 streetlights more than the monolithic
agent, suggesting that its policy may be seeking out streetlights in order to gain
reward (though a difference of 100 events over 30000 steps may not be significant).
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Figure 6.7: Counts of events significant to the obstacle reward function over time.
The modular agent quickly learns to avoid obstacles almost as well as the policy
eventually learned by the monolithic agent.

It is clear therefore that the modular agent learns a policy that is almost as
good as that of the monolithic agent. Furthermore, the modular policy is learned
quickly, leading to a much better initial performance than the monolithic policy.
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Figure 6.8: Counts of events significant to the streetlight reward function over
time. The modular and monolithic agents seem to avoid going through red and
yellow lights almost equally well. The modular agent seems to be more adept at
finding green lights to go through, however.
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To further evaluate how much the policies learned by the modular and mono-
lithic agents differ, it is useful to count the number of states in which the two
different policies recommend different actions. However, for this count to be mean-
ingful, the number of times a state is visited must also be considered. Though the
modular and monolithic policies might agree over 90% of the states, if the agent
spends most of its time in the remaining 10% of the states, the modular policy
will probably not compare well to the monolithic one.

The number of all possible states, ie. the size of the global state-space, can be
computed by counting all possible combinations of the inputs listed in Table 5.1.
Considering only the road, obstacle, and streetlight behaviors, the number of
states is slightly less than 100,000. Depending on the domain however, the num-
ber of states that can actually occur is far less. In SID, for example, the agent has
9 sensors detecting the presence of a street or a sidewalk in a 3x3 grid, leading
to a theoretical 512 possible different configurations. However, because the roads
are constrained to be a of a fixed width with no dead-ends, the number of possi-
ble configuration of those sensors that can actually appear in the domain is 27.
Therefore, the number of states actually encountered by the agent can be several
orders of magnitudes smaller than the theoretical size of the state-space. Without
extensive domain knowledge however, it is usually difficult to predict the actual
state-space size without experimentation.

When comparing policies of modular and monolithic agents in the same exper-
imental domain, in a run lasting 30,000 steps, we find that both agents encounter
around 300 states. OQut of these states, the policies have conflicting recommen-
dations for about 100 states. However, the agent does not visit each state an
equal number of times. In an average run, the modular agent disagrees with the
monolithic one less than a third of the time. However, more than 50% of those
time steps where the modular agent acted differently than the monolithic one,
were spent in 5 or 6 states. The vast majority of states where the two policies
differ, are states the agent encountered less than 1% of the time of the experiment.
Figure 7.1 shows an example of the states where the policies differ, responsible
for the majority of performance decrease. It should also be noted, that among all
the states were policies differed, the worst error made by the modular agent, is
running over a small obstacle. This is a rare occurrence, and most of the time the
error is making an unnecessary turn, stopping, or switching into the left lane.

In this instance therefore, it seems that most of the difference in performance
between the modular and monolithic policies are caused by the modular policy
failing in a very small number, but frequently visited, states.

In the previous experiments, the agent learned three behaviors. Below we
examine the performance of the modular approach when the number of behaviors
to be learned is varied. First, a modular agent’s performance in learning only two
behaviors is examined, followed by experiments with four behaviors.
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In experiments with only two modules, the performance of the modular ap-
proach is not significantly different from that of the monolithic. For example,
Figure 6.9 shows the cumulative rewards in experiments where the agent was
dealing only with the road and obstacles. As before, the modular agent has bet-
ter initial performance, but it reaches a level of performance that is not surpassed
by the monolithic agent.
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Figure 6.9: Cumulative rewards for modular and monolithic agents over time. In
this experiment only the road and obstacle behaviors needed to be learned. When
only two behaviors are present, the modular approach learns a solution as good
as that of the monolithic agent.

However, adding a fourth behavior, that of following street signs, drastically
worsens the performance of the modular agent. Figure 6.10 shows the cumulative
rewards in experiments where all four behaviors are necessary.

Figures 6.11, 6.12, 6.13, and 6.14, show the rewards from the individual
reward functions, illustrating that the the main difference lies in the rewards
related to driving on the right side of the road. Figure 6.15 shows that not only
is the modular agent spending more time in the left lane of the road, it is making
a lot more turns as well as stopping more (ie. not moving forward) than the
monolithic agent. Thus, while the modular agent is making errors of limited
severity (ie. associated with small negative rewards), the large number of these
errors produce the large difference in cumulative reward when compared to the
monolithic agent. As before, however, the majority of the mistakes were made
in a small set of states. As described in chapter 7 in more detail, these mistakes
are caused by the sign module not having enough inputs to disambiguate between
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Figure 6.10: Cumulative rewards for modular and monolithic agents over time.
In this experiment the road, obstacle, streetlight, and sign behaviors needed to
be learned. The addition of the sign behavior worsened the performance of the
modular agent significantly. It should also be noted that the initial performance
of the monolithic agent is much worse than in experiments with fewer modules,
indicating that the task has gotten more difficult.
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certain states. Since the optimal actions in those states conflict with each other,
the agent makes mistakes most of the time those states are encountered.
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Figure 6.11: Cumulative reward for modular and monolithic agents generated
by the road reward function only. The experiment included roads, obstacles,
streetlights, and signs. It is clear that modular agent is not learning the road
behavior satisfactorily.

6.1.2 Nearest neighbor

The other approximation strategy we have discussed is “nearest neighbor”. Near-
est neighbor performed well in a simple grid world domain, because of its similar-
ity to a nearest neighbor search strategy. The strategy essentially focuses on one
sub-goal completely, until it has been accomplished. Such an approach does not
work well in a domain where two or more sub-goals must be considered concur-
rently. Figure 6.16 shows the cumulative reward of a modular agent using nearest
neighbor compared with a monolithic agent.

Figures 6.17, 6.18, and 6.19, show that the road and obstacle reward functions
are the source of the large negative rewards being accumulated by the modular
agent. This results from the nearest neighbor approximation completely ignoring
negative Q-values in favor of positive ones. Thus, if the obstacle module as-
signs negative utility towards going forwards, but the road module assigns a large
positive reward to the same action, the agent will go forward, crashing into the
obstacle, since nearest neighbor simply picks the action with the highest utility.
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Figure 6.12: Cumulative reward for modular and monolithic agents generated by
the obstacle reward function only. The performance of the two agent is similar,
indicating that the obstacle behavior is not a cause for the difference in global
performance.

Modular —
Monolithic ----

400 - _

200
0 e e
-200
400
1 L I I |
0 5000 10000 15000 20000 25000 30000

Figure 6.13: Cumulative reward for modular and monolithic agents generated by
the streetlight reward function only. As in the case with only three behaviors to
be learned, the modular agent achieves a slightly better initial performance before
the monolithic agent catches up.
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Figure 6.14: Cumulative reward for modular and monolithic agents generated by
the sign reward function only. Again, the modular agent achieves a better initial
performance in following the signs. This behavior does therefore not contribute
to the difference in global performance.

It is thus clear that the nearest neighbor strategy is only useful in domains where
the goals are all goals of achievement, and the agent can safely achieve each goal
separately without considering the other sub-goals.

6.2 Decaying exploration rate

Exploration has a large effect on the experiments in this domain. In our exper-
iments exploration is done by picking a random action at each step with some
probability p, instead of the action recommended by the policy. By decaying
this probability, one can ensure that the agent spends sufficient time initially to
discover action sequences leading to improved performance, but then spends less
time exploring as time goes on. This strategy of gradually diminishing exploration
is in accordance with what is known about so called “two-armed bandit” prob-
lems [Feldman, 1962], for which it has been demonstrated that while it is good to
explore initially, as time passes it is better to select the action that is thought to
be optimal with an increasing frequency.

Figure 6.20 shows the effect of decaying the exploration rate for the modular
system. A relatively slow rate of decay (0.0001) leads to the best performance,
allowing the agent sufficient time to explore the domain, before settling on a policy.
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Figure 6.15: Counts of events significant for the road reward function.The ex-
periment included roads, obstacles, streetlights, and signs. Though the modular
agent spends more time in the wrong lane and making unnecessary turns than the
monolithic agent, the two methods avoid crashing into the sidewalk equally well.
This is yet another indication of the modular agent’s erring when small reward
magnitudes are involved, while performing correctly with regards to large reward
magnitudes.
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Figure 6.16: Cumulative reward for modular and monolithic agents. The modular
agent used the nearest-neighbor approximation strategy. Note that the graph only
extends to 5,000 time steps. In contrast to the experiments using the greatest
mass approximation strategy, the modular agent does not seem to have learned
the task at all. This suggests that for the SID domain, nearest-neighbor is not a
good approximation strategy.
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Figure 6.17: Cumulative reward for modular and monolithic agents generated
by the road reward function only. The modular agent used the nearest-neighbor
approximation strategy. Though the modular agent does not perform as well as
the monolithic one relative to the road behavior, this only partially accounts for
the vast difference in global performance.
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Figure 6.18: Cumulative reward for modular and monolithic agents generated by
the obstacle reward function only.The modular agent used the nearest-neighbor
approximation strategy. The modular agent’s failure to deal with obstacles is
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shown by the consistent accumulation of negative rewards. It is this inability
to avoid obstacles that is the main cause of the difference in global performance
between the modular and monolithic agents when the nearest-neighbor approxi-

mation strategy is used.
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Figure 6.19: Cumulative reward for modular and monolithic agents generated
by the streetlight reward function.The modular agent used the nearest-neighbor
approximation strategy. There is no difference in performance between the mod-
ular and monolithic agents. However, the modular agent using the greatest mass
approximation strategy performs slightly better, indicating that the difficulties
in avoiding obstacles when using nearest-neighbor is hindering the agent from
reaching any streetlights.
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Figure 6.20: Decaying the exploration rate for the modular agent. If exploration
is turned off prematurely, the quality of the learned policy suffers. If exploration is
continued too long, performance is hurt by taking unnecessary sub-optimal steps.

Figure 6.21 shows that with the exploration rate seen to be best for the mod-
ular strategy, both the modular and monolithic approaches improve their perfor-
mance. This improvements is due to the avoidance of unnecessary, sub-optimal.
exploration steps in the later parts of the experiment. Examining the event counts
shows how each behavior is affected, when compared with the figures with explo-
ration performed continuously (Figures 6.6-6.8). Figure 6.22 shows that the road
behavior does not benefit much from the decaying exploration rate in the modular
agent, except that the rate of running into the sidewalk is reduced even further.

In the case of obstacle avoidance, Figure 6.23, the monolithic approach almost
completely eliminates any collisions as the exploration rate is decayed. The mod-
ular approach also improves, with the small obstacle collision rate approaching
that of the monolithic agent. The rate at which large obstacles are avoided is
also significantly flattened. The steep increases in the slope in the curve for the
large obstacles are due to the large variance in the data for the modular approach.
When viewed individually, the data indicate that there is typically one large steep
increase in collisions with large obstacles, but not at any fixed point in time. Av-
eraging the data produces several small steep increases in the slope of the curve.
After the increases however, all experiments show the curve to be generally flat.
This may indicate that the exploration rate is decayed too quickly in terms of the
obstacle module.

Figure 6.24 shows that for the streetlight module, the modular approach im-
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Figure 6.21: Decaying the exploration rate improves both modular and monolithic
performance. This indicates that some of the errors made by the modular policy

are not due to inherent limitations of the approach, but are simple caused by

making unnecessary exploratory actions.

16000 T T T T T
Sidewalk (mod) ——
Left Lane (mod) —
14000 - Not Forward (mod) ===
Sidewalk (mon) ———
Left Lane (mon) ---
Not Forward (mon)
12000 | 1

10000

8000

6000

4000

2000

10000 15000

20000

25000

30000

Figure 6.22: Counts of events significant to the road reward function over time, as
the exploration rate is decayed. Eliminating exploration does not greatly reduce

the amount of time spent in the wrong lane by the modular approach, but further

limits the number of crashes into the sidewalk.
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Figure 6.23: Counts of events significant to the obstacle reward function over time,
as the exploration rate decays. The number of times running into both large and
small obstacles is reduced in the modular policy when exploration is eliminated.

proves slightly in its ability to go through green lights, while the rate at which
red and yellow lights are encountered is significantly lessened.

As the graphs show, in most cases the monolithic agent improves similarly
when the exploration rate is decayed. However, these results clearly indicate that
the quality of the policy learned by the modular agent is better than indicated
in the experiments with continuous exploration. The rate of several undesirable
events is greatly reduced as exploration is gradually eliminated, showing them to
not be the result of the limitations of the modular approach as such, but simply
caused by taking unnecessary exploratory actions.

6.3 Improving the modular approach

The above experiments indicate that of the differences between the policies learned
by the monolithic and modular approaches, a small set of states accounted for most
of the performance difference. We therefore attempted different mechanisms to
extend the modular approach, trying to take advantage of the fast learning time of
the modular system, but spending extra resources in order to learn better actions
in the few significant failure states. These approaches, described in section 4.3,
are using modules to initialize a monolithic system and using activation functions.
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Figure 6.24: Counts of events significant to the streetlight reward function over
time. The modular policy negotiates red, green, and yellow lights better when
exploration is eliminated.
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6.3.1 Using modules for initialization

As described in section 4.3.1, since the modular system learns a good policy rela-
tively quickly, using the modular policy as an initialization for a monolithic system
could improve learning time. The modular policy differs from the monolithic one
in only a few significant states, so only those states would have to be relearned
by a monolithic system initialized with a modular policy.

However, Figures 6.25 and 6.26 show that the monolithic system relearns the
entire policy.

switch step: 1000 —
switch step: 5000 -----

[ switch step: 10000 -----
Monolithic -~

40

t=3

-200

-400 |

0 5000 10000 15000 20000 25000 30000

Figure 6.25: Cumulative rewards for monolithic and modular agents, where at
different time steps the policy learned by the modular agent is used to initialize a
monolithic system. In this experiment, road, obstacle, and streetlight behaviors
needed to be learned. The graphs indicate that there is no advantage to using the
learned modular policy as an initialization for the monolithic system. It appears
as if the agent completely relearns the policy after the switch, thereby losing the
advantage of the better initial performance.

As described in Chapter 7, the modular approximation tends to produce in-
flated Q-values. When these are used to initialize the monolithic system, relearn-
ing is necessary to lower the magnitudes of the Q-values appropriately.

Table 6.1 shows the Q-values for a state where the modular approximation
Qgm leads to the same action being recommended as in the monolithic system.
However, the approximations are much larger than the Q-values learned by the
monolithic system. Thus, when a monolithic system is initialized by the approx-
imations learned by the modular system it will start to decrease the Q-values.
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Figure 6.26: Cumulative rewards for monolithic and modular agents, where at
different time steps the policy learned by the modular agent is used to initialize
a monolithic system. In this experiment, road, obstacle, streetlight, and sign
behaviors needed to be learned. As before, the agent completely relearns the
policy after switching the a monolithic system.

Q-values
Policy stop forward left right jump left jump right
Road 0.4096  0.5602  0.2515 -0.2357 0.5188 -0.0941
Obstacle 0.2195  0.2017  0.2241 0.2079 0.2209 0.2103
Streetlight 0.5126  0.4614  0.5078  0.5096 0.4614 0.4614
Qgm 1.1418  1.2233  0.9834 0.4818 1.2012 0.5775
Monolithic 0.4388  0.5705  0.2809 -0.1966 0.5597 -0.0224

Table 6.1: Q-values for a state where modular and monolithic policies agree on the
best action. The modular approximations of the monolithic Q-values are of much
greater magnitude however, so that when the modular policy is used to initialize
a monolithic system, the agent must explore all actions, in effect relearning the
policy, in order to bring down the Q-values to their appropriate levels.
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Once the optimal action has been executed a sufficient number of times, its Q-
value will no longer be maximum in that state. The other actions will then be
selected, until the optimal action is the maximum again. This cycle will repeat
until the Q-values are decreased to their correct magnitude.

Therefore, using the modular policy to initialize a monolithic system leads to
relearning of the entire policy, rather than just the small set of states where the
modular policy differs from the monolithic one.

6.3.2 Using activation

Many of the states in which the modular policy differs from the monolithic do
not seem to be ones where all modules can provide relevant information. The
states shown in figure 7.1 are almost all cases where the modular agent makes
a mistake when there are no obstacles, streetlights, or signs present. Thus, the
differences in behavior do not seem to appear when there are strong reward sources
available nearby, but rather seem to be caused by strong, but not immediately
relevant, reward sources interfering with weaker ones. Thus, the road module is
overwhelmed by the streetlight module, leading the agent to jump to the left lane
of the road.

If we have sufficient domain knowledge to determine a priori when a module is
relevant or not, we can design an activation function, ensuring that modules do not
inappropriately influence the action selection procedure. In SID, it is reasonable
to assume that the obstacle, streetlight, and sign modules need only be active if
any obstacles. streetlights, or signs are currently in view. Figures 6.27, 6.28 and
Figure 6.29 compare the cumulative reward gathered by a monolithic agent and a
modular agent using an activation function based on the above assumption. The
figures show the results for experiments with the road, obstacle, and streetlight
modules, with the road, obstacle, and sign modules, and with the road, obstacle,
streetlight, and sign modules.

Using the activation function resulted in dramatic improvements in all cases.
In the experiments with just the road, obstacle, and streetlight modules, the
modular agents performance exceeds that of the monolithic agent. However, when
the sign module is involved, the modular agent’s performance still lags behind that
of the monolithic agent. This is due to the problems caused by ambiguities in the
reward functions at road intersections, discussed in more detail in chapter 7. Since
signs appear only at intersections, the activation function cannot help in reducing
this problem.

Though the hand-coded activation function worked well in SID, in other do-
mains the information needed to design such a function may not be available.
Furthermore, using an activation function will clearly prevent the agent from
learning certain policies encoding unexpected strategies. In SID for example, if
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Figure 6.27: Cumulative rewards for monolithic and modular agents, with acti-
vation. Road, obstacle, and streetlight behaviors were learned. The activation
function dramatically improved performance of the modular agent.
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Figure 6.28: Cumulative rewards for monolithic and modular agents, with activa-
tion. Road, obstacle, streetlight, and sign behaviors were learned. The modular
agent’s performance is improved by using the activation function, but is still in-
ferior to the monolithic agent’s performance.
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Figure 6.29: Cumulative rewards for monolithic and modular agents, with acti-
vation. Road, obstacle, and sign behaviors were learned. As before, the modular
agent’s performance improves, but does not exceed that of the monolithic agent.
This is due to ambiguities resulting from the definition of the sign module, which
are not resolved by the use of an activation function.
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obstacles tended to appear in the right lane with a high enough frequency, an
optimal policy might steer the agent to the left lane, even if no obstacles were in
sight. The activation function used in the above experiments would prevent such
a policy from being learned.

6.4 Summary

The experiments show that the modular approach, with the greatest mass approx-
imation function, learns a policy that performs well compared with that learned by
the monolithic agent. In all experiments, the modular policy is learned faster than
the monolithic one. In experiments with two behaviors, the quality of the policies
learned by the modular and monolithic is virtually the same. When learning the
three behaviors associated with roads, streetlights, and obstacles, the modular
policy receives less cumulative reward than the monolithic. However, when ex-
amining the actual events that occur during the experiments, it is clear that the
modular agent handles streetlights and obstacles almost as well as the monolithic
agent. The main difference in behavior is a tendency of the modular agent to drive
on the left side of the road. However, for all major sub-goals, such as avoiding the
sidewalk and obstacles, not running red lights and going through green lights the
modular agent does as well as or better than the monolithic agent. When trying
to learn the sign behavior in addition to the other three behaviors the modular
agent’s performance worsened. As before, the differences between the modular
and monolithic policies are relegated to sub-goals of lesser magnitude (ie. not
moving forward and driving on the left side of the road). Otherwise, the mod-
ular agent accomplishes the major sub-goals as well as the monolithic one. It is
clear therefore that the modular agent learns a policy that achieves most of the
sub-goals, and partially satisfies some of them. The small sacrifice in performance
is well worth the big improvement in learning time and computational resources
needed.

The nearest neighbor approximation strategy performed poorly because its
inability to take negative utilities into account. The fact nearest neighbor strategy
performed well in the grid-world domain, demonstrates the importance of selecting
an approximation function that matches the types of tasks in the domain.

Since the modular agent’s performance could be improved by correcting errors
made in a small set of states, two extensions to the approach were attempted.
The first, initializing a monolithic system with a learned modular policy, did
not perform well. It was intended that the initialized monolithic system would
only need to relearn the policy in those few states were mistakes were made.
However, because the Q-values generated by the modular approach differed in
their magnitude from those of the monolithic system, the entire policy had to be
relearned in order to generate the correct Q-values.
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The second extension, using activations, greatly improved the modular perfor-
mance. This method used hand-designed activation levels to allow the agent to
ignore information from “irrelevant modules”. Since in many of the states where
the modular policy differed from the monolithic at least one of the street light
and obstacle modules was deemed irrelevant (due to the absence of any street
lights or obstacles), the agent could ignore those modules. By thus being able to
consider fewer modules, the agent lessened the amount of information needed to
be considered, thereby reducing the risk for error. The result was a policy that
performed as well as the monolithic one in the case of three modules, and a large
improvement in performance in the case of four.

Thus, the modular approach can lead to good performance in a complex do-
main such as SID. The inherent limitations of the modular approach leads to
sub-optimal behavior in some situations, though still partially satisfying the sub-
goals. In the following chapter we describe the types of approximation errors
made by the modular algorithm, and provide an analysis of their cause.
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7 Analysis

An agent using modular reinforcement learning can learn how to drive in the
SID domain much faster than an agent using standard, monolithic, learning. The
behavior learned however, is not optimal. While the agent avoids “catastrophic”
behavior, such as crashing into large obstacles or driving onto the sidewalk, it
commits lesser driving errors, such as driving on the left side of the road. We
can identify in what types of situations the modular approach fails by comparing
the policies of a modular and a monolithic system. There are several possible
explanations for why the modular approach fails in these situations. By definition.
decomposing the global state-space into a set of smaller spaces, means that each
module is operating in a state-space where one state can correspond to several
global states. The modular approach achieves generalization this way, by assuming
that the one local state can provide sufficient information to allow the right action
to be executed in all the corresponding global states. Having one state correspond
to a set of actual world-states is typically referred to as hidden state or perceptual
aliasing, and can lead to poor performance when it is necessary to distinguish
between the world-states in order to select the optimal action. In addition to the
well known problems this perceptual aliasing causes, it also leads to apparently
shorter paths to reward, causing utility estimates to be inflated.

Furthermore, the greatest mass approximation strategy can also produce mis-
leading estimates of the utilities of states. Greatest mass estimates the global
Q-values by using a simple linear combination of the local -values. However,
approximating the global Q-value this way, violates an intrinsic assumption in
the definition of the local Q-values: they represent the utility of an action, given
that the local policy is followed afterwards. Since it is impossible that all the
local policies will be followed concurrently, combining the local utilities can lead
to incorrect estimates of the global utility.

We analyze the behavior of the modular approach below as follows:
o Failure states are identified. These are states where the modular policy

differs from the monolithic one. Only a small set of states account for most
of the difference in performance and a representative sample is shown.
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o Three causes of failure are described:

— Hidden state leads to failure when the modules are defined poorly lead-
ing to ambiguities between states with conflicting optimal actions.

— In the modular state-spaces the paths to reward appear shorter than
they actually are, leading to inflated Q-values

— The greatest mass approximation strategy produces incorrect estimates
by assuming that Q-values can be added.

7.1 Failure states

Figure 6.2 shows how the performance of a modular system reaches a performance
level worse than that of the monolithic system. It is clear that the modular ap-
proach is sub-optimal, but the cumulative reward does not indicate how the mod-
ular and monolithic policies differ. By determining in what states the two policies
recommend different actions, we can determine how the behaviors produced by
the policies differ.

Comparing the policies learned after 30,000 steps, reveals that the modular
approach produces mostly the same type of behavior as the monolithic approach.
There are no “dramatic” failures where the modular policy drives the car into
a large obstacle or onto the sidewalk. The most significant (and most frequent)
error seems to be of driving on the left side of the road. Comparing the states in
which the modular and monolithic policies differ produces a different set of states
for each experimental run. There is thus no particular state, or set of states, that
always cause the modular policy to behave differently than the monolithic one.
However, Figure 7.1 shows a representative sample of states where the policies
differ. These are states that appear in several experimental runs among the most
frequently visited states where the policies differ. In these states (as in case of most
of the other states where the policies differ), the agent clearly prefers driving on
the left side of the road. This propensity to switch into the left lane unnecessarily
as well as the reluctance to return to the right lane, accounts for most of the
difference in cumulative reward between modular and monolithic policies.

In the experiments involving the sign behavior, most of the negative reward
was accumulated in the states shown in Figure 7.2. When the agent is in the last
row of an intersection with a sign pointing forward, facing the sidewalk, it tends
to execute a stop action rather than simply using jump-left or jump-right, to
follow the sign. This is due to the sign module not having enough information
to differentiate between the states in Figure 7.2 and those in Figure 7.3. The
sign module only knows how far away a the sign is, not whether the agent is
approaching or in the middle of an intersection. The correct action in each case
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Figure 7.3: The modular agent’s sign module cannot distinguish the above state
from those where it is in the middle of the intersection. The correct action in one
state likely leads to a crash in the other.

modular approach seems to be capable of learning the correct actions to execute in
highly complicated situations with many strong reward sources (eg. large obsta-
cles and street-lights). It is the cases where there are only relatively weak rewards
available that mistakes occur.

7.2 Causes of failure

The modular approach depends on the decomposition of the task into largely
independent sub-problems. The state-space is separated into modules and the
reward function is designed to parcel out reward to only the relevant modules.
Each module can thus learn its sub-problem quickly, ignoring the state of other
sub-problems. However, since it is very difficult to design a perfect decomposi-
tion, there will be situations that cannot be handled properly by the modular
approach. Among the causes of these failures are increased perceptual aliasing,
shorter perceived paths to reward sources, and improper estimates of utility.

7.2.1 Hidden state

Since the state-space of each module is defined by only a subset of the available
inputs, it can be considered an abstraction of the global state-space. Given a set
of inputs s;, 0 <1 < n, and a module that only uses the first k& of those inputs,
for example, any state S’, in the module’s state-space, corresponds to all the
global states with the same value as S’ for the first k& inputs, but with all possible
values for the remaining inputs. In a good decomposition, it is not necessary
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to distinguish between all of those states in order to learn the correct action to
execute.

The sign module in SID is an example where hidden state leads to poor per-
formance. As described in Section 7.1, the sign module does not have enough
information to distinguish between two states where the optimal actions conflict
with each other. The information from the road module is not sufficient to prevent
the agent from making an error, leading to the agent crashing into the sidewalk. It
is possible that this could be avoided by providing more inputs to the sign module.
However, for most domains, including SID, it is impossible to design a decompo-
sition where each module gets exactly the amount of information necessary at all
times.

7.2.2 Shorter paths to reward

Another effect of decomposing the state-space into smaller spaces, is that the path
between any two states appears to be shorter in the modular space, than in the
monolithic one. Figure 7.4 illustrates such an example. In the monolithic space,
the agent moves through 3 states before arriving at a state containing a streetlight.
For the streetlight module however, it appears as if the agent has remained in the
same state for 3 steps, before a new state is encountered. Because of the perceptual
aliasing, the move-forward action appears to have a non-deterministic effect: for
the most part, the outcome of the action is simply a return to the original state,
but occasionally the state with a streetlight is the result. The effect on the Q-value
of the move-forward action is to oscillate between a high value immediately after
receiving the reward, and the low value reached immediately prior to receiving the
reward again. After having reached the state with the light, and having received
a reward, the Q-value is very high, reflecting the learned experience that reward
is one step away from the state where there is no light to be seen. As the sequence
of steps is repeated, the Q-value is decremented each time no reward is received,
only to be increased again, as the sequence completes and reward is received once
more. Thus, because it appears as if there is a short path to the reward state, the
Q-value is initially too high, leading to inappropriate behavior. Then, as more
steps are taken, the Q-value decreases, even though each step brings the agent
closer to the reward state again, which should be indicated by an increase in
the Q-values, as shown for the monolithic system. In experiments with SID, the
result of this effect has been the preference for driving on th left side of the road.
Executing a jump-left action, brings two new rows into view, as opposed to one
row with the move-forward action, increasing the probability that a streetlight
will appear. Once this happens, the Q-value of the jump-left action is greatly
increased, leading it to dominate the agent’s behavior.
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Figure 7.4: As the agent moves five steps forward in the world, it is perceived as
five separate states by the monolithic system. In the modular system however,
the streetlight module only detects two states. The appearance of the streetlight
is seen as a non-deterministic, possible result of the move forward action.
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7.2.3 Incorrect utility estimates

In addition to the problems with perceptual aliasing introduced by decomposing
the state-space, aberrations from the optimal behavior are also introduced by
incorrect utility estimates. Since the reward function is also decomposed into
functions associated with each module, the modules compute utilities relative
to their associated state-space and reward functions. These local utilities are
combined into an estimate of the global utility using an approximation function.
We have mainly investigated the greatest-mass function, which simply adds up the
utilities of all the modules. Because of the decomposition of the reward function.
and the approximation algorithm, incorrect estimates of the utilities may result.

Figure 7.5 shows an example of how the global utility can be incorrectly esti-
mated, even if there is no perceptual aliasing.

Figure 7.5: Even in the simple example shown, with two modules with identical
perceptual inputs, the modular approximation produces incorrect results. The
agent has 6 actions available to it, but executes the same one to move between
states A, B, and C. When state C is reached, the indicated rewards are generated,
which causes incorrect utility estimates in the Q-values for state A.

To simplify the example, we have defined both modules to have the same
inputs as the monolithic system (ie. the monolithic system and both modules
have the same state-space). Table 7.1 shows the Q-values for two different states,
A and B, at different time steps, computed by the monolithic system, the two
modules, and the estimate produced by the modular system. At time 0, action 0
was executed from state A, leading to state B, no reward was distributed. Since
all Q-values at state B were set to their initial value of 0, the Q-values at state A
do not change. At time 1, action 0 is executed from state B, leading to some state
C', where all Q-values are also 0, but the two reward functions give rewards of -0.6
and 0.3, respectively. Using the standard update formula for Q-learning, with the
learning rate « set to 0.8, and the discount factor v set to 0.9, new Q-values are
computed. In state B, the modular estimate of the global Q-value is completely
correct. At some later time k, however, action 0 is again executed from state A,
leading to state B, with no rewards. The Q-values from state B are propagated
backwards, but now lead to an incorrect estimate in the modular system. The
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error results from the U(y) term in the Q update formula. U(y) is the utility of
the resulting state, defined as the maximum Q-value at that state. In module
1, the negative Q-value does not affect the utility of the state as a whole, which
remains at 0 — the Q-values of the remaining actions. The same is true in the
monolithic system, where the Q-value of the action also remains at 0. In module
2 however, the utility of the new state is determined by the positive Q-value of
action 0. This non-zero utility is propagated back to state A in module 2, and
also determines the approximate Q-value defined by the greatest mass function.
The result in this simple example is that the modular system assigns the highest
utility to an action whose utility is actually identical to the other actions in that

state.
state | time step | Q estimator Q-values
0 1 2 3 4 5
A 0 monolithic 0.0 0.0 0.0 0.0 0.0 0.0
module 1 0.0 0.0 0.0 0.0 0.0 0.0
module 2 0.0 0.0 0.0 0.0 0.0 0.0
Greatest Mass || 0.0 0.0 0.0 0.0 0.0 0.0
B 1 monolithic -0.2400 0.0 0.0 0.0 0.0 0.0
module 1 -0.4800 0.0 0.0 0.0 0.0 0.0
module 2 0.2400 0.0 0.0 0.0 0.0 0.0
Greatest Mass || -0.2400 0.0 0.0 0.0 0.0 0.0
A k monolithic 0.0 0.0 0.0 0.0 0.0 0.0
module 1 0.0 0.0 0.0 0.0 0.0 0.0
module 2 0.1728 0.0 0.0 0.0 0.0 0.0
Greatest Mass || 0.1728 0.0 0.0 0.0 0.0 0.0

Table 7.1: Each row contains the Q-values estimated by listed method. There are
6 Q-values shown, one for each possible action available to the agent, but since in
the example only the first action is executed, only its corresponding values change.
The modular system correctly estimates the Q-values in state B, but fails in state

A.

Preliminary experiments in SID indicate that incorrect utility estimates play
a big role in the modular system’s performance. In trials with only the road
and streetlight modules, eliminating perceptual aliasing by giving both modules
the same inputs, resulted in no significant difference in performance. Further
experiments and analysis are needed to fully quantify the relative impacts of
perceptual aliasing and incorrect utility estimates.
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8 Conclusions

Standard, monolithic, Q-learning is impractical in any complex domain. Unless
there is no limit on the computational resources needed to learn, as well as rep-
resent, a good policy in a large state space, the optimal solution guaranteed to
be found by Q-learning is unattainable. This thesis demonstrates the value of the
modular approach for such complex domains, using the Simple Driving domain
(SID) as an instance, in several ways:

e The driving simulator (SID) allowed the design of many different types of
experiments, illustrating the effects of various learning parameters, as well
as different strategies. The speed of simulations enabled experiments to last
for up to 30,000 steps, allowing performance limits to be clearly seen.

o Experiments show that the basic modular approach learns a policy with sat-
isfactory performance, quickly and efficiently. As the monolithic system fi-
nally manages to reach its performance limit, it manages to accumulate more
reward than the modular system. However, the difference in cumulative re-
ward does not give a clear indication of actual differences in performance.
One must count and classify the different types of events the agent encoun-
ters, relative to their relevance to sub-tasks. This counting of events shows
that difference in behaviors are limited to a small set of states, and mistakes
are limited to only some components of sub-tasks. The policy learned by the
modular system at least partially satisfies all sub-goals, with most mistakes
made in less important parts of the task. Varying the exploration rate shows
that performance can be further improved to almost eliminate negative re-
ward sources such as going through red and yellow lights or running into
the sidewalk.

o Experiments also show that extending the modular approach with an activa-
tion function greatly improves the performance of the modular policy. The
activation function can therefore be put to good use when further behaviors
are added to the task. It also provides a natural control mechanism for a
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higher level component (using planning methods) to specify what sub-tasks
should be considered at the current time.

A crucial benefit of the modular approach is its initial good performance and
learning speed. Though the experiments described in Chapter 6 track the agent’s
performance for 30,000 steps, in a real-world learning system, more than a few
thousand (or even a few hundred) steps for learning might be considered excessive.
A monolithic agent’s initial performance suffers greatly from having to blindly
search a very large state-space until some sources of rewards are discovered that
can then be propagated through the state-space.

The problem with the monolithic approach is the lack of generalization. If
even one bit of the input changes, the agent must assume it is in a completely
different state than any previously encountered, and cannot extend any learned
behavior to the new state. Therefore, the agent may unnecessarily have to relearn
how to act in states, though previously not encountered, similar enough to states
where the optimal action is already known.

The modular approach tries to achieve generalization by separating input and
reward information into largely independent components. We assume that the
modules can learn independently. It is clear that (except for contrived exam-
ples), the modular approach cannot learn a policy identical to that learned by the
standard, monolithic, method. Limiting each module’s inputs results in a much
smaller state-space leading to perceptual aliasing and over-estimation of Q-values.
Separating the reward functions and Q-tables amounts to an assumption that each
module has complete control of the agent. However, despite these inherent flaws
of the modular approach, it can still be useful to learn how to solve complex prob-
lems. It is not practical, nor necessary, to demand that an optimal solution be
found, when the computational resources necessary are unavailable. In situations
with little or no reward, it may not be important whether the strictly optimal
action is selected. Similarly, we may be able to forgive a certain frequency of
errors for certain type of situations. In the SID domain, the modular system did
not make any major mistakes, ie. crashing the car into a sidewalk or an obstacle,
or running a red light. The errors that were made involved minor events such
as driving on the left lane of the road (forgivable in a one-car environment), and
occasionally driving over small obstacles (eg pot-holes). The experiments indi-
cate that important sub-goals, defined by high reward magnitudes, are achieved
reliably, and some errors occur with low magnitude reward goals.

The experiments only show the applicability of the modular approach to the
driving domain we defined. It is difficult to determine exactly what qualities of
the domain makes it amenable to be learned by a modular agent. The grid world
experiments show that if the task can be decomposed into a set of achievement
goals, the modular system can learn a good nearest neighbor approximation of
the optimal solution. When the goal structure is more complex however, as in
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SID, it is not obvious what aspects of the learned policy will be sub-optimal.
It is clear that to even attempt to apply the modular approach in a domain
other than SID, the sub-goals must be clearly identifiable, with reward functions
and inputs easily separated according to their relevance to each sub-goal. The
other important aspect of the SID domain seems to be the definition of partially
satisfiable sub-goals. Each sub-goal has several components, for example small
and large obstacles in obstacle avoidance, some of which are more important
than others. The experiments in the SID domain indicate that less important
components of sub-goals will be sacrificed in favor of those components defined
by large reward magnitudes. The agent designer must therefore be aware that
small reward sources may be over shadowed by large ones, and must be prepared
to accept solutions where such errors are made. Other than the rich reward
structure however, there does not seem to be any other defining characteristics
of the SID domain making it particularly amenable to the modular approach.
It seems therefore, that other domains with similarly information rich reward
functions, and where partial satisfaction of sub-goals is acceptable could also be
learned using the modular approach.

Perhaps the most difficult part of learning multiple goals is designing a set
of reward functions that work together correctly. Ideally, you would be able to
encode in the reward function the degree to which any given goal must be satisfied.
However, defining a reward function to represent rules like “the frequency of this
error should be below 20%”, can be difficult. Furthermore, it may be difficult
to a priori identify all possible errors or alternative solutions, and thus hard
to design a reward function that rewards them properly. However, the modular
approach at least forces the agent designer to separate the reward according to sub-
tasks, ensuring that rewards for accomplishing parts of the task remain consistent
throughout the domain. This limits the flexibility of the reward function’s design,
in favor of simplicity. The loss of flexibility probably limits the modular approach
less than it might appear, since a reward function taking advantage of the extra
flexibility would be complex enough that unexpected interactions would lead to
undesirable results.

The limited need for domain knowledge is typically touted as an advantage of
RL. However, if we design the sensors and reward functions of the agent, a large
amount of domain knowledge must typically be available to us. We know how to
decompose the task to some extent, allowing us to create a good reward function.
We know what sensory information is necessary for the tasks, and may even design
sensors specific to certain sub-tasks (eg. “coke can detector”). Thus apart from
the actual sensors and rewards themselves, we as agent designers often have a
good idea of how to decompose the task, what inputs are relevant to what parts
of the task, and maybe even under what circumstances a sub-task is “active” or
not. The modular approach allows us to put this domain knowledge to good use.
It would be very difficult to impart all the above domain knowledge to a standard,
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monolithic agent. It would probably necessitate a complex reward function, extra
state-variables as inputs, and maybe even some clever initialization of the Q-
values. With the modular approach however, we can simply create modules that
naturally correspond to a given sub-task. Looking at each module it is clear how
the domain knowledge has been applied to select the input sensors and create the
reward functions. Thus, the modular approach allows us to easily take advantage
of domain knowledge that is often available, while gaining a clear advantage in
terms of learning time.

While the modular approach can be used to learn a good approximate solution
in a short amount of time, the use of a hard-coded activation function shows that
the learned policy can be improved. However, the experiments using a modular
policy to initialize a monolithic system illustrate the importance of not achieving
an improvement in policy at the expense of learning time. Ideally therefore,
improvements should not necessitate learning in the global state-space, but rather
rely only on the local information if possible.

One possibility is to try and learn the activation function. We defined each
module’s activation to depend only on the inputs available to that module, and
are therefore not immediately forced to learn in the global state-space. A simple
approach would be to simply add an “activation bit” to each module’s input, and
add another action, such as toggle-activation. However, it is not clear whether
this would suffice, since the effect of changing the activation of a module is not
an increase in the reward for that module, but rather an increase in the reward
for other modules not being interfered with. Thus, a given module might not
detect any utility in deactivating itself, and would learn to remain active all the
time. It may be possible however to separate the learning of activations from the
rest of the learning problem. A second reinforcement learning system, dedicated
to activation, could be added to each module, using its perceptual inputs, but
learning from the global reward function. Unfortunately, since the system learning
activations would not see the global state information, the reward signal would
appear to be very inconsistent. If on average however, there was a clear increase
in utility in changing the activation of a module, no matter what the state of the
other modules, the learning might still succeed.

Another approach would be to attempt to improve the extension that uses a
modular policy to initialize a monolithic system. The extension failed because the
modular approximation greatly over estimates the Q-values, causing the agent
to have to relearn the policy in order to bring down the magnitude of the Q-
values. It might be possible to avoid much of this relearning by scaling down the
Q-values after initializing the monolithic system. The scaling mechanisms could
range from a simple scaling by some guessed at (or determined through previous
experimentation) factor, to some adaptive mechanism that spent some time after
the initialization trying only to learn some appropriate scaling factor. In both
cases care must also be taken to not under-estimate the Q-values, since that
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would also lead to poor performance. It may also be possible to use an internal
simulation of the world, similar to that used by the DYNA system[Sutton, 1990],
to arrive at Q-values of an appropriate scale.

The ideal extension to the modular approach would be an algorithm that
could detect the global states in which the modular approximation failed, and
then learned in the monolithic state-space for those states only. The modular
policy would then be used in most situations, until a failure state was reached
and would then revert to the monolithic system to learn the appropriate action.
Unfortunately there is no clear criterion for discovering which states lead the mod-
ular approximation to fail. Immediate reward is in general not a good indicator
of performance, since the approximation error may have been one in a state en-
countered several time steps earlier. However, the SID experiments indicate that
most of the mistakes occur immediately preceding the receipt of negative reward
(eg. changing to the left lane without cause). It may be worthwhile to explore
the use of immediate negative reward as an indication of approximation failure
therefore. It is possible that SID, and similar domains, have characteristics where
this heuristic would perform well.

Though the modular approach provides a good way for the agent designer to
incorporate domain knowledge about the structure of the task into the system, it
would still be desirable to have a mechanism that could alter the decomposition.
if not learn it from scratch. A possible avenue of exploration towards this goal
is to use a memory-based approach, where the agent’s history of states visited
and rewards received is stored as the agent attempts to learn its task. Given
a history of states and associated actions and rewards, different decompositions
could be designed, and then tested on the previously gathered data. Some of the
criteria for preferring one decomposition over another would then be how evenly it
decomposes the state-space, how much hidden state is introduced in each module,
and some measure of the expected utility of the policy. There also needs to be
some good way to generate candidate decompositions, or one is left with the
combinatorial problem of attempting all possible combinations of inputs.
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