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Abstract

We derive a new modelof synapticplasticity, basedbn recentalgorithms
for Direct Reinforcement_earning (DRL). We show that thesedirect
reinforcementearningalgorithmsalsogive locally optimal performance
for the problemof reinforcementearningwith multiple agentswithout
ary explicit communicatiorbetweenagents.By consideringa network
of spiking neuronsasa collectionof agentsattemptingto maximizethe
long-termaverageof a reward signal,we derive a synapticupdaterule
that is qualitatively similar to Hebb's postulate,requiring only simple
computationssuchasadditionandleaky integration,andinvolving only
quantitiesthatareavailablein thevicinity of the synapseFurthermore,
it leadsto synapticconnectiorstrengthghatgive locally optimal values
of thelong term averagereward. The approacthasproved effective for
simplepatternclassificatiorandmotorlearningtasks.

1 What isagood synaptic update rule?

It is widely acceptedhatthefunctionsperformedby neuralcircuitsaremodifiedby adjust-
mentsto the strengthof the synapticconnectiondetweemeurons.In the 1940s,Donald
Hebbspeculatedhatsuchadjustmentareassociateavith simultaneougor nearlysimul-

taneousyiring of the presynapticand postsynaptimeurong[16]: “Whenan axonof cell

A ... persistentlytakespart in firing [cell B], somegrowth processor metabolicchange

takesplace[to increase]A’s efficacyasoneof thecellsfiring B.” Althoughthis postulate
is rathervague,it providesthe importantsuggestiorthat the computationgperformedby

neuralcircuits could be modified by a simple cellular mechanism.Many candidategor

Hebbiansynapticupdateruleshave beensuggestedandthereis considerablexperimental
evidencefor suchmechanism§l1, 26, 18, 19, 21, 24).

Hebbianmodificationsto synapticstrengthsseemintuitively reasonabl@sa mechanism
for modifying the function of a neuralcircuit. However, it is not clearthatthesesynaptic
updatesactuallyimprove the performanceof a neuralcircuit in arny usefulsense.Indeed,
simulationstudiesof specificHebbianupdateruleshaveillustratedsomeseriousshortcom-
ings[22].

In contrastwith the “plausibility of cellular mechanismsapproachmostartificial neural
network researcthasemphasizegherformancen practicalapplications.Synapticupdate



rulessuchasbackpropagatioaredesignedo minimize a suitablecostfunction[25]. Un-
fortunately thereis little evidencethatbackpropagatatiostomputationganbeperformed
in biologicalneuralcircuits.

This paperpresentsa synapticupdaterule that provably optimizesthe performanceof a
neuralnetwork, but requiresonly simple computationsnvolving signalsthat are readily
availablein biological neurons.The synapticupdaterule is consistentvith Hebb's postu-
late. Precursorso our proposeduleinclude[7, 5, 4, 6, 28, 29].

2 Direct reinforcement learning

Our settingis thatof anagenttaking actionsin an ervironmentaccordingto a parameter
ized policy. The agentseeksto adjustits parametersn orderto maximizethe long-term
averagereward. Formally, the mostnaturalmodelfor this problemis thatof Partially Ob-
senableMarkov DecisionProcessesr POMDPS. For easeof expositionwe consideffinite
POMDPs. Specifically assumehattherearen, statesS = {1,...,n,} of theworld, n,
controls(or actions)i/ = {1,...,n.} andn, obsenations) = {1,...,n,}. For each
statei € S thereis a correspondingewardr(i). Eachu € U determinesa stochastic
matrix P(u) = [p;;(v)] wherep;;(u) is the probability of makinga transitionfrom state
i to statej given control u. For eachstatei € S, anobsenationy € ) is generated
independenthaccordingto a probability distribution »(i) over obsenationsin ). We de-
notethe probability of obsenationy by v,(i). A randomizedolicy is simply a function
4 mappingobsenationsy € ) into probability distributionsover the controlsi/. Thatis,
for eachobsenationy, u(y) is adistribution overthecontrolsin /. Denotethe probability
undery of controlu givenobsenationy by u,(y). We parameteriz¢he policies,sothat
w now becomesa function u(8, y) of asetof n, realparameterd € R"» aswell asthe
obsenationy. In generalto performoptimally, the policy hasto bea functionof theentire
historyof obsenations but this canbeachiezedby concatenatingbsenationsandtreating
thevectorof obsenationsasinputto thepolicy. Onecouldalsoconsidempoliciesthathave
memory suchasparameterizefinite automatd23].

Our goal is to find a § € R" maximizing the long-term average reward: n(6) :=
limr_, oo %Eg [Z'le r(it)] where E4 denotesthe expectationover all statesequences

i0,%1, - - - , Whentheagentusespolicy u (6, -). We pursuealocal approachgettheagentto
computethegradientof theaveragerewardwith respecto its parametersyr/(6), andthen
adjustthe parameterin the gradientdirection.

Thedirectreinforcementearningapproactpresentedh [8, 10, 9, 3], building onideasdue
to anumberof authorg6, 29, 12, 13, 17, 20, 1], adjuststhe parameter# of the policy in
thedirectionof thelong-termaverageof r(i;) z¢, wherez, € R" is aneligibility tracethat
is updatedaccordingto

V,U/m (yt; 0)

P, (Y2, 6) @)

Zty1 = Bz +
wheref is adiscountfactorbetweer) and1.

Undergeneralergodicity assumptionsif § remainsconstantthe long-termaverageof the
productr(i;)z; corverges(with probability 1) to a vectorVn(6) [8, Theorem5]. In ad-
dition, limg_,; V3n(0) = Vn(8) [8, Theorem3]. Thus, V31 () is a goodapproximation
to Vn(6) provided s is suficiently closeto 1. Thefactorpreventingsetting3 = 1 is that
the varianceof the averageof r(i;)z; after a finite numberof stepsscalesas1/(1 — )

[3, Corollary 16]. Fortunately Vs7(6) is guaranteedio be a goodapproximatiorto V7 (6)

provided1/(1 — ) exceedsa certainmixingtimeassociateavith the POMDP[8, Theorem
4], [3, Theorem?21]. It is useful,althoughnot quite correct,to think of the mixing time as
thetime from the occurrenceof anactionuntil the effectsof thatactionhave died away.
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Figurel: POMDP controlledby n independenagents.

To summarizeprovided 3 is suficiently closeto 1, the long-termaverageof r(i;)z; will
corvergeto avectorthatcloselyapproximateshetruegradientdirectionVy(6). Thisgives
a simpleway to computean appropriatedirectionto updatethe parameterg. An on-line
algorithm(OLPOMDP) waspresentedh [10] thatupdateghe parameterd accordingto

0y = 01 + Yyrez, 2

wherethe small positive real number+y is the size of the stepstakenin parametespace.
If thesestepsaresufficiently small, sothatthe parameterghangeslowly, this updaterule
modifiesthe parametern the directionthatmaximallyincreaseshelong-termaverageof
thereward.

3 Direct reinforcement learning with independent agents

Supposéhat,insteadof a singleagent.therearen independenagentsall cooperatingo
maximizethe averagereward (seeFigurel). Supposehateachof theseagentsseesa dis-
tinct obsenationvector andhasa distinct parameterizedandomizedolicy thatdepends
onits own setof parametersThis multi-agentreinforcementearningproblemcanalsobe
modelledasa POMDP by consideringthe collectionof agentsasa singleagent,with an
obsenationvectorthatconsistof then obsenationvectorsof eachindependenagentand
similarly for the parametevectorandactionvector Thefollowing decompositiotheorem
follows from a simplecalculation.

Theorem 1. For a POMDP controlled by multiple independentgents, the direct rein-
forcementearning updateequationg1) and (2) for the combinedagentare equivalentto
thosethat would be usedby eadt agentif it ignoredthe existenceof the otheragents. That
is, if welet y? denotethe observatiorvectorfor agenti, i denotethe actionit takes,and
' denoteits parametervector thenthe updateequation(2) is equivalentto the systenof



n updateequations, ) ) '
b; = 051 +yrez, @)
wherthevectosz}, ..., 2! € RF areupdatedaccodingto
Vi (v187)
poi (45,0°)
Here, V denoteghe gradientwith respecto the agent's parametes .

(4)

i _ n.i
Rpy1 = Bz +

Effectively, eachagenttreatsthe otheragentsasa partof the environment,andcanupdate
its own behaiour while remainingobliviousto the existenceof the otheragents Theonly
communicatiorthatoccursbetweerthesecooperatingagentss via theglobally distributed
reward, and via whatever influenceagents’actionshave on other agents’obsenations.
Nonethelessin the spaceof parameter®f all n agents,the updateg3) adjustthe com-
pleteparametewector(the concatenationf the vectorsd?) in the gradientdirectionof the
averagereward. We shall seein the next sectionthat this corvenientpropertyleadsto a
synapticupdaterule for spiking neuronsthatinvolvesonly local quantities plus a global
rewardsignal.

4 Direct reinforcement learning in spiking neural networks

The networks we considercontainsimple modelsof spiking neurons,operatein discrete
time, and we assumethat eachneuronin the network can chooseone of two actionsat
time stept: to fire, or not to fire. We representheseactionswith the notationu; = 1 and
ug = 0, respectiely. We usethefollowing simpleprobabilisticmodelfor the behaiour of

the neuron. Definethe potentialv, in the neuronattime ¢ asv, = 3, wju{_l, wherew;

is the connectionstrengthof the jth synapsaandu{_1 is the activity atthe previoustime
stepof the presynapticeuronat the jth synapseThen,

Pr (neurorfiresattimet) = Pr (u; = 1) = o (vy), 5)
wherea(a) = 1/(1+e ®).

A real-valuedglobal reward signalr; is broadcasto every neuronin the network at time
t. We view each(non-input)neuronasan independentgentin a reinforcementearning
problem.Theagents (neurons) policy is simply how it choosedo fire giventheactiities
on its presynapticinputs. The synapticstrengths(w;) are the adjustableparametersof
this policy. Theorem1 shows how to updatethe synapticstrengthsin the directionthat
maximally increaseshe long-termaverageof the reward. A simplecalculationresultsin
anupdaterule for the j-th synapticstrengthof

Wjt41 = Wyt + VTe4125,641, (6)
wherethez; ; areupdatedaccordingto
Zj1 = Bzjp + (g — 0 (ve)) uj_y- (M

Theseequationsiescribeheupdategor theparameters asingleneuron.Thepseudocode
in Algorithm 1 givesa completedescriptionof the stepsinvolved in computingneuron
activities andsynapticmodificationsfor a network of suchneurons Suitablevaluesfor the
guantitiesp and~ requiredby Algorithm 1 dependon the mixing time of the controlled
POMDP. The coeficient 8 setsthe decayrate of the variablez;. For the algorithmto
accuratelyapproximatehegradientdirection,the correspondingime constant]1 /(1 — 3),
shouldbelargecomparedvith the mixing time of theenvironment. The stepsize~ affects
the rate of changeof the parameters.Whenthe parametersare constantthe long term
averageof r.z; approximateshegradient.Thus,thestepsizey shouldbesuficiently small
sothatthe parametersreapproximatelyconstanbver atime scalethatallows anaccurate
estimate.Again, this depend®n the mixing time. Looselyspeakingpoth1/(1 — 3) and
1/~ shouldbessignificantlylargerthanthe mixing time.



Algorithm 1 Model of neuralnetwork activity andsynapticmodification.
1: Given:
Coeficient3 € [0, 1),
Stepsize,
Initial synapticconnectiorstrengthf thei-th neuronwj-’o.

2: for timet =0,1,... do
3:  Setactivitiesu; of inputneurons.
4:  for non-inputneurong do '
5: Calculatepotentialy@H =20, W) . .
6: Generatectivity ui,, € {0,1} usingPr (uf,; = 1) = o (vi,4).
7:  endfor
8: Obsererewardr;y; (whichdepend®n network outputs).
9:  for non-inputneurons do .
10: Setzl, ., = B2}, + (ui — o (vf)) ul_;.
11: Setw! ;= wh, +yre12
12:  endfor
13: end for

5 Biological Considerations

In modifying the strengthof a synapticconnection the updaterule describedoy Equa-

tions (6) and(7) involvestwo components.Thereis a Hebbiancomponen(u,u]_,) that
helpsto increasethe synapticconnectionstrengthwhen firing of the postsynaptimeu-
ron follows firing of the presynaptimeuron. Whenthe firing of the presynapticneuron
is not followed by postsynaptidiring, this componenis 0, while the secondcomponent

(—o (vy) u]_,) helpsto decreasehe synapticconnectionstrength. The updaterule has
severalattractize properties:

L ocality. The modificationof a particularsynapsew; involvesthe postsynaptigotential
v, thepostsynapti@ctivity u, andthepresynapti@ctivity «’ attheprevioustime step.Cer
tainly the postsynaptigotentialis available at the synapse.Action potentialsin neurons
aretransmittedoackup the dendritictree[27], sothat(after somedelay)the postsynaptic
actiity is alsoavailableat the synapse Sincethe influenceof presynaptiactiity on the
postsynapti@otentialis mediatedby receptorsat the synapsegvidenceof presynaptiac-
tivity is alsoavailable at the synapse.While Equation(7) requiresinformationaboutthe
history of presynapticactiity, thereis someevidencefor mechanismshat allow recent
receptoractivationto beremembered1, 24]. Hence all of the quantitiesrequiredfor the
computatiorof thevariablez; arelikely to beavailablein the postsynapticegion.
Simplicity. The computatiorof z; in (7) involvesonly additionsandsubtractionsnodu-
lated by the presynapticand postsynapti@ctiities, and combinedin a simplefirst order
filter. Thisfilter is aleaky integratorwhich models,for instance suchcommonfeatures
asthe concentratiorof ionsin someregion of a cell or the potentialacrossa membrane.
Similarly, the connectionstrengthupdatesdescribedby Equation(6) involve simply the
additionof atermthatis modulatedby therewardsignal.

Optimality. Theresultsfrom [8, 3], togethemwith Theoreml, shaw thatthis simpleupdate
rule modifiesthe network parametersn the directionthat maximally increaseghe aver-
agereward, so it leadsto parametewaluesthat locally optimize the performanceof the
network.

Thereare someexperimentalresultsthat are consistentwith the involvementof the cor-
relationcomponenithe term (u; — o(v;))u;_,) in the parameteupdates.For instance,



a large body of literature on long-term potentiation(beginning with [11]) describeghe

enhancementf synapticefficacy following associatiorof presynapticand postsynaptic
activities. More recently theimportanceof the relative timing of the EPSPsand APs has

beendemonstratef1, 24]. In particular the postsynaptidiring mustoccurafterthe EPSP
for enhancemertb occur Thebackpropagatioof theactionpotentialupthe dendritictree

appeargo be crucialfor this[19].

Thereis also experimentalevidencethat presynapticactivity without the generationof

an action potential in the postsynapticcell can lead to a decreasdan the connection
strength[26]. Therecentfinding [21, 24] thatan EPSPoccurringshortly after an AP can
leadto depressioris alsoconsistentvith this aspecbf Hebbianlearning. However, in the
experimentgeportedn [21, 24], the presenc®f the AP appearedio beimportant.lt is not

clearif the significanceof therelative timings of the EPSPsand APsis relatedto learning
or to maintainingstability in bidirectionallycoupledcells. Finally, someexperimentshave

demonstrate@ decreasén synapticefficacy whenthe synapsesverenot involvedin the
productionof anactionpotential[18].

Theupdaterule alsorequiresarewardsignalthatis broadcasto all neuronsn thenetwork.
In all of theexperimentanentionedabove, the synapticmodificationsvereobsenedwith-
out any evidenceof the presenceof a plausiblereward signal. However, thereis some
limited evidencefor sucha signalin brains. It couldbedeliveredin theform of particular
neurotransmitterssuchasserotoninor nor-adrenalineto all neuronsn a circuit. Both of
theseneurotransmitteraredeliveredto the cortex by small cell assembliegthe raphenu-
cleusandthe locuscoeruleusrespectiely) thatinnenatelarge regionsof the cortex. The
factthattheseassembliesontainfew cell bodiessuggestshatthey carryonly limited in-
formation.It maybethattherewardsignalis transmittedirst electricallyfrom oneof these
cell assembliesandthenby diffusion of the neurotransmitteto all of the plasticsynaptic
connectionsn a neuralcircuit. This would save the expenseof a synapsedelivering the
reward signalto every plasticconnectionput could be significantlyslower. This neednot
beadisadwantagefor the purpose®f parametepptimization therequiredrateof delivery
of the reward signaldependsn the time constantf the task, and can be substantially
slower thancell signallingtimes. Thereis evidencethatthelocal applicationof serotonin
immediatelyafterlimited synapticactivity canleadto long termfacilitation[14].

6 Simulation Results

We simulatedAlgorithm 1 on the sonarsignal classificationproblemstudiedby Gorman
and Sejnavski [15] and a 2-D inverted pendulumcontrol problem,in both casesusing
a feedforward architecturewith one hiddenlayer of neurons. In both caseghe network
achieved substantiaperformancemprovement.For moredetailsof theseexperimentssee
thefull technicalreport[2].
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