
A Biologically Plausible and Locally Optimal
Learning Algorithm for Spiking Neurons

Peter L. Bartlett and Jonathan Baxter
ResearchSchoolof InformationSciencesandEngineering

AustralianNationalUniversity
Peter.Bartlett@anu.edu.au,Jonathan.Baxter@anu.edu.au

Abstract

Wederiveanew modelof synapticplasticity, basedonrecentalgorithms
for Direct ReinforcementLearning(DRL). We show that thesedirect
reinforcementlearningalgorithmsalsogivelocally optimalperformance
for theproblemof reinforcementlearningwith multiple agents,without
any explicit communicationbetweenagents.By consideringa network
of spikingneuronsasa collectionof agentsattemptingto maximizethe
long-termaverageof a reward signal,we derive a synapticupdaterule
that is qualitatively similar to Hebb’s postulate,requiring only simple
computations,suchasadditionandleaky integration,andinvolving only
quantitiesthatareavailablein thevicinity of thesynapse.Furthermore,
it leadsto synapticconnectionstrengthsthatgive locally optimalvalues
of the long termaveragereward. Theapproachhasprovedeffective for
simplepatternclassificationandmotorlearningtasks.

1 What is a good synaptic update rule?

It is widely acceptedthatthefunctionsperformedby neuralcircuitsaremodifiedby adjust-
mentsto thestrengthof thesynapticconnectionsbetweenneurons.In the1940s,Donald
Hebbspeculatedthatsuchadjustmentsareassociatedwith simultaneous(or nearlysimul-
taneous)firing of the presynapticandpostsynapticneurons[16]: “Whenan axonof cell�

... persistentlytakespart in firing [cell � ], somegrowth processor metabolicchange
takesplace[to increase]

�
’s efficacyasoneof thecellsfiring � .” Althoughthis postulate

is rathervague,it providesthe importantsuggestionthat the computationsperformedby
neuralcircuits could be modifiedby a simplecellular mechanism.Many candidatesfor
Hebbiansynapticupdateruleshavebeensuggested,andthereis considerableexperimental
evidencefor suchmechanisms[11, 26, 18, 19, 21, 24].

Hebbianmodificationsto synapticstrengthsseemintuitively reasonableasa mechanism
for modifying the functionof a neuralcircuit. However, it is not clearthat thesesynaptic
updatesactuallyimprove theperformanceof a neuralcircuit in any usefulsense.Indeed,
simulationstudiesof specificHebbianupdateruleshaveillustratedsomeseriousshortcom-
ings[22].

In contrastwith the “plausibility of cellularmechanisms”approach,mostartificial neural
network researchhasemphasizedperformancein practicalapplications.Synapticupdate



rulessuchasbackpropagationaredesignedto minimizea suitablecostfunction[25]. Un-
fortunately, thereis little evidencethatbackpropagatation’scomputationscanbeperformed
in biologicalneuralcircuits.

This paperpresentsa synapticupdaterule that provably optimizesthe performanceof a
neuralnetwork, but requiresonly simplecomputationsinvolving signalsthat arereadily
availablein biologicalneurons.Thesynapticupdaterule is consistentwith Hebb’s postu-
late.Precursorsto ourproposedrule include[7, 5, 4, 6, 28, 29].

2 Direct reinforcement learning

Our settingis thatof anagenttakingactionsin anenvironmentaccordingto a parameter-
ized policy. The agentseeksto adjustits parametersin orderto maximizethe long-term
averagereward. Formally, themostnaturalmodelfor this problemis thatof Partially Ob-
servableMarkov DecisionProcessesor ��������� s. For easeof expositionweconsiderfinite�	������� s. Specifically, assumethat thereare 
�� states
�����������������
���� of theworld, 
��
controls(or actions)����� � �������!��
 � � and 
�" observations #$�������������!��
�"%� . For each
state &(')
 thereis a correspondingreward *,+-&/. . Each 01'2� determinesa stochastic
matrix 34+506.7�98 :<;>= +-0?.A@ where:<;>= +-0?. is theprobability of makinga transitionfrom state& to state B given control 0 . For eachstate &C'D
 , an observation EF'1# is generated
independentlyaccordingto a probabilitydistribution G?+5&H. over observationsin # . We de-
notethe probabilityof observation E by GJI,+5&/. . A randomizedpolicy is simply a functionK mappingobservations EL'M# into probabilitydistributionsover thecontrols� . That is,
for eachobservation E , K +-EN. is adistributionover thecontrolsin � . Denotetheprobability
under K of control 0 givenobservation E by KPO +5E,. . We parameterizethepolicies,so thatK now becomesa function K +-QN��EN. of a setof 
SR real parametersQM'UTWVYX aswell asthe
observation E . In general,to performoptimally, thepolicy hasto bea functionof theentire
historyof observations,but thiscanbeachievedby concatenatingobservationsandtreating
thevectorof observationsasinput to thepolicy. Onecouldalsoconsiderpoliciesthathave
memory, suchasparameterizedfinite automata[23].

Our goal is to find a Q9'ZTWVYX maximizing the long-term average reward: [?+-Q .)\>�]_^a`4b6ced�fbhg7ikj-l bm-n f *,+-& m .Ao where gpi denotesthe expectationover all statesequences&Aq���& f �������!� whentheagentusespolicy K +-Qr��st. . Wepursuea localapproach:gettheagentto
computethegradientof theaveragerewardwith respectto its parameters,uv[?+5Q . , andthen
adjusttheparametersin thegradientdirection.

Thedirectreinforcementlearningapproachpresentedin [8, 10, 9, 3], building onideasdue
to a numberof authors[6, 29, 12, 13, 17, 20, 1], adjuststheparametersQ of thepolicy in
thedirectionof thelong-termaverageof *,+-& m ./w m , wherew m '(TWVYX is aneligibility tracethat
is updatedaccordingto

w m-x f �zy�w m?{ u K O%| +-E m ��Q .KPO | +-E m ��Q . � (1)

wherey is adiscountfactorbetween} and � .
Undergeneralergodicity assumptions,if Q remainsconstant,thelong-termaverageof the
product *,+-& m ./w m converges(with probability1) to a vector u�~r[?+5Q . [8, Theorem5]. In ad-
dition,

]_^a` ~ c f u�~r[?+-Q�.e��u�[6+5Q . [8, Theorem3]. Thus, u�~N[?+-Q . is a goodapproximation
to uv[?+5Q . provided y is sufficiently closeto � . Thefactorpreventingsetting y���� is that
the varianceof the averageof *,+-& m .�w m after a finite numberof stepsscalesas �J�,+��k��y	.
[3, Corollary16]. Fortunately, u�~r[?+5Q . is guaranteedto bea goodapproximationto u�[?+-Q .
provided �Y�,+��W��y	. exceedsacertainmixingtimeassociatedwith the �	������� [8, Theorem
4], [3, Theorem21]. It is useful,althoughnot quitecorrect,to think of themixing time as
thetime from theoccurrenceof anactionuntil theeffectsof thatactionhavediedaway.
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Figure1: ��������� controlledby 
 independentagents.

To summarize,provided y is sufficiently closeto � , the long-termaverageof *,+-& m .�w m will
convergeto avectorthatcloselyapproximatesthetruegradientdirection u�[6+5Q . . Thisgives
a simpleway to computeanappropriatedirectionto updatetheparametersQ . An on-line
algorithm( ���S�	������� ) waspresentedin [10] thatupdatestheparametersQ accordingto

Q m �zQ mA� f {�� * m w m � (2)

wherethe small positive real number� is the sizeof the stepstaken in parameterspace.
If thesestepsaresufficiently small,sothat theparameterschangeslowly, this updaterule
modifiestheparametersin thedirectionthatmaximallyincreasesthelong-termaverageof
thereward.

3 Direct reinforcement learning with independent agents

Supposethat, insteadof a singleagent,thereare 
 independentagents,all cooperatingto
maximizetheaveragereward(seeFigure1). Supposethateachof theseagentsseesa dis-
tinct observationvector, andhasa distinctparameterizedrandomizedpolicy thatdepends
on its own setof parameters.Thismulti-agentreinforcementlearningproblemcanalsobe
modelledasa ��������� by consideringthe collectionof agentsasa singleagent,with an
observationvectorthatconsistsof the 
 observationvectorsof eachindependentagent,and
similarly for theparametervectorandactionvector. Thefollowing decompositiontheorem
follows from a simplecalculation.

Theorem 1. For a �	������� controlled by multiple independentagents,the direct rein-
forcementlearningupdateequations(1) and(2) for thecombinedagentare equivalentto
thosethat wouldbeusedby each agentif it ignoredtheexistenceof theotheragents.That
is, if welet E ;m denotetheobservationvectorfor agent & , 0 ;m denotetheaction it takes,andQ ; denoteits parametervector, thentheupdateequation(2) is equivalentto thesystemof




 updateequations, Q ;m �zQ ;mA� f {�� * m w ;m � (3)
where thevectors w fm ����������w�Vm 'CT¡  areupdatedaccording to

w ;m-x f �zy�w ;m { u K OY¢|¤£ E ;m ��Q ;¦¥K OY¢|§£ E ;m ��Q ; ¥ � (4)

Here, u denotesthegradientwith respectto theagent’sparameters Q ; .
Effectively, eachagenttreatstheotheragentsasa partof theenvironment,andcanupdate
its own behaviour while remainingobliviousto theexistenceof theotheragents.Theonly
communicationthatoccursbetweenthesecooperatingagentsis via thegloballydistributed
reward, and via whatever influenceagents’actionshave on other agents’observations.
Nonetheless,in the spaceof parametersof all 
 agents,the updates(3) adjustthe com-
pleteparametervector(theconcatenationof thevectorsQ ; ) in thegradientdirectionof the
averagereward. We shall seein the next sectionthat this convenientpropertyleadsto a
synapticupdaterule for spiking neuronsthat involvesonly local quantities,plus a global
rewardsignal.

4 Direct reinforcement learning in spiking neural networks

The networks we considercontainsimplemodelsof spiking neurons,operatein discrete
time, andwe assumethat eachneuronin the network canchooseoneof two actionsat
time step ¨ : to fire, or not to fire. We representtheseactionswith thenotation 0 m �©� and0 m �2} , respectively. We usethefollowing simpleprobabilisticmodelfor thebehaviour of
theneuron.Definethepotential ª m in theneuronat time ¨ as ª m � l =P« =�0 = mA� f , where « =
is theconnectionstrengthof the B th synapseand 0 = mA� f is theactivity at theprevioustime
stepof thepresynapticneuronat the B th synapse.Then,¬§­ + neuronfiresat time ¨�.§� ¬§­ +-0 m �®�%.¡�z¯°+�ª m .6� (5)
where ¯¡+5±W.¤�®�Y�,+�� {�² �6³ . .
A real-valuedglobal rewardsignal * m is broadcastto every neuronin thenetwork at time¨ . We view each(non-input)neuronasan independentagentin a reinforcementlearning
problem.Theagent’s (neuron’s)policy is simply how it choosesto fire giventheactivities
on its presynapticinputs. The synapticstrengths( « = ) are the adjustableparametersof
this policy. Theorem1 shows how to updatethe synapticstrengthsin the directionthat
maximally increasesthe long-termaverageof the reward. A simplecalculationresultsin
anupdaterule for the B -th synapticstrengthof« =�´ m-x f � « =µ´ m {�� * m-x f w�=µ´ m-x f � (6)
wherethe w =�´ m areupdatedaccordingtow�=µ´ m-x f �2y�w�=µ´ m { +-0 m �M¯°+5ª m .µ.¶0 = mA� f � (7)
Theseequationsdescribetheupdatesfor theparametersin asingleneuron.Thepseudocode
in Algorithm 1 givesa completedescriptionof the stepsinvolved in computingneuron
activitiesandsynapticmodificationsfor anetwork of suchneurons.Suitablevaluesfor the
quantitiesy and � requiredby Algorithm 1 dependon the mixing time of the controlled�	������� . The coefficient y setsthe decayrateof the variable w m . For the algorithmto
accuratelyapproximatethegradientdirection,thecorrespondingtimeconstant,�Y�N+/�¡�·y	. ,
shouldbelargecomparedwith themixing timeof theenvironment.Thestepsize � affects
the rateof changeof the parameters.When the parametersare constant,the long term
averageof * m w m approximatesthegradient.Thus,thestepsize� shouldbesufficiently small
sothattheparametersareapproximatelyconstantovera timescalethatallowsanaccurate
estimate.Again, this dependson themixing time. Looselyspeaking,both �J�,+/�¸��y	. and�Y� � shouldbesignificantlylargerthanthemixing time.



Algorithm 1 Modelof neuralnetwork activity andsynapticmodification.
1: Given:

Coefficient yM'¹8 }N���%. ,
Stepsize � ,
Initial synapticconnectionstrengthsof the & -th neuron« ;=µ´ q .

2: for time ¨¡�º}N����������� do
3: Setactivities 0 = m of inputneurons.
4: for non-inputneurons& do
5: Calculatepotentialª ;m-x f � l =P« ;=�´ m 0 = m .
6: Generateactivity 0 ;m-x f '¹�%}N���»� using

¬¤­ £ 0 ;m-x f �F� ¥ �º¯ £ ª ;m-x f ¥ .
7: end for
8: Observereward * m-x f (whichdependson network outputs).
9: for non-inputneurons& do

10: Set w ;=�´ m-x f �zy�w ;=�´ m-x f { £ 0 ;m �¹¯ £ ª ;m ¥%¥ 0 = mA� f .
11: Set « ;=�´ m-x f � « ;=�´ m {M� * m-x f w ;=�´ m-x f .
12: end for
13: end for

5 Biological Considerations

In modifying the strengthof a synapticconnection,the updaterule describedby Equa-
tions (6) and(7) involvestwo components.Thereis a Hebbiancomponent( 0 m 0 = mA� f ) that
helpsto increasethe synapticconnectionstrengthwhen firing of the postsynapticneu-
ron follows firing of the presynapticneuron. Whenthe firing of the presynapticneuron
is not followed by postsynapticfiring, this componentis } , while the secondcomponent
( �¼¯�+�ª m .¶0 = mA� f ) helpsto decreasethe synapticconnectionstrength. The updaterule has
severalattractiveproperties:
Locality. Themodificationof a particularsynapse« = involvesthepostsynapticpotentialª , thepostsynapticactivity 0 , andthepresynapticactivity 0 = at theprevioustimestep.Cer-
tainly the postsynapticpotentialis availableat the synapse.Action potentialsin neurons
aretransmittedbackup thedendritictree[27], so that (aftersomedelay)thepostsynaptic
activity is alsoavailableat thesynapse.Sincethe influenceof presynapticactivity on the
postsynapticpotentialis mediatedby receptorsat thesynapse,evidenceof presynapticac-
tivity is alsoavailableat the synapse.While Equation(7) requiresinformationaboutthe
history of presynapticactivity, thereis someevidencefor mechanismsthat allow recent
receptoractivationto beremembered[21, 24]. Hence,all of thequantitiesrequiredfor the
computationof thevariablew�= arelikely to beavailablein thepostsynapticregion.
Simplicity. Thecomputationof w�= in (7) involvesonly additionsandsubtractionsmodu-
latedby the presynapticandpostsynapticactivities, andcombinedin a simplefirst order
filter. This filter is a leaky integratorwhich models,for instance,suchcommonfeatures
asthe concentrationof ions in someregion of a cell or the potentialacrossa membrane.
Similarly, the connectionstrengthupdatesdescribedby Equation(6) involve simply the
additionof a termthatis modulatedby therewardsignal.
Optimality. Theresultsfrom [8, 3], togetherwith Theorem1, show thatthissimpleupdate
rule modifiesthe network parametersin the directionthat maximally increasesthe aver-
agereward, so it leadsto parametervaluesthat locally optimize the performanceof the
network.

Therearesomeexperimentalresultsthat areconsistentwith the involvementof the cor-
relationcomponent(the term +-0 m �U¯¡+-ª m .�./0 = mA� f ) in the parameterupdates.For instance,



a large body of literatureon long-termpotentiation(beginning with [11]) describesthe
enhancementof synapticefficacy following associationof presynapticand postsynaptic
activities. More recently, the importanceof the relative timing of theEPSPsandAPshas
beendemonstrated[21, 24]. In particular, thepostsynapticfiring mustoccuraftertheEPSP
for enhancementto occur. Thebackpropagationof theactionpotentialupthedendritictree
appearsto becrucialfor this [19].

There is also experimentalevidencethat presynapticactivity without the generationof
an action potential in the postsynapticcell can lead to a decreasein the connection
strength[26]. Therecentfinding [21, 24] thatanEPSPoccurringshortlyafter anAP can
leadto depressionis alsoconsistentwith this aspectof Hebbianlearning.However, in the
experimentsreportedin [21, 24], thepresenceof theAP appearedto beimportant.It is not
clearif thesignificanceof therelative timingsof theEPSPsandAPsis relatedto learning
or to maintainingstability in bidirectionallycoupledcells.Finally, someexperimentshave
demonstrateda decreasein synapticefficacy whenthe synapseswerenot involved in the
productionof anactionpotential[18].

Theupdaterulealsorequiresarewardsignalthatis broadcastto all neuronsin thenetwork.
In all of theexperimentsmentionedabove,thesynapticmodificationswereobservedwith-
out any evidenceof the presenceof a plausiblereward signal. However, thereis some
limited evidencefor sucha signalin brains.It couldbedeliveredin theform of particular
neurotransmitters,suchasserotoninor nor-adrenaline,to all neuronsin a circuit. Both of
theseneurotransmittersaredeliveredto thecortex by smallcell assemblies(theraphenu-
cleusandthelocuscoeruleus,respectively) that innervatelargeregionsof thecortex. The
fact that theseassembliescontainfew cell bodiessuggeststhat they carryonly limited in-
formation.It maybethattherewardsignalis transmittedfirst electricallyfrom oneof these
cell assemblies,andthenby diffusionof theneurotransmitterto all of theplasticsynaptic
connectionsin a neuralcircuit. This would save the expenseof a synapsedelivering the
rewardsignalto every plasticconnection,but couldbesignificantlyslower. This neednot
beadisadvantage;for thepurposesof parameteroptimization,therequiredrateof delivery
of the reward signaldependson the time constantsof the task,andcanbe substantially
slower thancell signallingtimes. Thereis evidencethat the local applicationof serotonin
immediatelyafterlimited synapticactivity canleadto long termfacilitation[14].

6 Simulation Results

We simulatedAlgorithm 1 on the sonarsignalclassificationproblemstudiedby Gorman
and Sejnowski [15] and a 2-D invertedpendulumcontrol problem, in both casesusing
a feedforward architecturewith onehiddenlayer of neurons. In both casesthe network
achievedsubstantialperformanceimprovement.For moredetailsof theseexperimentssee
thefull technicalreport[2].
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