
Reinforcement Learning of a Simple Control Task Using the Spike Response Model

Murilo Saraiva de Queiroz,murilo@vettalabs.com
Vetta Laboratories

Antônio de Pádua Braga,apbraga@cpdee.ufmg.br
Roberto Coelho de Berredo,rberredo@uai.com.br

Dept. of Electronics Engineering, Federal University of Minas Gerais, MG, Brazil

Abstract

In this work, we propose a variation of a direct reinforce-
ment learning algorithm, suitable for usage with spiking
neurons based on the Spike Response Model (SRM). The
SRM is a biologically-inspired, flexible model of spiking
neuron based on kernel functions that describe the effect
of spike reception and emission on the membrane potential
of the neuron. In our experiments, the spikes emitted by
a SRM neuron are used as input signals in a simple con-
trol task. The reinforcement signal obtained from the en-
vironment is used by the direct reinforcement learning al-
gorithm, that modifies the synaptic weights of the neuron,
adjusting the spiking firing times in order to obtain a better
performance at the given problem. The obtained results are
comparable to those from classic methods based on value
function approximation and temporal difference, for simple
control tasks.

1. Introduction

Many of the traditional artificial neural networks are
based on simple neuron models known as rate models [1].
These models are extremely simple, bearing little or no re-
semblance to biological neurons. One of the most impor-
tant features of a real neuron is that its behavior is not only
based on the output potential, as modeled in classic artifi-
cial neural networks, but also on the precise spike timing:
this capability makes it possible to achieve impressive sen-
sorial acuity based on a very small number of action po-
tentials, in intervals of the order of tens ofnanosecondsin
some species [2] [3]. Understanding spiking neuron mod-
els is extremely important to neuroscience, and can be quite
interesting from the point of view of artificial neural net-
work applications, since in nature the dynamic behavior of
spiking neurons is fundamental to solve complex tasks in
noisy environments [4].

Recently, applications based on spiking neurons have
been attaining interest (e.g. [5] [6]), in [7], Hebbian-based

learning is used in a variation of the leaky-integrator spik-
ing neuron model for motion and velocity detection sys-
tems. In [8] and [9], the association between the stochastic
nature of the spike firing times and (Hebbian) learning is
considered. The latter work uses a stochastic model of neu-
ron, which fires spikes with Poisson statistics, and uses the
correlation of the reward signal with firing times to stochas-
tically estimate the gradient for a local search algorithm,
using an approach similar to the one presented here, with-
out the control-related aspects.

We base our work in a powerful formal spiking neu-
ron model is theSpike Response Model, or SRM [10] [1].
The SRM can be understood as a generalization of the
integrate-and-fire model; mainly characterized by its pa-
rameters dependence on the time of the last output spike,
instead of being a function only of the membrane potential
as in more complex models. In the SRM model explicit
functions model the action potentials, the reset/refractory
periods, and the neuron response to input spikes. We can
see these functions asresponse kernels; which was the in-
spiration for the name of the model. Our main motivation
for choosing this model is our interest in studying how re-
inforcement learning can be done using low-level models
closer to biological neurons.

Classic reinforcement learning methods are based on the
estimation of a value function, which supposedly provides
the best action to be taken in a given spate. Direct rein-
forcement learning, however, estimates the gradient direc-
tion that improves the performance of the used policy. We
use this algorithm to modify the synapses of a SRM neu-
ron, modifying the delays applied to the input spikes. The
timing of the output spikes emitted determines the actions
to be taken in the control task.

The results of our experiments show that the overall
qualitative performance of the proposed direct reinforce-
ment learning algorithm based on the Spike Response
Model is comparable to the classic algorithms, but with
a higher computational cost. We believe that this differ-
ence comes from the costs of simulating the SRM neurons
with their spike trains and also from the biological nature of

the model, overheads not present in standard reinforcement
learning algorithms like Q-Learning and SARSA.

2. Understanding Spiking Neurons

The electrical output of neurons is usually characterized
by the presence of stereotyped action potential waveforms
known asspikes. Spikes are clearly defined events gener-
ated in response to incoming stimuli arriving through neu-
ron dendrites. The action potentials travel through cells’
axon, and their firing times is practically the only infor-
mation transmitted, since the waveforms of the spikes are
practically identical. An important observation is that this
neural code is not always fixed: for instance, in motor neu-
rons submitted to a continuous stimulus, the spiking rate
diminishes with time, demonstrating what is called neural
adaptation [11].

In 1999, Bartlett and Baxter [12] proposed an interest-
ing model of synaptic plasticity based on correlation (and
thus Hebbian in essence). Their idea is to apply arein-
forcement learning[13] algorithm to modify the synaptic
efficiency with the explicit objective of improving perfor-
mance on a given problem. Note that the objective now is
not to mimic cellular mechanisms, but to use spiking neu-
rons in practical applications. Analyzed from this point of
view, their results were stimulating: the application ofdi-
rect reinforcement learning[14] [15] in probabilistic spik-
ing neurons is effective for simple tasks involving pattern
classification and motor learning.

In [12], Bartlett and Baxter show how to apply direct
reinforcement learning to modify synaptic weights of sim-
ple spiking neurons. Direct reinforcement learning is a
technique that modifies the parameters of a random policy
based on an estimate of the average long-term reward gra-
dient. This approach does not manipulate value functions
directly, avoiding some drawbacks of the techniques based
on the generalized policy iteration.

This approach was used by them to solve simple pat-
tern classification and motor learning problems. The sim-
ple spiking neuron (called here SSN) used is a variation
of the MCP neuron [16], which was modified to produce
action potentials stochastically. Like in many applications
based on the MCP neuron, the input of the SSN at timet is
a vectorut−1 of the binary values representing the presence
or absence of an input spike at the current time step.

The potential of the SSN is given by

vt = ∑
j

wj u
j
t−1 (1)

This expression is identical to the MCP neuron poten-
tial. In the MCP neuron, the output is graded and con-
tinuous valued, computed by the application of a transfer
function to the neuron potential. Differently, the SSN uses

a stochastic threshold model, where the neuron potential
affects only the probability of firing a spike (i.e., taking the
actionat = 1) at timet:

Pr(at = 1) = σ(vt) = 1/(1+e−vt) (2)

Consequently, the expression for the random, parame-
terized policy generated by the SSN is [12]

πt(ut ,at ,wj) =

{

σ(vt) if at = 1 or

1−σ(vt) if at = 0.
(3)

The actionat = 1 is represented by firing a spike at time
t and, correspondingly, the absence of a spike represents
the actionat = 0, which has probability 1−σ(vt).

In order to apply direct reinforcement learning, we need
to compute ([17])

∇πt(ut ,at ,w)

πt(ut ,at ,w)
(4)

In the SSN case we have

∇πt(ut ,at ,wj)

πt(ut ,at ,wj)
=

∂
∂w j

πt

πt
=







σ ′(vt)u
j
t−1

σ(vt)
if at = 1,

−σ ′(vt)u
j
t−1

1−σ(vt)
if at = 0

(5)

= (at −σ(vt))u
j
t−1, (6)

observing the negative sign of−σ ′(vt)u
j
t−1, since that it

is necessary toreducethe probability of a spike if we want
to reinforce the actionat = 0, and that

σ ′(vt) = σ(vt)(1−σ(vt)) (7)

and
∂

∂wj
vt = u j

t−1. (8)

Therefore, the complete equations for direct reinforce-
ment learning for the simple spiking neuron are ([17])

wj ,t+1 = wj ,t + γrt+1zj ,t+1 (9)

zj ,t+1 = βzj ,t +(at −σ(vt))u
j
t−1 (10)

Wherer is the reinforcement signal from the environ-
ment (using the standard convention of positive values for
desirable policies and negative values for indicating pun-
ishment). The parameterγ, the learning rate, is a parameter
between 0 and 1 that determines how much the estimated
gradient affects the neuron weights at each step. Similarly,
the discount factorβ , also between 0 and 1, is related to
the magnitude of the adjusts applied to the estimated gra-
dient. The values used for these parameters, obtained from
simple experiments, wereγ = 0.9 andβ = 0.1; they are not

critical to the performance in the selected problems, as far
as we could observe. A detailed theoretical analysis of the
discount factorβ can be found at [17].

This update rule has several interesting characteristics.
Its Hebbian component,atu

j
t−1, increases the synapse effi-

ciency when an actionat follows a given inputu j
t−1. When

no output spike is produced, the component−σ(vt)u
j
t−1 re-

duces the synapse strength, as expected [12].

3. Direct RL Using the SRM

The main contribution to the spiking neuron research
is now discussed: a method applying direct reinforcement
learning with a neuron model far more sophisticated than
the MCP, the SRM0, where the subscript zero indicates a
simplified version of the full SRM model [10, 1]. The dif-
ference is that the exact form ofη during the spike is re-

placed by an impulseδ (t− t(f)
i), as shown in figure 3, and

the fact that the last firing time of the neuron does not af-
fect the new postsynaptic potential. The subscript zero is
intended to remind this of the latter ”zero order” character-
istic.

As mentioned above, the spiking neurons used with di-
rect reinforcement learning in the original work were sim-
ple variations of the classic MCP neuron [16], with minor
modifications to stochastically produce spikes based on the
neuron potential. In contrast, the SRM0 uses the informa-
tion contained in the spike firing times in a way much closer
to complex, biologically inspired models such the classic
one proposed by Hodgkin and Huxley [18].

In this section we present the deduction of the equations
required to update the synaptic weights of the spiking neu-
ron, implementing reinforcement learning. In the next one,
an algorithm using these results is proposed, and the ob-
tained results are analyzed.

Our implementation used a fully connected, feed-
forward spiking neural network with connections com-
posed of multiple delayed synapses. Each individual con-
nection from one neuron to another is actually composed by
several sub-synapses, each one with its own weight (synap-
tic efficiency) and specific transmission delay [19]. It has
been demonstrated that multiple synapses are biologically
plausible [20] and have a time dependent dynamic plastic-
ity, which can be used to enhance the efficiency of a spiking
neuron to perform computations [21, 22].

Therefore, a spike produced by a neuroni is indepen-
dently transmitted over several sub-synapses to the neuron
j. The different delays and weights of each sub-synapse
changes how the input spike will affect the potential of neu-
ron j. As an example, Figure 1 illustrates a single connec-
tion composed by three delayed sub-synapses.

The total potential of a neuronj, connected to a neuroni

Wij
2

Wij
3

d1

d2

d3

Wij
1

presynaptic
neuron i

delayed and weighted
postsynaptic potentials

squashing
function σ

postsynaptic
potential

multiple
delayed synapse ij

postsynaptic
neuron j

Σi

total potential

Figure 1. Single connection composed by multiple
weighted and delayed synapses. Note how different
weights and delays generate different forms of post-
synaptic potentials. From [23] .

through a connection withm delayed sub-synapses, is then
given by [23]

v j(t) = ∑
i∈Γ j

m

∑
k=1

wk
i j ε(t− ti−dk) (11)

Here,wk
i j anddk are, respectively, the weight and the

delay associated to thek-th synapse,Γ j is the set of all the
neuronsi presynaptic to the neuronj andti is the time of
the input spikei. The input to the network is represented
by a set of firing times within a coding interval∆T, where
each neuron is required to fire at most once [23]

The shape of the postsynaptic potential is given by the
ε-kernel, as shown in figure 2. In this work, we consider a
strictly excitatoryα-function, given by [23]

ε(t) =
t
τ

e(1− t
τ) (12)

In order to apply direct reinforcement learning for train-
ing an SRM0 neuron with multiple delayed synapses, the
first step is to define the probability of firing a spike. Like
in the implementation of the SSN, we use a squashing func-
tion quite similar to that defined by Equation 2, with a new
parameterg with determines thesigmoid gain.

Pr(at = 1) = σ(vt) = 1/(1+e−gvt) (13)

A parameterized, random policyπt(ut ,at ,w) based on
the potentialvt of the SRM0 neuron can be defined, iden-
tical to the policy of the simple spiking neuron, defined in
Equation 3.

From Equations 14 and 15, applying the chain rule to
derive the Direct Reinforcement Learning equations for the
SRM0 neuron, we obtain Equation 16.

∂πt

∂wk
i j

=
∂πt

∂v j(t)
∂v j(t)

∂wk
i j

(14)

∂v j(t)

∂wk
i j

=
∂ (∑i∈Γ j ∑m

k=1wk
i j ε(t− ti−dk)

∂wk
i j

= ε(t− ti−dk)

(15)

∇πt(ut ,at ,wk
i j)

πt(ut ,at ,wk
i j)

=

∂
∂wk

i j
πt

πt
= g(at −σ(vt))ε(t− ti−dk)

(16)
Note the presence of the parameterg, the sigmoid gain,

in Equation 16. It appears because, ifσ is defined as in
Equation 13, thenσ ′(vt) = gσ(vt)(1−σ(vt)).

Finally, the equations for updating the weights of a
SRM0 neuron with multiple delayed synapses using direct
reinforcement learning are

wk
j ,t+1 = wk

j ,t + γrt+1zj ,t+1 (17)

zj ,t+1 = βzj ,t +g(at−σ(vt))ε(t− ti−dk) (18)

Equation 18 should be compared to the equivalent ex-
pression for the simple spiking neuron case, defined by
Equation 10. Theε-kernel, which determines the shape of
the postsynaptic potential as a function of the input spikes
firing times, has a fundamental role in the new rule, affect-
ing the amount of change in each weight.

4. RL Applied to Spiking Neurons

Our main target is to find out how to use spiking neu-
rons to perform useful computations, inspired by the suc-
cess of classic artificial neural networks (ANN) and, obvi-
ously, by the interesting capabilities of real neurons. Once
we have chosen a specific model of spiking neurons, the ev-
ident next step is to ask how to use artificial neurons based
on this model to solve problems.

More than carefully engineer a fixed solution based on
spiking neurons, what we need is, once more as we do in
classic ANN, to find out suitablelearning rules, thus mak-
ing our system capable to adapt itself in order to achieve
good performance. Many results show that variations of the
well-known Hebbian learning paradigm can perform con-
vincingly well when applied to spiking neuron models [24]
[25] [26].

Figure 4 shows SRM-RL, our most important contribu-
tion: a direct reinforcement learning algorithm for spiking
neurons based on the SRM0 model, which iteratively im-
plements the equations described in the previous section.
This simplified version assumes only one spiking neuron;
extending it for multiple output neurons is straight-forward.

t

u

t���
ϑ

t���� t���� t����
Figure 2. Evolution of the membrane potential. The
threshold θ is crossed after the arrival of the post-
synaptic potential produced by the fourth spike, and
a new action potential is generated. Note the nega-
tive overshoot and slow recovery after spike emission,
corresponding to the refractory period. Based on [1].

ϑ

u
rest

−η
0

δ(t−t
i
(f))

η(t−t
i
(f))

t
i
(f)

t

u
(t)

Figure 3. η-kernel of a SRM0 neuron (thick line). The
spike occurs when the potential u crosses the thresh-
old θ . In the spike-afterpotential period the membrane
potential is reduced to a negative level −η0. After the
negative overshoot there is a period of slow recupera-
tion, due to refractoriness. In many models the exact
form of η during the spike is replaced by an impulse
δ (t− t(f)

i), as shown. Redrawn from [10].

for all sub-connectionsk = 1..mof all inputsi ∈ Γ do
zk
i ← 0

wk
i ← small random value

end for
for all episodes at time t=0,1,...do

for all input neuronsi ∈ Γ do
ti ← time of the spike from input neuroni

end for
v← ∑i∈Γ ∑m

k=1wk
i ε(t− ti−dk)

a← Action chosen according to Pr(a = 1) = σ(v)
Take actiona, observe rewardr
for all sub-connectionsk = 1..mof all inputsi ∈ Γ do

zk
i ← βzk

i +g(a−σ(v))ε(t− ti−dk)
wk

i ←wk
i + γrzk

i
end for

end for

Figure 4. SRM-RL algorithm for a single output neu-
ron. Based on the algorithm for direct reinforcement
learning using spiking neurons proposed in [12].

5. Experimental Results

For the tests we selected themountain carproblem, as
stated in [13]:

Consider the task of driving an underpow-
ered car up a steep mountain road. The difficulty
is that gravity is stronger than the car’s engine,
and even at full throttle the car cannot accelerate
up the steep slope. The only solution is to first
move away from the goal and up the opposite
slope on the left. Then, by applying full throttle
the car can build up enough inertia to carry it up
the steep slope even though it is slowing down
the whole way. This is a simple example of a
continuous control task where things have to get
worse in a sense (farther from the goal) before
they can get better. Many control methodologies
have great difficulties with tasks of this kind un-
less explicitly aided by a human designer.

The reward in this problem is−1 on all time
steps until the car moves past its goal position at
the top of the mountain, which ends the episode.
At time t, there are three possible actionsat :
full throttle forward (+1) and full throttle reverse
(−1). The car moves according to a simplified
physics. Its position and velocity are updated by

xt+1 = bound[xt +x′t+1] (19)

x′t+1 = bound[x′t +0.001at +−0.0025cos(3xt)]
(20)

where theboundoperation enforces
−1.2≤ xt+1 ≤ 0.5
and
−0.07≤ x′t+1≤ 0.07.
When reached the left bound, was reset to

zero. When it reached the right bound, the goal
was reached and the episode was terminated.
Each episode started from a random position and
velocity uniformly chosen from these ranges.

This environment was used for the sake of simplicity,
since it only allows two actions and is computationally in-
expensive. The state space of this problem consists of two
continuous state variables: the velocity and the position of
the car. For each dimension, nine random-mean, Gaussian
receptive fields are defined, converting the inputs into 81
discrete states. The discrete state index is seen by the neu-
ron as the delay of the input spike. A spike emission is in a
given instantt is interpreted as the action−1 (full throttle
reverse), and its absence, as the action 1.

In this framework, the performance of SRM-RL was
compared with other available algorithms, namely Q-
learning, Q(λ), Sarsa, Sarsa(λ) and the classic algorithm
based on adaptive neuron-like elements (ANE) [27].

Each algorithm was executed one hundred times, with
each run finishing after one hundred episodes (training
epochs). Our performance indicator for this task is the av-
erage number of steps needed to reach the goal (the top of
the mountain).

Figure 5 displays the obtained results. The results for
Sarsa and Sarsa(λ) for this problem are almost identical
to the results of, respectively, Q-learning and Q(λ), and
both were omitted for the sake of simplicity. The parame-
ters used for Sarsa and Sarsa(λ) wereε = 0.0 (probability
of random action),α = 0.5 (step size parameter),λ = 0.9
(trace-decay parameters) andγ = 1 (discount-rate parame-
ters). The parameters and the implementation of these al-
gorithms were the same used in [13].

As can be observed, the results obtained for this task
are quite satisfactory. The performance of SRM-RL with
gain= 4 is comparable to standard Q-learning. With higher
gain, the average number of steps is much lower, being
comparable to those obtained using algorithms based on
temporal difference (Q(λ)) and custom value function ap-
proximation (ANE), and close to the optimal value.

It is interesting to notice the difference in the behavior
of the tabular algorithms (Q-learning and Q(λ)) and the
others. The variation in the number of steps is much lower
in ANE and in SRM-RL, suggesting better convergence.

0 10 20 30 40 50 60 70 80 90 100
1.5

2

2.5

3

3.5

4
Mountain Car

Episodes

A
ve

ra
ge

 N
um

be
r

of
 T

im
e

S
te

ps
 (

Lo
g)

Q−learning
Q(lambda)
Adaptive Neurons
SRM−RL (gain=4)
SRM−RL (gain=64)

Figure 5. Performance of SRM-RL in the mountain
car problem. The results are the logarithm of the aver-
age obtained over one hundred executions. SRM-RL
was executed using two different values for the sig-
moid gain parameter.

The sigmoid gain in the SRM-RL algorithm is directly
associated to the exploration-exploitation dilemma. Lower
values of gain implies that the steepness ofσ(vt), the
probability distribution function used to select actions (see
Equation 13), will be small. This leads to more frequent
selection of actions contrary to the agent’s belief, favoring
exploration.

In contrast, if very high values of gain are used, the func-
tion σ(vt) approximates the step function, and the agent al-
ways chooses the best action according to its knowledge,
maximizing exploitation.

Figure 6 shows the results of several experiments in the
mountain car environment, using different values of gain.
Continuous exploration limits the performance of the algo-
rithm, but gives better results in non-stationary problems.
High values of gain, however, can be dangerous, since they
increase the chance of being trapped in a local minimum.
A trade-off solution for this problem is to slowly decay the
frequency of exploration, allowing the agent to approxi-
mate optimal performance after some time.

6. Conclusion

The billions of real neurons in the brain are very com-
plex dynamic entities capable of processing information
encoded in stereotyped action potentials, informally named
“spikes”. These neurons rely not only on average potential
values as described by the traditional models, but also on
precise spike firing time information. Experimental evi-

0 10 20 30 40 50 60 70 80 90 100
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
Mountain Car

Episodes

A
ve

ra
ge

 N
um

be
r

of
 T

im
e

S
te

ps
 (

Lo
g)

gain=1
gain=2
gain=4
gain=8
gain=16
gain=32
gain=64

Figure 6. Performance of SRM-RL as a function of
the gain, in the mountain car problem. The curves are
show in the same order shown in the chart legend.

dence found by neuroscientists shows that neurons based
on this paradigm achieve fast and highly reliable perfor-
mance in several different domains [28, 4].

Our proposed algorithm uses direct reinforcement learn-
ing with a more sophisticated model of spiking neuron,
SRM0. The potential of SRM0 neurons is computed us-
ing a function that determines the behavior in time of the
received postsynaptic potentials (spikes), based on the fir-
ing times of the input spikes. We show also how to use
direct reinforcement learning to modify the weights of the
multiple delayed synapses that composes a connection be-
tween two spiking neurons in the network architecture used
[23, 19].

The presented results show that this approach have per-
formance comparable to classic algorithms based on tem-
poral difference and value function approximation, for
solving a simple control problem.

References

[1] W. Gerstner, W. M. Kistler, Spiking Neuron Models: Sin-
gle Neurons, Populations, Plasticity, Cambridge University
Press, 2002.

[2] J. A. Simmons, A view of the world through the bat’s ear:
The formation of acoustic images in echolocation, Cogni-
tion 33 (1989) 155–199.

[3] G. Rose, W. W. Heiligenberg, Temporal hiperacuity in the
electric sense of fish, Nature 318 (1985) 178–180.

[4] R. d. R. v. S. F. Rieke, D. Warland, W. Bialek, Spikes: Ex-
ploring the neural code, The MIT Press, 1997.

[5] A. Delorme, S. J. Thorpe, Face identification using spikeper
neuron: resistance to image degradations, Neural Networks

14 (6–7) (2001) 795–803.
[6] R. Malaka, S. Buck, Solving nonlinear optimization prob-

lems using networks of spiking neurons, in: IJCNN 2000,
Proceedings of the IEEE-INNS-ENNS International Joint
Conference on Neural Networks, Vol. 6, 2000, pp. 486–491.

[7] C. C., G. Bugmann, T. G. Clarksona, A spiking neuron
model: Applications and learning, Neural Networks 15
(2002) 891–908.

[8] H. S. Seung, Learning in spiking neural networks by rein-
forcement of stochastic synaptic transmission, Neuron 40
(2003) 1063–1073.

[9] X. Xie, H. S. Seung, Learning in neural networks by rein-
forcement of irregular spiking, PHYSICAL REVIEW E 69,
041909.

[10] W. Gerstner, The spike response model, mNN4 (September
1999).

[11] H. R. Wilson, Spikes Decisions and Actions – Dynamical
Foundations of Neuroscience, 1st Edition, The Oxford Uni-
versity Press, Oxford, 1999.

[12] P. L. Bartlett, J. Baxter, Hebbian synaptic modifications in
spiking neurons that learn, Tech. rep., Australian National
University (November 1999).

[13] R. S. Sutton, A. G. Barto, Reinforcement Learning: An In-
troduction, The MIT Press, 1998.

[14] J. Baxter, P. L. Bartlett, Direct gradient-based reinforce-
ment learning: I. gradient estimation algorithms, Tech. rep.,
Research School of Information Sciences and Engineering,
Australian National University (July 1999).

[15] L. W. J. Baxter, P. L. Bartlett, Direct gradient-based re-
inforcement learning: Ii. gradient descent algorithms and
experiments, Tech. rep., Research School of Information
Sciences and Engineering, Australian National University
(September 1999).

[16] W. S. McCulloch, W. A. Pitts, A logical calculus of the ideas
imminent in nervous activity, Bull. Math. Byophys. 5 (1943)
115–133.

[17] J. Baxter, P. Bartlett, Direct gradient-based reinforcement
learning, Tech. rep., Research School of Information Sci-
ences and Engineering, Australian National University (July
1999).

[18] A. L. Hodgkin, A. F. Huxley, A quantitative descriptionof
ion currents and its applications to conduction and excitation
in nerve membranes, J. Physiol. (Lond.) 117 (1952) 500–
544.

[19] T. Natschläger, B. Ruf, Spatial and temporal pattern analysis
via spiking neurons, Network: Comput. in Neural Syst. 9
(1998) 319–332.

[20] E. Wolf, F.-Y. Zhao, A. Roberts, Non-linear summation of
excitatory sinaptic inputs to small neurones: a case study in
spinal motoneurones of the youngXenopustadpole, Journal
of Physiology 511.3 (1998) 871–886.

[21] W. Maass, A. M. Zador, Dynamic stochastic synapses as
computational units, Neural Computation 11 (4) (1999)
903–917.

[22] T. Natschläger, W. Maass, A. Zador, Efficient temporalpro-
cessing with biologically realistic dynamic synapses, Net-
work: Computation in Neural Systems 12 (2001) 75–87.

[23] S. M. Bohte, H. L. Poutr, J. N. Kok, Unsupervised clustering
with spiking neurons by sparse temporal coding and mul-
tilayer RBF networks, IEEE Transactions on Neural Net-
works 13 (2).

[24] W. Gerstner, W. M. Kistler, Mathematical formulationsof
Hebbian learning, Biological Cybernetics 87 (2002) 404–
415.

[25] M. M. P. Häfliger, L. Watts, A spike based learning neuron
in analog vlsi, in: M. I. J. M. C Mozer, T. Petsche (Eds.),
Advances in Neural Information Processing Systems, The
MIT Press, 1997, pp. 692–698.

[26] D. D. L. J. Rubin, H. Sompolinsky, Equilibrium proper-
ties of temporally asymmetric hebbian plasticity, Phys. Rev.
Lett. 86 (2001) 364–367.

[27] R. S. S. Andrew G. Barto, C. W. Anderson, Neuronlike
adaptive elements that can solve difficult learning control
problems, IEEE Transactions on Systems, Man, and Cyber-
netics SMC-13 (1983) 834–846.

[28] W. Maass, Computing with spikes, Tech. rep., Institut fuer
Grundlagen der Informationsverarbeitung - Technische Uni-
versitaet Graz (2002).

