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Abstract learning is used in a variation of the leaky-integrator spik
ing neuron model for motion and velocity detection sys-
In this work, we propose a variation of a direct reinforce-  tems. In [8] and [9], the association between the stochastic
ment learning algorithm, suitable for usage with spiking nature of the spike firing times and (Hebbian) learning is
neurons based on the Spike Response Model (SRM). Theconsidered. The latter work uses a stochastic model of neu-
SRM is a biologically-inspired, flexible model of spiking  ron, which fires spikes with Poisson statistics, and uses the
neuron based on kernel functions that describe the effect correlation of the reward signal with firing times to stochas
of spike reception and emission on the membrane potential tically estimate the gradient for a local search algorithm,
of the neuron. In our experiments, the spikes emitted by using an approach similar to the one presented here, with-
a SRM neuron are used as input signals in a simple con- out the control-related aspects.

trol task. The reinforcement signal obtained from the en- We base our work in a powerful formal spiking neu-
vironment is used by the direct reinforcement learning al-  ron model is theSpike Response Modelr SRM [10] [1].
gorithm, that modifies the synaptic weights of the neuron, The SRM can be understood as a generalization of the
adjusting the spiking firing times in order to obtain a better  integrate-and-fire model; mainly characterized by its pa-
performance at the given problem. The obtained results are rameters dependence on the time of the last output spike,
comparable to those from classic methods based on value instead of being a function only of the membrane potential

function approximation and temporal difference, for sienpl
control tasks.

1. Introduction

Many of the traditional artificial neural networks are
based on simple neuron models known as rate models [1].
These models are extremely simple, bearing little or no re-
semblance to biological neurons. One of the most impor-
tant features of a real neuron is that its behavior is not only
based on the output potential, as modeled in classic artifi-
cial neural networks, but also on the precise spike timing:
this capability makes it possible to achieve impressive sen
sorial acuity based on a very small number of action po-
tentials, in intervals of the order of tens mdéinoseconds
some species [2] [3]. Understanding spiking neuron mod-

els is extremely important to neuroscience, and can be quite

interesting from the point of view of artificial neural net-
work applications, since in nature the dynamic behavior of
spiking neurons is fundamental to solve complex tasks in
noisy environments [4].

Recently, applications based on spiking neurons have
been attaining interest (e.g. [5] [6]), in [7], Hebbian-eds

as in more complex models. In the SRM model explicit
functions model the action potentials, the reset/refrgcto
periods, and the neuron response to input spikes. We can
see these functions assponse kernelsvhich was the in-
spiration for the name of the model. Our main motivation
for choosing this model is our interest in studying how re-
inforcement learning can be done using low-level models
closer to biological neurons.

Classic reinforcementlearning methods are based on the
estimation of a value function, which supposedly provides
the best action to be taken in a given spate. Direct rein-
forcement learning, however, estimates the gradient direc
tion that improves the performance of the used policy. We
use this algorithm to modify the synapses of a SRM neu-
ron, modifying the delays applied to the input spikes. The
timing of the output spikes emitted determines the actions
to be taken in the control task.

The results of our experiments show that the overall
qualitative performance of the proposed direct reinforce-
ment learning algorithm based on the Spike Response
Model is comparable to the classic algorithms, but with
a higher computational cost. We believe that this differ-
ence comes from the costs of simulating the SRM neurons
with their spike trains and also from the biological natufre o



the model, overheads not present in standard reinforcementa stochastic threshold model, where the neuron potential
learning algorithms like Q-Learning and SARSA. affects only the probability of firing a spike (i.e., takirtget
actionag; = 1) at timet:
2. Understanding Spiking Neurons
Prlaa=1)=0o(x)=1/(1+e™) (2)
The electrical output of neurons is usually characterized Consequently, the expression for the random, parame-

by the presence of stereotyped action potential waveforms q,i,eq policy generated by the SSN is [12]
known asspikes Spikes are clearly defined events gener-

ated in response to incoming stimuli arriving through neu-
ron dendrites. The action potentials travel through cells’ TR (U, 8, W) = {
axon, and their firing times is practically the only infor-
mation transmitted, since the waveforms of the spikes are  The actiors; = 1 is represented by firing a spike at time
practically identical. An important observation is thaisth  t and, correspondingly, the absence of a spike represents
neural code is not always fixed: for instance, in motor neu- the actiong; = 0, which has probability + o (v).
rons submitted to a continuous stimulus, the spiking rate In order to apply direct reinforcement learning, we need
diminishes with time, demonstrating what is called neural to compute ([17])
adaptation [11].

In 1999, Bartlett and Baxter [12] proposed an interest- O7% (w, &, W) )
ing model of synaptic plasticity based on correlation (and TE (U, 8, W)
thus Hebbian in essence). Their idea is to applgia-
forcement learning13] algorithm to modify the synaptic

o) if a, =1or

l1-o(w) ifa=0. 3)

In the SSN case we have

efficiency With_ the explicit objective of imprO\_/ing_ perfor- _ . . 0 5 oW, fa_1
mance on a given problem. Note that the objective now is TE(U.a,Wi) _ aw 't ] —om a==5 (5)
not to mimic cellular mechanisms, but to use spiking neu- T (W, &, Wj) Tg -0 Wy if a =0
rons in practical applications. Analyzed from this point of 1=ow)
view, their results were stimulating: the applicationddf '

o e abp = (a—ow)ul_y. )

rect reinforcement learninfL4] [15] in probabilistic spik- .

ing neurons is effective for simple tasks involving pattern observing the negative sign GfU'(Vt)UtJ,l, since that it

classification and motor learning. is necessary teeducethe probability of a spike if we want
In [12], Bartlett and Baxter show how to apply direct to reinforce the actioa; = 0, and that

reinforcement learning to modify synaptic weights of sim-

ple spiking neurons. Direct reinforcement learning is a o'(w)=0w)(1-0ow)) (7)

technique that modifies the parameters of a random policy

based on an estimate of the average long-term reward gra- and

. : ; . 7} -
dient. This approach does not manipulate value functions TVt = utjil. (8)
directly, avoiding some drawbacks of the techniques based Wi
on the generalized policy iteration. Therefore, the complete equations for direct reinforce-

This approach was used by them to solve simple pat- ment learning for the simple spiking neuron are ([17])
tern classification and motor learning problems. The sim-
ple spiking neuron (called here SSN) used is a variation Wjt+1 = Wit + Wt+17Z) 141 9)
of the MCP neuron [16], which was modified to produce
action potentials stochastically. Like in many applicato

. — R _ ]
based on the MCP neuron, the input of the SSN at tilse Zi+1= Bzt (@ — (W)U, (10)
a vectony_1 of the binary values representing the presence Wherer is the reinforcement signal from the environ-
or absence of an input spike at the current time step. ment (using the standard convention of positive values for
The potential of the SSN is given by desirable policies and negative values for indicating pun-
i ishment). The parametgrthe learning rate, is a parameter
v = ZwutJ 1) . :
J IM-1 between 0 and 1 that determines how much the estimated

gradient affects the neuron weights at each step. Similarly
This expression is identical to the MCP neuron poten- the discount factof3, also between 0 and 1, is related to
tial. In the MCP neuron, the output is graded and con- the magnitude of the adjusts applied to the estimated gra-
tinuous valued, computed by the application of a transfer dient. The values used for these parameters, obtained from
function to the neuron potential. Differently, the SSN uses simple experiments, wene= 0.9 andf3 = 0.1; they are not



delayed and weighted
postsynaptic potentials

critical to the performance in the selected problems, as far |
[ \Ni'3 43 [
|
|

as we could observe. A detailed theoretical analysis of the
discount facto3 can be found at [17].

This update rule has several interesting characteristics.
Its Hebbian componen#, ., increases the synapse effi-
ciency when an actioa follows a given input;| ;. When

no output spike is produced, the compon«errt(vt)ut[1 re- |

|
presynaptic multiple postsynaptic

squashing

function o
total potential

postsynapti
potential

duces the synapse strength, as expected [12]. neuron i delayed synapse j neuron |
3. Direct RL Using the SRM Figure 1. Single connection composed by multiple

weighted and delayed synapses. Note how different

The main contribution to the spiking neuron research Weights and delays generate different forms of post-
is now discussed: a method applying direct reinforcement Synaptic potentials. From [23] .
learning with a neuron model far more sophisticated than
the MCP, the SRM, where the subscript zero indicates a

simplified version of the full SRM model [10, 1]. The dif-  through a connection witm delayed sub-synapses, is then

ference is that the exact form gf during the spike is re- given by [23]

placed by an impulsé(t —ti(f)), as shown in figure 3, and m

the fact that the last firing time of the neuron does not af- vj(t) = z WII(J g(t—ti—d¥) (11)
fect the new postsynaptic potential. The subscript zero is ieTj k=1

intended to remind this of the latter "zero order” character ] )

istic. Here,vv}‘j anddX are, respectively, the weight and the

delay associated to theth synapsel; is the set of all the
neurons presynaptic to the neuropandt; is the time of
the input spikd. The input to the network is represented
by a set of firing times within a coding intervAll, where
each neuron is required to fire at most once [23]

The shape of the postsynaptic potential is given by the
e-kernel, as shown in figure 2. In this work, we consider a
strictly excitatorya-function, given by [23]

As mentioned above, the spiking neurons used with di-
rect reinforcement learning in the original work were sim-
ple variations of the classic MCP neuron [16], with minor
modifications to stochastically produce spikes based on the
neuron potential. In contrast, the SBMses the informa-
tion contained in the spike firing times in a way much closer
to complex, biologically inspired models such the classic
one proposed by Hodgkin and Huxley [18].

In this section we present the deduction of the equations t )
required to update the synaptic weights of the spiking neu- g(t) = —el* v (12)
ron, implementing reinforcement learning. In the next one,
an algorithm using these results is proposed, and the ob-  In order to apply direct reinforcement learning for train-
tained results are analyzed. ing an SRM neuron with multiple delayed synapses, the

Our implementation used a fully connected, feed- first step is to define the probability of firing a spike. Like
forward spiking neural network with connections com- inthe implementation of the SSN, we use a squashing func-
posed of multiple delayed synapses. Each individual con- tion quite similar to that defined by Equation 2, with a new
nection from one neuron to another is actually composed by parameteg with determines theigmoid gain
several sub-synapses, each one with its own weight (synap-
tic efficiency) and specific transmission delay [19]. It has Prlag=1)=o0(w%) =1/(1+e %) (13)
been demonstrated that multiple synapses are biologically
plausible [20] and have a time dependent dynamic plastic- A parameterized, random policg (u;, &, w) based on
ity, which can be used to enhance the efficiency of a spiking the potentiaM; of the SRM neuron can be defined, iden-
neuron to perform computations [21, 22]. tical to the policy of the simple spiking neuron, defined in

Therefore, a spike produced by a neuids indepen- Equation 3.
dently transmitted over several sub-synapses to the neuron From Equations 14 and 15, applying the chain rule to
j. The different delays and weights of each sub-synapse derive the Direct Reinforcement Learning equations for the
changes how the input spike will affect the potential of neu- SRMO neuron, we obtain Equation 16.
ron j. As an example, Figure 1 illustrates a single connec-
tion composed by three delayed sub-synapses. OTE e dvj(t)

= 14
The total potential of a neurgn connected to a neurén dwikj ovij(t) dwikj (14)
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Note the presence of the paramajethe sigmoid gain, \
in Equation 16. It appears becausegifis defined as in e
Equation 13, thew’(v) = go(w)(1— a(w)). s T
Finally, the equations for updating the weights of a v
SRMp neuron with multiple delayed synapses using direct prT >

Il
. . I [
reinforcement learning are 1 LD 4O (@ \/— t

W1 =W+ Vazi (17)
Figure 2. Evolution of the membrane potential. The
threshold 6 is crossed after the arrival of the post-
Ziti1= Bz +9(a— a(w))e(t —t; —d4 (18) synaptic potential produced by the fourth spike, and
a new action potential is generated. Note the nega-
Equation 18 should be compared to the equivalent ex- tive overshoot and slow recovery after spike emission,
pression for the simple spiking neuron case, defined by corresponding to the refractory period. Based on [1].
Equation 10. The-kernel, which determines the shape of
the postsynaptic potential as a function of the input spikes
firing times, has a fundamental role in the new rule, affect- u(t) 5(t_t(f))
ing the amount of change in each weight. [

4. RL Applied to Spiking Neurons

Our main target is to find out how to use spiking neu- d
rons to perform useful computations, inspired by the suc- u
cess of classic artificial neural networks (ANN) and, obvi-
ously, by the interesting capabilities of real neurons. ©nc
we have chosen a specific model of spiking neurons, the ev-
ident next step is to ask how to use artificial neurons based
on this model to solve problems.

More than carefully engineer a fixed solution based on Mg 1
spiking neurons, what we need is, once more as we do in ’(f) t
classic ANN, to find out suitabliearning rules thus mak- ti
ing our system capable to adapt itself in order to achieve
good performance. Many results show that variations of the
well-known Hebbian learning paradigm can perform con- Figure 3. n-kernel of a SRMg neuron (thick line). The
vincingly well when applied to spiking neuron models [24]  spike occurs when the potential u crosses the thresh-
[25] [26]. old 8. In the spike-afterpotential period the membrane

Figure 4 shows SRM-RL, our most important contribu-  potential is reduced to a negative level —ng. After the
tion: a direct reinforcement learning algorithm for spiiin ~ negative overshoot there is a period of slow recupera-
neurons based on the SBMhodel, which iteratively im- tion, due to refractoriness. In many models the exact
plements the equations described in the previous section. form of n during the spike is replaced by an impulse
This simplified version assumes only one spiking neuron; 5t —t'")), as shown. Redrawn from [10].
extending it for multiple output neurons is straight-foraia

rest




for all sub-connectionk= 1..mof all inputsi € I do
X0
WK «— small random value
end for
for all episodes at time t=0,1,do
for all input neuron$ €I do
tj « time of the spike from input neurdn
end for
Ve Yier TR WHe(t —ti —d¥)
a — Action chosen according to Rr=1) = o(v)
Take actiora, observe reward
for all sub-connectionks= 1..mof all inputsi € I' do
& pZ+ga—o(v)et—t —d)
W Wk 4y
end for
end for

Figure 4. SRM-RL algorithm for a single output neu-
ron. Based on the algorithm for direct reinforcement
learning using spiking neurons proposed in [12].

5. Experimental Results

For the tests we selected theuntain carproblem, as
stated in [13]:

Consider the task of driving an underpow-
ered car up a steep mountain road. The difficulty
is that gravity is stronger than the car’s engine,
and even at full throttle the car cannot accelerate
up the steep slope. The only solution is to first
move away from the goal and up the opposite
slope on the left. Then, by applying full throttle
the car can build up enough inertia to carry it up
the steep slope even though it is slowing down
the whole way. This is a simple example of a
continuous control task where things have to get
worse in a sense (farther from the goal) before
they can get better. Many control methodologies
have great difficulties with tasks of this kind un-
less explicitly aided by a human designer.

The reward in this problem is 1 on all time
steps until the car moves past its goal position at
the top of the mountain, which ends the episode.
At time t, there are three possible actioas
full throttle forward ¢1) and full throttle reverse
(—1). The car moves according to a simplified
physics. Its position and velocity are updated by

Xi+1 = boundx; +X 4] (19)

%1 = boundx +0.001a; + —0.0025c0g3x%)]

(20)
where theboundoperation enforces
—-12<x,1<05
and
—0.07<x,, <0.07.

When reached the left bound, was reset to
zero. When it reached the right bound, the goal
was reached and the episode was terminated.
Each episode started from a random position and
velocity uniformly chosen from these ranges.

This environment was used for the sake of simplicity,
since it only allows two actions and is computationally in-
expensive. The state space of this problem consists of two
continuous state variables: the velocity and the position o
the car. For each dimension, nine random-mean, Gaussian
receptive fields are defined, converting the inputs into 81
discrete states. The discrete state index is seen by the neu-
ron as the delay of the input spike. A spike emissionis in a
given instant is interpreted as the actionl (full throttle
reverse), and its absence, as the action 1.

In this framework, the performance of SRM-RL was
compared with other available algorithms, namely Q-
learning, @A), Sarsa, Sar$a) and the classic algorithm
based on adaptive neuron-like elements (ANE) [27].

Each algorithm was executed one hundred times, with
each run finishing after one hundred episodes (training
epochs). Our performance indicator for this task is the av-
erage number of steps needed to reach the goal (the top of
the mountain).

Figure 5 displays the obtained results. The results for
Sarsa and Sargh) for this problem are almost identical
to the results of, respectively, Q-learning andAQ and
both were omitted for the sake of simplicity. The parame-
ters used for Sarsa and Sgsaweree = 0.0 (probability
of random action)g = 0.5 (step size paramete),= 0.9
(trace-decay parameters) ape- 1 (discount-rate parame-
ters). The parameters and the implementation of these al-
gorithms were the same used in [13].

As can be observed, the results obtained for this task
are quite satisfactory. The performance of SRM-RL with
gain=4is comparable to standard Q-learning. With higher
gain, the average number of steps is much lower, being
comparable to those obtained using algorithms based on
temporal difference (Q\)) and custom value function ap-
proximation (ANE), and close to the optimal value.

It is interesting to notice the difference in the behavior
of the tabular algorithms (Q-learning and Q3) and the
others. The variation in the number of steps is much lower
in ANE and in SRM-RL, suggesting better convergence.
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Figure 5. Performance of SRM-RL in the mountain
car problem. The results are the logarithm of the aver-
age obtained over one hundred executions. SRM-RL
was executed using two different values for the sig-
moid gain parameter.

The sigmoid gain in the SRM-RL algorithm is directly
associated to the exploration-exploitation dilemma. Lowe
values of gain implies that the steepnessadf), the
probability distribution function used to select actiored
Equation 13), will be small. This leads to more frequent
selection of actions contrary to the agent’s belief, favgri
exploration.

In contrast, if very high values of gain are used, the func-
tion o (v ) approximates the step function, and the agent al-
ways chooses the best action according to its knowledge,
maximizing exploitation.

Figure 6 shows the results of several experiments in the
mountain car environment, using different values of gain.
Continuous exploration limits the performance of the algo-
rithm, but gives better results in non-stationary problems

High values of gain, however, can be dangerous, since they

increase the chance of being trapped in a local minimum.
A trade-off solution for this problem is to slowly decay the
frequency of exploration, allowing the agent to approxi-
mate optimal performance after some time.

6. Conclusion

The billions of real neurons in the brain are very com-
plex dynamic entities capable of processing information
encoded in stereotyped action potentials, informally rame
“spikes”. These neurons rely not only on average potential
values as described by the traditional models, but also on
precise spike firing time information. Experimental evi-
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Average Number of Time Steps (Log)
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Figure 6. Performance of SRM-RL as a function of
the gain, in the mountain car problem. The curves are
show in the same order shown in the chart legend.

dence found by neuroscientists shows that neurons based
on this paradigm achieve fast and highly reliable perfor-
mance in several different domains [28, 4].

Our proposed algorithm uses direct reinforcement learn-
ing with a more sophisticated model of spiking neuron,
SRMy. The potential of SRM neurons is computed us-
ing a function that determines the behavior in time of the
received postsynaptic potentials (spikes), based on the fir
ing times of the input spikes. We show also how to use
direct reinforcement learning to modify the weights of the
multiple delayed synapses that composes a connection be-
tween two spiking neurons in the network architecture used
[23, 19].

The presented results show that this approach have per-
formance comparable to classic algorithms based on tem-
poral difference and value function approximation, for
solving a simple control problem.
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