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Abstract

This paper proposes an unsupervised neural algorithm
for trajectory production of a 6-DOF robotic arm. The
model encodes these trajectories in a single training
iteration by using competitive and temporal Hebbian
learning rules and operates by producing the current
and the next position for the robotic arm. In this paper
we will focus on trajectories with one common point.
These types of trajectories introduce some ambiguities,
but even so, the neural algorithm is able to reproduce
them accurately and unambiguously due to context
units used as part of the input. In addition, the
proposed model is shown to be fault-tolerant.

1. Introduction

One of the major aspeds of natura intelligence is
the ability to process temporal information. Temporal
pattern learning and realling are caucia for our
capacity to perceve and generate limb movements,
speed), music, etc. In addition, because we live in an
environment that changes continuously, an intelli gent
system must be able to encode patterns over time and to
reproducethem [1].

During the last years, many neural network
approaches have been proposed for the trgjedory
generation problem. One of them is known as robot
trajectory learning or robot trajectory encoding [2],[3].

According to the approach abowe, an artificia
neural network receves as input the arrent state (such
as position, joint angles and associated torques) of the
roba arm and usually responds with the next state in
order to exeaute a task defined in advance This
anticipatory behavior is particularly useful for solving
trgjedory ambiguities [4] and is siitable for point-to-
point trajedory control or for trajedory tracking.

Regarding the ecoding of roba trajedories,
Althdfer and Bugmann [2] described two types of

neural networks for learning and panning roba arm
movements. The first one, a neural implementation of a
resistive grid [5] for path planning, presented
limitations such as jerkiness of the movements and
inaccurate final postions. The sewmnd network is
trained during the read-out of a sequence of movements
as determined by the resistive grid. This network solves
the former limitations by using a RBF mode with
receptive fields centered on a sequence of starting
positions in the @nfiguration space of the arm, and
with weights to the output layer being used to point out
to the next postion in the space  This network
generates a smoath arm trgjedory and an accurate
positioning by interpolating points between those given
by means of the resistive grid network.

In the mntext of mohile robdics, Bugmann et al. [3]
proposed a model that uses Normalized Radial Basis
Functions to encode a sequence of positi ons forming the
trgjedory of an autonomous whedchair. The network
produces the next position for the whedchair. As the
trgjedory passes sveral times over the same point,
phase information is added to the position information
to avoid the perceptual aliasing® problem [4]. The use
of Normalized RBF's creates an attraction field over the
whole workspace and enables the whedchair to handle
perturbations caused by the avoidance of people.

Aradjo and Viera [6] and Aradjo e D'arbo Jr. [7]
proposed, respedively, temporal associative memory
and reaurrent neural networks models for learning and
production of trgjedories of a 6-DOF roba arm. In bath
cases, the initial and goal positions are given and the
networks produce all the intermediate positions and its
asociated joint angles and torques. Both models are
abletoretrieve the trained trgjedories and are robust (to
a certain degred to noise. The simulations suggested
that the reaurrent neural model is siitable for tracking
the trajedory while the associative memory model is
adequate for interpolating tragjedory states.

! This problem involves two or more identical perceptual
inpus that require different responses from the robot.



In this paper, the main goa is to devise an
unsupervised neural algorithm to learn and retrieve
temporal sequences in the form of robd trajedories in
order to perform tracking tasks.

The remaining part of the paper is organized as
follows. In Sedion 2, we present the proposed
architedure for the unsupervised network and dscuss
each component. In Sedion 3, we introduce the
proposed algorithm and discussits dynamics in detail s.
In Sedion 4, some smulations are arried out in order
to show the model ability to learn and reproduce the
desired trgjedories. The fault-tolerance is also
evaluated. Finally, in Sedion 5 we conclude the paper.

2. TheProposed Architecture

The set of points that spedfies the trandational and
rotational paths of the manipulator end-effedor as a
function of time is referred to as atrajedory [8]. In our
case, the robd trgjedories are spedfied as squences of
eleven points (or states) in which each state is a 15
dimensional vedor consisting of the Cartesian
coordinates (X, v, 2), the joint angles (84,..., 6¢), and the
torques (Ty,..., Tg) asciated with that spatial position.

The architedure of the proposed model is $own in
Figure 1. It comprises two layers of neurons, in which
each input node is conneded to al output neurons
through feedforward weights w;, where i indicates the
input node and j, the output one. The network activates
the neurons that encode the airrent and the next states
of thetrgjedory oncean input state arrives.

Every time an input state is presented to the net, a
neuron with the most similar weight vedor to the input
is activated. This neuron is caled the winner of the
competition for that input pattern. The weights, arriving
to this particular winning neuron, encode the state of
thetragjedory at a particular instant of time.

In this model, each state of the trajedory must be
represented by a single neuron (or a small group of
neurons). Thus, amedchanism must be provided to avoid
that such a group responds for more than one state of
the tragjedory. The mechanism adopted in the airrrent
work, exclude the arrent winning neuron from all
subsequent  competitions  for  trgjedory  dtates.
Furthermore, the eclusion medanism allocates
different neurons for equal states occurring in different
instants of time. This kind of situation may occur when
atrajedory passes more than one time through the same
point.

Each output neuron projeds a connedion to itsef,
m;(t), and to al other nodes, m,(t). These wnnedions
encode the temporal ordering of the input trajedory.
Once active, the arrent winning neuron triggers,
through the lateral connedions, the neuron that encodes

the next point of the trajedory. Both neurons remain
active. In order to differentiate the responses, the
activation of the arrent winning neuron is made lower
(through the self-connedion) than the activation of the
neuron encoding the next state.

It isimportant to note the presence of time delays in
the proposed architedure. They implement a short-term
memory (STM) modd [1]. That enables temporal
asciation between patterns occurring in conseadtive
instants of time.

The ontext vedor is of great importance to the
proposed architecure. Without it, only trajedories with
no points in common can be reproduced. The mntext
information all ows the network to distinguish between
equal states belonging to different trajedories. For
example, two trajedories with a state in common
usualy have different initial or goal states. One of these
can be used as a context information.
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Figure 1. The topology of the proposed network,
where the time delays implement the short-term
memory. Only some connections are shown.

Differently from previous models for trajedory
encoding [3], [4], which use pre-wired network weights,
the proposed algorithm learns to encode the temporal
order by self-organization. In the next sedion the neural
algorithm is presented and dscussd in detail .

3. TheProposed Algorithm

The steps of the neural algorithm are defined as.

(2) Initiali ze the network as foll ows:

W;(0) = random[0, 1], for all i, j;
my(0) =0, for al j, r;
g(0) =y;(0) =0, for al j.
fi(0) = 1, for all j.
where random[0, 1] is a number between 0 and 1 a(t)
and y;(t) are the activation and output of neuron j,

respedively. The function fi(t) is called neuron
exclusion factor.



(2) Present an input stimulus to the net.
(3) Determine the winning neurons:

For every input vedor, order the output neurons
acoording to their distanceto the input vedor v(t). i.e

Fus (Ov(E) = wisy (O] < Fuaz () () — Wi, ()] <
<y, (t)"v(t) - Wy, (t)" <<y (t)"v(t) - Wy, (t)" (D]

where H(t) is the index of the winning neuron (the one
closest to the input) of the airrent competition, pa(t) is
the index of the seand neuron closest to the input, and
so on. The index k indicates the number of neurons
used to encode each input pattern per competition (for
example, for k=2, two neurons will remain active) and
N is the number of output neurons. The choice of more
than one neuron per state prevents catastrophic lossof a
entire trajedory when a single neuron fail s.

The function f;(t) isupdated according to:

ga, forj =y, M2, ..., Mk
fit)=0 2
i) 01, Otherwise

where a >> 0 is large enough in order to exclude the
chosen neurons from all subsequent competiti ons.

(4) Determine the activations:

The activations are determined by

OALyi-1, fori=1,...,k
a O=0"0" " foriz1>k 3

and A and y are onstant values, so that A > y.
(5) Adjust the feadforward weights:

Adapt the feadforward weight vedors according to
the foll owing competiti ve learning rule [9]:

wij(t+D=wj (©)+8(t)a) Ox(1)-w; )] )

where & (=1) is the learning rate determining how
similar to the input x(t) will be the weight vedor wi(t).
Only those neurons with activations not equal to zero
are allowed to learn.

(6) Adjust the self- and lateral connedions.

The lateral weights are liable for encoding the
temporal ordering of the input sequence When an input
stimulus is presented, the network will activate at least
two neurons. One should respond for the arrent input
pattern (less activated neuron) and the other indicates
the next state of the trajectory (most activated neuron).

The ideas behind the learning rules are the
following: (i) sdf-connedions <ould weaken the
activation, and (ii) lateral connedions from the winners
of the last competition to the winner of the arrent
competition should be Established. By inhibiting its
activity through the self-connedion and exciting other
neuron through a lateral weight, the winning neuron of
the asrrent competition determines the aurrent and the
next state of the trgjedory. Mathematically, we have the
following learning rules:

(6a) Learning procedure for sdf-connedions:

for {j = pa(t), pa(t), ..., ()} do:
my; (t+12) = my; (t) +Ba; (t), ©)

where 3 isthe learning rate and pla(t), pa(t), ..., (t) are
the indexes of the winners of the arrent competition.

(6b) Learning procedure for lateral connedions:

for {j = pa(t), po(t), ..., (t)},
for {r = pa(t-1), po(t-1), ..., pu(t-1)} do:

mj (t+2) =mj () +Aaj (a, (k-1 (6)

where A=1-B is the learning rate, pa(t), pa(t), ..., t(t)
are the winners of the arrent competition and pu(t-1),
Mo(t-1), ..., W(t-1) are the winners of the last
competition. Note that equation (6) represents a simple
temporal version of the rrelation (or Hebbian)
learning [10] between the activations of the output
neurons in different instants of time. Thus, connedions
are always established from the winners at time t-1
(represented by the index r) to winners at time t
(represented by the index j). By defining B<A, the
activation of the neuron representing the arrent input
is made smaller than that of the neuron encoding the
next state of the trajedory. The activations a,(t-1) in (6)
are ohtained through the time-delays.

(7) Determine the outputs:

The outputs are determined through the simple
weighted summation;



yi(t)= 3 mir(t)ar (1), ™

r=1

where my(t) is the cnnedion weight between the
output neuronsr and j.

Suppose that neuron three is the winner for the
current input state, so according to equations (1) and (3)
we have: py(t) = 3 and ag(t) = 1. The remaining
activations are zero (we have dosen k=1, for
simplicity). Now, also suppose that the next state of the
trajedory was encoded by neuron 7. Hence, because the
temporal order isto be encoded by the lateral weights,
there must be a non-zero self-connedion for neuron 3
and a non-zero lateral connedion from neuron 3 to
neuron 7. Thus, mgz=0.2 and m;z=0.8, for example.
Thus, acoording to equation (7) the outputs during the
reproduction phase are:

ys(t) = mas(t)as(t) = (0.2).(1.0) = 0.2 (8)
yA(t) = myzs(t)as(t) = (0.8).(1.0) = 0.8 9
yi(t) =0, foraljz3and j£7 (10

Equations (8), (9) e (10) mean that the neuron 3 is
the most similar to the airrent input pattern and neuron
7 is the next state of the trgjedory. The process
continues from step (2) until the end of the trajedory is
reached. For trajedory reproduction, steps (5) and (6)
are skipped. In the next sedion, we show some
simulations results involving different trgjedories.

4. Thesmulations

The different trajedories considered for study are
shown in Figure 2.

2,3
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Figure 2. Types of trajectories considered for study.
The filled circle indicates the initial position and “x”
stands for the final position.

The trajedories 2b, 2c, and 2d have at least one
point in common, which may introduce ambiguities
during the reproduction of the sequence This probem
is dated as. which trajedory should the arm follow
when each candidate has points in common with

another one?This problemis slved by using a fixed context
vector given as part of the inpu, remaining clamped to the
inpu during both trajectory leaning and reproduction pheses.

In this paper, the trajedories were defined in
advance being generated by the todbox robaics of
MATLAB [11]. However, the roba arm could be
trained by a “teach-by-showing” method. In this case,
an user would pwh the arm through the desired
trajedories.

The network parameters were set to a = 100Q k=2,
A=1y=097,0=099 =02 and A = 1- = 08.
The number of output neurons was st to 70 and three
trajedories per case were trained sequentially in only
one presentation for each trajedory. The @ntext units
were made ejual to the goal position of the trajedory
under consideration, changing when ancther trajedory
isconsidered. Thetests are similar to those presented in
[6] and [7], and for Figures 3-6 only the results for the
first winner are shown.

As a measure for the tracking error, we used the
following expresson:

o= 3 -x )+ (h ) (b -2}
p t=1

where (Xq, Yo, z3) and (x;, ¥;, z) are the desired and the
retrieved spatial coordinates, N, is the number of points
of the trajedory and t is the position in the sequence
For example, t=1 indicates the first vector in the sequence.

Figure 3 shows the results for threetrajedories with
the same starting point located at (0.6, 0.1, 0.0). Note
that the retrieved and the desired trgjedories in al the
three @ses are very similar. The tracking error for
trgjedory 1-G1 is 5.224x10°. This ill ustrates the ability
of the model in acaurately encoding an input state in
only oneiteration.
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Figure 3. Desired spatial
trajectories with same starting point (0.6, 0.1, 0.0).

Figure 4 illustrates the desired and the retrieved
joint angles for the trajedory I-G1. It also has very
good performance confirming the adequacy of the
model for trajedory tracking. The ambiguity faced by
the network when it has to dedde which trajedory to
follow is resolved by the knowledge of the goal position.



joint angles for trajectory LG 1

Figure 4. The desired ‘0’ and the retrieved ‘*' joint
angles for trajectory I-G1 in Figure 3.

Figure 5 ill ustrates the results for threetrajedories
with no points in common. This gtuation is
considered by the modd as the easiest one to he
encoded, becuse there is no ambiguity. The model was
able to reproduce the trained trgjedories with a small
tracking error (e.g. 4.67x10°, for the sequence|1-G1).

joint angles for trajectory [1-G1

(b)

time

Figure 5. Trajectories without common points: (a)
spatial points; (b) joint angles and (c) for trajectory
11-G1.

The next simulation considers trajedories with one
crossng point. The desired and retrieved spatia
position are shown in Figure 6a. The @rresponding
joint angles are shown in Figure 6b. In this case, the
context units also play an important role. The
trajedories are harder to be followed because of their
abrupt change of diredions. Even so, the modd was
able to track them with a small error (6.92x10° for
tragjedory 11-G1).

joint angles for trajectory 11-G1

(b)

Figure 6. Trajectories with one crossing point: (a)
spatial positions: (b) joint angles for trajectory 11-

The last simulation explores the fault-tolerance
ability of the model. We have simulated a worst-case
situation, namely: all first winners for each state of the
tragjedory 12-G2 in Figure 5a have mllapsed for some
reason (for example, hardware falure in a rea
implementation). Theresults are shown in Figure 7.

L initiakpoint =

@

joint angles for trajectory 12-G2

& : : : :
(b) 0 2 Lll 6 8 15 12

Figure 7. Simulation of the worst-case condition
(collapse of all first winners) for trajectory 12-G2 in
Figure 6a: (a) spatial points and (b) joint angles.



Even for this catastrophic situation, the tracking
error was quite small, 5.91x10% It is worth noting in
Figure 7a that the network dynamics tend to maintain
an acaurate initial and final position even for seand
winners. Thejoint angles are shown in Figure 7h.

One oould ask that this last result can be improved if
we cange step 6 of the algorithm by assgning the
same activation value to all winners (a=1 for all j=1..K).
In this case we would be improving the fault-tolerance
and the total accuracy but worsening the tolerance to
noise and the generalizaion ability of the proposed
modd.

Table 1 summarizes the tracking errors for the
trajedories discussd in this work. The best condition
refersto the situation in which the first winners for each
state of the trajedories are used to retrieve them.

Table 1 _Summary of tracking errors

TRAJECTORY BEST WORST
TYPE CONDITION CONDITION

common I-G1: 5.2213x10° | |-G1: 5.9863x10"
initial point | 1-G2: 6.7044x10° | 1-G2: 6.9996x10"
(Figure 3) I-G3: 4.1415x10° | |-G3: 5.9260x10"
common 11-G: 5.7652x10° | 11-G: 7.1104x10"
final point 12-G: 3.5489x10° |  |2-G: 7.7006x10"
(not shown) 13-G: 3.7065x10° | |3-G: 6.3143x10"
without 11-G1: 4.6685x10°| 11-G1: 9.2189x10°
common points | 12-G2: 3.4346x10°| 12-G2: 7.2673x10"
(Figure 5) 13-G3: 2.8334x10°| 13-G3: 6.4547x10"
common 11-G1: 6.9224x10°| 11-G1: 1.0087x10°
intermediate | 12-G2: 4.9082x10°| 12-G2: 8.6517x10"
point (Figure 6) | 13-G3: 4.8149x10°| 13-G3: 5.9096x10"

The results for the torques associated with joint
angles were not shown because of lack of space, but the
proposed network model was able to track them with
small error aswell.

5. Conclusonsand Further Work

In this paper, we have proposed a temporal sequence
based control system for robdic trajedory learning.
Despite the simplicity of the model, the system has a
combination of properties which are of great importance
for the design of intelli gent robdic systems, namely:

(1) Acauraterecall of stored temporal patterns;

(2) Disambiguation when trajedories have points in
common;

(3) Toleranceto faults, since a sequence @n till be
retrieved even in the presence of neuronal
falure;

(4) Smple and fast learning;

(5) Learning of inverse kinematics and inverse
dynamics as well;

(6) Lower computational cost when compared with
supervised learning; and

(7) The agorithm can be potentialy adapted to
work on others temporal sequence tasks (such as
mohile roba control, speed remgnition, and
natural language processng).

Further work must be developed in order to explore
the generalizaion ability of the proposed model and
extend the present model to e which generates
appropriate @ntrol actions over the whole roba
working space given a number of trajedories to he
learned.
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