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Abstract

This paper proposes an unsupervised neural algorithm
for trajectory production of a 6-DOF robotic arm. The
model encodes these trajectories in a single training
iteration by using competitive and temporal Hebbian
learning rules and operates by producing the current
and the next position for the robotic arm. In this paper
we will focus on trajectories with one common point.
These types of trajectories introduce some ambiguities,
but even so, the neural algorithm is able to reproduce
them accurately and unambiguously due to context
units used as part of the input. In addition, the
proposed model is shown to be fault-tolerant.

1.  Introduction

One of the major aspects of natural intelli gence is
the abilit y to process temporal information. Temporal
pattern learning and recalli ng are crucial for our
capacity to perceive and generate limb movements,
speech, music, etc. In addition, because we li ve in an
environment that changes continuously, an intelli gent
system must be able to encode patterns over time and to
reproduce them [1].

During the last years, many neural network
approaches have been proposed for the trajectory
generation problem. One of them is known as robot
trajectory learning or robot trajectory encoding [2],[3].

According to the approach above, an artificial
neural network receives as input the current state (such
as position, joint angles and associated torques) of the
robot arm and usually responds with the next state in
order to execute a task defined in advance. This
anticipatory behavior is particularly useful for solving
trajectory ambiguities [4] and is suitable for point-to-
point trajectory control or for trajectory tracking.

Regarding the encoding of robot trajectories,
Althöfer and Bugmann [2] described two types of

neural networks for learning and planning robot arm
movements. The first one, a neural implementation of a
resistive grid [5] for path planning, presented
limitations such as jerkiness of the movements and
inaccurate final positions. The second network is
trained during the read-out of a sequence of movements
as determined by the resistive grid. This network solves
the former limitations by using a RBF model with
receptive fields centered on a sequence of starting
positions in the configuration space of the arm, and
with weights to the output layer being used to point out
to the next position in the space.  This network
generates a smooth arm trajectory  and an accurate
positioning by interpolating points between those given
by means of the resistive grid network.

In the context of mobile robotics, Bugmann et al. [3]
proposed a model that uses Normalized Radial Basis
Functions to encode a sequence of positions forming the
trajectory of an autonomous wheelchair. The network
produces the next position for the wheelchair. As the
trajectory passes several times over the same point,
phase information is added to the position information
to avoid the perceptual aliasing1 problem [4]. The use
of Normalized RBF’s creates an attraction field over the
whole workspace and enables the wheelchair to handle
perturbations caused by the avoidance of people.

Araújo and Vieira [6] and Araújo e D’arbo Jr. [7]
proposed, respectively, temporal associative memory
and recurrent neural networks models for learning and
production of trajectories of a 6-DOF robot arm. In both
cases, the initial and goal positions are given and the
networks produce all the intermediate positions and its
associated joint angles and torques. Both models are
able to retrieve the trained trajectories and are robust (to
a certain degree) to noise. The simulations suggested
that the recurrent neural model is suitable for tracking
the trajectory while the associative memory model is
adequate for interpolating trajectory states.
                                                       
1 This problem involves two or more identical perceptual
inputs that require different responses from the robot.



In this paper, the main goal is to devise an
unsupervised neural algorithm to learn and retrieve
temporal sequences in the form of robot trajectories in
order to perform tracking tasks.

The remaining part of the paper is organized as
follows. In Section 2, we present the proposed
architecture for the unsupervised network and discuss
each component. In Section 3, we introduce the
proposed algorithm and discuss its dynamics in detail s.
In Section 4, some simulations are carried out in order
to show the model abilit y to learn and reproduce the
desired trajectories. The fault-tolerance is also
evaluated. Finall y, in Section 5 we conclude the paper.

2.  The Proposed Architecture

The set of points that specifies the translational and
rotational paths of the manipulator end-effector as a
function of time is referred to as a trajectory [8]. In our
case, the robot trajectories are specified as sequences of
eleven points (or states) in which each state is a 15-
dimensional vector consisting of the Cartesian
coordinates (x, y, z), the joint angles (θ1,..., θ6), and the
torques (τ1,..., τ6) associated with that spatial position.

The architecture of the proposed model is shown in
Figure 1. It comprises two layers of neurons, in which
each input node is connected to all output neurons
through feedforward weights wji, where i indicates the
input node and j, the output one. The network activates
the neurons that encode the current and the next states
of the trajectory once an input state arrives.

Every time an input state is presented to the net, a
neuron with the most similar weight vector to the input
is activated. This neuron is called the winner of the
competition for that input pattern. The weights, arriving
to this particular winning neuron, encode the state of
the trajectory at a particular instant of time.

In this model, each state of the trajectory must be
represented by a single neuron (or a small group of
neurons). Thus, a mechanism must be provided to avoid
that such a group responds for more than one state of
the trajectory. The mechanism adopted in the current
work, exclude the current winning neuron from all
subsequent competitions for trajectory states.
Furthermore, the exclusion mechanism allocates
different neurons for equal states occurring in different
instants of time. This kind of situation may occur when
a trajectory passes more than one time through the same
point.

Each output neuron projects a connection to itself,
mjj(t), and to all other nodes, mjr(t). These connections
encode the temporal ordering of the input trajectory.
Once active, the current winning neuron triggers,
through the lateral connections, the neuron that encodes

the next point of the trajectory. Both neurons remain
active. In order to differentiate the responses, the
activation of the current winning neuron is made lower
(through the self-connection) than the activation of the
neuron encoding the next state.

It is important to note the presence of time delays in
the proposed architecture. They implement a short-term
memory (STM) model [1]. That enables temporal
association between patterns occurring in consecutive
instants of time.

The context vector is of great importance to the
proposed architecture. Without it, only trajectories with
no points in common can be reproduced. The context
information allows the network to distinguish between
equal states belonging to different trajectories. For
example, two trajectories with a state in common
usually have different initial or goal states. One of these
can be used as a context information.

Differently from previous models for trajectory
encoding [3], [4], which use pre-wired network weights,
the proposed algorithm learns to encode the temporal
order by self-organization. In the next section the neural
algorithm is presented and discussed in detail .

3.  The Proposed Algorithm

The steps of the neural algorithm are defined as:

(1)  Initiali ze the network as follows:

wji(0) = random[0, 1], for all i, j;

mjr(0) = 0, for all j, r;

aj(0) = yj(0) = 0, for all j.

fj(0) = 1, for all j.

where random[0, 1] is a number between 0 and 1. aj(t)
and yj(t) are the activation and output of neuron j,
respectively. The function  fj(t) is called neuron
exclusion factor.

Figure 1. The topo logy of the propo sed network,
where the time delays implement the short-term
memory. Only some conn ections are shown.
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(2) Present an input stimulus to the net.

(3)  Determine the winning neurons:

For every input vector, order the output neurons
according to their distance to the input vector v(t). i.e:

( ) ( ) ( ) ( ) ( ) ( )f t t t f t t tµ µ µ µ1 1 2 2v w v w− < − <�
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where µ1(t) is the index of the winning neuron (the one
closest to the input) of the current competition, µ2(t) is
the index of the second neuron closest to the input, and
so on. The index k indicates the number of neurons
used to encode each input pattern per competition (for
example, for k=2, two neurons will remain active) and
N is the number of output neurons. The choice of more
than one neuron per state prevents catastrophic loss of a
entire trajectory when a single neuron fail s.

The function ( )f tj  is updated according to:

( )f tj =



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,1

where α >> 0 is large enough in order to exclude the
chosen neurons from all subsequent competitions.

(4)  Determine the activations:

The activations are determined by
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and A and γ are constant values, so that A > γ.

(5) Adjust the feedforward weights:

Adapt the feedforward weight vectors according to
the following competiti ve learning rule [9]:

( ) ( ) ( ) ( ) ( ) ( )[ ]w w x wj j j jt t t a t t t+ = + −1 δ        (4)

where δ (≈1) is the learning rate determining how
similar to the input x(t) will be the weight vector wj(t).
Only those neurons with activations not equal to zero
are allowed to learn.

(6)  Adjust the self- and lateral connections:

The lateral weights are liable for encoding the
temporal ordering of the input sequence. When an input
stimulus is presented, the network will activate at least
two neurons. One should respond for the current input
pattern (less activated neuron) and the other indicates
the next state of the trajectory (most activated neuron).

The ideas behind the learning rules are the
following: (i) self-connections should weaken the
activation, and (ii ) lateral connections from the winners
of the last competition to the winner of the current
competition should be Establi shed. By inhibiting its
activity through the self-connection and exciting other
neuron through a lateral weight, the winning neuron of
the current competition determines the current and the
next state of the trajectory. Mathematicall y, we have the
following learning rules:

(6a) Learning procedure for self-connections:

for { j = µ1(t), µ2(t), ..., µk(t)}   do:

      ( ) ( ) ( )m t m t a tjj jj j+ = +1 β ,                     (5)

where β is the learning rate and µ1(t), µ2(t), ..., µk(t) are
the indexes of the winners of the current competition.

(6b) Learning procedure for lateral connections:

for { j = µ1(t), µ2(t), ..., µk(t)} ,

for { r = µ1(t-1), µ2(t-1), ..., µk(t-1)}   do:

( ) ( ) ( ) ( )m t m t a t a tjr jr j r+ = + −1 1λ          (6)

where λ=1-β is the learning rate, µ1(t), µ2(t), ..., µk(t)
are the winners of the current competition and  µ1(t-1),
µ2(t-1), ..., µk(t-1) are the winners of the last
competition. Note that equation (6) represents a simple
temporal version of the correlation (or Hebbian)
learning [10] between the activations of the output
neurons in different instants of time. Thus, connections
are always establi shed from the winners at time t-1
(represented by the index r) to winners at time t
(represented by the index j). By defining β<λ, the
activation of the neuron representing the current input
is made smaller than that of the neuron encoding the
next state of the trajectory. The activations ar(t-1) in (6)
are obtained through the time-delays.

(7) Determine the outputs:

The outputs are determined through the simple
weighted summation:

for j = µ1, µ2, ..., µk

Otherwise.
(2)

(1)



( ) ( ) ( )y t m t a tj jr r
r

N
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where mjr(t) is the connection weight between the
output neurons r and j.

Suppose that neuron three is the winner for the
current input state, so according to equations (1) and (3)
we have: µ1(t) = 3 and  a3(t) = 1. The remaining
activations are zero (we have chosen k=1, for
simplicity). Now, also suppose that the next state of the
trajectory was encoded by neuron 7. Hence, because the
temporal order is to be encoded by the lateral weights,
there must be a non-zero self-connection for neuron 3
and a non-zero lateral connection from neuron 3 to
neuron 7. Thus, m33=0.2 and m73=0.8, for example.
Thus, according to equation (7) the outputs during the
reproduction phase are:

y3(t) = m33(t)a3(t) = (0.2).(1.0) = 0.2 (8)

y7(t) = m73(t)a3(t) = (0.8).(1.0) = 0.8 (9)

yj(t) = 0,  for all j ≠ 3 and  j ≠ 7                           (10)

Equations (8), (9) e (10) mean that the neuron 3 is
the most similar to the current input pattern and neuron
7 is the next state of the trajectory. The process
continues from step (2) until the end of the trajectory is
reached. For trajectory reproduction, steps (5) and (6)
are skipped. In the next section, we show some
simulations results involving different trajectories.

4.  The simulations

The different trajectories considered for study are
shown in Figure 2.

The trajectories 2b, 2c, and 2d have at least one
point in common, which may introduce ambiguities
during the reproduction of the sequence. This problem
is stated as: which trajectory should the arm follow
when each candidate has points in common with

another one? This problem is solved by using a fixed context
vector given as part of the input, remaining clamped to the
input during both trajectory learning and reproduction phases.

In this paper, the trajectories were defined in
advance, being generated by the toolbox robotics of
MATLAB [11]. However, the robot arm could be
trained by a “ teach-by-showing” method. In this case,
an user would push the arm through the desired
trajectories.

The network parameters were set to α = 1000, k=2,
A = 1, γ = 0.97, δ = 0.99, β = 0.2, and λ = 1-β = 0.8.
The number of output neurons was set to 70 and three
trajectories per case were trained sequentiall y in only
one presentation for each trajectory. The context units
were made equal to the goal position of the trajectory
under consideration, changing when another trajectory
is considered. The tests are similar to those presented in
[6] and [7], and for Figures 3-6 only the results for the
first winner are shown.

As a measure for the tracking error, we used the
following expression:
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where (xd, yd, zd) and (xr, yr, zr) are the desired and the
retrieved spatial coordinates, Np is the number of points
of the trajectory and t is the position in the sequence.
For example, t=1 indicates the first vector in the sequence.

Figure 3 shows the results for three trajectories with
the same starting point located at (0.6, 0.1, 0.0). Note
that the retrieved and the desired trajectories in all the
three cases are very similar. The tracking error for
trajectory I-G1 is 5.224x10-5. This ill ustrates the abilit y
of the model in accurately encoding an input state in
only one iteration.

I

G2

G1

G3

 I - initial point
 G - goal point

Figure 4 ill ustrates the desired and the retrieved
joint angles for the trajectory I-G1. It also has very
good performance, confirming the adequacy of the
model for trajectory tracking. The ambiguity faced by
the network when it has to decide which trajectory to
follow is resolved by the knowledge of the goal position.

(d)

(a) (b)

(c)
Figure 2. Types of t rajectories considered for study.
The fill ed circle indicates the initial position and “ x”
stands for the final position.

Figure 3. Desired ‘o’ and retrieved ‘*’ spatial
trajectories with same starting point (0.6, 0.1, 0.0).
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Figure 5 ill ustrates the results for three trajectories
with no points in common.   This situation is
considered by the model as the easiest one to be
encoded, because there is no ambiguity. The model was
able to reproduce the trained trajectories with a small
tracking error (e.g. 4.67x10-5, for the sequence I1-G1).
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The next simulation considers trajectories with one
crossing point. The desired and retrieved spatial
position are shown in Figure 6a. The corresponding
joint angles are shown in Figure 6b. In this case, the
context units also play an important role. The
trajectories are harder to be followed because of their
abrupt change of directions. Even so, the model was
able to track them with a small error (6.92x10-5 for
trajectory I1-G1).

I1
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I2

G2

 I - initial point

 G - goal point
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The last simulation explores the fault-tolerance
abilit y of the model. We have simulated a worst-case
situation, namely: all first winners for each state of the
trajectory I2-G2 in Figure 5a have collapsed for some
reason (for example, hardware failure in a real
implementation). The results are shown in Figure 7.

I

G

 I - initial point
G - goal point
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Figure 4. The desired ‘o’ and the retrieved ‘*’ j oint
angles for trajectory I-G1 in Figure 3.

Figure 6. Trajectories with on e cross ing po int: (a)
spatial positions: (b) joint angles for trajectory I1-
G1.

(b)

(a)

Figure 7. Simulation o f the worst-case c ond ition
(collapse of all first winners) for trajectory I2-G2 in
Figure 6a: (a) spatial points and (b) joint angles.

(b)

(a)
(b)

Figure 5. Trajectories withou t comm on points: (a)
spatial points; (b) joint angles and (c) for trajectory
I1-G1.

(a)



Even for this catastrophic situation, the tracking
error was quite small , 5.91x10-4. It is worth noting in
Figure 7a that the network dynamics tend to maintain
an accurate initial and final position even for second
winners. The joint angles are shown in Figure 7b.

One could ask that this last result can be improved if
we change step 6 of the algorithm by assigning the
same activation value to all winners (aj=1 for all j=1..k).
In this case we would be improving the fault-tolerance
and the total accuracy but worsening the tolerance to
noise and the generali zation abilit y of the proposed
model.

Table 1 summarizes the tracking errors for the
trajectories discussed in this work. The best condition
refers to the situation in which the first winners for each
state of the trajectories are used to retrieve them.

TRAJECTORY
TYPE

BEST
CONDITION

WORST
CONDITION

common
initial point

(Figure 3)
common

final point
(not shown)

without
common points

(Figure 5)
common

intermediate
point (Figure 6)

The results for the torques associated with joint
angles were not shown because of lack of space, but the
proposed network model was able to track them with
small error as well .

5.  Conclusions and Further Work

In this paper, we have proposed a temporal sequence
based control system for robotic trajectory learning.
Despite the simplicity of the model, the system has a
combination of properties which are of great importance
for the design of intelli gent robotic systems, namely:

(1)  Accurate recall of stored temporal patterns;
(2)  Disambiguation when trajectories have points in

common;
(3)  Tolerance to faults, since a sequence can still be

retrieved even in the presence of neuronal
failure;

(4)  Simple and fast learning;
(5)  Learning of inverse kinematics and inverse

dynamics as well;
(6)  Lower computational cost when compared with

supervised learning; and
(7)  The algorithm can be potentiall y adapted to

work on others temporal sequence tasks (such as
mobile robot control, speech recognition, and
natural language processing).

Further work must be developed in order to explore
the generali zation abilit y of the proposed model and
extend the present model to one which generates
appropriate control actions over the whole robot
working space given a number of trajectories to be
learned.
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Table 1. Summ ary of track ing errors

I-G1: 5.9863x10-4

I-G2: 6.9996x10-4

I-G3: 5.9260x10-4

I1-G: 7.1104x10-4

I2-G: 7.7006x10-4

I3-G: 6.3143x10-4

I1-G1: 9.2189x10-4

I2-G2: 7.2673x10-4

I3-G3: 6.4547x10-4

I1-G1: 1.0087x10-3

I2-G2: 8.6517x10-4

I3-G3: 5.9096x10-4

I-G1: 5.2213x10-5

I-G2: 6.7044x10-5

I-G3: 4.1415x10-5

I1-G: 5.7652x10-5

I2-G: 3.5489x10-5

I3-G: 3.7065x10-5

I1-G1: 4.6685x10-5

I2-G2: 3.4346x10-5

I3-G3: 2.8334x10-5

I1-G1: 6.9224x10-5

I2-G2: 4.9082x10-5

I3-G3: 4.8149x10-5


