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Abstract

Single electrode recordings in inferotemporal cortex of monkeys during
delayed visual memory tasks provide evidence for attractor dynamics in the
observed region. The persistent elevated delay activities could be internal
representations of features of the learned visual stimuli shown to the monkey
during training. When uncorrelated stimuli are presented during training in a
fixed sequence, these experiments display significant correlations between the
internal representations. Recently a simple model of attractor neural network
has reproduced quantitatively the measured correlations. An underlying as-
sumption of the model is that the synaptic matrix formed during the training
phase contains in its efficacies information about the contiguity of persistent
stimuli in the training sequence. We present here a simple unsupervised learn-
ing dynamics which produces such a synaptic matrix if sequences of stimuli
are repeatedly presented to the network at fixed order. The resulting matrix
is then shown to convert temporal correlations during training into spatial
correlations between attractors. The scenario is that, in presence of selective
delay activity, at the presentation of each stimulus, the activity distribution in
the neural assembly contains information both of the current stimulus as well
as of the previous one (carried by the attractor). Thus the recurrent synap-
tic matrix can code not only for each of the stimuli which were presented to
the network, but also for their context. We combine the idea that for learn-
ing to be effective synaptic modification should be stochastic, with the fact
that attractors provide learnable information about two consecutive stimuli.
We calculate explicitly the probability distribution of synaptic eflicacies as a
function of training protocol, i.e. the order in which stimuli are presented

to the network. We then solve for the dynamics of a network composed of



integrate-and-fire excitatory and inhibitory neurons with a matrix of synaptic
collaterals resulting from the learning dynamics.

The network has a stable spontaneous activity, and stable delay activity
develops after a critical learning stage. The availability of a learning dynamics
makes possible a number of experimental predictions for the dependence of the
delay activity distributions and the correlations between them, on the learning
stage and the learning protocol. In particular it makes specific predictions for

pair-associates delay experiments.

1 Introduction

1.1 Correlated delay activities — experiment and theory

In the last twenty years there has been a wealth of evidence for the existence of local
reverberations of cell assemblies in inferotemporal cortex (Fuster and Jervey 1981,
Miyashita and Chang 1988, Miyashita 1988, Sakai and Miyashita 1991, Tanaka
1992), prefrontal cortex (Fuster 1973, Niki 1974, Goldman-Rakic 1987, Wilson et
al 1993), and other areas of primates during delayed visual memory tasks (for
a review see Fuster 1995). Together with experimental data, models have been
proposed to account for the persistent delay activities (Dehaene and Changeux
1989, Zipser et al 1993, Griniasty et al 1993), in which excitatory synapses store
the information about the visual stimuli. The experiments of Miyashita (1988)
on the activity in IT cortex of monkeys trained to perform a DMS task have
disclosed significant correlations in the persistent delay activities following the
presentation of uncorrelated stimuli, when those are presented during training in
a fixed sequence.

Theoretical studies (Griniasty et al 1993, Amit et al 1994, Brunel 1994) have
demonstrated that attractor neural networks which embed in their synaptic struc-
ture information about contiguous stimuli learned in a sequence, have correlated
delay activities even though the learned stimuli are uncorrelated. It may be worth
pointing out that when stimuli arrive at I'T they may be uncorrelated because they
have been so prepared, or because they have been decorrelated on the way (Bar-

low 1961, Linsker 1989, Atick 1992). In the model networks, the delay activity



provoked in the neural assembly by the presentation of a given learned stimulus is
correlated with the delay activity corresponding to other stimuli until a separation
of several stimuli in the training sequence, despite the fact that the synaptic matrix
connects only consecutive stimuli in the sequence. The appearance of such corre-
lations between the different delay activities is a transcription, during the learning
process, of temporal correlations in the training information, into spatial (activity
distribution) correlations of the internal representations of the different stimuli.
The network has therefore a memory of the context of the presented stimuli. Some
cognitive implications of this context sensitivity have been outlined in (Amit 1995).

The model simulated by Amit et al (1994) consists of a network of integrate-
and-fire neurons represented by their current to spike rate transduction function
(Amit and Tsodyks 1991). Such neurons are taken to represent the excitatory
neurons of the network, the pyramidal cells. It is in the synaptic matrix connecting
these neurons that learning is manifested. The synaptic matrix, representing the
training process, is constructed to represent the inclusion of the information about
the contiguity of patterns in the training sequence, as in (Griniasty et al 1993).
Inhibition is taken to have fixed synapses and its role is to react in proportion to the
mean level of activity in the excitatory network, so as to control the overall activity
in the network. The delay activities are investigated by presenting to the neural
module one of the uncorrelated stimuli as a set of afferent currents into a subset
of the excitatory neurons. These currents are removed after a short time and the
network is allowed to follow the dynamics as governed by the feedback represented
in the matrix of synaptic collaterals. Eventually, the network arrives at a stationary
distribution of spike rates. This is the delay activity distribution corresponding
to the stimulus which excited the network. Simulations of the model (Amit et
al 1994) are in quantitative agreement with the experimental data of Miyashita
(1988).

The dynamics of the model has been solved analytically in simplified conditions
(Brunel 1994). This makes possible the explicit calculation of the correlations be-
tween the internal representations, as a function of the parameters of the model.
The main parameters controlling these correlations are the strength of the inclusion
of the contiguity between stimuli in the synaptic matrix, relative to the strength of

the inclusion of the stimuli themselves, and the balance between recurrent excita-



tory and inhibitory synaptic efficacies. The analysis deduces the mean fraction of
neurons activated by a given stimulus (coding level, or sparseness) in the observed
region, from the experimental data of (Miyashita 1988). This in turn makes pos-
sible the calculation of the correlation coefficients, which are again in quantitative
agreement with all the available experimental data (see Fig. 9 of Brunel 1994), and
the simulations of Amit et al (1994).

These previous studies (Griniasty et al 1993, Amit et al 1994, Brunel 1994)
used a fixed pre-arranged synaptic matrix. In (Amit et al 1994, Brunel 1994) the
matrix was chosen to be similar to the Willshaw matrix (Willshaw et al 1969),
with a limited number of synaptic states. Memory is coded exclusively in the
excitatory-to-excitatory synapses. An important result (Amit et al 1994) is that
the correlations are rather insensitive to the particular matrix chosen, provided it
is Hebbian and that it includes the memory of the contiguity between stimuli.

What is missing is a plausible dynamic learning process leading to a synaptic
matrix which incorporates information of the temporal context of the stimuli shown
to the network. One way of implementing learning dynamics is to allow for each
synaptic efficacy a limited number of stable values (Amit and Fusi 1994). Learning,
which may be analog on the short term, becomes a walk between the discrete
stable efficacies in the long term. To make such learning efficient, transitions
between the different states, provoked in a Hebbian way during the presentation of
a stimulus by the activity of pre and post synaptic neurons, should be stochastic.
Such dynamics has been simulated (Amit and Brunel 1995a) and analyzed (Amit
and Fusi 1994). A synaptic matrix endowed with such a dynamics is able to learn
internal representations of the classes of stimuli shown to the network. However
the stochastic process studied by Amit and Fusi (1994) precludes the possibility of

learning any temporal correlations between stimuli.

1.2 The present work

In the following we first discuss a possible scenario for learning in presence of delay
activity which naturally leads to the inclusion of temporal correlations between
stimuli in the synaptic matrix. The scenario is that first uncorrelated attractors

are formed. An attractor then carries information from the stimulus that provoked



it until the presentation of the next stimulus. This information allows for a simple
synaptic mechanism to store the memory of the context of any stimulus. We study
the case of a finite set of stimuli which are repeatedly shown to the network. In
the simplified case in which every excitatory neuron in the network is activated
by at most one stimulus (Brunel 1994), it is possible to calculate explicitly the
probability distribution of every synaptic efficacy as a function of the learning
procedure. If stimuli are shown repeatedly in a fixed order during learning, the
resulting synaptic matrix is similar to the fixed matrix used in (Amit et al 1994,
Brunel 1994). Given the synaptic matrix we solve for the neural dynamics of the
attractor network as in (Brunel 1994), when one of the stimuli is presented. The
generic features of such a learning process will be discussed elsewhere (Brunel and
Fusi 1995).

The network we study is composed of a large number of excitatory and inhibito-
ry integrate-and-fire neurons, described by the statistics of their afferent currents
and their spike emission rates. The network represents a local module, similar to a
cortical column, embedded in a much larger sea of neurons (the entire cortex). The
module can be distinguished from the global network by two features: the high
local excitatory connectivity and the range of inhibitory interactions (Braitenberg
and Schuz 1991). Such a network has a stable state of low activity in which all
neurons have a spontaneous activity of the order of 1-5 spikes per second in a plau-
sible region of parameters (Amit and Brunel 1995b). Furthermore, when learning
occurs in the local module, and the synaptic modifications are strong enough, a
set of attractors correlated with the stimuli presented to the network develops. In
each attractor a small subset of the excitatory neurons — the neurons which are
activated by a particular stimulus — have elevated delay activities, of the order
of 20-40 spikes per second. We choose to study both learning and retrieval dy-
namics in this network since the activity in its attractors is roughly in agreement
with recorded data during DMS experiments in both inferotemporal and prefrontal
cortex.

When learning occurs in the present network, upon repeated presentation of
stimuli, uncorrelated attractors are initially formed. These attractors make possi-
ble the inclusion of temporal correlations between stimuli in the synaptic matrix.

This in turn provokes significant correlations in the delay activities corresponding



to stimuli which have been shown repeatedly contiguously to the network. There-
fore the correlations between the internal representations of different stimuli reflect
their context.

Using a plausible learning process one reproduces the results found in (Amit
et al 1994, Brunel 1994), which are in good agreement with experimental data
(Miyashita 1988). This is not surprising since the synaptic matrix resulting from
many presentations of the stimuli is quite similar to the matrix that was postulated
in (Amit et al 1994, Brunel 1994). One essential novelty is that the entire phe-
nomenon takes place in presence of stable spontaneous activity. The advantage of
using the more realistic neural model of Amit and Brunel (1995b) is that neurons
have both spontaneous and selective activity roughly in the range of the recorded
data.

The analysis allows to predict:

e The evolution of the delay activities and of the correlations between the

internal representations during training, for a fixed training procedure;

o The dependence of the correlations on the training procedure.

The predictions of the theory are accessible to experiments as in (Miyashita and
Chang 1988, Miyashita 1988, Sakai and Miyashita 1991). We focus the analysis on

two particular cases.

e Training with stimuli in a fixed sequence, as in (Miyashita 1988).

e Training with associated pairs, as in (Sakai and Miyashita 1991): a set of
stimuli is divided into pairs. Stimuli in each pair are presented in fixed

order. Pairs are presented at random.

We also show how it is possible to deal with intermediate cases, as when the
sequence of stimuli is interspersed with random items.

The paper is organized as follows. In section 2 we present in detail the model
network and its elements. In the following section we present a simple scenario of
synaptic dynamics which incorporates both associative LTP and LTD. Then we

describe a typical protocol of a visual memory experiment in which a delay period



always follows the presentation of a stimulus. We show that in this situation the
analog synaptic dynamics reduces to a stochastic process acting on a two state
synapse. We then study in detail which kind of synaptic transitions may occur,
depending on whether there is selective delay activity following the presentation
of a stimulus or not. In section 4 we study the situation of a small set of stimuli
repeatedly shown to the network. In this case we calculate explicitly the probability
distribution of the synaptic efficacies of the network as a function of the learning
stage and of the learning protocol. Then, in section 5, we study the network
dynamics and show the influence of the synaptic dynamics on the delay activity
which is stabilized by the network after the presentation of a learned stimulus.
This allows to study the structure of the delay activity distributions as a function

of the learning stage and the learning protocol.

2 The model neurons

Each neuron in the network receives three types of inputs: from recurrent (collater-
al) excitatory connections from other neurons in the same network; from inhibitory
neurons inside the network; from excitatory neurons in other, unspecified, areas.
The collateral connectivity in the network has no geometric structure: a neuron
has equal probability (about 0.1) of having a synapse on any other neuron.

Both excitatory and inhibitory neurons are leaky integrate-and-fire neurons
described by the statistics of their input currents, which determines their firing
rates (Amit and Brunel 1995b). Each type of neuron is characterized by a threshold
6., a post-spike hyperpolarization H,, an integration time constant 7,, with o =
E, I indicating whether the neuron is excitatory or inhibitory, respectively. A
neuron ¢ of type « receives a large number of afferent spikes per integration time
(Amit and Brunel 1995b), and hence a Gaussian white noise input current of mean
I? and standard deviation o', through C,, synaptic contacts, which are divided in
C.g excitatory synapses and C,; inhibitory ones.

The synapses in the network are of four types, depending on all the possible
types of pre and post synaptic neurons. For each synaptic type the efficacies
Jij (1 and j denote the post and pre synaptic neuron, respectively) are drawn

randomly from the distribution P,s(.J) (a and 3 denote the type of post and pre



synaptic neuron, respectively). P,z has mean J,; and standard deviation J,zA,
where A represents the variability in the synaptic amplitude. A fraction z, of the
excitatory connections on a neuron of type « arrive from outside the network. The
excitatory to excitatory connections are plastic: the distribution Pgg(J) specifies
the distribution of excitatory to excitatory links before the learning stage. As we
will see later learning will modify this synaptic distribution.

The spike rate of excitatory neuron i is v¥. The rate of inhibitory neuron s

1

v;. The input currents from outside the column are described by a white noise

ext
%

with mean If** and standard deviation o This input currents are provoked,
in absence of a stimulus, by the background activity outside of the network. In
presence of a stimulus, the input currents are the sum of the background input and
of the input provoked by that stimulus.

We assume that the correlations between the spike emission times of different
neurons in the network do not affect significantly their spike rates. Thus we consid-
er the spike emission processes of different neurons in the network as uncorrelated.
In this case the mean and variance of the input current to a neuron in the module
are the sum of three independent contributions, coming from external excitatory,
recurrent excitatory, and inhibitory currents (see Amit and Brunel 1995b)

=" 4y TP — 7y I3 (1)
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These currents are integrated by the membrane depolarization at the soma with a

time constant 7,. The firing rate of neuron ¢ of type « is given by

where
B—1I

(I, 0) = (7’0 + 7, /HO:I duﬁexp(uz)[l + erf(u)]) B (3)

o

is the transduction function(Ricciardi 1977), which depends on the absolute refrac-

tory period 7, the threshold 6, and post-spike hyperpolarization, or reset potential,
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Figure 1: Current to frequency transduction function v = ¢(I, o) for §=20mV,
H=0, 7=10 ms, 7= 2 ms and three values for the amplitude of the fluctuations of

the currents o= 0 (full line), 2 mV (dashed line) and 5 mV (dotted line).

H,. The function ¢ is plotted as a function of I for three different values of ¢ in
Fig. 1. It shows that the fluctuations of the currents have a significant effect on
the spike rates when the average current depolarizes the neuron below threshold.
Note that the precise form of the transduction function, Eq. 3, is not necessary for
the qualitative features of the behaviour of the network.

In the following we take: 8y = 8y = 20 mV above the resting potential; Hg =
H;=0; 75 = 10 ms; 77 = 2 ms; 79 = 2 ms.

The connectivity parameters are: gy = ;7 = 0.5; Cgp = Crg = 20000; Cgr =
C'rr = 2000. The average synaptic efficacies are expressed by the amplitude of the
(excitatory or inhibitory) postsynaptic potential provoked by a spike, and thus in
units of the potential: Jpp = 0.04 mV; J;p = J;; = 0.14 mV; Jgr = 0.05 mV.
The synaptic variability is taken to be A = 1. The synaptic external input has
mean " = 11 mV and RMS ¢ = 0.9 mV into excitatory neurons, and [" =
8.6 mV and RMS 1.6 mV into inhibitory neurons. These currents correspond to
the activation of all the excitatory synapses coming from outside the network at a

background rate of 3 s7!. For these parameters the network has a stable state of



spontaneous activity in which excitatory neurons emit about 3 spikes per second,
while inhibitory ones emit 4.2 spikes per second.

Note that this set of parameters is in a biologically plausible region (Braiten-
berg and Schuz 1991, Komatsu et al 1988, Mason et al 1991). The excitatory to
excitatory synaptic efficacy is slightly smaller than the reported range of unitary
EPSPs in neocortex and hippocampus, but we have here a neuron that sums linear-
ly its inputs. When the input is nonlinear a larger number of EPSPs are necessary
to reach threshold than for a linear input, so the effective synaptic efficacy would
be smaller than the reported values in the case of a large number of inputs. In
fact, the qualitative features to be discussed are fairly robust to small changes in
the synaptic efficacies. If the inhibitory efficacies are weakened too much relative

to the excitatory efficacies, the spontaneous activity state becomes unstable (Amit

and Brunel 1995b).

3 Learning dynamics

3.1 Analog short term synaptic dynamics

Excitatory-to-excitatory synapses in the network are plastic. Hebbian learning is
modelled by a synaptic dynamics which incorporates both associative long term

potentiation (LTP) and long term depression (LTD) (Amit and Brunel 1995a):
redij(t) = = T(t) + cii(t) + (T = Jo)O (J5(t) = wi(h)) + Jo. (4)

It is basically an integrator with a time constant 7.. The integrator has a
structured source ¢;;(t), representing hebbian learning. This source is given in
terms of the neural rates, v;(t) and v,(t), of the two neurons connected by this

synapse as

cij(t) = Apwi(t)vi(t) — A_[wi(t) + vi(t)] (5)
A4,— are positive parameters separating potentiation from depression. Their values

are chosen so that when the rates of both neurons are high ¢;; >0; if one is high

and one is low ¢;; <0; and if both are very low ¢;; 1s negligible.
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The last term on the right hand side of Eq. 4 is the ‘refresh’ mechanism discussed
in detail in Badoni et al (1995). It represents one way of preventing the loss of
memory due to the decay of the integrator when no source is present. If at any given
moment the source ¢;;(t) exceeds the fluctuating threshold w;;(t), a refresh source
turns on to drive the synapse to the high value J;. If later the source vanishes this
synaptic value will remain above its threshold and the efficacy J; will be stable,
indefinitely. On the other hand, if the instantaneous synaptic value is low, either
because 1t started low, or because it was high and the learning source was negative
enough, the refresh source turns off, and in the absence of a source that synapse
decays to Jy. This is the other long-term, stable state of a synapse. The transition
of a synapse from the lower stable state to the upper one is identified with LTP.
The opposite transition is LTD. This type of learning is realistic in the sense that
it can be (and has been) implemented in a material device (Badoni et al 1995). It
also incorporates the experimentally characterized distinction between short term
synaptic plasticity, represented by the analog dynamics driven by the source ¢;; in
Eq. 4, and long term changes, represented by the stable synaptic states J; and Jy
separated by the threshold (see e.g. Bliss and Collingridge 1993).

The threshold is taken to be fluctuating to make the learning process more re-
alistic. Here we have chosen to put noise on the threshold, but we could also have
chosen a fluctuating source ¢;;, whose average would be the r.h.s of Eq. (5). Inter-
estingly enough, it has been shown that when synaptic transitions are stochastic
the capacity of the network is enhanced with respect to deterministic transitions
(Amit and Fusi 1994, Brunel and Fusi 1995), though learning will be slower.

As a consequence, in absence of the source term each synapse has two asymp-
totically stable values, Jy and J;. We further assume that the fluctuations of the
threshold are limited to an interval [Jo 4 64, J; — 6_]. The fluctuating threshold
therefore defines a potentiation threshold 6, such that if the synaptic value is ini-
tially low, there is a finite transition probability J, — J; when the source ¢;; > 0.,
and a depression threshold 8_ such that if the synaptic value is initially high, there
is a finite transition probability J; — Jy when ¢;; < —6_. These thresholds are
such that Jy < Jo+ 64 < J; —0_ < J;. We illustrate in Fig. 2 two examples of the
evolution of the synaptic efficacy upon presentation of a stimulus. In both cases

the synaptic efficacy is initially at Jy and the source term ¢;; is higher than the
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Figure 2: Analog synaptic dynamics. Synaptic efficacy (full line) initially at Jo.
An external stimulus imposes ¢;; > 6, during the interval 50 < ¢t < 150. In the
upper figure, the synapse does not cross the fluctuating threshold (dashed line) and
remains in its low state Jy. In the lower figure, the synapse crosses the fluctuating
threshold and makes a transition towards the high state J;. Parameters: J, = 0.04
mV; J; =0.15mV; 6, = 0.04d mV; §_ =0.04 mV.
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Figure 3: Typical learning protocol in a ‘visual memory’ experiment. Stimuli are
presented in a sequence, with a delay between two successive presentations. The

line represents schematically the level of external currents to the local network.

threshold 6. In the upper figure the synaptic efficacy does not cross the fluctu-
ating threshold and decays to its low stable value after the stimulus is removed.
In the lower figure the synaptic efficacy crosses the threshold and is driven to the

high state Jy, which is stable in absence of a stimulus.

3.2 Learning protocol and external currents

The schematic learning protocol we model is as follows. The stimuli shown to the
network are labelled by ¢ = 1,...,p. During the presentation of stimulus p, the
mean external current received by an excitatory neuron ¢ is incremented selectively
by Lyn!, where ! = 1,0 is the symbolic indication of whether cell ¢ is activated
by stimulus g or not. In absence of a stimulus the excitatory afferent is just the
spontaneous noise. Inhibitory neurons are not activated by the stimulus. The
presentation of a stimulus is followed by a delay period of length ¢4, in which the
selective part of the current is removed. Therefore, a typical experiment can be
schematized by Fig. 3 in which presentation and delay intervals are kept fixed. The
duration of each presentation ¢, is taken to be much longer than the neuronal time
constants 75 ;. Thus ¢, > 10 ms.

Note that in a delayed match to sample (DMS) experiment the sequence of
stimuli is an alternate sequence of sample and match stimuli. The match stimulus

is typically taken to be equal to the sample stimulus with 50% probability, and
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another randomly chosen stimulus otherwise. The learning protocol specifies how
the sequence of sample stimuli is presented (see below).
To simplify the discussion we suppose that when stimulus g is shown, the

activated excitatory neurons go rapidly to a steady state rate v;:
vi=(V —vnt +vs

where v, is the spontaneous rate of excitatory neurons, during presentation of the
stimulus. When neuron ¢ is activated by a stimulus it goes to a high activity state
V > v, while if it is not activated it stays at spontaneous activity levels. When

the stimulus is removed two possibilities may occur (Amit and Brunel 1995a):

o the stimulus is unfamiliar: the network goes rapidly into its uniform, un-

structured, spontaneous activity state,

V; = Vg

o the stimulus is familiar: the activity of neurons which are activated during
the presentation of the stimulus persists during the delay period, but with

lower rates than during the presentation
vi=(v—vsn + vs
where V > v > v,.

Following the delay period, when the next stimulus is presented, there is a short
interval in which both neurons active in the delay period and neurons activated
by the next stimulus will be active. Later inhibition turns off the activity of the
neuron which participated in the attractor in the delay period, leaving active only
those neurons which are tagged by the new stimulus (Amit and Brunel 1995a).
This transient interval is assumed to be short compared to the presentation time.
It will be typically of the order of the integration time 75 of an excitatory neuron.

We further assume that the delay period is much longer than the synaptic
integration time constant 7.. In this case, in absence of delay activity, at the end
of the delay period all synapses in the network will have decayed to their asymptotic

values, i.e. Jy or Ji.
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3.3 Synaptic transitions — no delay activity prior to pre-

sentation

We first consider the case in which there was no delay activity before the presen-
tation of the stimulus. When a stimulus is presented, one of eight situations may
occur at a given synaptic site J;;. For each of the two possible stable values of
the synapse (Jo, J1) there are four pairs of activation states of the pre and post
synaptic neurons by the stimulus: (V, V), (V,0), (0,V), and (0,0) (where the low
spontaneous rate is represented by 0). Note that because we assume a symmetric
role for pre and postsynaptic neurons, cases (V,0) and (0,V) are equivalent, and

we consider only the case (V,0). The number of situations is reduced to six.

e For J;; = Jo and (v;,v;) = (V,V): if the integrated synaptic source (Eq. 4)

over the duration of the presentation ¢, reaches the potentiation threshold,

t
(AL V2 —2\_V) (1 — exp (——p)) R
Te

there is a probability p; of activation of the refresh source, causing a transi-
tion of the synaptic value to J; in the delay period. LTP has occurred. This
probability depends on ¢, = AL V? —2XA_V, 6, , and the ratio t,/7..

e For J;; = J; and (v;,v;) = (V,0) or (0,V): if

A_(V + ) — A V] (1 — exp (—t—p)) > 6

C

the refresh source will be turned off with probability p_. J;; goes to Jy, its
low value, in the subsequent delay period. This transition represents LTD.

p— depends on ¢ = A_(V 4+ v,) — AV, 6_ and the ratio t,/7..
e In all other cases no transitions can occur.

Therefore in absence of delay activity, and when the presentation duration is kept
fixed, we can represent the synaptic dynamics by a discrete stochastic — a random
walk between the two synaptic stable states Jy and J;. This is a familiar situation
(Amit and Fusi 1994, Amit and Brunel 1995a), in which uncorrelated stimuli leads

to uncorrelated attractors.
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3.4 Synaptic transitions — Delay activity prior to the p-

resentation

In contrast, when neural activity persists during the delay period, the synaptic
dynamics depends on the activation of the pre and post synaptic neurons by the
stimulus, but also on the activation of these neurons during the previous delay
period. There are now 32 possible situations, depending on whether J;; is above
or below threshold before the presentation, and on the pair (v;,r;) during both
stimulus presentation and the previous delay period. Since the transient interval
during which either old delay and new stimulus-related activities are present is
short compared to the presentation interval, the probabilities p; and p_ will not
be much affected by the previous delay activity in the situations described in section
3.3, where LTP or LTD occurs only due to stimulus presentation.

A new LTP transition might occur: if before presentation J;; = Jy, and during

the transient interval 75

(v,0)  during the delay period
(vi,v) = { (6)

(0,V)  during the stimulus presentation,

or

(0,v)  during the delay period
(vi,vj) = { (7)

(V,0)  during the stimulus presentation,
and if the integrated source of the synaptic dynamics over 75 crosses the potenti-
ation threshold,
V(Apv —AD) (1 — exp (—:—E)) —A_v >0,

there is a probability ap,, of activation of the refresh source, which will drive the
synaptic efficacy to J; in the subsequent delay period. a is a function of the ratio
T /t, and of v/V. Typically if the presentation duration is much longer than 75
a < 1.

A similar situation would occur also if (v, ;) = (v, v) in the delay. However, in
this case, the probability of LTP during the previous stimulus presentation is much
larger than the one during the short transient period, and can be neglected. The
only new situation leading to LTP in presence of delay activity is the one described

in (6,7). We will see in the following that this has important consequences for the
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Figure 4: Regions where synaptic transitions occur in the (v, v;) plane. Frequencies
are indicated in spikes per second. Above the dashed line LTP transitions occur
due to presynaptic delay activity and postsynaptic activation by the new stimulus.

In this case v; is the delay activity prior to presentation of the stimulus.

synaptic matrix in case of significant temporal correlations in the training sequence
of stimuli, which in turn will affect significantly the neural dynamics.

To conclude we give a numerical example to illustrate the possible scenarios.
We take the background synaptic efficacy Jo = 0.04 mV, J; = 0.15 mV. The
threshold for potentiation is 8, = 0.04 mV above J,, and for depression is §_ =
0.04 mV below J;. The neuronal time constant is 7z = 10 ms. The analog synaptic
time constant is taken to be equal to the neuronal time constant, 7. = 10 ms. This
is consistent with the fact that stimuli shown during times of the order of 100 ms
can be learned, which implies that 7. has to be shorter than 100 ms, otherwise the
analog synaptic value would not have time to reach the threshold w;;. Note also
that the results are not very sensitive to the precise value of 7., as long as it does
not become too long compared to the neuronal time constant. The presentation
duration is t,= 200ms. For A\y = 5.107* mVs? A_ = 4.107® mVs, Fig. 4 shows in
the space (v;, v;) the regions where potentiation or depression are possible.

Three situations leading to possible transitions are schematized in Fig. 5.
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Figure 5: Schematic illustration of synaptic transitions in three situations: time
evolution of synaptic efficacy J;; (lower curves), presynaptic activity (v;) and post-
synaptic activity (1;). @. Pre and postsynaptic neurons activated by stimulus,
synapse initially low. b. Presynaptic neuron silent during stimulus, postsynaptic
neuron activated, synapse initially high. ¢. Presynaptic neuron activated during
stimulus, postsynaptic neuron active in delay, synapse initially low. Note that in
all cases one can permute pre and postsynaptic neurons, due to the symmetry of

the short-term analog learning dynamics.
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To conclude this section we emphasize that one can imagine different scenarios
for the occurrence of LTP when one neuron is active during the delay while the
other is active during presentation of the next stimulus. For example, it would also
naturally occur if the Hebbian source term of the synaptic dynamics described by
Eq. (4) depends not on the instantaneous neural activities, but rather on their
average over some temporal window. In this section we have argued that in a
simple and plausible short term analog dynamics this type of transitions occur
naturally. In the following we will not consider anymore the short-term analog
synaptic dynamics, but only the resulting stochastic process acting on the two

stable synaptic states.

4 Training the network with a fixed set of stimuli

We consider the case of a set E of a finite number of stimuli p. The initial distri-

bution of excitatory to excitatory synaptic bonds is assumed uniform,

IOO(Jij = Jl) = 9(0)7 PO(Jij = Jo) =1- 9(0)

for all (¢,7). During training the stimuli shown to the network are limited to the
set E. The learning protocol defines the order in which the stimuli are presented

to the network. In the following we study the following training protocols:

A . Random sequence: at each presentation the stimulus is chosen randomly out

of F.

B . Fixed order: the stimuli are presented in a fixed cyclic order i.e. 1,2, ..., p, 1,
and so on. We also study the intermediate situation in which at each time
step there is a probability = of showing a randomly chosen stimulus in E
instead of the predetermined one. For x = 1 one recovers the case of random

sequence.

C . Random pairs: stimuli in F are organized in p/2 pairs. Each stimulus p has a
paired associate 1. The pairs are selected at random. When a pair is chosen
both members are shown successively in a random order. We also study the

intermediate situation in which at each time step there is a probability « of
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showing a randomly chosen stimulus instead of one of the paired associates.

Again for x = 1 the random sequence is recovered.

Protocol B is similar to the protocol of the experiment of Miyashita (1988).
In this experiment the sample stimuli are shown in a fixed order, while the match
stimuli are chosen to be the sample with probability 0.5, and a random different
stimulus otherwise. Thus it would correspond to protocol B with a probability
x = 0.5 of showing a random stimulus. Protocol C is similar to the protocol of
Sakai and Miyashita (1991). In this experiment the sample is a randomly selected
stimulus. Then two match stimuli are shown: the paired associate and another
randomly chosen stimulus.

We consider the case in which the coding level f is very small, so that fp <
1, but fCgg, where Cgp is the excitatory to excitatory connectivity, is very
large. Consider neurons which are activated by a specific stimulus p. A frac-
tion (exp[—f(p—1)]) ~1— f(p—1) of these neurons is not activated by any other
stimulus. Thus when fp < 1, most selective neurons are activated by only one
stimulus. We may therefore consider only these neurons, and the network can be
functionally divided in p+1 sets of neurons. One set corresponds to neurons which
are not activated by any stimulus. This set is denoted by Fy. The other sets of
neurons correspond to neurons which are activated by one of the p stimuli. Fj,
is the population of cells which are activated when stimulus g is presented, i.e.
F, = {ila = 1}.

Next we classify accordingly the excitatory-to-excitatory synapses. There are

in the network four types of synaptic populations:

e Synapses which connect two neurons activated by the same stimulus. G, 1s

the population of all synapses from F, to itself, i.e. {(,7)ni = 1,7} =1},

e Synapses connecting two neurons activated by two different stimuli. G, 1s

the population of synapses from F), to F,, i.e. {(¢,7)|n/ = 1,77 =1}.

e Synapses connecting a neuron activated by a stimulus to a neuron not acti-
vated by any stimulus. G0 1s the population of synapses from Fy to F,, i.e.
{(,5)Inf =1,77 =0 for all v.}, and Gy, is the population of synapses from
F, to Fy, ie. {(z,7)|n¢ =0 for all v,n? =1}
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e Synapses connecting two neurons none of which is activated by any stimulus.
Goo is the population of synapses from Fy to Fp, i.e. {(¢,7)nf = 0,77 =
0 for all v.}

To calculate the probability distribution of the synaptic efficacies in each of
these populations, as a function of the learning protocol and of the duration of
training, we define two units of time: the first corresponds to the interval between
two presentations. Time in this unit will be referred to as t. The second measure
of time T' = pt, corresponds to the interval between two successive presentations
of the same stimulus, for a fixed cyclic sequence as in protocol B. At a given time
t n,(t) is the number of times a given stimulus has been presented to the network,
while m,(t) corresponds to the number of times stimulus v has been presented
immediately following the delay activity provoked by stimulus p.

The probability distribution of the efficacies in any population G, 1s completely
characterized by the probability of the synapse being potentiated, i.e.

Juv = p(']u == J1|(Z7]) € GW’)

since p(J;; = Jo) =1 — g, for (i,7) € G,,. The details of the derivation of these

probabilities are given in Appendix.

1. For a synapse in population G,

Guu(t) = (1 = pp)™Dg(0) + 1 — (1 — py )

where ¢(0) is the initial probability of finding a potentiated synapse. Thus
when n,, the number of presentations of stimulus p, becomes large we get

Guu — 1, 1.e. all synapses become potentiated.

2. For synapses in population G,, with ¢ # v, the distribution depends not
only on n,, n, and n,, but also on when the neighbour presentations were
done. There are two simple cases in which the distribution can be calculated.
The first 1s when stimuli ¢ and v always follow each other. In this case the
learning protocol can be divided in two intervals: the first corresponds to
the absence of delay activity after presentation of a stimulus. After (n,,n,)

presentations we have
Gur = (1 = p- )™ g(0),
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gradually eliminating the potentiated inter-stimulus synapses contained in
the initial distribution. In the second interval, delay activity has developed.

When n,, becomes large we obtain (see Appendix for details)

ap+
ap4(1 —p-) +p-(2—p-)

a

Guv —

Another limit case is when p and v are never presented contiguously. In this

case the probability of the synapse being potentiated is

G = (1 = p_)"* " g(0)

and therefore vanishes when the number of presentations becomes very large.

In the intermediary situation when joint presentations occur but not system-
atically we define the relative frequency of the contiguous appearance of the

two stimuli
B 2N,

Puv = n. +
The probability of having a potentiated link goes, when the number of pre-

sentations becomes very large at fixed p,,, to

PuvaP+
puvap+(1 —p-) + p-(2 — p-

Guv — ) = a(puw)

3. For synapses in Gy, or G, one has

9uo = gou = (1 —p_)"g(0)

and thus the probability of having a potentiated synapse goes to zero in the

limit of many presentations of stimulus p.

4. The last population of synapses is composed of synapses who never see ac-
tivity in the learning process. These synapses remain unmodified. We will
see in the following that these synapses do not play any role in the dynamics

of the network.

We are now able to calculate the parameters g, for the learning protocols
described at the beginning of the section. For each of these learning protocols the

probability of occurrence of any stimulus is the same. This probability is 1/p where
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p 1s the number of stimuli. Thus it is convenient to express the parameters ¢,, as
a function of T' = pt. For G,,, G0, Go, and Ggg the distribution is independent

of the learning protocol
Jun(T) = (1= p1) g(0) + 1= (1 —py)"

9u0(T) = gou(T) = (1 = p-)"g(0)
goo(T') = ¢(0)
By contrast, the synaptic distributions in populations G, for p # v depend
rather drastically on the learning protocol. ¢,, depends not only on T" but also on

puv, the frequency of a contiguous presentations of 1 and v connected by a delay

activity. The expression for g, 1s

GunT) = (1= p-) (1 = p —apy )T g(0)+

1—(1—p-—apy)™"(1 - p—)”“”T)
Puvap+(1 —p-) +p_(2 — p-)

Recall that the dependence on the learning protocol arises only when persistent

PuvaP+ (

delay activity is present in the network.

The next step is to calculate the frequency of contiguous presentation for any
pair of stimuli p,,, starting from the time at which persistent delay activity became
stable in the network. Since during training all stimuli are presented the same
average number of times, delay activity appears at the same stage of the learning

protocol for all stimuli. We also suppose p > 2.

Protocol A. (random presentation sequence) For all y # v one has
2
p%“’ - p— 1
Every pair of stimuli has the same frequency of contiguous occurrence.
Protocol B. (fixed presentation sequence) One has
Puptr = 1,

since u and p £+ 1 always appear contiguously, and

pu =0 for all v # p,pu+ 1.

23



Note that in this case, when the number of presentations becomes very large,
the synaptic matrix becomes very similar to the matrix used in (Amit et al
1994, Brunel 1994). If there is a probability @ of a randomly chosen stimulus

between two successive stimuli, we have

6x(1 — 202
x( :1;)_|_ x

Puptr = (1 — :1;)2 +

p p—1
and ,
da(1 — 2
Puv = « :E)—I— ’ for all v # p,pu =+ 1.
p p—1
Protocol C. (paired associates) In this case
Pup — 17
since p and g always occur contiguously.
1
p%“’ - p— 2

for v # p,p. Again, a paired associate is replaced by a randomly chosen
stimulus with probability * we have
6x(1 — = 222
(1),
p p—1

pun = (1 — )" +

and

42(1 — 22 1—2)? 2z(1—
Dy = ( )Jr x +( x) x(l—x)
p p—1 p—2 p(p—2)

for all v # pu, fi.

Thus the different synaptic distributions are now completely determined as a
function of the learning stage 7" and of the learning protocol. They are character-
ized by the matrix p giving the probability of mutual contiguous occurrence of any

pair of stimuli in the learning set E.

5 Learned delay activity distributions

To monitor the neural dynamics we define the average activity of neurons in pop-

ulation F, (neurons driven by stimulus number p)
1 1 i

i€F),
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and the average activity of neurons which are not active in response to any stimulus

mlt) = e St (1- ;nf)

7

The population-averaged activity in the entire excitatory network is
mp(t) = mo(t) + f Y _[m(t) — mo(t)]
n

The population-averaged inhibitory activity is
1 I
mi(t) = 5~ 2 vi(t)
Iier
The average recurrent excitatory current impinging on a neuron of a given

population F, (here u denotes either a stimulus or 0) is:

hult) = C (JomEu) RO = T0) Y gumalt) + (1= o)y — Jo)gwmom) ®)
and 1ts variance 1s

5161 =€ (Hmatt) 4 70 = ol S )40 Fo)h — I
(9)
The dynamics of the excitatory network is described described by Egs. (8,9), to-
gether with the equations giving the evolution of the means and variances of the
depolarizations at the soma of excitatory neurons in populations F,. From E-

gs. (1,2) it follows that
TE&JM = _IM‘|‘IZM‘|‘hM_CEIJEImI7 (10)

and

-
?Eat (ai) = —O'Z + (UZM)2 + (52 + CprJimr. (11)

The terms appearing on the right hand side of Eqs. (10,11) are: the decay term; the
external contribution; the recurrent excitatory contribution, given by Eqs. (8,9);
and the inhibitory contribution.

The corresponding equations for the inhibitory neurons are given by
1100 = —I; + I + CrgJipme — CrpJmy, (12)
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and
gat (03) = —0? + (03" + CrpTigmp — CrrJimy (13)

In Eqs. (12,13), the terms appearing on the right hand side are again: the decay
term; the external contribution; the recurrent excitatory contribution; and the
inhibitory contribution. The average activity in each population is in turn given
by

my, = op(L,0,), (14)
and

my = ¢1(I1,01), (15)
where the transduction functions ¢, (o = E, I) are given by Eq. 3.

To obtain the delay activity after presentation of a given stimulus p at learning

stage T we proceed as follows:

1. Initially all neurons have their stable spontaneous activity. Only background

external currents are present.

2. Stimulus number p is presented by injecting into neurons of population p
a ‘selective’ external current above the background one. Neurons in this
population are driven by the selective currents well above their spontaneous

rates. Presentation lasts 100ms (= 107g).

3. At the end of the presentation the ‘selective’ external currents are removed
and only background external afferents remain. After a short transient all

neurons reach a steady-state delay activity, which persists indefinitely.

We choose the following parameters: the synaptic transition probabilities are:
pr = p— = 0.2, the neural parameters are as in section 2. The background synaptic
efficacy 1s Jy =0.04mV, while the potentiated synaptic efficacy is J; = 0.15mV.
The synaptic transition probability in the case of contiguous delay activity and
stimulus activation apy, is given by the following values of a: @ = 0.02 and a =
0.05. We use p = 50 stimuli, each stimulus activating a fraction f = 0.01 of
the excitatory neurons in the network (Brunel 1994). We have not explored the
parameter space. Instead we have chosen a particular set of parameters to exhibit
a case of good agreement with the experimentally observed delay activities in IT

cortex of performing monkeys.
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5.1 Protocol A

Stimuli are shown in a random sequence. The upper part of Fig. 6 shows the evolu-
tion of delay activities as a function of the learning stage (number of presentations
per stimulus) for neurons in the population corresponding to the stimulus presented
(diamonds), and neurons in populations corresponding to other stimuli (crosses).
It shows that there is a critical learning stage T, here T, = 11, (minimal number of
presentations per stimulus for the creation of an attractor) beyond which selective
delay activity appears. This critical learning stage is similar to the critical synaptic
parameter of Amit and Brunel (1995b). Before T, neurons which are active dur-
ing the presentation of any stimulus see their spontaneous activity slightly increase

with 7. This spontaneous activity is of order 3-4 s

After T, the neurons rep-
resenting the shown stimulus have an elevated delay activity of the order of 20-35
s71. Other excitatory neurons remain at spontaneous activity levels. The critical
stage T. depends on the learning speed, which is controlled by the probabilities
ps and p_. The lower part of figure 6 shows the corresponding evolution of the
activity of inhibitory neurons (crosses), which also slightly increases with learning,
and of other excitatory neurons not activated in any stimulus (diamonds), which

decreases from 3 to 2 s7!. In this case delay activities are uncorrelated since they

simply reflect the structure of uncorrelated stimuli.

5.2 Delay activities for protocol B

Stimuli are presented in a fixed order. Before T., since there is no delay activity
in the system, the neural rates are independent of the order of presentation. Im-
mediately after T., uncorrelated attractors develop as in the case of protocol A.
Presentation of a given stimulus p activates neurons of the corresponding popula-
tion, and this activity is maintained after removal of the stimulus, because synapses
connecting these neurons have been sufficiently potentiated. After a while, activity
in these neurons also provokes an increase in the activity in neurons in the popu-
lations of the neighbouring stimuli, i.e. 41 and g — 1, since synapses connecting
these populations to F),, i.e. synapses of G,,1; have now an increased average
efficacy. This activity can then propagate to further neighbours, i.e. ¢+ 2, and so

on. However, the inhibition controls the overall level of activity in the excitatory
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Figure 6: Upper figure: delay activity (DA) of neurons coding for the shown
stimulus (<) and of neurons coding for other stimuli (+), as a function of the
learning stage T'. Lower figure: delay activity of inhibitory neurons (+) and other

excitatory neurons (). Activity is in units of 1/7p, i.e. 100 s™%.
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Figure 7: Delay activity of a cell in population Fys, as a function the serial position
of the shown stimulus, for ¢ = 0.05 and three values of the learning stage T,
indicated in the figure. The cell is active in the delay following stimulus 25 but
also in the delays following the presentation of its neighbors. These figures can be

compared with Fig. 3a of (Miyashita 1988).
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Figure 8: Same as figure 7, but with « = 0.02.
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network and therefore the activation spreads only to a few neighbours. This ac-
tivation is also controlled by the parameter a, which characterizes the magnitude
of the strength of synapses of G,,41 relative to those of GG,,,,. Depending on this
parameter a, there exist two regimes, one of low correlation, the other of high

correlation.

e High correlation (Fig. 7, a = 0.05): after T = 15 learning cycles the ac-
tivation of a neuron coding for a given stimulus in the delay following the
presentation of its neighbours becomes of the order of its activation in the
delay following the stimulus itself. When learning proceeds more neighbours
see their neurons increase significantly their delay activity. In this case the
correlations between two attractors corresponding to neighbor stimuli are

very high.

e Low correlation (Fig. 8, a = 0.02): the activity of neurons in neighbouring
populations, though increased with respect to the other populations, remain
low compared to the activity of neurons that represent the shown stimu-
lus. Correlations between two representations of neighbour stimuli remain

relatively weak.

In absence of stable spontaneous activity, (as was the case in Brunel 1994)
the structure of the delay activity is always as in Fig. 7 (highly correlated delay
activities). The presence of a stable spontaneous activity allows for reverberations
in which neurons coding for stimuli which are neighbours of the presented stimulus
remain at low levels of activity (compared with the activation of neurons coding
for the presented stimulus), though it is significantly higher than their spontaneous
activity.

Note that in the high correlation regime, in addition to neurons coding for the
presented stimulus, also those coding for nearest neighbours will be significantly
active during the delay. This fact implies that from the learning stage in which ap-
pears such a high nearest-neighbour delay activity (7' = 15 in Fig. 7), learning due
to delay activity could occur not only in synapses connecting nearest neighbours,
as was assumed in Section 4, but also in synapses connecting next neighbours,
i.e. synapses from populations G 12, though quantitatively the potentiation prob-

ability will be weaker for these synapses than for nearest-neighbour ones. In turn
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at later learning stages a high next-neighbour delay activity could appear, imply-
ing learning in populations of synapses G453, etc. However we have checked that
if one allows for learning in synapses connecting more distant neighbours from the
learning stage at which appear such significant neighbour delay activity, the pic-
ture remains qualitatively very similar. The main differences is that due to the
potentiation of these synapses, more distant neighbours will be activated faster
during the delay, enabling the network to reach the attractor in a shorter time,
and that the delay activities of neurons coding for stimuli which are more distant
than the nearest neighbour will be slightly higher. In any case inhibition prevents
significant delay activation of a large number of neuronal populations.

It is easy to calculate correlations as well as rank correlation coefficients between
the delay activities provoked by different stimuli (see Brunel 1994). Qualitatively
these correlations are a decreasing function of the distance in the serial position of
the stimuli that provoked the delay activities. These correlations decay to zero (or
to negative values in the case of rank correlations) at a distance corresponding to
the number of populations of cells activated above spontaneous levels in a given
attractor. For example, in Fig. 7 the correlations would be significant up to a

distance of 5 in serial position.

5.3 Protocol C - paired associates

In the case of paired associates the situation is qualitatively similar to protocol B,
except for the fact that now only neurons coding for the shown stimulus and its
paired associate are activated in the delay period. Also in this case we can identify
two regimes, with strong or weak correlation between delay activities corresponding
to the pair associates. The main difference is that now, in the strongly correlated
regime, the delay activity of paired associate neurons is equal to the delay activity
of the neurons coding for the shown stimulus. Therefore the network has formed
attractors which do not correspond anymore to the individual pictures, but rather
to the pairs of pictures. This can be seen in Fig. 9 (¢ = 0.05) at learning stage
T = 15. By contrast in Fig. 10 the representations of paired associates become
correlated with learning, but remain distinct. Note the similarity of this figure with

one of the cells shown in (Sakai and Miyashita 1991). However the comparison is
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Figure 9: High Delay activity of a cell in population Fjs, as a function of the
serial position of the shown stimulus, for a = 0.05. The cell is active in the delay

following stimulus 25 but also after its paired associate (stimulus 26) is presented.
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Figure 10: Same as fig. 9, but for a = 0.02.
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not direct. Sakai and Miyashita (1991) give the activity of cells during presentation
of the stimulus. The corresponding delay activity distributions, presented here, are
not reported. The analysis predicts that the delay activity provoked by two paired
associates should be significantly correlated or even become equal. Note that the
formation of similar pair-coding attractors has also been observed in a model with

a fixed synaptic matrix (Parga 1994).

6 Discussion

In this paper we have discussed an explicit, plausible learning process in a recurrent
neural network, which in the presence of delay activity, implements the memory
of the context of the learned stimuli in the synaptic matrix. In the case of stimuli
shown in a fixed sequence during training, this synaptic matrix is found to be
qualitatively similar to the matrix that was used in (Amit et al 1994, Brunel 1994).
With such a learning process it is possible to determine the statistical properties of
the synaptic matrix as a function of the learning stage and the learning protocol.
With the network composed of excitatory and inhibitory cells described in (Amit
and Brunel 1995b), whose stable state in absence of learning is a state in which
neurons have a spontaneous activity of the order of 1 spike per second, it is in turn
possible to determine the statistical properties of the delay activities, again as a
function of the learning stage and the learning protocol. In the only case in which
to our knowledge experimental data is available (Miyashita 1988) we recover the
results of (Amit et al 1994, Brunel 1994) which are in good agreement with the
experiment. Furthermore the analysis allows to predict either the evolution of the
correlations during learning or the dependence of the correlations with the learning
protocol.

There are a number of tests of the theory that can in principle be done with

visual memory experiments.

1. The time of occurrence of selective delay activity should not depend on the

learning protocol, i.e. on the way stimuli are presented.

2. Delay activities corresponding to uncorrelated stimuli should initially be un-

correlated.
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3. Correlations between delay activities should only depend on the order of pre-
sentation after the appearance of selective delay activity in the network, and
not on the order of presentation prior to delay activity. For example if stimuli
are shown in a fixed order before the appearance of selective delay activity,

but in a random order afterwards, the attractors should be uncorrelated.

We turn now to a brief discussion of the elements of the model. Excitatory
and inhibitory cells are integrate-and-fire neurons described by the statistics of
their input currents and their output firing frequency (Amit and Brunel 1995b).
We emphasize that this model, roughly accounts for the average spontaneous and
selective activities observed in the visual memory experiments. Last, though the
average delay activities themselves do depend on the details of the model neuron,
the correlations between the attractors of the system seem largely independent on
the details of the single neuron. Large-scale simulations of networks of integrate-
and-fire neurons are currently under way to confirm that these correlations are
preserved if one considers networks of spiking neurons rather than neurons de-
scribed by firing rates.

The implementation of temporal correlations between stimuli in the synaptic
matrix depends crucially on a mechanism leading to long term potentiation when
delay activity in one neuron connected by a synapse is immediately followed by
stimulus-provoked activity in the other neuron connected by that synapse. This
simple mechanism leads to the implementation of such correlations. In this paper
this mechanism - and the whole synaptic process - was supposed to be symmetric
in pre and post synaptic neurons. This assumption of symmetry was taken for
simplicity, but it is not necessary. In fact experimental data suggests LTP can be
induced when postsynaptic activity follows presynaptic activity by 100ms (Levy
and Steward 1983, Gustafsson et al 1987), but on the other hand, if postsynaptic
activity precedes presynaptic activity, LTP does not occur. The formalism devel-
oped in this paper can easily be generalized to such an asymmetric situation. This

1ssue will be considered in a future work.
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Appendix. Synaptic distributions

1. For a synapse in population G,,: at each presentation of stimulus p, a
synapse which is in its low state, has a probability p, of making a tran-

sition to the potentiated state. Thus after n,(t) presentations

Gun(t) = (1 = p)"Wg(0) +1 = (1 — py )=
where ¢(0) is the initial probability of finding a potentiated synapse.

2. For synapses in population G, with ¢ # v, the situation is somewhat more
complicated, since the distribution depends not only on n,, n, and n,, but
also on when the neighbour presentations were done. There are two simple
cases in which the distribution can be calculated. The first is when stimuli
@ and v always follow each other. In this case the learning protocol can
be divided in two intervals: the first corresponds to the absence of delay
activity after presentation of a stimulus. At each presentation of stimuli y or
v, potentiated synapses have a probability p_ of making a transition to the

low state. Thus after (n,,n,) presentations we have

g = (1 —p_)™F ™ g(0),

In the second interval, delay activity has developed. When a contiguous
presentation of p and v occurs there is a probability apy for low synapses
of making a transition to the high state. Thus after n,, occurrences of the
contiguous presentation of stimuli p and v separated by the delay period we
have
Guv = (1= p= )™ ™7 (1 = p_ — apy )™ g(0)+
ap. (1 —(1—p- —apy)(1 —p—)”“”)
ap4(1 —p-) +p-(2—p-)
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When n,, becomes large we have

ap+
ap4(1 —p-) +p-(2—p-)

a

Guv —

Another limit case is when p and v are never presented contiguously. In this

case the probability of the synapse being potentiated is

g = (1 —p_ )" g(0)

and therefore vanishes when the number of presentations increases.

In the intermediary situation when joint presentations occur but not system-
atically we use an interpolation in the relative frequency of the contiguous

appearance of the two stimuli

This expression is

G = (1 —p )y (1 — p_ — apy )™ g(0)+

1—(1—p- —apy)™(1— p—)”*‘”)
Puvapr (1 —p_) +p_(2—p_)

and interpolates between the two preceding limit cases. The probability of

Prv@pP+ (

having a potentiated link goes, when the number of presentations becomes

very large at fixed p,,, to

PuvaP+
puvap+(1 —p-) + p-(2 — p-

gMV - ) = a(pﬂl’)

. For synapses in Gy, and G, presentation of stimulus p causes depression

with probability p_, and after n, presentations one has

9uo = gou = (1 —p_)"g(0)

and thus the probability of having a potentiated synapse goes to zero in the

limit of many presentations of stimulus p.
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