
Hebbian learning of context in recurrent neuralnetworksNicolas BrunelINFN, Sezione di Roma, Istituto di FisicaUniversita di Roma I `La Sapienza'P.le Aldo Moro 2, 00185 Roma ItalyAbstractSingle electrode recordings in inferotemporal cortex of monkeys duringdelayed visual memory tasks provide evidence for attractor dynamics in theobserved region. The persistent elevated delay activities could be internalrepresentations of features of the learned visual stimuli shown to the monkeyduring training. When uncorrelated stimuli are presented during training in a�xed sequence, these experiments display signi�cant correlations between theinternal representations. Recently a simple model of attractor neural networkhas reproduced quantitatively the measured correlations. An underlying as-sumption of the model is that the synaptic matrix formed during the trainingphase contains in its e�cacies information about the contiguity of persistentstimuli in the training sequence. We present here a simple unsupervised learn-ing dynamics which produces such a synaptic matrix if sequences of stimuliare repeatedly presented to the network at �xed order. The resulting matrixis then shown to convert temporal correlations during training into spatialcorrelations between attractors. The scenario is that, in presence of selectivedelay activity, at the presentation of each stimulus, the activity distribution inthe neural assembly contains information both of the current stimulus as wellas of the previous one (carried by the attractor). Thus the recurrent synap-tic matrix can code not only for each of the stimuli which were presented tothe network, but also for their context. We combine the idea that for learn-ing to be e�ective synaptic modi�cation should be stochastic, with the factthat attractors provide learnable information about two consecutive stimuli.We calculate explicitly the probability distribution of synaptic e�cacies as afunction of training protocol, i.e. the order in which stimuli are presentedto the network. We then solve for the dynamics of a network composed of1



integrate-and-�re excitatory and inhibitory neurons with a matrix of synapticcollaterals resulting from the learning dynamics.The network has a stable spontaneous activity, and stable delay activitydevelops after a critical learning stage. The availability of a learning dynamicsmakes possible a number of experimental predictions for the dependence of thedelay activity distributions and the correlations between them, on the learningstage and the learning protocol. In particular it makes speci�c predictions forpair-associates delay experiments.1 Introduction1.1 Correlated delay activities { experiment and theoryIn the last twenty years there has been a wealth of evidence for the existence of localreverberations of cell assemblies in inferotemporal cortex (Fuster and Jervey 1981,Miyashita and Chang 1988, Miyashita 1988, Sakai and Miyashita 1991, Tanaka1992), prefrontal cortex (Fuster 1973, Niki 1974, Goldman-Rakic 1987, Wilson etal 1993), and other areas of primates during delayed visual memory tasks (fora review see Fuster 1995). Together with experimental data, models have beenproposed to account for the persistent delay activities (Dehaene and Changeux1989, Zipser et al 1993, Griniasty et al 1993), in which excitatory synapses storethe information about the visual stimuli. The experiments of Miyashita (1988)on the activity in IT cortex of monkeys trained to perform a DMS task havedisclosed signi�cant correlations in the persistent delay activities following thepresentation of uncorrelated stimuli, when those are presented during training ina �xed sequence.Theoretical studies (Griniasty et al 1993, Amit et al 1994, Brunel 1994) havedemonstrated that attractor neural networks which embed in their synaptic struc-ture information about contiguous stimuli learned in a sequence, have correlateddelay activities even though the learned stimuli are uncorrelated. It may be worthpointing out that when stimuli arrive at IT they may be uncorrelated because theyhave been so prepared, or because they have been decorrelated on the way (Bar-low 1961, Linsker 1989, Atick 1992). In the model networks, the delay activity2



provoked in the neural assembly by the presentation of a given learned stimulus iscorrelated with the delay activity corresponding to other stimuli until a separationof several stimuli in the training sequence, despite the fact that the synaptic matrixconnects only consecutive stimuli in the sequence. The appearance of such corre-lations between the di�erent delay activities is a transcription, during the learningprocess, of temporal correlations in the training information, into spatial (activitydistribution) correlations of the internal representations of the di�erent stimuli.The network has therefore a memory of the context of the presented stimuli. Somecognitive implications of this context sensitivity have been outlined in (Amit 1995).The model simulated by Amit et al (1994) consists of a network of integrate-and-�re neurons represented by their current to spike rate transduction function(Amit and Tsodyks 1991). Such neurons are taken to represent the excitatoryneurons of the network, the pyramidal cells. It is in the synaptic matrix connectingthese neurons that learning is manifested. The synaptic matrix, representing thetraining process, is constructed to represent the inclusion of the information aboutthe contiguity of patterns in the training sequence, as in (Griniasty et al 1993).Inhibition is taken to have �xed synapses and its role is to react in proportion to themean level of activity in the excitatory network, so as to control the overall activityin the network. The delay activities are investigated by presenting to the neuralmodule one of the uncorrelated stimuli as a set of a�erent currents into a subsetof the excitatory neurons. These currents are removed after a short time and thenetwork is allowed to follow the dynamics as governed by the feedback representedin the matrix of synaptic collaterals. Eventually, the network arrives at a stationarydistribution of spike rates. This is the delay activity distribution correspondingto the stimulus which excited the network. Simulations of the model (Amit etal 1994) are in quantitative agreement with the experimental data of Miyashita(1988).The dynamics of the model has been solved analytically in simpli�ed conditions(Brunel 1994). This makes possible the explicit calculation of the correlations be-tween the internal representations, as a function of the parameters of the model.The main parameters controlling these correlations are the strength of the inclusionof the contiguity between stimuli in the synaptic matrix, relative to the strength ofthe inclusion of the stimuli themselves, and the balance between recurrent excita-3



tory and inhibitory synaptic e�cacies. The analysis deduces the mean fraction ofneurons activated by a given stimulus (coding level, or sparseness) in the observedregion, from the experimental data of (Miyashita 1988). This in turn makes pos-sible the calculation of the correlation coe�cients, which are again in quantitativeagreement with all the available experimental data (see Fig. 9 of Brunel 1994), andthe simulations of Amit et al (1994).These previous studies (Griniasty et al 1993, Amit et al 1994, Brunel 1994)used a �xed pre-arranged synaptic matrix. In (Amit et al 1994, Brunel 1994) thematrix was chosen to be similar to the Willshaw matrix (Willshaw et al 1969),with a limited number of synaptic states. Memory is coded exclusively in theexcitatory-to-excitatory synapses. An important result (Amit et al 1994) is thatthe correlations are rather insensitive to the particular matrix chosen, provided itis Hebbian and that it includes the memory of the contiguity between stimuli.What is missing is a plausible dynamic learning process leading to a synapticmatrix which incorporates information of the temporal context of the stimuli shownto the network. One way of implementing learning dynamics is to allow for eachsynaptic e�cacy a limited number of stable values (Amit and Fusi 1994). Learning,which may be analog on the short term, becomes a walk between the discretestable e�cacies in the long term. To make such learning e�cient, transitionsbetween the di�erent states, provoked in a Hebbian way during the presentation ofa stimulus by the activity of pre and post synaptic neurons, should be stochastic.Such dynamics has been simulated (Amit and Brunel 1995a) and analyzed (Amitand Fusi 1994). A synaptic matrix endowed with such a dynamics is able to learninternal representations of the classes of stimuli shown to the network. Howeverthe stochastic process studied by Amit and Fusi (1994) precludes the possibility oflearning any temporal correlations between stimuli.1.2 The present workIn the following we �rst discuss a possible scenario for learning in presence of delayactivity which naturally leads to the inclusion of temporal correlations betweenstimuli in the synaptic matrix. The scenario is that �rst uncorrelated attractorsare formed. An attractor then carries information from the stimulus that provoked4



it until the presentation of the next stimulus. This information allows for a simplesynaptic mechanism to store the memory of the context of any stimulus. We studythe case of a �nite set of stimuli which are repeatedly shown to the network. Inthe simpli�ed case in which every excitatory neuron in the network is activatedby at most one stimulus (Brunel 1994), it is possible to calculate explicitly theprobability distribution of every synaptic e�cacy as a function of the learningprocedure. If stimuli are shown repeatedly in a �xed order during learning, theresulting synaptic matrix is similar to the �xed matrix used in (Amit et al 1994,Brunel 1994). Given the synaptic matrix we solve for the neural dynamics of theattractor network as in (Brunel 1994), when one of the stimuli is presented. Thegeneric features of such a learning process will be discussed elsewhere (Brunel andFusi 1995).The network we study is composed of a large number of excitatory and inhibito-ry integrate-and-�re neurons, described by the statistics of their a�erent currentsand their spike emission rates. The network represents a local module, similar to acortical column, embedded in a much larger sea of neurons (the entire cortex). Themodule can be distinguished from the global network by two features: the highlocal excitatory connectivity and the range of inhibitory interactions (Braitenbergand Schuz 1991). Such a network has a stable state of low activity in which allneurons have a spontaneous activity of the order of 1-5 spikes per second in a plau-sible region of parameters (Amit and Brunel 1995b). Furthermore, when learningoccurs in the local module, and the synaptic modi�cations are strong enough, aset of attractors correlated with the stimuli presented to the network develops. Ineach attractor a small subset of the excitatory neurons | the neurons which areactivated by a particular stimulus | have elevated delay activities, of the orderof 20-40 spikes per second. We choose to study both learning and retrieval dy-namics in this network since the activity in its attractors is roughly in agreementwith recorded data during DMS experiments in both inferotemporal and prefrontalcortex.When learning occurs in the present network, upon repeated presentation ofstimuli, uncorrelated attractors are initially formed. These attractors make possi-ble the inclusion of temporal correlations between stimuli in the synaptic matrix.This in turn provokes signi�cant correlations in the delay activities corresponding5



to stimuli which have been shown repeatedly contiguously to the network. There-fore the correlations between the internal representations of di�erent stimuli re
ecttheir context.Using a plausible learning process one reproduces the results found in (Amitet al 1994, Brunel 1994), which are in good agreement with experimental data(Miyashita 1988). This is not surprising since the synaptic matrix resulting frommany presentations of the stimuli is quite similar to the matrix that was postulatedin (Amit et al 1994, Brunel 1994). One essential novelty is that the entire phe-nomenon takes place in presence of stable spontaneous activity. The advantage ofusing the more realistic neural model of Amit and Brunel (1995b) is that neuronshave both spontaneous and selective activity roughly in the range of the recordeddata.The analysis allows to predict:� The evolution of the delay activities and of the correlations between theinternal representations during training, for a �xed training procedure;� The dependence of the correlations on the training procedure.The predictions of the theory are accessible to experiments as in (Miyashita andChang 1988, Miyashita 1988, Sakai and Miyashita 1991). We focus the analysis ontwo particular cases.� Training with stimuli in a �xed sequence, as in (Miyashita 1988).� Training with associated pairs, as in (Sakai and Miyashita 1991): a set ofstimuli is divided into pairs. Stimuli in each pair are presented in �xedorder. Pairs are presented at random.We also show how it is possible to deal with intermediate cases, as when thesequence of stimuli is interspersed with random items.The paper is organized as follows. In section 2 we present in detail the modelnetwork and its elements. In the following section we present a simple scenario ofsynaptic dynamics which incorporates both associative LTP and LTD. Then wedescribe a typical protocol of a visual memory experiment in which a delay period6



always follows the presentation of a stimulus. We show that in this situation theanalog synaptic dynamics reduces to a stochastic process acting on a two statesynapse. We then study in detail which kind of synaptic transitions may occur,depending on whether there is selective delay activity following the presentationof a stimulus or not. In section 4 we study the situation of a small set of stimulirepeatedly shown to the network. In this case we calculate explicitly the probabilitydistribution of the synaptic e�cacies of the network as a function of the learningstage and of the learning protocol. Then, in section 5, we study the networkdynamics and show the in
uence of the synaptic dynamics on the delay activitywhich is stabilized by the network after the presentation of a learned stimulus.This allows to study the structure of the delay activity distributions as a functionof the learning stage and the learning protocol.2 The model neuronsEach neuron in the network receives three types of inputs: from recurrent (collater-al) excitatory connections from other neurons in the same network; from inhibitoryneurons inside the network; from excitatory neurons in other, unspeci�ed, areas.The collateral connectivity in the network has no geometric structure: a neuronhas equal probability (about 0.1) of having a synapse on any other neuron.Both excitatory and inhibitory neurons are leaky integrate-and-�re neuronsdescribed by the statistics of their input currents, which determines their �ringrates (Amit and Brunel 1995b). Each type of neuron is characterized by a threshold��, a post-spike hyperpolarization H�, an integration time constant ��, with � =E; I indicating whether the neuron is excitatory or inhibitory, respectively. Aneuron i of type � receives a large number of a�erent spikes per integration time(Amit and Brunel 1995b), and hence a Gaussian white noise input current of meanI�i and standard deviation ��i , through C� synaptic contacts, which are divided inC�E excitatory synapses and C�I inhibitory ones.The synapses in the network are of four types, depending on all the possibletypes of pre and post synaptic neurons. For each synaptic type the e�caciesJij (i and j denote the post and pre synaptic neuron, respectively) are drawnrandomly from the distribution P��(J) (� and � denote the type of post and pre7



synaptic neuron, respectively). P�� has mean J�� and standard deviation J���,where � represents the variability in the synaptic amplitude. A fraction x� of theexcitatory connections on a neuron of type � arrive from outside the network. Theexcitatory to excitatory connections are plastic: the distribution PEE(J) speci�esthe distribution of excitatory to excitatory links before the learning stage. As wewill see later learning will modify this synaptic distribution.The spike rate of excitatory neuron i is �Ei . The rate of inhibitory neuron i�Ii . The input currents from outside the column are described by a white noisewith mean Iexti and standard deviation �exti . This input currents are provoked,in absence of a stimulus, by the background activity outside of the network. Inpresence of a stimulus, the input currents are the sum of the background input andof the input provoked by that stimulus.We assume that the correlations between the spike emission times of di�erentneurons in the network do not a�ect signi�cantly their spike rates. Thus we consid-er the spike emission processes of di�erent neurons in the network as uncorrelated.In this case the mean and variance of the input current to a neuron in the moduleare the sum of three independent contributions, coming from external excitatory,recurrent excitatory, and inhibitory currents (see Amit and Brunel 1995b)I�i = Iexti + �� Xj2E J�Eij �Ej � ��Xj2I J�Iij �Ij (1)and (��i )2 = (�exti )2 + �� Xj2E �J�Eij �2 �Ej + ��Xj2I �J�Iij �2 �Ij : (2)These currents are integrated by the membrane depolarization at the soma with atime constant ��. The �ring rate of neuron i of type � is given by��i = ��(I�i ; ��i )where ��(I; �) =  �0 + �� Z ���I�H��I� dup� exp(u2)[1 + erf(u)]!�1 (3)is the transduction function(Ricciardi 1977), which depends on the absolute refrac-tory period �0, the threshold �� and post-spike hyperpolarization, or reset potential,8
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� (s�1) I (mV)Figure 1: Current to frequency transduction function � = �(I; �) for �=20mV,H=0, �=10 ms, �0= 2 ms and three values for the amplitude of the 
uctuations ofthe currents �= 0 (full line), 2 mV (dashed line) and 5 mV (dotted line).H�. The function � is plotted as a function of I for three di�erent values of � inFig. 1. It shows that the 
uctuations of the currents have a signi�cant e�ect onthe spike rates when the average current depolarizes the neuron below threshold.Note that the precise form of the transduction function, Eq. 3, is not necessary forthe qualitative features of the behaviour of the network.In the following we take: �E = �I = 20 mV above the resting potential; HE =HI = 0; �E = 10 ms; �I = 2 ms; �0 = 2 ms.The connectivity parameters are: xE = xI = 0:5; CEE = CIE = 20000; CEI =CII = 2000. The average synaptic e�cacies are expressed by the amplitude of the(excitatory or inhibitory) postsynaptic potential provoked by a spike, and thus inunits of the potential: JEE = 0.04 mV; JIE = JII = 0.14 mV; JEI = 0.05 mV.The synaptic variability is taken to be � = 1. The synaptic external input hasmean Iext = 11 mV and RMS �ext = 0.9 mV into excitatory neurons, and Iext =8.6 mV and RMS 1.6 mV into inhibitory neurons. These currents correspond tothe activation of all the excitatory synapses coming from outside the network at abackground rate of 3 s�1. For these parameters the network has a stable state of9



spontaneous activity in which excitatory neurons emit about 3 spikes per second,while inhibitory ones emit 4.2 spikes per second.Note that this set of parameters is in a biologically plausible region (Braiten-berg and Schuz 1991, Komatsu et al 1988, Mason et al 1991). The excitatory toexcitatory synaptic e�cacy is slightly smaller than the reported range of unitaryEPSPs in neocortex and hippocampus, but we have here a neuron that sums linear-ly its inputs. When the input is nonlinear a larger number of EPSPs are necessaryto reach threshold than for a linear input, so the e�ective synaptic e�cacy wouldbe smaller than the reported values in the case of a large number of inputs. Infact, the qualitative features to be discussed are fairly robust to small changes inthe synaptic e�cacies. If the inhibitory e�cacies are weakened too much relativeto the excitatory e�cacies, the spontaneous activity state becomes unstable (Amitand Brunel 1995b).3 Learning dynamics3.1 Analog short term synaptic dynamicsExcitatory-to-excitatory synapses in the network are plastic. Hebbian learning ismodelled by a synaptic dynamics which incorporates both associative long termpotentiation (LTP) and long term depression (LTD) (Amit and Brunel 1995a):�c _Jij(t) = �Jij(t) + cij(t) + (J1 � J0)� �Jij(t) � wij(t)�+ J0: (4)It is basically an integrator with a time constant �c. The integrator has astructured source cij(t), representing hebbian learning. This source is given interms of the neural rates, �i(t) and �j(t), of the two neurons connected by thissynapse as cij(t) = �+�i(t)�j(t)� ��[�i(t) + �j(t)] (5)�+;� are positive parameters separating potentiation from depression. Their valuesare chosen so that when the rates of both neurons are high cij >0; if one is highand one is low cij <0; and if both are very low cij is negligible.10



The last term on the right hand side of Eq. 4 is the `refresh' mechanism discussedin detail in Badoni et al (1995). It represents one way of preventing the loss ofmemory due to the decay of the integrator when no source is present. If at any givenmoment the source cij(t) exceeds the 
uctuating threshold wij(t), a refresh sourceturns on to drive the synapse to the high value J1. If later the source vanishes thissynaptic value will remain above its threshold and the e�cacy J1 will be stable,inde�nitely. On the other hand, if the instantaneous synaptic value is low, eitherbecause it started low, or because it was high and the learning source was negativeenough, the refresh source turns o�, and in the absence of a source that synapsedecays to J0. This is the other long-term, stable state of a synapse. The transitionof a synapse from the lower stable state to the upper one is identi�ed with LTP.The opposite transition is LTD. This type of learning is realistic in the sense thatit can be (and has been) implemented in a material device (Badoni et al 1995). Italso incorporates the experimentally characterized distinction between short termsynaptic plasticity, represented by the analog dynamics driven by the source cij inEq. 4, and long term changes, represented by the stable synaptic states J1 and J0separated by the threshold (see e.g. Bliss and Collingridge 1993).The threshold is taken to be 
uctuating to make the learning process more re-alistic. Here we have chosen to put noise on the threshold, but we could also havechosen a 
uctuating source cij, whose average would be the r.h.s of Eq. (5). Inter-estingly enough, it has been shown that when synaptic transitions are stochasticthe capacity of the network is enhanced with respect to deterministic transitions(Amit and Fusi 1994, Brunel and Fusi 1995), though learning will be slower.As a consequence, in absence of the source term each synapse has two asymp-totically stable values, J0 and J1. We further assume that the 
uctuations of thethreshold are limited to an interval [J0 + �+; J1 � ��]. The 
uctuating thresholdtherefore de�nes a potentiation threshold �+ such that if the synaptic value is ini-tially low, there is a �nite transition probability J0 ! J1 when the source cij > �+,and a depression threshold �� such that if the synaptic value is initially high, thereis a �nite transition probability J1 ! J0 when cij < ���. These thresholds aresuch that J0 < J0+ �+ < J1� �� < J1. We illustrate in Fig. 2 two examples of theevolution of the synaptic e�cacy upon presentation of a stimulus. In both casesthe synaptic e�cacy is initially at J0 and the source term cij is higher than the11



0

0.05

0.1

0.15

0.2

0 50 100 150 200

0

0.05

0.1

0.15

0.2

0 50 100 150 200

t
tJ0J0 + �+J1 � ��J1

J0J0 + �+J1 � ��J1

Figure 2: Analog synaptic dynamics. Synaptic e�cacy (full line) initially at J0.An external stimulus imposes cij > �+ during the interval 50 < t < 150. In theupper �gure, the synapse does not cross the 
uctuating threshold (dashed line) andremains in its low state J0. In the lower �gure, the synapse crosses the 
uctuatingthreshold and makes a transition towards the high state J1. Parameters: J0 = 0.04mV; J1 = 0.15 mV; �+ = 0.04 mV; �� = 0.04 mV.12



tpStimulus �0 tdDelay Stimulus �1 Delay Stimulus �2 . . .Figure 3: Typical learning protocol in a `visual memory' experiment. Stimuli arepresented in a sequence, with a delay between two successive presentations. Theline represents schematically the level of external currents to the local network.threshold �+. In the upper �gure the synaptic e�cacy does not cross the 
uctu-ating threshold and decays to its low stable value after the stimulus is removed.In the lower �gure the synaptic e�cacy crosses the threshold and is driven to thehigh state J1, which is stable in absence of a stimulus.3.2 Learning protocol and external currentsThe schematic learning protocol we model is as follows. The stimuli shown to thenetwork are labelled by � = 1; . . . ; p. During the presentation of stimulus �, themean external current received by an excitatory neuron i is incremented selectivelyby Isel��i , where ��i = 1; 0 is the symbolic indication of whether cell i is activatedby stimulus � or not. In absence of a stimulus the excitatory a�erent is just thespontaneous noise. Inhibitory neurons are not activated by the stimulus. Thepresentation of a stimulus is followed by a delay period of length td, in which theselective part of the current is removed. Therefore, a typical experiment can beschematized by Fig. 3 in which presentation and delay intervals are kept �xed. Theduration of each presentation tp is taken to be much longer than the neuronal timeconstants �E;I. Thus tp � 10 ms.Note that in a delayed match to sample (DMS) experiment the sequence ofstimuli is an alternate sequence of sample and match stimuli. The match stimulusis typically taken to be equal to the sample stimulus with 50% probability, and13



another randomly chosen stimulus otherwise. The learning protocol speci�es howthe sequence of sample stimuli is presented (see below).To simplify the discussion we suppose that when stimulus � is shown, theactivated excitatory neurons go rapidly to a steady state rate �i:�i = (V � �s)��i + �swhere �s is the spontaneous rate of excitatory neurons, during presentation of thestimulus. When neuron i is activated by a stimulus it goes to a high activity stateV � �s while if it is not activated it stays at spontaneous activity levels. Whenthe stimulus is removed two possibilities may occur (Amit and Brunel 1995a):� the stimulus is unfamiliar: the network goes rapidly into its uniform, un-structured, spontaneous activity state,�i = �s� the stimulus is familiar: the activity of neurons which are activated duringthe presentation of the stimulus persists during the delay period, but withlower rates than during the presentation�i = (v � �s)��i + �swhere V > v > �s.Following the delay period, when the next stimulus is presented, there is a shortinterval in which both neurons active in the delay period and neurons activatedby the next stimulus will be active. Later inhibition turns o� the activity of theneuron which participated in the attractor in the delay period, leaving active onlythose neurons which are tagged by the new stimulus (Amit and Brunel 1995a).This transient interval is assumed to be short compared to the presentation time.It will be typically of the order of the integration time �E of an excitatory neuron.We further assume that the delay period is much longer than the synapticintegration time constant �c. In this case, in absence of delay activity, at the endof the delay period all synapses in the network will have decayed to their asymptoticvalues, i.e. J0 or J1. 14



3.3 Synaptic transitions | no delay activity prior to pre-sentationWe �rst consider the case in which there was no delay activity before the presen-tation of the stimulus. When a stimulus is presented, one of eight situations mayoccur at a given synaptic site Jij. For each of the two possible stable values ofthe synapse (J0, J1) there are four pairs of activation states of the pre and postsynaptic neurons by the stimulus: (V; V ), (V; 0), (0; V ), and (0,0) (where the lowspontaneous rate is represented by 0). Note that because we assume a symmetricrole for pre and postsynaptic neurons, cases (V; 0) and (0; V ) are equivalent, andwe consider only the case (V; 0). The number of situations is reduced to six.� For Jij = J0 and (�i; �j) = (V; V ): if the integrated synaptic source (Eq. 4)over the duration of the presentation tp reaches the potentiation threshold,(�+V 2 � 2��V )�1� exp�� tp�c�� > �+there is a probability p+ of activation of the refresh source, causing a transi-tion of the synaptic value to J1 in the delay period. LTP has occurred. Thisprobability depends on c+ = �+V 2 � 2��V , �+, and the ratio tp=�c.� For Jij = J1 and (�i; �j) = (V; 0) or (0; V ): if[��(V + �s)� �+V �s]�1� exp�� tp�c�� > ��the refresh source will be turned o� with probability p�. Jij goes to J0, itslow value, in the subsequent delay period. This transition represents LTD.p� depends on c� = ��(V + �s) � �+V �s, �� and the ratio tp=�c.� In all other cases no transitions can occur.Therefore in absence of delay activity, and when the presentation duration is kept�xed, we can represent the synaptic dynamics by a discrete stochastic | a randomwalk between the two synaptic stable states J0 and J1. This is a familiar situation(Amit and Fusi 1994, Amit and Brunel 1995a), in which uncorrelated stimuli leadsto uncorrelated attractors. 15



3.4 Synaptic transitions | Delay activity prior to the p-resentationIn contrast, when neural activity persists during the delay period, the synapticdynamics depends on the activation of the pre and post synaptic neurons by thestimulus, but also on the activation of these neurons during the previous delayperiod. There are now 32 possible situations, depending on whether Jij is aboveor below threshold before the presentation, and on the pair (�i; �j) during bothstimulus presentation and the previous delay period. Since the transient intervalduring which either old delay and new stimulus-related activities are present isshort compared to the presentation interval, the probabilities p+ and p� will notbe much a�ected by the previous delay activity in the situations described in section3.3, where LTP or LTD occurs only due to stimulus presentation.A new LTP transition might occur: if before presentation Jij = J0, and duringthe transient interval �E(�i; �j) = 8<: (v; 0) during the delay period(0; V ) during the stimulus presentation, (6)or (�i; �j) = 8<: (0; v) during the delay period(V; 0) during the stimulus presentation, (7)and if the integrated source of the synaptic dynamics over �E crosses the potenti-ation threshold, V (�+v � ��)�1� exp���E�c ��� ��v > �+;there is a probability ap+, of activation of the refresh source, which will drive thesynaptic e�cacy to J1 in the subsequent delay period. a is a function of the ratio�E=tp and of v=V . Typically if the presentation duration is much longer than �Ea� 1.A similar situation would occur also if (�i; �j) = (v; v) in the delay. However, inthis case, the probability of LTP during the previous stimulus presentation is muchlarger than the one during the short transient period, and can be neglected. Theonly new situation leading to LTP in presence of delay activity is the one describedin (6,7). We will see in the following that this has important consequences for the16
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No delay activitya Stimulus�i Stimulus�j LTP (prob. p+)Jij
b Stimulus�i�j LTD (prob. p�)JijDelay activitycDelay�i Stimulus�j LTP (prob. ap+)JijFigure 5: Schematic illustration of synaptic transitions in three situations: timeevolution of synaptic e�cacy Jij (lower curves), presynaptic activity (�j) and post-synaptic activity (�i). a. Pre and postsynaptic neurons activated by stimulus,synapse initially low. b. Presynaptic neuron silent during stimulus, postsynapticneuron activated, synapse initially high. c. Presynaptic neuron activated duringstimulus, postsynaptic neuron active in delay, synapse initially low. Note that inall cases one can permute pre and postsynaptic neurons, due to the symmetry ofthe short-term analog learning dynamics.18



To conclude this section we emphasize that one can imagine di�erent scenariosfor the occurrence of LTP when one neuron is active during the delay while theother is active during presentation of the next stimulus. For example, it would alsonaturally occur if the Hebbian source term of the synaptic dynamics described byEq. (4) depends not on the instantaneous neural activities, but rather on theiraverage over some temporal window. In this section we have argued that in asimple and plausible short term analog dynamics this type of transitions occurnaturally. In the following we will not consider anymore the short-term analogsynaptic dynamics, but only the resulting stochastic process acting on the twostable synaptic states.4 Training the network with a �xed set of stimuliWe consider the case of a set E of a �nite number of stimuli p. The initial distri-bution of excitatory to excitatory synaptic bonds is assumed uniform,�0(Jij = J1) = g(0); �0(Jij = J0) = 1� g(0)for all (i; j). During training the stimuli shown to the network are limited to theset E. The learning protocol de�nes the order in which the stimuli are presentedto the network. In the following we study the following training protocols:A . Random sequence: at each presentation the stimulus is chosen randomly outof E.B . Fixed order: the stimuli are presented in a �xed cyclic order i.e. 1, 2, ..., p, 1,and so on. We also study the intermediate situation in which at each timestep there is a probability x of showing a randomly chosen stimulus in Einstead of the predetermined one. For x = 1 one recovers the case of randomsequence.C . Random pairs: stimuli in E are organized in p=2 pairs. Each stimulus � has apaired associate ��. The pairs are selected at random. When a pair is chosenboth members are shown successively in a random order. We also study theintermediate situation in which at each time step there is a probability x of19



showing a randomly chosen stimulus instead of one of the paired associates.Again for x = 1 the random sequence is recovered.Protocol B is similar to the protocol of the experiment of Miyashita (1988).In this experiment the sample stimuli are shown in a �xed order, while the matchstimuli are chosen to be the sample with probability 0.5, and a random di�erentstimulus otherwise. Thus it would correspond to protocol B with a probabilityx = 0:5 of showing a random stimulus. Protocol C is similar to the protocol ofSakai and Miyashita (1991). In this experiment the sample is a randomly selectedstimulus. Then two match stimuli are shown: the paired associate and anotherrandomly chosen stimulus.We consider the case in which the coding level f is very small, so that fp �1, but fCEE, where CEE is the excitatory to excitatory connectivity, is verylarge. Consider neurons which are activated by a speci�c stimulus �. A frac-tion (exp[�f(p� 1)]) � 1� f(p� 1) of these neurons is not activated by any otherstimulus. Thus when fp � 1, most selective neurons are activated by only onestimulus. We may therefore consider only these neurons, and the network can befunctionally divided in p+1 sets of neurons. One set corresponds to neurons whichare not activated by any stimulus. This set is denoted by F0. The other sets ofneurons correspond to neurons which are activated by one of the p stimuli. F�is the population of cells which are activated when stimulus � is presented, i.e.F� = fij��i = 1g.Next we classify accordingly the excitatory-to-excitatory synapses. There arein the network four types of synaptic populations:� Synapses which connect two neurons activated by the same stimulus. G�� isthe population of all synapses from F� to itself, i.e. f(i; j)j��i = 1; ��j = 1g.� Synapses connecting two neurons activated by two di�erent stimuli. G�� isthe population of synapses from F� to F�, i.e. f(i; j)j��i = 1; ��j = 1g.� Synapses connecting a neuron activated by a stimulus to a neuron not acti-vated by any stimulus. G�0 is the population of synapses from F0 to F�, i.e.f(i; j)j��i = 1; ��j = 0 for all �:g, and G0� is the population of synapses fromF� to F0, i.e. f(i; j)j��i = 0 for all �; ��j = 1g20



� Synapses connecting two neurons none of which is activated by any stimulus.G00 is the population of synapses from F0 to F0, i.e. f(i; j)j��i = 0; ��j =0 for all �:gTo calculate the probability distribution of the synaptic e�cacies in each ofthese populations, as a function of the learning protocol and of the duration oftraining, we de�ne two units of time: the �rst corresponds to the interval betweentwo presentations. Time in this unit will be referred to as t. The second measureof time T = pt, corresponds to the interval between two successive presentationsof the same stimulus, for a �xed cyclic sequence as in protocol B. At a given timet n�(t) is the number of times a given stimulus has been presented to the network,while m��(t) corresponds to the number of times stimulus � has been presentedimmediately following the delay activity provoked by stimulus �.The probability distribution of the e�cacies in any populationG�� is completelycharacterized by the probability of the synapse being potentiated, i.e.g�� = �(Jij = J1j(i; j) 2 G��)since �(Jij = J0) = 1 � g�� for (i; j) 2 G�� . The details of the derivation of theseprobabilities are given in Appendix.1. For a synapse in population G��g��(t) = (1 � p+)n�(t)g(0) + 1� (1� p+)n�(t)where g(0) is the initial probability of �nding a potentiated synapse. Thuswhen n�, the number of presentations of stimulus �, becomes large we getg�� ! 1, i.e. all synapses become potentiated.2. For synapses in population G�� with � 6= �, the distribution depends notonly on n�, n� and n�� but also on when the neighbour presentations weredone. There are two simple cases in which the distribution can be calculated.The �rst is when stimuli � and � always follow each other. In this case thelearning protocol can be divided in two intervals: the �rst corresponds tothe absence of delay activity after presentation of a stimulus. After (n�; n�)presentations we have g�� = (1 � p�)n�+n� g(0);21



gradually eliminating the potentiated inter-stimulus synapses contained inthe initial distribution. In the second interval, delay activity has developed.When n�� becomes large we obtain (see Appendix for details)g�� ! ap+ap+(1 � p�) + p�(2� p�) � ~aAnother limit case is when � and � are never presented contiguously. In thiscase the probability of the synapse being potentiated isg�� = (1� p�)n�+n� g(0)and therefore vanishes when the number of presentations becomes very large.In the intermediary situation when joint presentations occur but not system-atically we de�ne the relative frequency of the contiguous appearance of thetwo stimuli ��� = 2n��n� + n�The probability of having a potentiated link goes, when the number of pre-sentations becomes very large at �xed ��� , tog�� ! ���ap+���ap+(1� p�) + p�(2 � p�) � ~a(���)3. For synapses in G0� or G�0 one hasg�0 = g0� = (1� p�)n�g(0)and thus the probability of having a potentiated synapse goes to zero in thelimit of many presentations of stimulus �.4. The last population of synapses is composed of synapses who never see ac-tivity in the learning process. These synapses remain unmodi�ed. We willsee in the following that these synapses do not play any role in the dynamicsof the network.We are now able to calculate the parameters g�� for the learning protocolsdescribed at the beginning of the section. For each of these learning protocols theprobability of occurrence of any stimulus is the same. This probability is 1=p where22



p is the number of stimuli. Thus it is convenient to express the parameters g�� asa function of T = pt. For G��, G�0, G0� and G00 the distribution is independentof the learning protocolg��(T ) = (1� p+)Tg(0) + 1� (1 � p+)Tg�0(T ) = g0�(T ) = (1� p�)Tg(0)g00(T ) = g(0)By contrast, the synaptic distributions in populations G�� for � 6= � dependrather drastically on the learning protocol. g�� depends not only on T but also on��� , the frequency of a contiguous presentations of � and � connected by a delayactivity. The expression for g�� isg��(T ) = (1� p�)T (2����)(1� p� � ap+)���Tg(0)+���ap+  1� (1� p� � ap+)���T (1 � p�)���T���ap+(1 � p�) + p�(2� p�) !Recall that the dependence on the learning protocol arises only when persistentdelay activity is present in the network.The next step is to calculate the frequency of contiguous presentation for anypair of stimuli ���, starting from the time at which persistent delay activity becamestable in the network. Since during training all stimuli are presented the sameaverage number of times, delay activity appears at the same stage of the learningprotocol for all stimuli. We also suppose p > 2.Protocol A. (random presentation sequence) For all � 6= � one has��� = 2p� 1Every pair of stimuli has the same frequency of contiguous occurrence.Protocol B. (�xed presentation sequence) One has����1 = 1;since � and �� 1 always appear contiguously, and��� = 0 for all � 6= �; �� 1:23



Note that in this case, when the number of presentations becomes very large,the synaptic matrix becomes very similar to the matrix used in (Amit et al1994, Brunel 1994). If there is a probability x of a randomly chosen stimulusbetween two successive stimuli, we have����1 = (1� x)2 + 6x(1� x)p + 2x2p� 1and ��� = 4x(1 � x)p + 2x2p� 1 for all � 6= �; �� 1:Protocol C. (paired associates) In this case���� = 1;since � and �� always occur contiguously.��� = 1p� 2for � 6= �; ��. Again, a paired associate is replaced by a randomly chosenstimulus with probability x we have���� = (1 � x)2 + 6x(1 � x)p + 2x2p� 1and ��� = 4x(1 � x)p + 2x2p� 1 + (1� x)2p� 2 + 2x(1 � x)p(p � 2) for all � 6= �; ��:Thus the di�erent synaptic distributions are now completely determined as afunction of the learning stage T and of the learning protocol. They are character-ized by the matrix � giving the probability of mutual contiguous occurrence of anypair of stimuli in the learning set E.5 Learned delay activity distributionsTo monitor the neural dynamics we de�ne the average activity of neurons in pop-ulation F� (neurons driven by stimulus number �)m�(t) = 1fN Xi2F� �i(t) = 1fN Xi �i(t)��i24



and the average activity of neurons which are not active in response to any stimulusm0(t) = 1(1� fp)N Xi �i(t) 1�X� ��i !The population-averaged activity in the entire excitatory network ismE(t) =m0(t) + fX� [m�(t) �m0(t)]The population-averaged inhibitory activity ismI(t) = 1NI Xi2I �Ii (t)The average recurrent excitatory current impinging on a neuron of a givenpopulation F� (here � denotes either a stimulus or 0) is:h�(t) = C  J0mE(t) + f(J1 � J0)X� g��m�(t) + (1 � fp)(J1 � J0)g�0m0(t)! (8)and its variance is�2�(t) = �C  J20mE(t) + f(J1 � J0)2X� g��m�(t) + (1� fp)(J1 � J0)2g�0m0(t)!(9)The dynamics of the excitatory network is described described by Eqs. (8,9), to-gether with the equations giving the evolution of the means and variances of thedepolarizations at the soma of excitatory neurons in populations F�. From E-qs. (1,2) it follows that�E@tI� = �I� + Iext� + h� �CEIJEImI ; (10)and �E2 @t ��2�� = ��2� + (�ext� )2 + �2� + CEIJ2EImI : (11)The terms appearing on the right hand side of Eqs. (10,11) are: the decay term; theexternal contribution; the recurrent excitatory contribution, given by Eqs. (8,9);and the inhibitory contribution.The corresponding equations for the inhibitory neurons are given by�I@tII = �II + IextI + CIEJIEmE � CIIJIImI ; (12)25



and �I2 @t ��2I� = ��2I + (�extI )2 + CIEJ2IEmE � CIIJ2IImI (13)In Eqs. (12,13), the terms appearing on the right hand side are again: the decayterm; the external contribution; the recurrent excitatory contribution; and theinhibitory contribution. The average activity in each population is in turn givenby m� = �E(I�; ��); (14)and mI = �I(II ; �I ); (15)where the transduction functions �� (� = E; I) are given by Eq. 3.To obtain the delay activity after presentation of a given stimulus � at learningstage T we proceed as follows:1. Initially all neurons have their stable spontaneous activity. Only backgroundexternal currents are present.2. Stimulus number � is presented by injecting into neurons of population �a `selective' external current above the background one. Neurons in thispopulation are driven by the selective currents well above their spontaneousrates. Presentation lasts 100ms (= 10�E).3. At the end of the presentation the `selective' external currents are removedand only background external a�erents remain. After a short transient allneurons reach a steady-state delay activity, which persists inde�nitely.We choose the following parameters: the synaptic transition probabilities are:p+ = p� = 0:2, the neural parameters are as in section 2. The background synaptice�cacy is J0 =0.04mV, while the potentiated synaptic e�cacy is J1 = 0:15mV.The synaptic transition probability in the case of contiguous delay activity andstimulus activation ap+, is given by the following values of a: a = 0:02 and a =0:05. We use p = 50 stimuli, each stimulus activating a fraction f = 0:01 ofthe excitatory neurons in the network (Brunel 1994). We have not explored theparameter space. Instead we have chosen a particular set of parameters to exhibita case of good agreement with the experimentally observed delay activities in ITcortex of performing monkeys. 26



5.1 Protocol AStimuli are shown in a random sequence. The upper part of Fig. 6 shows the evolu-tion of delay activities as a function of the learning stage (number of presentationsper stimulus) for neurons in the population corresponding to the stimulus presented(diamonds), and neurons in populations corresponding to other stimuli (crosses).It shows that there is a critical learning stage Tc, here Tc = 11, (minimal number ofpresentations per stimulus for the creation of an attractor) beyond which selectivedelay activity appears. This critical learning stage is similar to the critical synapticparameter of Amit and Brunel (1995b). Before Tc, neurons which are active dur-ing the presentation of any stimulus see their spontaneous activity slightly increasewith T . This spontaneous activity is of order 3-4 s�1. After Tc the neurons rep-resenting the shown stimulus have an elevated delay activity of the order of 20-35s�1. Other excitatory neurons remain at spontaneous activity levels. The criticalstage Tc depends on the learning speed, which is controlled by the probabilitiesp+ and p�. The lower part of �gure 6 shows the corresponding evolution of theactivity of inhibitory neurons (crosses), which also slightly increases with learning,and of other excitatory neurons not activated in any stimulus (diamonds), whichdecreases from 3 to 2 s�1. In this case delay activities are uncorrelated since theysimply re
ect the structure of uncorrelated stimuli.5.2 Delay activities for protocol BStimuli are presented in a �xed order. Before Tc, since there is no delay activityin the system, the neural rates are independent of the order of presentation. Im-mediately after Tc, uncorrelated attractors develop as in the case of protocol A.Presentation of a given stimulus � activates neurons of the corresponding popula-tion, and this activity is maintained after removal of the stimulus, because synapsesconnecting these neurons have been su�ciently potentiated. After a while, activityin these neurons also provokes an increase in the activity in neurons in the popu-lations of the neighbouring stimuli, i.e. �+1 and �� 1, since synapses connectingthese populations to F�, i.e. synapses of G���1 have now an increased averagee�cacy. This activity can then propagate to further neighbours, i.e. �� 2, and soon. However, the inhibition controls the overall level of activity in the excitatory27
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network and therefore the activation spreads only to a few neighbours. This ac-tivation is also controlled by the parameter a, which characterizes the magnitudeof the strength of synapses of G��+1 relative to those of G��. Depending on thisparameter a, there exist two regimes, one of low correlation, the other of highcorrelation.� High correlation (Fig. 7, a = 0:05): after T = 15 learning cycles the ac-tivation of a neuron coding for a given stimulus in the delay following thepresentation of its neighbours becomes of the order of its activation in thedelay following the stimulus itself. When learning proceeds more neighbourssee their neurons increase signi�cantly their delay activity. In this case thecorrelations between two attractors corresponding to neighbor stimuli arevery high.� Low correlation (Fig. 8, a = 0:02): the activity of neurons in neighbouringpopulations, though increased with respect to the other populations, remainlow compared to the activity of neurons that represent the shown stimu-lus. Correlations between two representations of neighbour stimuli remainrelatively weak.In absence of stable spontaneous activity, (as was the case in Brunel 1994)the structure of the delay activity is always as in Fig. 7 (highly correlated delayactivities). The presence of a stable spontaneous activity allows for reverberationsin which neurons coding for stimuli which are neighbours of the presented stimulusremain at low levels of activity (compared with the activation of neurons codingfor the presented stimulus), though it is signi�cantly higher than their spontaneousactivity.Note that in the high correlation regime, in addition to neurons coding for thepresented stimulus, also those coding for nearest neighbours will be signi�cantlyactive during the delay. This fact implies that from the learning stage in which ap-pears such a high nearest-neighbour delay activity (T = 15 in Fig. 7), learning dueto delay activity could occur not only in synapses connecting nearest neighbours,as was assumed in Section 4, but also in synapses connecting next neighbours,i.e. synapses from populations G���2, though quantitatively the potentiation prob-ability will be weaker for these synapses than for nearest-neighbour ones. In turn31



at later learning stages a high next-neighbour delay activity could appear, imply-ing learning in populations of synapses G���3, etc. However we have checked thatif one allows for learning in synapses connecting more distant neighbours from thelearning stage at which appear such signi�cant neighbour delay activity, the pic-ture remains qualitatively very similar. The main di�erences is that due to thepotentiation of these synapses, more distant neighbours will be activated fasterduring the delay, enabling the network to reach the attractor in a shorter time,and that the delay activities of neurons coding for stimuli which are more distantthan the nearest neighbour will be slightly higher. In any case inhibition preventssigni�cant delay activation of a large number of neuronal populations.It is easy to calculate correlations as well as rank correlation coe�cients betweenthe delay activities provoked by di�erent stimuli (see Brunel 1994). Qualitativelythese correlations are a decreasing function of the distance in the serial position ofthe stimuli that provoked the delay activities. These correlations decay to zero (orto negative values in the case of rank correlations) at a distance corresponding tothe number of populations of cells activated above spontaneous levels in a givenattractor. For example, in Fig. 7 the correlations would be signi�cant up to adistance of 5 in serial position.5.3 Protocol C - paired associatesIn the case of paired associates the situation is qualitatively similar to protocol B,except for the fact that now only neurons coding for the shown stimulus and itspaired associate are activated in the delay period. Also in this case we can identifytwo regimes, with strong or weak correlation between delay activities correspondingto the pair associates. The main di�erence is that now, in the strongly correlatedregime, the delay activity of paired associate neurons is equal to the delay activityof the neurons coding for the shown stimulus. Therefore the network has formedattractors which do not correspond anymore to the individual pictures, but ratherto the pairs of pictures. This can be seen in Fig. 9 (a = 0:05) at learning stageT = 15. By contrast in Fig. 10 the representations of paired associates becomecorrelated with learning, but remain distinct. Note the similarity of this �gure withone of the cells shown in (Sakai and Miyashita 1991). However the comparison is32
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not direct. Sakai and Miyashita (1991) give the activity of cells during presentationof the stimulus. The corresponding delay activity distributions, presented here, arenot reported. The analysis predicts that the delay activity provoked by two pairedassociates should be signi�cantly correlated or even become equal. Note that theformation of similar pair-coding attractors has also been observed in a model witha �xed synaptic matrix (Parga 1994).6 DiscussionIn this paper we have discussed an explicit, plausible learning process in a recurrentneural network, which in the presence of delay activity, implements the memoryof the context of the learned stimuli in the synaptic matrix. In the case of stimulishown in a �xed sequence during training, this synaptic matrix is found to bequalitatively similar to the matrix that was used in (Amit et al 1994, Brunel 1994).With such a learning process it is possible to determine the statistical properties ofthe synaptic matrix as a function of the learning stage and the learning protocol.With the network composed of excitatory and inhibitory cells described in (Amitand Brunel 1995b), whose stable state in absence of learning is a state in whichneurons have a spontaneous activity of the order of 1 spike per second, it is in turnpossible to determine the statistical properties of the delay activities, again as afunction of the learning stage and the learning protocol. In the only case in whichto our knowledge experimental data is available (Miyashita 1988) we recover theresults of (Amit et al 1994, Brunel 1994) which are in good agreement with theexperiment. Furthermore the analysis allows to predict either the evolution of thecorrelations during learning or the dependence of the correlations with the learningprotocol.There are a number of tests of the theory that can in principle be done withvisual memory experiments.1. The time of occurrence of selective delay activity should not depend on thelearning protocol, i.e. on the way stimuli are presented.2. Delay activities corresponding to uncorrelated stimuli should initially be un-correlated. 35



3. Correlations between delay activities should only depend on the order of pre-sentation after the appearance of selective delay activity in the network, andnot on the order of presentation prior to delay activity. For example if stimuliare shown in a �xed order before the appearance of selective delay activity,but in a random order afterwards, the attractors should be uncorrelated.We turn now to a brief discussion of the elements of the model. Excitatoryand inhibitory cells are integrate-and-�re neurons described by the statistics oftheir input currents and their output �ring frequency (Amit and Brunel 1995b).We emphasize that this model, roughly accounts for the average spontaneous andselective activities observed in the visual memory experiments. Last, though theaverage delay activities themselves do depend on the details of the model neuron,the correlations between the attractors of the system seem largely independent onthe details of the single neuron. Large-scale simulations of networks of integrate-and-�re neurons are currently under way to con�rm that these correlations arepreserved if one considers networks of spiking neurons rather than neurons de-scribed by �ring rates.The implementation of temporal correlations between stimuli in the synapticmatrix depends crucially on a mechanism leading to long term potentiation whendelay activity in one neuron connected by a synapse is immediately followed bystimulus-provoked activity in the other neuron connected by that synapse. Thissimple mechanism leads to the implementation of such correlations. In this paperthis mechanism - and the whole synaptic process - was supposed to be symmetricin pre and post synaptic neurons. This assumption of symmetry was taken forsimplicity, but it is not necessary. In fact experimental data suggests LTP can beinduced when postsynaptic activity follows presynaptic activity by 100ms (Levyand Steward 1983, Gustafsson et al 1987), but on the other hand, if postsynapticactivity precedes presynaptic activity, LTP does not occur. The formalism devel-oped in this paper can easily be generalized to such an asymmetric situation. Thisissue will be considered in a future work.36



AcknowledgementsI am grateful to Daniel Amit and Stefano Fusi for many discussions, and to DanielAmit and Paolo del Giudice for the many detailed comments on a previous versionof this manuscript. I also thank the referees for very useful comments. This workwas supported by a fellowship of Programme Cognisciences, CNRS, France.Appendix. Synaptic distributions1. For a synapse in population G��: at each presentation of stimulus �, asynapse which is in its low state, has a probability p+ of making a tran-sition to the potentiated state. Thus after n�(t) presentationsg��(t) = (1 � p+)n�(t)g(0) + 1� (1� p+)n�(t)where g(0) is the initial probability of �nding a potentiated synapse.2. For synapses in population G�� with � 6= �, the situation is somewhat morecomplicated, since the distribution depends not only on n�, n� and n�� butalso on when the neighbour presentations were done. There are two simplecases in which the distribution can be calculated. The �rst is when stimuli� and � always follow each other. In this case the learning protocol canbe divided in two intervals: the �rst corresponds to the absence of delayactivity after presentation of a stimulus. At each presentation of stimuli � or�, potentiated synapses have a probability p� of making a transition to thelow state. Thus after (n�; n�) presentations we haveg�� = (1 � p�)n�+n� g(0);In the second interval, delay activity has developed. When a contiguouspresentation of � and � occurs there is a probability ap+ for low synapsesof making a transition to the high state. Thus after n�� occurrences of thecontiguous presentation of stimuli � and � separated by the delay period wehave g�� = (1 � p�)n�+n��n�� (1 � p� � ap+)n��g(0)+ap+  1� (1� p� � ap+)n�� (1 � p�)n��ap+(1� p�) + p�(2� p�) !37



When n�� becomes large we haveg�� ! ap+ap+(1 � p�) + p�(2� p�) � ~aAnother limit case is when � and � are never presented contiguously. In thiscase the probability of the synapse being potentiated isg�� = (1� p�)n�+n� g(0)and therefore vanishes when the number of presentations increases.In the intermediary situation when joint presentations occur but not system-atically we use an interpolation in the relative frequency of the contiguousappearance of the two stimuli ��� = 2n��n� + n�This expression isg�� = (1 � p�)n�+n��n�� (1 � p� � ap+)n��g(0)+���ap+  1� (1 � p� � ap+)n�� (1� p�)n�����ap+(1� p�) + p�(2 � p�) !and interpolates between the two preceding limit cases. The probability ofhaving a potentiated link goes, when the number of presentations becomesvery large at �xed ��� , tog�� ! ���ap+���ap+(1� p�) + p�(2 � p�) � ~a(���)3. For synapses in G0� and G�0, presentation of stimulus � causes depressionwith probability p�, and after n� presentations one hasg�0 = g0� = (1� p�)n�g(0)and thus the probability of having a potentiated synapse goes to zero in thelimit of many presentations of stimulus �.38
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