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4.2 Spikeresponse mode (SRM)

The Spike Response Model (SRM) is - just like tbalmear integrate-and-fire model - a
generalization of the leaky integrate-and-fire modibe direction of the generalization is, however,
somewhat different. In the nonlinear integrate-&relmodel, parameters are madstage
dependent whereas in the SRM they depend on tleesiimee the last output spike. Another
difference between integrate-and-fire models ardRM concerns the formulation of the
equations. While integrate-and-fire models are lsdafined in terms of differential equations, the
SRM expresses the membrane potential at tiagean integral over the past.

The explicit dependence of the membrane potenpi@huhe last output spike allows us to model
refractoriness as a combination of three componeizs (i) a reduced responsiveness after an
output spike; (ii) an increase in threshold aftendj; and (iii) a hyperpolarizing spike aftpotential
In Sectiord.2.1the Spike Response Model is introduced and itpgates illustrated. Its relation to
the integrate-and-fire model is the topic of Setd®.2 An important special case of the Spike
Response Model is the simplified model SRilat we have already encountered in Chabterd.

Section4.2.3will discuss it in more detail.

4.2.1 Definition of the SRM

In the framework of the Spike Response Model theestf a neuroi is described by a sing
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4.2 Spike response model (SF Ctp. 2u3 16

variableu;. In the absence of spikes, the varialgles at its resting valuey = 0. Each incoming

spike will perturbu; and it takes some time befazereturns to zero. The functics)  describes the

time course of the response to an incoming spikafter the summation of the effects of several
incoming spikesy; reaches the threshcy  an output spike is trighelree form of the action

potential and the after-potential is described yretion 7 . Let us suppose neurionas fired its

last spike at timt: . After firing the evolution wfis given by

() =" -ti) + Zwij Y ettt -tj(f))
;g

+ L K-t 919t - 9) ds (4.24)

Wheretj(f) are spikes of presynaptic neurqi>rmdwij is the synaptic efficacy. The last term accounts
for an external driving curren®® The two sums run over all presynaptic neujcersd all firing
timestj(f) <t of neuron. We emphasize that all terms depend ot i.e., the time since the last

output spike.

In contrast to the integrate-and-fire neuron disedsn Section4(1) the threshol«? is not fixed bu
may also depend dn ¢,

79— d(-t). (4.25)

During an absolute refractory periA** | we may faraple se?? to a large and positive value

to avoid firing and let it relax back to its eqbiiium value fort > ¢, + A Firing occurs whenev

the membrane potential reaches the dynamic threshigit - t; ) from below

: - dug [’t)
t=t0 = uy®=7¢-t)and—g >0. (4.26)
As mentioned befort; is thast firing time,

Dynamic thresholds are a standard feature of phenolagical neuron modelgijortes and
Mantegazzini, 1962Stein, 1967pMacGregor and Oliver, 197&ckhorn et al., 199Abeles, 1991
Geisler and Goldberg, 196%/eiss, 1966Horn and Usher, 1939Models similar to Eqs4(24)-
(4.2€) can be traced back much further; see, Hill (1936).
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4.2 Spike response model (SF Crp. 3u3 16

4.2.1.1 Interpretation

So far Egs.4.1) and @.24) define a mathematical model. Can we give a bickdgnterpretation of
the terms? Let us identify the variablewith the membrane potential of neurioThe functions™ ,
x ande;; argesponse kernekhat describe the effect of spike emission anklespgception on the

variableu;. This interpretation has motivated the name "SRigsponse Model', SRM for short
(Gerstner, 199X istler et al., 199Y. Let us discuss the meaning of the response leerne

" ¢ . t

Figure 4.5: Schematic interpretation
of the Spike Response Model. The
figure shows the time coursgt) of

the membrane potential of neuron
as a function of timé A spike of

neuroni has been initiated ¢,. The

kernels € - t,) fort > ¢, describes

the form of the action potential
(positive pulse) and the (negative)
spike after-potential that follows the
pulse (thick solid line). If an input
current pulse is applied at a tirtiea

long time after the firing ¢, , it

evokes a standard response
described by the functice og t;
t") and indicated by the dashed line
starting at" (arrow). An input
current pulse &t (arrow) which
arrives shortly after the postsynaptic

spike af¢, evokes, due to

refractoriness of the neuron, a
response of significantly shorter
duration. Its time course is described

by the response kerns! t (¢, ,t -

t'); see the dashed line after
Immediately after firing at, , the

threshold is increased (dot-dashed
line).
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4.2 Spike response model (SF Crp.4u3 16

The kernen describes the standard form of an mgadential of neuronincluding the negative
overshoot which typically follows a spike (aftertpntial). Graphically speaking, a contributiz; s

“pasted in' each time the membrane potential reattieethreshol @@ ; cf. Fig.5. Since the form of
the spike is always the same, the exact time calfrgee action potential carries no information.
What matters is whether there is the event “spikabt. The event is fully characterized by the

firing time 0. In a simplified model, théerm of the action potential may therefore be negleeted
long as we keep track of the firing tirm;@. The kerne™ describes then simply the ‘reseti®f
membrane potential to a lower value after the sptl; just like in the integrate-and-fire model.

The leaky integrate-and-fire model is in fact acsplecase of the SRM as we will see below in
Section4.2.2

The kerne & (- £, , ) is thelinear respons®f the membrane potential to an input current. It

describes the time course of a deviation of the brane potential from its resting value that is
caused by a short current pulse (" impulse resphngé have already seen in Chapand3

that the response depends, in general, on thethiatédnas passed since the last output spit,: at

Immediately afte¢, many ion channels are open abtte resistance of the membrane is reduced.

The voltage response to an input current pulseydet@refore more rapidly back to zero than in a
neuron that has been inactive. A reduced or shaetgronse is one of the signatures of neuronal
refractoriness. This form of refractory effectaken care of by making the keris2l  depend, via its

first argument, on the time differente ¢, . We illustrate the idea in Fig.5. The response to a first

input pulse at' is shorter and less pronounced than that to ansemae at”, an effect which is well-
known experimentallyHuortes and Mantegazzini, 19&evens and Zador, 1998owers and
Binder, 1998.

The kerne %ii {(- t; ,S) as a function o=t - tj(f) can be interpreted as the time course of a

postsynaptic potenti evoked by the firing of a presynaptic neujai timetj(f). Depending on the

sign of the synapse fromtoi, ¢;; models either an excitatory or inhibitory postaptic potential

(EPSP or IPSP). Similarly as for the kerx2l , tha@ot shape of the postsynaptic potential depends
on the timet - ¢, that has passed since the last spike of thisyrptic neuron In particular, if

neuroni has been active immediately before the arrival pfesynaptic action potential, the
postsynaptic neuron is in a state of refractorinksthis case, the response to an input spike is

smaller than that of an "unprimed’ neuron. The &irgument o«;; t(- t.,s) accounts for the

dependence upon the last firing time of the positin neuron.

4.2.1.2 Total Postsynaptic Potential

In order to simplify the notation for later useisittonvenient to introduce thetal postsynaptic
potentia,

(4.28)
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h(t|£z' )= ;Wij ; S (t - ¢, ,t-tj(f)) + l Rt - ¢, ) IieXt(t -9) ds.
1.‘}'

Equation 4.24) can then be written in compact form,

Ut =7 (- ) +ht) (4.29)

4.2.1.3 Refractoriness

Refractoriness may be characterized experimertiglthe observation that immediately after a first
action potential it is impossible (absolute refoairtess) or more difficult (relative refractoring$s
excite a second spik€&ortes and Mantegazzini, 1962

Absolute refractoriness can be incorporated ifSR& by setting the dynamic threshold during a
time A to an extremely high value that cannot baird.

Relative refractoriness can be mimicked in variways; see Figd.5. First, after the spike the
membrane potential, and herije , passes throughinae®f hyperpolarization (after-potential)

where the voltage iselowthe resting potential. During this phase, monastation than usual is
needed to drive the membrane potential above tbleshhis is equivalent to a transient increase of
the firing threshold (see below). Secoed, &1d trdmute to relative refractoriness because,
immediately after an action potential, the respdnsacoming spikes is shorter and, possibly, of
reduced amplitude=Qortes and Mantegazzini, 196Zhus more input spikes are needed to evoke
the same depolarization of the membrane potergtiad an "unprimed' neuron. The first argument of
the e function (oix function) allows us to incorpirshis effect.

4.2.1.4 Removing the dynamic threshold

From a formal point of view, there is no need tefpret the variabla as the membrane potential
is, for example, often convenient to transformwhgableu so as to remove the time-dependence of
the threshold. In fact, a general Spike ResponsgeMaith arbitrary time-dependent thresh 74t - (

t)=19, + A - 1), can always be transformed into a Spike Respdfodel with fixed threshold

!, by a change of variables
u) — a@=u®)- At-¢). (4.30)

The functionAA {- t) can easily be absorbed in the definition @71kernel.

4.2.1.5 Example: Impulse response of the FitzHugh-Nagumo model

In Chapter3 we have studied the FitzHugh-Nagumo model as ample of a two-dimensional
neuron model. Here we want to show that the regpohthe FitzHug-Nagumo model to a shc
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4.2 Spike response model (SF Crtp. 6u3 16

input current pulse depends on the time sinceas$tespike. Let us trigger, in a simulation of the
model, an action potential it 0. This can be done by applying a short, baingtrcurrent pulse.
The result is a voltage trajectory of large ampl@wvhich we identify with the kern t)(Figure

4.6 shows the hyperpolarizing spike affetential which decays slowly back to the restengl. To
test the responsiveness of the FitzHugh-Nagumo haaing the recovery phase after the action

potential, we apply, at a timé) > 0, a second short input current pulse of low lgoge. The
response to this test pulse is compared with tiperuarbed trajectory. The difference between the

two trajectories defines the kerr It - §,t - t(f)). In Fig.4.6 several trajectories are overlayed
showing the response to stimulatiort at10, 15, 20, 30 or 40. The shape and duratigheof
response curve depends on the time that has psissedhe initiation of the action potential. Note
that the time constant of the response kexiel Iwiays shorter than that of the hyperpolarizing
spike after-potential. Analogous results for thalgkin-Huxley model will be discussed below in
Sectiorn4.3.1

A B
2.0
_ 4.0
10t
_ 15
0.0}
h ! 2.0 Lo
10t 10 12
_ 4.0
20t
- A5
0.0 20.0 400 )
; 20 —25 a2

Figure 4.6: FitzHugh-Nagumo model. An action potential hasnbigigigered at = 0.
After the action potential additional pulse inpators at = 10, 15, 20, 30, or 40
[arbitrary units]. InA the trajectories of all runs are plotted on togach other. Part
B shows a zoomed-in section of two trajectoriesus@ input at time t=10 after the
onset of the action potential has a short lastffege(top right) compared to a pulse

at t=40 (bottom right). All parameters as in R¢p. There is no constant bias curre

4.2.1.6 Example: A motoneuron model
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Figure 4.7: Effect of recovery time constat,.. . Top: Input emtr

consisting of a sequence of pulses superimposedconstant bias.
Bottom: The membrane potential response (thick lioghe input pulses
clearly shows that the response amplitude increasesfunction of the
time since the last spike. Parametr,.. 7,4, =107,,Ss 4ms;

taken fromHerrmann and Gerstner (2001b)

Motoneurons exhibit a rather slow return to theimgspotential after an action potenti&®awers

and Binder, 1996 The time constant of the decay of the hyperjotay spike after-potential can be
in the range of 100ms or more and is therefore nslmher than the membrane time constant that
characterizes the response to a short current.i@uuthe other hand, it is found that if motonesron
are stimulated by a constant super-threshold cyrtezir membrane potential has a roughly linear
trajectory when approaching threshold. To qualitayi describe these observations, we can use a
Spike Response Model with the following kernels:

(t-1)=_ 7 e‘% @(t-i) (4.31)
- R t—t 1 .
(.92 = [1_e—mc ]e-; 09 ©O¢.t.g (4.32)

whereT,, is an effective passive membrane time coh$as the input resistanc,;,  is the
‘refractory’ time constant,.. is the ‘response repg\time constan7, is a scale factor for the
refractory function. The passive membrane time ot 7, and input resistanéecharacterize the
membrane response to small current pulses. Thactefy functior;; describes the return of the

membrane potential to baseline after an actionrpiadelt is characterized by a slow time constant
T - FOr ther -kernel we use a decaying exponentiakitth time constant,, , modulated by the

‘recovery' factor {1 - exp[t(- )/ Tz I}. This results in a spike-time dependent swabf the

amplitude of postsynaptic potentials. The recoveng 7,.. is taken much longer thiT,,

The effect of the modulation of the input conductaas a function - ¢ is depicted in Fig4.7.
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An input current pulse shortly after the reseiraett evokes a postsynaptic potential of much lo
amplitude than an input current pulse that arrmesh later. Fig4.7 qualitatively reproduces the
membrane trajectory of motoneurons when stimulbiethe same input patterRgliakov et al.,
1996 Powers and Binder, 1996

4.2.2 Mapping the Integrate-and-Fire Model to the SRM

In this section, we show that the leaky integratd-Aire neuron defined in Sectignlis a special
case of the Spike Response Model. We considertagrate-and-fire neuron driven by external

current!®and postsynaptic current puls st - lg(f)). The potentiali, is thus given by

dug
™ =y +R Zwij Do {0) + R4 . (4.33)
it

In order to construct a mapping of the integratd-twe model to the Spike Response Model, we
integrate Eq.4.33 with u(ff) = U, as its initial condition. The result is in analagyEq. ¢.10

t—t,
u() =y, exr( " ) (4.34)

1 [t 3
+ZWUZE£ exp( Z) ﬂ(-tj(f)-s)ds
i f

1 t—1; 2
+5£ ex|\ T 1€t - 5) ds
a

=f?(t-fs)+zwij2f(t-f-,t-tj<f))+f B-t,91 9%t ds,
i f

with
17(S) = U exp( -%) , (4.35)
1 [ ¥
e(s )= El exp( —m) a (-t)d, (4.36)
(s t)= ! ( ¢ ) 2 6-1) B(t
O e S LI (4.37)

As usual,@ X) denotes the Heaviside step function. The ker(@e89-(4.37) allow us to map the
integrate-and-fire neuron exactly to the the Sjilksponse Model, as desired; cf. Eg24).

In order obtain an explicit expression for ‘= kernel 4.3€) we have to specify the time course
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the postsynaptic curre o S)( Here, we takia s as defined in4.2J), viz.,
g
a(s) = T—exr[ 97, ) ©(9). (4.38)

With g =C = 1, the integration of Eg4(36) yields

—

'm

EX —mmc[.f—_sm min(s min| s
e(st)= p( - )[exr(- [’t))-ex( E’t)”@d?@(t)?m.%)

ta

cf. Fig.4.8. If presynaptic spikes arrive before the last pasaptic spike, then they have only a
small effect on the actual value of the membrarteni@l because only that part of the postsynaptic

current that arrives afti¢,  contributes to the asaptic potential. Spikes that arrive a't,r

produce a full postsynaptic potential. Note thatsedity implies that th = kernel has to vanishes 1
negative arguments.

=2
@

=
.

eitt—™)

=2
ma
T

o 10 2o an.
t
Figure 4.8: The kerne'c t(t-tj(f))
as a function of for various
presynaptic firing timeﬁ(f) =-2,-
1, 2, 5; cf. Eq.4.39 with 7, =1

and 7., =5. The last postsynaptic

spike was at = 0. If presynaptic
spikes arrive before the last
postsynaptic spike, then they have
only a small effect on the membre
potential; cf. the two small EPSPs

that correspond ttf(f) =-2 anotj(f)
= - 1. If presynaptic spikes arrive
after the last postsynaptic spike tt

they evoke a full-blown EPSP; cf.
the two large EPSPs that corresp

to tj(f) =2 andtj(f) =5.

4.2.2.1 Example: Spike-time dependent time constant

We have seen above that the Spike Response Maakglin® the integrate-and-fire model as a
special case. In this example, we show in additian even a generalization of the integ-anc-fire
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model that has a time dependent membrane timeamtresdn be described within the SRM
framework.

To be specific, we consider an integrate-and-ficeleh with spike-time dependent time constant,
i.e., with a membrane time constimit  that is ationmf the time since the last postsynaptic spike,

du i 1

it = 7t-9 *C 1#¥4(t) ; (4.40)

cf. Stevens and Zador (1998Yehmeier et al. (1989As usualt denotes the last firing time of the
neuron. The neuron is insensitive to input duringbsolute refractory period of durati A%

After the refractory period, the membrane potensiakset to a value,. Starting the integration of

A aks

Eq. @.40 atu(+ + i“ﬂbﬁ) =u,, we find fort > ¢ + =

i ¢!
u(t)=u, exp{ -fH_ybE r(# —i] } (4.41)

! /m@ A |: ff dt’ ]ex
+o ) Pt -sexp| - [ T =9 1t - 9) ds,

which is a special case of E4.24). As we have seen above in Hgg, the effective membrane
time constant of many standard neuron models isceatiimmediately after a spike. The reason is
that, after a spike, many ion channels are opghaaonductance is increased. Since the time
constant is inversely proportional to the conducéathe time constant is decreased. The relation
between ion channels and spike-time dependentdimstant will be discussed in more detail in
Sectiord.3.2

4.2.3 Simplified Model SRM,

The phenomenological neuron model SRiktroduced in Chaptek.3.1is a special case of the

Spike Response Model. In this section we reviewelation to the SRM and the integrate-and-fire
model.

4.2.3.1 Relation to the SRM

A simplified version of the spike response model ba constructed by neglecting the depender
r ande upon the first argument. We set

€a(9) = ;;(00,9)

fig (8) = g5 (00, 9)

and use4.24) in the form

(4.42)
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ui(t):??(t-ff)+zwij2fu(t-tj<f>)+f Fa(s) 19Xt - 5) ds.
i ) g

Each presynaptic spike thus evokes a postsynaptiEnial with the same time course, independent
of the index of the presynaptic neuron and independent ofasefiring timet, of the postsynaptic

neuron. The amplitude of the response is scaldutvé synaptic efficacwij. The postsynaptic

potentials are summed until the firing threst ¢ ds reached. In Figt.9 we have assumed a
constant threshold. Each output spike is approxathhy ad pulse, followed by a reset to a value
below resting potential so as to account for a hyplarizing spike after-potential,

Freoonr

_ . t—t
nt-t)=d¢-1)-m exr( - ) ) (4.43)

with a parameten, > 0. The spike after-potentiabgs back to zero with a recovery time constant

Trecov . This simple version of the Spike Response Mo8BINl, for short) has been used in the

analysis of the computational power of spiking oegr{Maass, 1998998, of network
synchronizationGerstner et al., 1998pand collective phenomena in locally coupled roeks
(Kistler et al., 1998Kistler, 2000. The model defined in Eq4{42 can also be fitted to
experimental dateB(illinger and Segundo, 1978rillinger, 19881992.

S il Sgese
input spikes "

Loty
T

Y
input spikes
Figure 4.9: Spike Response Model SRWith

constant threshold (schematic). Each input pulse
causes an excitatory postsynaptic potential
(EPSP)¢; $). All EPSPs are added. If the

threshold is reached an output spike is emitted
(arrow) and a negative kerrl s) (s added so

that the voltage is reset.
4.2.3.2 Dynamic threshold inter pretation

The simplified model SRMdefined in 4.42 with the kernel defined ind(43 can be
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reinterpreted as a model with a dynamic threshold,
dt-1)=7 -9 ¢-1), (4.44)
that is increased after each spike. Firing ocdurs i
h=7¢-1), (4.45)

whereh; is the input potential,

h(t) = Zwijzfﬂ(t-tj(f)) + f fia (9) 1%t - 5) ds.. (4.46)
i ) d

We emphasize th&t depends on the input only. In particular, thenedsiependence uptie . The

next spike occurs if the input potentieft) reaches the dynamic thresh it - £); cf. Fig.4.10

t [ms]
Figure 4.10: Dynamic threshold interpretation. The input porit
(t) (solid line) is generated by the superpositiothef EPSPs (solid
line) caused by presynaptic spikes. Each spikeans denoted by &
arrow. An output spike occurs,hfhits the dynamic thresho?
(dashed line). At the moment of spiking the val@ihe threshold is
increased by one. After the spike, the threshotdiwgie exponentially
back to its resting valu? = 1.

4.2.3.3 Relation to theintegrate-and-fire model

The basic equation of the leaky integrate-andrficalel, Eq. 4.3), is alinear differential equation.
However, because of the reset of the membrane fadtafter firing, the integration is not

completely trivial. In fact, there are two diffetemays of proceeding with the integration of

Eg. @.3). In Section4.2.2we have treated the reset as a new initital cmmdénd thereby

constructed an exact mapping of the integrate-aed¥fodel to the Spike Response Model. We now
turn to the second method and describe the resetagent pulse. As we will see, the result is an
approximative mapping to the simplified model SRM

Let us consider a short current pullﬁéJt =-q §(t) applied to th&kCcircuit of Fig.4.1 It removes i
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chargeq from the capacito€ and lowers the potential by an amo /At = - g/C. Thus, a reset of t
membrane potential from a valuelof 3 to a new value = u, corresponds to an “output’ current

pulse which removes a charge C (g - u,). The reset takes place every time when the nefines
The total reset current is therefore

10Ut = -C (V-u) > Ot- t0) (4.47)
i

where the sum runs over all firing timt?@. We add the output currert.47) on the right-hand side
of (4.3),

dui
Tm 3r =-u() + R + R . (4.48)

Here, |, is the total input current to neurgrgenerated by presynaptic spike arrival and bgrexd
stimulationlieXt(t). Let us assume that each presynaptic pulse ewgestsynaptic current with

time course, (- tj(f)). The total input current is then

() = Zwij > At - tj(f)) +1.8X) . (4.49)
j f

Since @.48 is a linear equation, we can integrate each saparately and superimpose the result at
the end. The output pulsi;é)Ut yields a refractory kerna  while each postsymagtirrent pulsi
generates a postsynaptic poter<;l . More spetiificse have after integration with initial

condition 1M, — _cq U(ty) =0

O= o -0y + Zwij > ca- tj(f))
f i f

+£ Ka @) |ieXf(t-s) ds, (4.50)
with kernels
Ma(9=- (7 -u) eXF( im) °, (4.51)
1 /= s'
fu(s):E[G exr( —m> ag-s)ds’@(s), (4.52)
do-bon( ) o
g (8) = hAATES 6 - (4.53)

The refractory kernen, sf and the postsynaptic potents;  are shown in £ifyl
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.
e

0.0

01 ¢

M,(1
€o(1)

10t

0 20 40 60 0 20 20 60
t [ms] t[ms]
Figure4.11: A. The refractory kernerj,  of the integrate-and-firedel with
membrane time constat,, = 10B8s.The postsynaptic potentis; t) generated by

an exponential current pul a: t) pc exp(-t/ 7).

We note that, in contrast to Ed.42), we still have on the right-hand side of E450 a sum over
past spikes of neuranAccording to Eq.4.5]) the effect of therj, -kernel decays with a time

constan7,, . In realistic spike trains, the intetvefween two spikes is typically much longer than

the membrane time conster,, . Hence the sum ovirgfierms is usually dominated by thst

recentfiring time () <t of neurori. We therefore truncate the sum dfand neglect the effect of
earlier spikes,

g Tt -40) 7 Tag- ), (4.54)

Whereie = maxﬁ(f) <t} is the last firing time of neuron The approximation4(54) is good if the

mean firing rate of the neuron is low, i.e., if ihéervals between two spikes are much longer than
T... LOOSely speaking, the neuron remembers only d@stmecent firing. Equationt(54) is therefor:

called “short-term memory approximatio@grstner et al., 199%bThe final equation is

u(t) = o (t-fe)+Zwijqu(t-tj<f)) +f f(g) 18Xt - 5) ds . (4.55)
i f g

This is exactly the equation for the model SiRklefined in 4.42). Note that we have kept, on the
right-hand side of4.55, the sum over ajpresynaptidiring timestj(f). Only the sum over tF"la s
has been truncated.

A careful comparison of Eg4(51) with Eqg. @.35 shows that the kern7, is different from the
kernelr derived previously for trexactmapping of the integrate-and-fire model to thé 3yike

Response Model. The difference is most easily #eee set the reset potential tp= 0. While the
kernelr in Eq.4.35 vanishes in this case, the kern,l  is nonzeréadt) whereas in the full

file://D:\My -files\My-research\Pape-2\Spikinc-N\Tutorial\4 2 Spike response m¢... 2009/02/1!
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SRM the reset is taken care of by the definitio e @f- ,s) and x (- ¢, 9), the reset in the
simplified model SRNjis included in the kern'lo . The relation betwesmkernels of the
simplified model SR\ to that of the full model are discussed below orendetail.

4.2.3.4 Example: Postsynaptic potential ¢,

If a(s)is given by 4.21), then the integral on the right-hand sidectp) can be done and yields

o (ol w) (D) e e

€ (9) = -

where we have set=C = 1. This is the postsynaptic potens;l illustchin Fig.4.11B. We note
that¢; defined in Eq4(56) is closely related, but not identical to the lais introduced in

Eqg. @.39.
4.2.3.5 Relation between thekernels ¢; and ¢ (*)

What is the relation between tee  kernel derive@ifie) and the:; introduced i (527 We will

show in this paragraph that

€(st) =g (t)-exr( -— ) (-9 (4.57)

5
holds. To this end we rewrite Ed.86) as
1 [/ ¥ 1 7= '
e(s )= —ﬂ/ exf| -— | af-t)d __"'f expf| -— | af{-t)d
L Tm L Tm
L= ] _tlf
f exp( —) a(-t)d
a Tm
s 1 = t" (et -9
- €X| Z El ex ; atét -9 . (4.58)

Using the definition4.52 of ¢; yields Eq. 4.57).

il =

By a completely analogous sequence of transformgitas possible to show that

k(X ) = g (s)-exr( = ) ko 6-X) . (4.59)

'm
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The total postsynaptic potentia(t|¢, ) defined in 4.28 can therefore be expressed via the input

potentialh;(t) (Gerstner, 2000b
_ t—t, _
htt) =h(® - exe| - Jhi(k) (4.60)

As expected, the resett,t  has an influence ototakpostsynaptic potential. We emphasize that

the expressiongh(58-(4.60 hold only for the integrate-and-fire model.
Similarly we can compare tlp kernel t035 and ther, kernel defined id.67),

CEENCRE: ex;( —) - (4.61)

'm
We can thus write the potential in the form

u®="7 (t- &) +h(lt,)

_ . t—1
=rra(t-t:-)+h(t)-[h(t-)-t‘?]exr( —) : (4.62)

—
'm

The truncation in4.54) is therefore equivalent to a neglection of tte tarm in 4.62.

[x] 1 l?‘ [:] previc ‘l?lconter I?lin‘

Next: 4.3 From Detailed Modeldp: 4. Formal Spiking NeuroRrevious: 4.1 Integrateandfire
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