
http://adb.sagepub.com

Adaptive Behavior

DOI: 10.1177/105971230501300101
 2005; 13; 5 Adaptive Behavior

G. D. Konidaris and G. M. Hayes
 An Architecture for Behavior-Based Reinforcement Learning

http://adb.sagepub.com/cgi/content/abstract/13/1/5
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 On behalf of:

 International Society of Adaptive Behavior

 can be found at:Adaptive Behavior Additional services and information for

 http://adb.sagepub.com/cgi/alerts Email Alerts:

 http://adb.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints:

 http://www.sagepub.co.uk/journalsPermissions.navPermissions:

 http://adb.sagepub.com/cgi/content/refs/13/1/5 Citations

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://www.isab.org.uk
http://adb.sagepub.com/cgi/alerts
http://adb.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://adb.sagepub.com/cgi/content/refs/13/1/5
http://adb.sagepub.com

5

An Architecture for Behavior-Based Reinforcement

Learning

G. D. Konidaris, G. M. Hayes
Institute for Perception, Action and Behaviour, University of Edinburgh, UK

This paper introduces an integration of reinforcement learning and behavior-based control designed

to produce real-time learning in situated agents. The model layers a distributed and asynchronous
reinforcement learning algorithm over a learned topological map and standard behavioral substrate to
create a reinforcement learning complex. The topological map creates a small and task-relevant state

space that aims to make learning feasible, while the distributed and asynchronous aspects of the
architecture make it compatible with behavior-based design principles.

We present the design, implementation and results of an experiment that requires a mobile robot

to perform puck foraging in three artificial arenas using the new model, random decision making, and
layered standard reinforcement learning. The results show that our model is able to learn rapidly on a
real robot in a real environment, learning and adapting to change more quickly than both alternatives.

We show that the robot is able to make the best choices it can given its drives and experiences using
only local decisions and therefore displays planning behavior without the use of classical planning

techniques.

Keywords artificial intelligence · robotics · reinforcement learning · layered learning

1 Introduction

Any credible theory of intelligence must explain the
wide spectrum of learning behavior displayed by
insects, animals and humans. While some aspects of
an autonomous agent can be evolved or directly engi-
neered, other elements of behavior require learning
because they involve knowledge that can only be
gained by the agent itself, or that may change in
unpredictable ways over its lifetime. Although behav-
ior-based robotics has had some success as a basis for
the development of intelligent, autonomous robots,

the way in which learning fits into the behavior-based
framework is not yet well understood.

Reinforcement learning is well suited to the kinds
of problems faced by the current generation of behav-
ior-based robots—Sutton (1990) has even argued that
the problem facing an autonomous agent is the rein-
forcement learning problem. Reinforcement learning
provides goal-directed learning without requiring an
external teacher, handles environments that are not
deterministic and rewards that require multiple steps to
obtain, and has a well-developed theoretical frame-
work (Sutton & Barto, 1998). Because of this, several

Copyright © 2005 International Society for Adaptive Behavior
(2005), Vol 13(1): 5–32.
[1059–7123(200503) 13:1; 5–32; 050349

Correspondence to: G. D. Konidaris, Institute for Perception, Action and
Behaviour, School of Informatics, University of Edinburgh, James Clerk
Maxwell Building, King's Buildings, Mayfield Road, Edinburgh EH9
3JZ, UK.
E-mail: gkonidar@inf.ed.ac.uk
Tel.: +44 131 651-3436, Fax: +44 131-651-3435.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

6 Adaptive Behavior 13(1)

researchers have included reinforcement learning in
their robots. However, these have either involved using
reinforcement learning over the robot’s sensor space,
and have thus suffered from scaling problems (e.g.,
Mahadevan & Connell, 1992) or have not involved real
robots at all (e.g., Sutton, 1990).

This paper introduces a reinforcement learning
architecture that is designed specifically for use in sit-
uated agents, motivated by the behavior-based empha-
sis on layered competencies and distributed control. It
represents a full integration of behavior-based control
and reinforcement learning, rather than a simple com-
bination of the two methodologies, and is novel for
three reasons. First, it layers reinforcement learning
over a learned topological map, rather than using the
robot’s sensory space directly as the reinforcement
learning state space. This leads to a small, task-rele-
vant state space supported by the behavioral substrate
already present on the robot, and adheres to the behav-
ior-based emphasis on layered competence. Second,
the model is distributed, potentially allowing it to take
advantage of parallel hardware and layer over a dis-
tributed topological map and control system. Finally,
learning is asynchronous, in that it performs rein-
forcement learning updates all the time, in parallel at
each state instead of only after state transitions. This
takes advantage of the fact that for situated agents,
updates can be performed very much faster (especially
when they are done in parallel) than state transitions
can, because transitions require mechanical effort and
time.

We present an experiment aimed at determining
whether or not the model is feasible and effective, in
which a mobile robot in an artificial arena is required
to learn to find a food puck, explore, and return home
guided by internal drives expressed as reinforcement
functions. We then outline the development of Danger-
ous Beans, a mobile robot capable of performing the
experimental task using an implementation of the
architecture presented here, as well as random decision
making and layered Q-learning. The results obtained
demonstrate that the new model is capable of rapid
learning, resulting in behavioral benefits on a real
robot in real time and outperforming both alternatives.
We further show that the reinforcement learning com-
plex converges between decisions, and thus the actions
taken by the robot are the best it can make, given the
experience that it has. We thus argue that Dangerous
Beans displays planning behavior.

2 Background

Behavior-based robotics and reinforcement learning
are both well developed fields with rich bodies of liter-
ature documenting a wide range of research. The fol-
lowing sections briefly cover the related literature in
both fields, and outline the concept of layered learning.

2.1 Behavior-Based Robotics and Learning

Behavior-based robotics emphasises the construction
of complete, functional agents that must exist in the
real world. Agents that exist within and interact with
such complex environments in real time are known as
situated agents, and must confront the issues of real
time control and the complexity of the world directly—
they must behave in the real world in real time.

One of the consequences of this change in empha-
sis has been the development of a different set of
research concerns than those traditionally considered
important in artificial intelligence. Behavior-based
robotics emphasizes the use of distributed, parallel and
primarily reactive control processes, the emergence of
complex behavior through the interaction of these
processes with each other and the environment, cheap
computation, and the construction of agents through
the layered addition of complete and functional behav-
ioral levels (Brooks, 1991a). The last point facilitates
the incremental construction of mobile robots and
explicitly seeks to mimic the evolutionary develop-
ment of behavioral complexity.

Although behavior-based robotics has produced
working robots for a variety of interesting problems, it
has had difficulty developing systems that display a
level of intelligence beyond that of insects. One of the
possible reasons for this is that there has been no thor-
ough investigation into the integration of learning into
behavior-based systems. Behavior-based learning mod-
els would be required to be autonomous, distributed,
layered on top of an existing behavioral substrate, and
capable of learning in real time. Brooks (1991b) has
argued that the traditional approach to machine learn-
ing has produced very few learning models that are
applicable to the problems faced by situated agents.

Few major behavior-based systems have included
learning that is distributed, layered on top of a behav-
ioral substrate, and sufficiently responsive to be consid-
ered fully behavior-based. One early example involved
the learning of activation conditions for a set of behav-

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 7

iors that were required to coordinate to produce emer-
gent walking behavior on Ghengis, a six-legged robot
(Maes & Brooks, 1990). Although this algorithm pro-
duced impressive results, the extent to which it can be
generalized is unclear.

Another early and important instance of distrib-
uted learning in a behavior-based robot is given in
Mataric and Brooks (1990), and is of particular rele-
vance to this paper. Mataric and Brooks (1990) detail
the development of Toto, a robot that was capable of
wandering around an office environment and learning
a distributed topological map of it inspired by the role
of “place cells” in the rat hippocampus. This map was
made up of independent behaviors, each of which
became active and attempted to suppress the others
when the robot was near the landmark it corresponded
to. Each landmark behavior also maintained a list of
the other landmark behaviors that had previously fol-
lowed it, and spread expectation to them when it was
active, thereby increasing their sensitivity. Because the
behaviors were all active in parallel, the distributed
map provided constant time localization and linear time
path planning using spreading expectation, although
Toto required the external allocation of its goals because
it had no internal drives. The research presented in
Mataric and Brooks (1990) can be considered the first
instance of a fully behavior-based learning model and
representation. Despite its promise, this line of research
was not continued; however, this paper may be consid-
ered an extension of it since both the experimental task
presented later and its implementation were based on it.

More recently, Mataric (1997) and Balch (1997a,
1997b) have added reinforcement learning modules to
behavior-based robots. In both cases, learning was per-
formed using hand-designed state and action spaces,
and, in Mataric (1997), with heterogeneous rewards
functions explicitly designed to make learning feasi-
ble, at the cost of significant designer effort and flexi-
bility. In both architectures, a reinforcement learning
module was used as a coordinator, and simply inserted,
rather than integrated, into the system. Further work by
Balch (1999) has focused on the effects of reinforce-
ment function choice on behavioral diversity in multi-
robot teams.

2.2 Reinforcement Learning

Reinforcement learning aims to solve the problem of
learning to maximize a numerical reward signal over

time in a given environment (Sutton & Barto, 1998).
The reward signal is the only feedback obtained from
the environment, and thus reinforcement learning falls
somewhere between unsupervised learning (where no
signal is given at all) and supervised learning (where a
signal indicating the correct action is given) (Mitchell,
1997).

More specifically, given a set of (Markov) states S
and a set of actions A, reinforcement learning involves
either learning the values of each s S (the state value
prediction problem) or the value of each state-action
pair (s, a), where s S and a A (the control problem)
(Sutton & Barto, 1998). For most tasks, these values
can only be estimated given experience of the reward
received at each state or from each state-action pair
through interaction with the environment. This esti-
mate is usually achieved by building a table that con-
tains an element for each desired value and using a
reinforcement learning method to estimate the value of
each element. A comprehensive introduction to the
field is given in Sutton and Barto (1998).

Reinforcement learning is attractive to researchers
in robotics because it provides a principled way to
build agents whose actions are guided by a set of inter-
nal drives. It has a sound theoretical basis, can allow
for the principled integration of a priori knowledge,
handles stochastic environments and rewards that take
multiple steps to obtain, and is intuitively appealing.
Because it has so many attractive properties, several
researchers have added reinforcement learning capa-
bilities to their robots. An early example of this was
the development of Obelix (Mahadevan & Connell,
1992), a robot that learned to push boxes by reinforce-
ment. Although Obelix was able to learn in real time, it
required a hand-discretized state space and the use of
statistical clustering in order to do so, even though the
robot’s sensor space was only 18 bits.

The straightforward application of reinforcement
learning to robot applications invariably leads to simi-
lar problems. Since such models typically use the
robot’s sensor space as the reinforcement learning
state space, they suffer from serious performance and
scaling problems—a robot with just 16 bits of sensor
space has over 65,000 states. Convergence in such a
large state space will take a reinforcement learning
algorithm a very long time. One solution to this prob-
lem is the use of simulators, in which very long train-
ing times are acceptable (e.g., Toombs, Phillips, &
Smith, 1998); however, agents that take unrealistic

∈

∈ ∈

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

8 Adaptive Behavior 13(1)

amounts of time to learn a task cannot be considered
situated1. These problems have led some researchers to
develop hierarchical reinforcement learning methods
that aim to make learning more tractable through the
use of varying levels of detail (e.g., Digney, 1998), and
others to use statistical methods to speed up learning
(e.g., Smart & Kaelbling, 2000). Another approach is
the use of a function approximation method to approx-
imate the value table, although this introduces its own
issues (Sutton & Barto, 1998).

Evolutionary approaches to learning by reinforce-
ment have also been proposed (Moriarty, Schultz, &
Grefenstette, 1999), in which the agent’s control pol-
icy is directly evolved to fit a particular task. Although
these methods can be competitive with standard rein-
forcement learning methods, they introduce their own
set of difficult design decisions (Moriarty et al., 1999).
Furthermore, they typically require several generations
of training time, either on a real robot, which makes
them unsuitable for the types of problems that we are
interested in, or in a simulator onboard a situated
agent, which becomes computationally expensive.

The fundamental problem with using reinforce-
ment learning methods in mobile robots is that they
were not developed with the problems faced by situ-
ated agents in mind. Mataric (1994) gives an important
criticism of the direct application of reinforcement
learning to behavior-based robotics which reflects the
idea that the implicit assumptions made in the rein-
forcement learning literature need to be reexamined in
the context of situated agents.

2.3 Layered Learning

Layered learning was introduced by Stone and Veloso
(2000) to deal with problems where learning a direct
mapping from input to output is not feasible, and where
a hierarchical task decomposition is given. The method
involves using machine learning at several layers in an
agent’s control system, with each layer’s learning
directly affecting that of subsequent layers through the
provision of its training examples2 or the construction
of its input or output features (Stone & Veloso, 2000).

The layered learning method has generated impres-
sive results—for example, simulated soccer playing
robots developed using it have twice won RoboCup,
the robotic soccer championship (Stone & Veloso,
2000). However, despite its obvious promise, layered
learning has not yet been applied to a fully situated

agent. Most implementations have been in simulation
(Stone & Veloso, 2000; Whiteson & Stone, 2003), where
training times can be much longer than those that
would be acceptable for real robots. Furthermore, the
original stipulation that one layer should finish learn-
ing before another can start (Stone & Veloso, 2000) is
not realistic in situated environments where change is
constant—although recent research (Whiteson &
Stone, 2003) has involved concurrent learning.

One relevant application of the layered learning
approach is the use of Kohonen networks to discretize
continuous input and output spaces in order to make
them suitable for reinforcement learning algorithms, in
Smith (2002). Although the results thus obtained are
promising, the algorithm is hampered by the require-
ment that the Kohonen map’s parameters must be
determined experimentally, and by the network’s fixed
dimensionality. The latter problem could potentially
be solved through the use of more dynamic self-organ-
izing network types, for example by using the Grow
When Required (Marsland, Shapiro, & Nehmzow, 2002)
clustering algorithm, but the former problem implies
that learning is only feasible when it is task-specific.
Since Kohonen networks are topological maps, the
model presented in Smith (2002) is in some respects
similar to the one presented here; however, it was not
intended for use in situated agents and does not take
the important interaction between the state and action
spaces into account, and thus simply uses a separate
map for each.

3 Behavior-Based Reinforcement
Learning

In this section, we develop a model of reinforcement
learning in situated agents motivated by the behavior-
based emphasis on distributed control and layered
competencies. The next section considers the require-
ments of reinforcement learning in situated agents,
and how these create a different set of concerns from
those emphasized in the reinforcement learning litera-
ture. Following that, we develop the architecture by
first describing the concept of layering reinforcement
learning over a topological map, then considering how
learning can be made distributed, and finally introduc-
ing the idea of asynchronous reinforcement learning.
We then provide some examples of cases in which
learning could be useful, and summarize.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 9

3.1 Reinforcement Learning in Situated
Agents

Although Reinforcement Learning has a strong theo-
retical basis, it was not developed with the problems
facing situated agents in mind—instead, most of rein-
forcement learning theory assumes abstract state and
action spaces and emphasizes asymptotic convergence
and optimality guarantees. Situated reinforcement
learning leads to a different set of issues.

1. Situated agents are living a life (Agre & Chapman,
1990). A situated agent has more than one task,
and more than one concern. For example, a soda-
can collecting robot must also avoid obstacles,
navigate, and recharge its batteries when neces-
sary. A reinforcement learning system will make
up only one part of the robot’s control system, and
may have to share control with other reinforce-
ment learning systems. One implication of this is
that a situated agent will likely have many sensors
and many motor behaviors, not all of which will
be relevant to the task at hand. Another implica-
tion is that since the robot may be switching
between multiple policies (some of which may be
reinforcement learning policies with different
goals), a reinforcement learning component should
be able to learn from transitions executed outside
of its own policy, which means that on-policy
learning methods may not be appropriate. Finally,
the presence of multiple reinforcement signals
would require some form of action selection pol-
icy, for example the W-learning (Humphrys,
1996) algorithm, or a simple switching or override
mechanism.

2. Reinforcement should emanate from internal drives
(e.g., hunger), rather than external conditions (e.g.,
death) (Brooks, 1991b). These drives could be
either directly engineered or evolved, but would
be basic to the agent and not modifiable by its rein-
forcement learning mechanism. Associative learning
could be employed to provide more informative
feedback in cases when reinforcement is highly
delayed (as suggested in Mataric (1994) for effec-
tive learning).

3. Raw sensory and motor states are not good rein-
forcement learning states and actions. Using the

sensory space and motor space of the robot as the
reinforcement learning state and action space has
major and immediate disadvantages. The state (and
action) spaces are unlikely to be directly task-rele-
vant, and learning suffers from scaling problems
because the addition of extra bits results in an
immediate combinatorial explosion. Furthermore,
raw sensor and motor descriptors are not appropriate
for layered control—using them ignores the pres-
ence of motor behaviors and sensory affordances
that can be specifically engineered or evolved to
aid control and perception. In short, reinforcement
learning over the sensory and motor states of a robot
is very likely to be at the wrong level of abstraction.

4. A situated agent must learn in a reasonable time
relative to its lifespan. Any learning algorithm
which requires thousands of trials to produce good
behavior is not suited to a real robot that will likely
suffer mechanical failure when run continuously
for more than a few hours. A situated agent requires
learning that results in a sufficiently good solution
to achieve its task in real time. It should act opti-
mally given the knowledge it has and the time it
can reasonably dedicate to learning the task. The
use of task-relevant state spaces in topological
maps and asynchronous reinforcement learning
(both introduced later) aim to make this easier.

5. Asymptotic exploration is too slow. Although the
use of e-greedy action selection methods—as are
typically employed for exploration (Sutton &
Barto, 1998)—provide asymptotic coverage of the
state space, they are not likely to do so in a reason-
able amount of time, and require the occasional
completely irrational action from the agent. The
use of optimistic initial values, or some form of
exploration drive that could be built into the agent
separately are likely to be more useful. The inclu-
sion of such a drive with a low priority has the
added advantage of allowing the robot to explore
only when it has free time. However, in situations
with large state spaces, the robot may have to be
satisfied with a suboptimal solution.

6. Transitions do not take a uniform time. The use of
a global γ parameter to model the devaluation of
reward over time is not appropriate in a real environ-
ment. When performing an update over a transi-

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

10 Adaptive Behavior 13(1)

tion, an estimate of the time taken by the transition
is already available, since the agent has experi-
enced the transition at least once. Further, future
states should not lose value simply because in
some abstract way they are in the future; rather they
should lose value because time and energy must
be expended to get to them. This loss should be
factored into the internal reward function for each
transition. Similarly, the use of a global λ parame-
ter for TD(λ) is not appropriate because λ-based
erosion of eligibility traces implicitly assumes that
all transitions take the same amount of time.

7. Rewards are not received atomically with respect
to actions and states. In some situations, an agent
may receive a reward while moving from one state
to another, and in others it may receive a reward
sometime during its presence at a particular state.
The characteristics of the task must be taken into
careful consideration when deciding on a rein-
forcement model.

8. Transitions take a long time relative to updates. In
the case of a situated agent, the time taken to com-
plete a transition and the time spent at each state
are likely to be very much longer than the time
required to execute a single update equation. Fur-
thermore, since we later show that reinforcement
learning can be performed in a distributed fashion
with one process per state node, in principle all of
the nodes can perform an update in parallel in the
time it would take a single update to occur in a
serial implementation. This implies that many
updates may take place between transitions.

9. Other learning methods may be required in con-
junction with reinforcement learning. Situated
learning is required to provide useful results
quickly, and in some circumstances reinforcement
learning by itself may perform poorly. Fortunately,
the reinforcement learning complex provides an
underlying representation that is well suited to the
inclusion of other learning algorithms through the
modification of the reward function, the seeding
of the initial state or state-action values, or the
selection of motor behaviors and sensory inputs.

Although the points listed above range from design
suggestions to fundamental underlying assumptions,

they represent a different set of concerns than those
emphasised by the reinforcement learning literature.
One of the reasons that it has so far proved difficult to
use reinforcement learning in situated agents has been
the lack of recognition of the fact that its methods can-
not be simply applied to the situated case; they must
be translated for it.

3.2 Reinforcement Learning over Topological
Maps

The use of a robot’s sensor space directly as the rein-
forcement learning state space results in a very large,
redundant state space where states only have the
Markov property for reactive tasks. The size of the
state space means that it is difficult to achieve good
coverage of the state space and convergence of the
state or state-action value table in a reasonable amount
of time, often forcing the use of function approxima-
tion or generalization techniques. Because of this,
there are very few known examples of behavior-based
robots developing useful skills in real time using rein-
forcement learning.

The model proposed here makes use of an inter-
mediate layer that learns a topological map of the sen-
sor space; reinforcement learning takes place over this
map. We define topological map as a graph with a set
of nodes N and a set of edges E such that each n N
represents a distinct state in the problem space and an
edge e = indicates that state ni is topologically
adjacent to state nj with respect to the behavioral
capabilities of the agent. This means that the activa-
tion of some simple behavioral sequence will (perhaps
with some probability) move the problem from state ni

to state nj. Such a map can be built in a distributed
fashion through the allocation for each node in the
map of a process (or behavior) capable of recognizing
when it should be active and forming links to subse-
quently active nodes (e.g., Mataric & Brooks, 1990).

The use of a topological map as the state space for
a reinforcement learning algorithm has three major
advantages over using the robot’s sensor space directly.
First, it discards irrelevant sensor input and results in a
much smaller and task-relevant state space. This state
space will scale well with the addition of new sensory
capabilities to the robot because it is task dependent
rather than sensor dependent—new sensors will increase
the robot’s ability to distinguish between states, or
perhaps present a slightly richer set of states, but will

∈

ni nj,〈 〉

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 11

not introduce an immediate combinatorial explosion.
Reinforcement learning over a topological map is there-
fore much more likely to be tractable than reinforce-
ment learning over a large state space.

Second, the map’s connectivity allows for a smaller
action space, where actions are movements between
nodes in the map rather than raw motor commands.
Since such actions will naturally correspond to behav-
iors in a behavior-based robot, the reinforcement learn-
ing layer can be added on top of an existing behavior-
based system without greatly disturbing the existing
architecture and without requiring exclusive control of
the robot’s effectors.

Finally, the states in the topological space are much
more likely to be Markov states than raw (or even pre-
processed) sensor snapshots. This extends the range of
reinforcement learning methods for behavior-based
robotics to tasks that are not strictly reactive, and
removes the need for generalization, because similar
but distinct states and actions are no longer likely to
have similar values.

An important aspect of the proposed architecture
is the interaction of an assumed behavioral substrate,
the topological map, and the reinforcement learning
algorithm. The behavioral substrate should make learn-
ing the topological map feasible, and provide the dis-
crete actions which allow for movement between nodes
on the topological map. Rather than simply using the
topological map as a discretization, the interaction
between the topological map and the behavioral sub-
strate is sufficient for it to be considered a grounded
representation. The topological map, in turn, makes
the use of reinforcement learning feasible. Finally, the
strategy used for exploration at the reinforcement
learning level may influence the way that the topolog-
ical map develops, since learning at the topological
map level continues at the same time as learning at the
reinforcement learning level.

This emphasis on interaction differentiates the
model presented so far from previous attempts to layer
reinforcement learning over other learning elements.
For example, Smith (2002) introduced a similar archi-
tecture, where a Kohonen network (Kohonen, 1989) is
used to discretize continuous input and output spaces,
and reinforcement learning is performed over the
resulting discretization. However, two separate maps
are used for the purposes of discretization only, and the
system does not take the relationship between the state
and action space into account. Furthermore, because

Smith uses a Kohonen map, the number of nodes in the
map does not change, although their position does.

The major implication of the reliance on a topo-
logical mapping level is that it requires a tractably
maintainable map that provides a good abstraction for
the task at hand and can be grounded in the real world.
Although there are methods (e.g., the Grow When
Required (Marsland et al., 2002) algorithm) that can
automatically create and update topological maps for
a given state space with no other knowledge, these
methods are only likely to be of use when nothing is
known about the sensor space at all. In real robot sys-
tems, a priori knowledge about the relative importance
of different sensor inputs, the relationships between
different sensors, and the types of sensor states that
are important for the task at hand, are all likely to be
crucial for the development of a topological map
learning layer. In such cases the development of that
layer may be a harder problem than the application of
the reinforcement learning model developed here on
top of it.

3.3 Distributed Reinforcement Learning

Reinforcement learning is typically implemented using
a single control process that updates a single state or
state-action value table. However, because a topologi-
cal map is a dynamic structure, and because behavior-
based principles require distributed representation and
parallel computation where possible, a distributed struc-
ture updated by many processes in parallel would be
preferable. This section describes how the reinforce-
ment learning update equations can be adapted to run
in a distributed fashion over a distributed map.

When performing reinforcement learning over a top-
ological map (with nodes representing states and edges
representing actions), we can view the learning as taking
place over the nodes and edges of the map rather than
over a table with a row for each node and a column for
each action type. Figure 1 illustrates the graphical and
tabular representations for a simple example action-
value set with states A, B and C, and action types 1 and
2, with the action-values given in brackets in the graph.

In a distributed topological map, each node would
have its own process which would be responsible for
detecting when the node it corresponds to should be
active, and when a transition from it to another node
has occurred. This allows each node in the map to
maintain its own list of transitions.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

12 Adaptive Behavior 13(1)

In order to add reinforcement learning to the topo-
logical map, each process must be augmented with
code to perform an update over either the state (node)
or state-action (node-edge) spaces, using only infor-
mation that can be obtained from the current node, one
of the nodes directly connected to it, and a reward sig-
nal which must be globally available. When reinforce-
ment is performed over a distributed topological map,
we use the term reinforcement complex rather than
reinforcement value table to refer to the resulting dis-
tributed structure.

Since reinforcement learning update methods are
intrinsically local, they require very little modification
in order to be implemented in a distributed fashion. We
consider only Temporal Difference methods here. More
detail on how to implement Monte Carlo methods and
TD(λ) in a distributed fashion are given in Konidaris
(2003).

Temporal difference methods are the easiest meth-
ods to implement in a distributed fashion because tem-
poral update equations involve only local terms. The
standard one-step temporal difference update equation
(known as TD(0)) is

(1)

where α and γ are global constants, V(st) is the value of
the active state at time t, and rt is the reward received at
time t (Sutton & Barto, 1998). The equation represents
the idea that the value of a state (V(st)) should move
(with step size α) toward the reward obtained by being
there (rt+1) plus the discounted value of the state encoun-
tered next (V(st +1)). In order to implement this update
equation, each node’s process has only to note its own
value (this gives us V(st)), the value of the node that is
active immediately after it (this gives us V(st +1)), and
the reward received during the transition (this gives us
rt +1). It should also record the behaviors activated to

cause the transition, and establish a link between the
two nodes if one is not already present.

The update equation used for state-action value
updates (known as Sarsa) is a slightly more difficult
case. The Sarsa equation is

(2)

where Q(st, at) is the value of taking action at from
state st. This requires a node to have access to the value
of the state-action pair following it, as well as the
reward obtained between activations. One way to
reduce the information sharing required would be to
perform the update in terms of a state value, since state
values can be computed using state-action values. The
update equation would then be

(3)

where V(st +1) can either be the expected value of st +1

calculated probabilistically, or simply the expected
value of the action with the highest value from that state.
The latter case is equivalent to Q-learning since then
V(st +1) = max Q(st +1, at +1).

3.4 Asynchronous Reinforcement Learning

Since the time required by a situated agent to move in
the real world is very much longer than that required to
perform an update, rather than performing updates once
per transition a situated agent should be performing
them all the time, over all nodes in parallel. In order to
do this, the reliance of the update equations on the con-
cept of the transition just experienced must be removed.
Therefore, it makes sense to use all of the experiences
the agent has obtained so far to provide state and state-
action value estimates, instead of simply the reward
and state values it last experienced. Experienced values
are thus used to create a model from which state or
state-action value estimates are taken. For example,
each node could update its state-action values using
the following equation:

(4)

Figure 1 Graphical and tabular action value represen-
tations.

V st() := V st() α rt 1+ γV st 1+() V st()–+()+

Q st at,() := Q st at,()

α rt 1+ γQ st 1+ at 1+,() Q st at,()–+()+

Q st at,() := Q st at,()

α rt 1+ γV st 1+() Q st at,()–+()+

at

Qt 1+ s a,() := Qt s a,()

α rs a, γEs a, V st 1+(){ } Qt s a,()–+()+

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 13

where rs, a could be estimated as the average of all
rewards received after executing a at s, and
Es,a{V(st+1)} would be the expected state value obtained
after the execution of action a from state s. The expected
state value could be the weighted (by observed proba-
bility) average of the states visited immediately after
s, with each state value taken as the value of the maxi-
mum action available from that state. The γ parameter
could be set to 1, or to a transition-specific decay value.
This is just a rewrite of Equation 3 using expected
reward and expected state value rather than sample
reward and sample state value, but it allows the update
equation to be executed in parallel, all the time.
Although this method requires some extra computa-
tion because two weighted sums must be computed
for each update, neither computation would be diffi-
cult to build in hardware or using artificial neurons.

This draws from three ideas in the Reinforcement
Learning literature. Like Asynchronous Dynamic Pro-
gramming (Bertsekas & Tsitsiklis, 1989), Equation 4
uses a model to perform what is termed a full backup,
which uses the expected value of a state or state-action
pair rather than a sample value, and it does so in no
pre-defined order. However, unlike Asynchronous
Dynamic Programming, the model used is derived from
experience with the environment, and is not given a
priori. Nevertheless, since Equation 4 is just an Asyn-
chronous Dynamic Programming update with a learned
rather than given model, it inherits the same conver-
gence conditions and guarantees given by Bertsekas
and Tsitsiklis (1989), except that it will converge to an
optimal policy with respect to the learned problem
model rather than one given a priori.

Equation 4 is also similar to batch-updating,
where the update rules from a given transition experi-
ence are repeatedly applied, but differs in that it does
not simply repeat previous episodes, but uses a model
of the environment to generate value estimates, and
performs backups over all the nodes in the distributed
map. Finally, it is similar to the Dyna architecture pro-
posed by Sutton (1990) in that a model of the environ-
ment is built and used for reinforcement, but differs in
that the updates occur in parallel and all the time, use
the model to generate expected rather than sample
state and state-action values (although Dyna could
easily be adapted to allow this) and does so for all
state-action pairs in each state rather than a single one.

A useful consequence of performing asynchronous
updates over a topological map is that several reinforce-

ment learning complexes learning in the same (or a
similar) state space can learn from the experiences gen-
erated by each other. This makes it easier to add new
drives (along with their associated reinforcement com-
plexes), or even new learners with different parameters,
to the system provided some action-selection mecha-
nism (which could be fixed or adaptive) is present.

Ideally, the use of asynchronous updates leads to
the convergence of the values in the reinforcement learn-
ing complex between transitions. Since the complex
converges to an optimal policy with respect to the learned
model, the agent must then be making the best possi-
ble choices at each transition, given its drives and the
information that it has obtained from the environment.

3.5 Example Application Scenarios

One situation where the reinforcement learning archi-
tecture proposed here would be useful is the case of a
rat learning to find a piece of food in a maze. The
nodes in the topological map would correspond to
landmarks in the maze, with a connection between two
of them indicating that the rat is able to move directly
from the first to the second, with reinforcement based
on the rat’s hunger drive. The experiment presented
later in this paper is based on this example. Here, a
potential application of an additional learning method
could be the use of associative learning to modify the
reinforcement function so that locations where the
smell of cheese is present receive some fraction of the
reward received for finding the food.

Another application could be the use of reinforce-
ment learning in the development of simple motor
skills for a robot with many actuators. For example,
given a set of motor behaviors and joint angle sensors,
a robot with a mechanized arm could use the reinforce-
ment learning model proposed here to learn to reach
out and touch an object. In this case the joint angle sen-
sors in conjunction with the motor behaviors would
provide the basis for the topological map, where nodes
would be significant joint angle configurations and
edges between them would indicate that movement
between two configurations is possible with some
short sequence of motor behaviors. In this case a self-
organizing map (such as Grow When Required (Mars-
land et al., 2002) with appropriate input space scaling
factors) could be used to create the topological map.
The robot would have an internal drive that rewards it
for touching the object, and the use of visual feedback

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

14 Adaptive Behavior 13(1)

could provide a heuristic that could modify the rein-
forcement function. Although this task seems easy
given visual feedback it might be possible for the robot
to learn to do it quickly and with little visual feedback
or error with the aid of reinforcement learning.

Reinforcement learning could also be used for
more complex motor coordination tasks, such as chang-
ing gear in a car with a manual transmission. This
requires a fairly difficult sequence of actions, using a
leg to engage the clutch and an arm to change gear.
The map here would again be based on the joint angle
sensors for the arm and leg and a set of motor behav-
iors. Here, the use of social imitation could serve to
seed the initial state values in order to make the task
tractable—this is a fairly difficult learning task that
takes humans a fair amount of time, effort and instruc-
tion to learn to perform smoothly.

In all three examples, the selection of the relevant
sensors and motor behaviors is crucial. For example, it
would be very difficult for a robot to learn to touch an
object with its arm when all of the internal joint sen-
sors in its entire body were considered as input to a
topological map, even though some of them might be
relevant. For example, although it would be difficult to
touch the ball while facing away from it, the addition
of a behavior that orients the robot to a standard posi-
tion relative to the ball before attempting to touch the
ball would probably be a better choice than including
extra sensors in the reinforcement state space. The
integration of other learning methods may aid in the
selection of the relevant sensors and motor behaviors,
and may also be useful in speeding up learning, or
making it feasible in the first place.

3.6 Summary

This section has presented a model of reinforcement
learning for autonomous agents motivated by the
behavior-based emphasis on layered competencies and
distributed control. The model is intended to produce
behavioral benefits in real time when used in a real
robot. It is novel for three reasons. First, it performs
reinforcement learning over a learned topological map,
rather than directly over the robot’s sensor space. This
aims to make learning feasible through the use of a
small, relevant space tailored for the task at hand. Sec-
ond, reinforcement learning is performed in a distributed
fashion, resulting in a reinforcement learning complex
embedded in a distributed topological map rather than

a single state or state-action value table updated by a
single control process, allowing for a dynamic struc-
ture that could potentially be updated in parallel with
the use of parallel hardware. Finally, in order to take
advantage of this parallelism, and the fact that situated
agents will take much longer to make a transition than
to perform an update, learning is asynchronous, and
takes place all the time. Experiences are used to update
an internal distributed model of the environment which
is used as a basis for reinforcement learning, rather
than being used in the reinforcement learning directly.

In order to implement the architecture, an agent
would first need be able to maintain the distributed
topological map, and then would need to be able to
obtain and update reward and value estimates. Map
building would usually be achieved via a behavior that
creates a new node behavior when none are active but
one should be. Each node would be capable of tracking
the nodes active immediately after it, and the behavio-
ral sequence required to get there. Reinforcement
learning could then be implemented by adding code to
each node behavior to keep track of rewards received
during transitions from it, and to update its reward and
value estimates with them, with each node behavior
running its update equations continuously.

4 The Experiment: Puck Foraging in an
Artificial Arena

In this section, we present an experimental task designed
to test the model presented in this paper. The experi-
ment aims to augment the distributed map building
system developed by Mataric and Brooks (1990) with
the new reinforcement learning model and show that
this can produce complex, goal-directed and path-
planning behavior in an agent that performs puck for-
aging in an artificial arena.

The following section describes the experimental
task and the control strategies used in it, and is fol-
lowed by a brief outline of the evaluation criteria used.
We then introduce the three test arena configurations
used in the experiment, and outline the aspects of the
system that each was designed to test.

4.1 Overview

The experiment outlined here is intended as an
abstraction of the rat in a maze example given in the

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 15

previous section, which is itself an abstraction of the
kinds of tasks commonly faced by foraging animals. It
models an agent living in a static environment with
obstacles that it must avoid, but that it can use as land-
marks for the purposes of navigation. The agent is
driven by three internal needs—the need to find food,
the need to explore its environment, and the need to
return home. These needs are in turn activated and
deactivated by a circadian cycle.

A mobile robot is placed in an artificial arena con-
taining orthogonal walls (henceforth referred to as
“vertical” and “horizontal” walls, since this is how
they appear in figures) and one or more food pucks.
The robot must start with no prior knowledge about the
layout of the arena, and must navigate it for ten cycles.
Each cycle is made up of three phases:

1. Foraging, where the robot should attempt to find a
food puck (there may be more than one) in as short
a time as possible. As soon as the robot has found
a food puck, it switches to the exploration phase of
the cycle. If it cannot find a food puck within three
minutes, it must skip the exploration phase and
move directly to the homing phase.

2. Exploration, where the robot should explore areas
of the arena that are relatively unexplored for the
remainder of the first three minutes. After that, the
robot switches to the homing phase. The explora-
tion phase is intended to allow the robot to build
up a more accurate and complete map of its envi-
ronment, if it has time after finding food.

3. Homing, where the robot must return to the area
where it was first started. This is intended as anal-
ogous to nightfall, where the agent must return to
its home to sleep. The robot moves to the next
cycle and begins foraging again.

During its run, the robot is required to follow
walls, and decide which action to take at each one. The
robot accomplishes this by building and updating a
distributed topological map of the arena and perform-
ing reinforcement learning over it. Figure 2 depicts an
example scenario where a maze configuration (on the
left) is split into the individually recognizable walls or
landmarks (in the middle) and a state node is allocated
to each, with arrows indicating that the agent is able to
move from one to another (on the right).

At each wall, the robot is restricted to one of three
types of actions—turn right, left, or go straight—at
either end of the wall, giving six actions in total. The
robot therefore has to follow the wall until it reaches
the desired end, and execute the desired action. However,
the robot may not turn away from the wall, so only
four of the six potential actions are available for walls.
When the robot is in a corridor, it may choose from all
six. Figure 3 shows the available actions for horizontal
walls and corridors (the vertical case is similar).

Not all actions are possible in all cases—for exam-
ple, if the left side of a corridor continues on to become
a left wall while the right side does not, the robot may
not turn left at that end; a similar problem occurs with
corners. Therefore, the robot must determine whether
or not an action is possible, and avoid attempting ille-
gal actions.

The state space for the reinforcement learning
function was therefore the set of landmarks present in
the distributed map, and the action space was the set of
legal actions at each landmark. A state transition thus
consisted of a landmark, a turn taken there, and the
first landmark detected after the execution of the turn,
with the transition being considered completed once
the second landmark had been detected.

In order to implement the robot’s internal drives,
and to provide a useful metric for comparing various
models, each drive is given an internal reward func-
tion. The following equations were used for the forag-
ing, exploration, and homing rewards respectively:

Figure 2 An example arena configuration (left), split
into distinct walls (center) and represented as a topologi-
cal map (right), with a node for each landmark and ar-
rows indicating potential movement.

Figure 3 Potential actions for a wall following robot at a
single wall (left) and a corridor (right).

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

16 Adaptive Behavior 13(1)

where nt is the number of times that the transition just
executed has been taken in total, and na v e is the aver-
age number of previous executions over all the transi-
tions in the map. The exploration reward function was
executed once per transition, while the other were exe-
cuted with a constant time delay set so that the robot
would receive a penalty of at or near 200 for failing to
find the puck before the end of a cycle.

For simplicity, at each choice point the robot
aimed to maximize the sum over time of the value of
the reinforcement function corresponding to the cur-
rent phase, rather than attempting to maximize some
combination of all three. Three decision models were
then used for the experiment:

1. Random movement, where the robot chose an action
at random from the set of currently legal actions.
This agent built an internal distributed map of the
arena but used it only to determine which actions
were legal. This model corresponds to the strategy
typically employed in behavior-based systems.

2. Layered standard reinforcement learning, where
the robot built an internal distributed map of the
arena and used Q-learning (Watkins & Dayan, 1992),
a standard single-step temporal difference learning
algorithm, over it. In this case, each time a transi-
tion was executed, exactly one update was made to
each drive’s reinforcement complex. This repre-
sents the application of traditional reinforcement
learning techniques on top of a topological map.

3. Asynchronous reinforcement learning, where the
robot built an internal distributed map of the arena
that used the full model developed in this paper
(which we will label ATD, for asynchronous tem-
poral difference learning) over it, and constitutes
the first implementation of a fully behavior-based

reinforcement learning robot. In this model, all
three reinforcement complexes were updated con-
tinuously, although only the values for the currently
active drive were used to decide what to do next.

Note that in both reinforcement learning cases, rein-
forcement learning and map learning occur at the same
time, and that the robot often has to make decisions
with an incomplete map.

4.2 Evaluation

When evaluating each model quantitatively, the
reward values of each internal drive over time (aver-
aged over a number of runs) were directly compared,
thereby using the reward functions as performance
metrics. However, since the exploration phase was of
varying length and did not occur in every cycle, the
results obtained for it for each model could not be
directly compared. The average change of state value
function in the map over time was also recorded,
along with the transitions that added reward to the
map, in order to examine the convergence properties
of the asynchronous system.

In order to evaluate each model qualitatively, a
visualization of the distributed map learned by the
robot and the action values for it was studied. Record-
ings were also made of the robot’s movements so that
specific instances could be replayed and examined,
and internal data from the state of the robot was used
to obtain further information about the reasons behind
the choices made.

4.3 The Arenas

Diagrams of the three arena configurations used in the
experiment are given in Figure 4. Light shading indi-
cates the regions used as the robot’s home area for
each arena, and the black circles represent pucks. The

f x()
200 when a food puck is in view

1 otherwise–



=

e x()
200 200

nt

nave

--------- nave 0>–

200 otherwise





=

h x()
200 when the robot is “home”

1 otherwise–



=

Figure 4 Overhead diagrams of the three experimental
arenas, with the robot's home area shaded in the bottom
left of each.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 17

robot was always started in the bottom left corner of
each arena, facing right.

The first arena was used as a testing platform dur-
ing development, and as a simple trial problem
instance designed to verify that each system worked.
It was deliberately friendly towards the reinforcement
learning agents. The transition labeled A was the only
transition in the first arena leading to a puck reward,
and was only a few transitions away from the robot’s
home area. In addition, the area on the right func-
tioned as a kind of trap, which, once entered, could
only be escaped through the turn marked B. Thus,
both reinforcement learning systems were expected to
be able to learn to find the puck and to return home
relatively quickly, while the random model was
expected to have mixed results finding the puck and
difficulty returning home.

The second arena configuration was intended to
be hostile to reinforcement learning agents and rela-
tively friendly toward random agents. Because turns
out of the home area were never likely to form per-
fectly straight lines, the robot might then encounter
any one of the walls in the right central configuration.
In addition, one of the pucks was taken away at the
end of the fifth cycle. For the reinforcement learning
agents, this was to be the last puck found during a for-
aging phase (either if none had been seen so far) and
either for the random agent. Finally, the second arena
was designed so that the random agent was fairly
likely to eventually stumble across either the puck
(using transitions C, D or E) and the way home. This
combination of noisy transitions and a modified envi-
ronment was intended to test how the reinforcement
learning models could perform (and recover from
change) in a difficult environment where a random
agent could do well.

The third arena was designed to test the ability of
the reinforcement learning robots to learn a long path
to the puck and back again in the most complex task
environment the robot was required to face. The robot
had to make five consecutive correct decisions to go
directly to the puck (with transitions F and G as scor-
ing transitions) from its home area, and find a poten-
tially even longer path home. The long paths were
intended to highlight the difference between the syn-
chronous and asynchronous reinforcement learning
systems, where the agent using the asynchronous
model was expected to be able to learn to find the path
almost immediately after finding the puck for the first

time, whereas the agent using the synchronous model
was expected to take longer.

5 Implementation

In this section we briefly outline the implementation
of the experimental task. A more detailed description
can be found in Konidaris (2003).

5.1 The Environment

Each arena was built on a 90 cm2 wooden base, with
the walls constructed using pieces of styrofoam and
insulation tape, and covered with sheets of white card-
board secured with drawing pins. The same type of
cardboard was used to round off sharp internal corners.
The use of the cardboard served to provide a smooth
response for the infra-red sensors used, and the
rounded corners simplified cornering and wall-follow-
ing behavior. The other materials were chosen because
they were readily available. Three white wooden cylin-
ders were used as food pucks, with a strip of black
insulation tape marking them for easy visual detection.
The three configurations are shown in Figure 5.

5.2 The Robot

Dangerous Beans, the robot used to perform the
experimental task, was a standard issue K-Team
Khepera robot equipped with a pixel array extension
turret. The Khepera has a diameter of approximately
55 mm, eight infra-red proximity and ambient light
sensors, and two wheels with incremental encoders
(K-Team SA, 1999b). The pixel array extension pro-
vided a single line of 64 gray-level intensity pixels
with a viewing angle of 36° (K-Team SA, 1999a). The
Khepera’s onboard infra-red sensors were used for
obstacle avoidance and wall following, while the pixel
array was used for puck detection. Figure 6 shows
Dangerous Beans next to an overhead sensory sche-
matic. The infra-red sensors are numbered from 0 to 7,

Figure 5 The three artificial arenas.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

18 Adaptive Behavior 13(1)

and the angle of view of the pixel array turret is indi-
cated.

Dangerous Beans was controlled through a serial
cable suspended from a counterbalanced swivelling
tether, connected to a standard Linux machine running
a control program written in C. Each behavior instance
was allocated its own thread, and communication was
achieved through the use of global variables.

5.3 Distributed Map Building

This section details the development of Dangerous
Beans’s control system up to and including its distrib-
uted map-building layer. We separate this portion of
the system from the reinforcement learning layer
because it is essentially a replication of Mataric and
Brooks (1990).

The behavioral structure of the control system
used for Dangerous Beans is depicted in Figure 7. The

behavioral modules with a darker shade are dependent
on those with a lighter shade, either because they rely
on their output, or because they rely on the behavior
emergent from their execution. The dashed arrows
represent corrective relationships (where higher level
modules provide corrective information to lower level
ones), and behaviors shown in dashed boxes are
present in multiple instantiations. Solid arrows repre-
sent input–output relationships.

The following sections describe the behavioral
substrate, landmark detection, and map building lay-
ers in turn.

5.3.1 Behavioral Substrate The behavioral substrate
developed for Dangerous Beans was required to pro-
duce sufficiently robust wall-following behavior to
allow for consistent and reliable landmark detection
and map building.

Two behaviors, irs and motor, handled the inter-
face between other behaviors and the robot’s sensors
and actuators. In addition, the positionc behavior per-
formed dead-reckoning position estimation based on
encoder readings from the kheperas wheels.

The wander and avoid behaviors performed
threshold-based collision-free wandering, using gentle
turns away from lateral obstacles to obtain behavior
that allow the wallfollow behavior to perform wall fol-
lowing by attempting to keep lateral sensor readings at
a constant level of activation when they were non-
zero. This resulted in wall-following behavior that
was as robust as could be expected given the short
range of the Khepera’s sensors.

5.3.2 Landmark Detection The landmark behavior
performed landmark detection, and broadcast the cur-
rent landmark type, heading, and number of consecu-
tive readings. The landmark type took on values of
either right wall, left wall, corridor, or empty space, and
the current heading was given as one of 0, , π or radi-
ans. The behavior used the dead-reckoning angle to esti-
mate the angle of a wall, and then (if the landmark had
been detected at least four times) supplied a corrected
angle back to positionc to minimise dead-reckoning
angular error in the absence of a compass. The accuracy
achieved using the corrected angular estimates was suf-
ficient for landmark discrimination in this case, where
walls are known to be horizontal and vertical only.

Figure 6 Dangerous Beans: Photo and overhead sen-
sor schematic.

Figure 7 Dangerous Beans: Behavioral structure (map
building).

π
2
--- 3π

2

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 19

The behavior used a simple statistical approach
similar to that given in Mataric & Brooks (1990). A
set of 50 thresholded samples were taken from the left
and right lateral sensors, and each sample was thresh-
olded. The landmark was determined to be a corridor
if at least 25 samples showed left activation and 25
showed right activation; failing that, it was determined
to be either a left or right wall if at least 30 samples of
the relevant side were above the threshold. If neither
condition was met the landmark type was set to the
default value of free space.

A new landmark was detected if the type of land-
mark changed, or if the estimated angle of the robot
differed from that of the currently active landmark by
0.8 radians. The estimated angle of the landmark was
selected as the one of the four orthogonal directions
that walls are expected to lie along nearest to the cur-
rent estimated angle.

5.3.3 Map Building The layer of behaviors responsi-
ble for map-building maintained a distributed map by
creating new “place” behaviors for novel landmarks and
linking places together when they appeared sequen-
tially.

Each landmark was allocated its own place
behavior, which maintained a landmark descriptor
consisting of its type, angle, estimated coordinates,
and connectivity information. The descriptor was used
by each place behavior to continuously compute the
probability that it corresponded to the current land-
mark, with the place behavior with the highest proba-
bility judged to correspond to the current landmark.
Place behaviors not of the correct type and angle
immediately set their probabilities to zero, while those
with the correct type and angle were assigned a match
probability inversely proportionate to estimated dis-
tance, reaching zero at about 20 cm from the landmark.

Each place behavior also maintained a linked list
of transitions, which stored the place behaviors that
became active immediately after them, the type of turn
(left, right, or straight, with an extra direction modifier
to indicate which end of the landmark the turn was
from) that resulted in the transition, and how many
times that combination had occurred so far.

Although the system described in Mataric and
Brooks (1990) uses expectation as a deadlock breaker
before dead-reckoning, because of the higher branch-
ing factors and more complex maps created here, dead

reckoning was required fairly frequently and thus expec-
tation was not used to modify the matching probabil-
ity.

The newlandmark behavior was responsible for
detecting when no place behavior had a sufficiently
high probability of corresponding to the current land-
mark and allocating a new one for it. For simplicity,
the newlandmark behavior also determined which
place behavior was the current best, and when to
merge landmarks. Landmarks were merged when they
were both strongly active at the same time, and over-
lapped significantly. Duplicate landmarks were artifacts
of the fact that Dangerous Beans sometimes encoun-
tered a wall half way along its length, and therefore
only created a landmark behavior covering half of it,
allowing for a new behavior to erroneously be created
if the wall was later encountered on the unexplored
side. This problem does not occur in the model used by
Mataric and Brooks (1990) because of its more strict
wall-following behavior, but it is a significant problem
here. The merging procedure adopted here solved it in
all observed cases.

Finally, each place behavior was responsible for
correcting the current estimated position of the robot
according to the expected position of the landmark.
This simple corrective approach proved mostly sufficient
for the simplified environment used in the experi-
ments—occasionally the correction mechanisms failed
in some cases, and runs where this occurred were
restarted. In most cases failures occurred because of
inaccurate angle estimates over long empty spaces
where the robot could not obtain angular corrective
information, and could have been avoided through the
addition of a direction sense (e.g., a polarization com-
pass as in Schmolke and Mallot 2002), the use of a
more sophisticated correction approach (e.g., Choset
& Nagatani, 2001) or the use of a method for landmark
disambiguation not based on dead reckoning (e.g.,
neighborhood characteristics as in Dudek, Freedman,
& Hadjres, 1993).

The junction behavior monitored the current land-
mark behavior and when the currently detected land-
mark changed, picked a random turn to perform from
the set of legal ones for its type. It also updated a global
variable indicating the last turn taken, which was used
by place behaviors when noting transitions.

Figure 8 is a visualization of the distributed map-
ping data produced by Dangerous Beans on the first
test arena. Landmarks are represented by rectangles,

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

20 Adaptive Behavior 13(1)

each with a central circle and two end circles. Corri-
dors have two rectangles with the circles placed
between them. Lines represent transitions, where a
line from the circle at the end of one landmark to the
circle in the middle of another indicates that Danger-
ous Beans has been able to move from the first land-
mark to the second. The map contains 17 landmarks
and 32 edges, although some edges are not distin-
guishable here because they have different turn types
but are between the same landmarks.

The slightly exaggerated length of all of the land-
marks is an artifact of the landmark recognition algo-
rithm used. This means that some landmarks may
appear to overlap (for example in the bottom left cor-
ner) but are actually just close together.

5.4 Distributed Reinforcement Learning

This section describes the additional control structures
added to Dangerous Beans to enable it to perform distrib-
uted reinforcement learning over its distributed topolog-
ical map. The behavioral structure used in the experiments
was largely the same as that given in Figure 7, with
four additional behaviors and one modified behavior.
The following sections describe these changes.

5.4.1 Internal Drives In order to express the three
drives required in the experiment, three reward behav-
iors were added to Dangerous Beans, each exposing a
global reward variable that could be read by other
behaviors. The equations given in Section 4.1 were run
roughly once per second.

The seepuck behavior determined when the robot
was facing a puck, and should receive a puck reward. A
simple averaging thresholding algorithm was used to
spot the dark strip of the puck against a light back-

ground. Reward was inhibited for 20 seconds after each
puck sighting to avoid issuing multiple rewards for the
same puck. The homing behavior checked whether or
not the robot’s estimated position was within some
arena-specific range of the robot’s original location, so
that any location within this boundary was considered
home, and required the robot to be at least 10 cm outside
the area and return before allocating reward again. The
explore behavior was given the number of times each
transition had already been taken as it was taken again,
and using this along with the overall average computed
from the set of place behaviors, determined a transition
reward according to the exploration reward equation.

Finally, the circadian behavior was responsible for
keeping track of the current cycle and active phase of
the robot, and switching phase when required. It
exposed a global variable representing the current
phase (and thereby active desire) for other behaviors to
use when making decisions.

5.4.2 Making Choices The junction behavior was
extended to allow place behaviors to signal turn requests
they wanted carried out by posting their requests to a
global variable that was checked every time a decision
had to be made. The place behavior was modified so
that it only posted once per activation (unless the cur-
rent drive changed while it was active, in which case it
was allowed to post again), and according to which-
ever control strategy was being used at the time.

The junction behavior executed the requested
turn if possible; some turns had to be ignored when
they could not be executed because of the presence of
an adjoining obstacle. Therefore, each place had a
counter for each turn, which was incremented when
the turn was taken and decremented when junction sig-
nalled that it could not be. When this counter reached –
2 the turn was banned, and not considered for any fur-
ther decision making or reinforcement learning pur-
poses.

The junction behavior was also responsible for
determining when the robot was headed along the wall
in the wrong direction given the requested turn, and
reversing the robot’s direction without losing contact
with the wall.

5.4.3 Place and Transition Values Since the robot
was likely to spot a puck shortly after making a transi-

Figure 8 A visualisation of a distributed topological map
of the first arena.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 21

tion, and could not guarantee that simply by being at a
particular landmark it would see the puck, reward was
allocated to transitions rather than places. Three sepa-
rate action value estimates were kept (one for each
drive), so that although all three learned from all tran-
sitions, there were three independent reinforcement
learning complexes embedded in the topological map.

Each transition received the difference in reward
between the time the robot left its “from” landmark to
the time it left its “to” landmark. In order to record the
reward obtained by each transition, each place
behavior kept a record of all of the reward levels as
soon as it became inactive. The transition made was
then noted, and when the place that it led to became
inactive again, the transition received the difference
between the initially noted levels and the levels after
the deactivation of the subsequent place behavior.
Each transition kept a total of the reward it had
received along with the total number of times it had
been taken, and the number of those times where a
negative reward was received.

The update equation used for the asynchronous
reinforcement learning model (run by each place
behavior at all times for all transitions) was

(5)

where α was the learning step parameter (set to 0.1)3,
Qt(s, a) was the value of taking action (turn) a at state
(place) s at time t, rs, a was the expected reward
received for taking action a at state s and Es, a{V(st +1)}
was the expected state value after action a at state s, at
time t. Each place stored the Q values for each of its
possible turns, and during the update Es, a{V(st +1)} was
calculated for each turn by computing the sum of the
values (weighted by observed probability) of each
state encountered after taking turn a at state s. The
expected reward term rs, a was computed for each
action as the average reward obtained over all execu-
tions of the transitions using turn a from the state. For
the exploration reward function, the estimated reward
was computed directly from the equations given in
Section 4.1, since previous exploration rewards for a
particular turn were not useful in estimating its current
value.

Since the task was effectively episodic, when a
transition had a positive reward its contribution to the

expected value of its from state did not include the
expected value of its to state. This has the same effect
as considering positive rewards to end the episode,
and prevented positive feedback loops where states
could have obtained infinite expected values.

In the synchronous update case, the value func-
tion for each state-action pair was only updated imme-
diately after a transition from the state using the action
was completed, and instead of an average reward, the
reward obtained was used directly. The update equa-
tion used for the synchronous case was

(6)

where now rt was the expected reward received at time
t, and V(st) was the value of the state active at time t.
Since the value of each state was taken as the expected
value of the maximum action that can be taken there,
the synchronous case is equivalent to Q-learning
(Watkins & Dayan, 1992).

In order to encourage exploration, actions that had
not yet been taken from a given state were assigned
initial values of 50 for both homing and puck rewards.
Initial exploration rewards were set to 200. All initial
reward estimates were immediately replaced by the
received reward for the asynchronous model.

For the reinforcement learning robots, when a
place behavior became active, it would post a turn
request to the junction behavior using the action with
the highest action value, with ties broken randomly.
When all of the action values available were negative,
or when the requested action could not be taken, a ran-
dom action was chosen. In all cases, only legal turns
(those allowed by landmark type and so far not found
to be impossible) were considered.

6 Results

The critical test for a learning method that claims to
be able to improve the performance of an existing
robot system is whether or not it can perform as
required in the real world, in real time. In this section
we present the results of the experiment presented in
Section 4.1, which show that the model developed in
this paper is able to learn a path to the puck and back
to its home area rapidly, outperforming both alterna-

Qt 1+ s a,() := Qt s a,()

α rs a, Es a, V st 1+(){ } Qt s a,()–+()+

Qt 1+ s a,() := Qt s a,()

α rt 1+ V st 1+() Qt s a,()–+()+

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

22 Adaptive Behavior 13(1)

tive models in all cases. We further demonstrate that
since the asynchronous model’s reinforcement learn-
ing complex converges between decisions, Dangerous
Beans achieves goal-directed behavior that is at all
times as good as can be achieved given its drives and
the knowledge it has. The following sections present
and analyse the results obtained for each arena indi-
vidually, consider the issue of convergence, and then
draw conclusions from all of the data presented.

6.1 The First Arena

In the first arena, both reinforcement learning systems
were able to learn to find direct routes to the single
puck and back to the home area quickly and consist-
ently. Figure 9 shows the puck (9a) and home (9b)
rewards obtained over time, averaged over seven runs,
for each of the system types, with the error bars indi-
cating standard error.

As expected, both reinforcement learning models
learned good solutions quickly, progressing in both
cases from near-random results with a wide spread of
reward values (indicated by the large error bars) in the
first cycle to nearly uniformly good results (indicated
by the very small error bars) by the fifth cycle. The
asynchronous model even appears to have been able to
return to the homing area quickly at the end of the first
cycle, which was likely the result of an active explora-
tion strategy and rapid learning. In contrast, the ran-
dom control strategy performed poorly, resulting in a
low average reward with large error bars throughout,
as expected given the trap on the right of the arena.

The left part of Figure 10 shows the route learned
in nearly all cases by both reinforcement learning
models to the puck4. Note that the breaks in the path

were caused by landmark-based correction, and that
the robot receives the puck reward as soon as it can
see the puck. On the right is a sample path taken by
the random algorithm to find the puck. As expected,
the random algorithm does not move directly towards
the puck and instead finds it by chance. This path is
nevertheless quite short because when the random
agent wandered into the trap on the right or doubled
back on itself repeatedly it virtually never encountered
the puck before the end of the cycle.

Figure 11 shows typical routes home for the rein-
forcement models (on the left) and the random agent
(on the right). Note that the random agent gets stuck in
the trap on the right for some time, eventually wander-
ing home, whereas the reinforcement learning agents
escape immediately.

Figure 12 shows the robot’s preferred transitions
for the puck and homing phase at the end of one of the
asynchronous runs, with darker arrows indicating
higher values. It is clear from both of these maps that

Figure 9 Average puck (a) and home (b) reward over time for the first arena.

Figure 10 Sample learned (a) and random (b) routes to
the puck in the first arena. Note that the robot's trail fades
over time.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 23

the reinforcement value complex propagated useful
values over the entire map.

6.2 The Second Arena

For both reinforcement learning robots in the second
arena, the puck near the top of the arena was visited
last before the end of the fifth cycle in all seven runs
and therefore removed. In the random runs the same
puck was removed in order to make the results maxi-
mally comparable.

As can be seen from the graph of the average
puck reward obtained over time for the systems in Fig-
ure 13a, both reinforcement learning models learned
to find a puck relatively quickly at first, and then expe-
rience a sharp drop in performance at the end of the
fifth cycle when it was removed, along with a high
variation in reward as indicated by the large error bars.
Although the asynchronous model is able to recover
and return to a consistently good solution by the ninth

cycle, the synchronous model does not on average
perform much better or more consistently than the
random system by the end of the run.

Figure 13b shows that both reinforcement learning
types were able to learn to get back to the home area
quickly, although the synchronous algorithm experi-
ences a drop in performance and increase in standard
error from the sixth cycle, only recovering around the
ninth cycle. This seems to indicate that the synchronous
algorithm is less robust than the asynchronous one.

The asynchronous model is therefore able to able
to learn to adjust its value complex relatively quickly
in the face of a noisy, modified environment. It does
this despite the fact that the expected values it calcu-
lates are averages over all rewards received, so that
some residual puck reward must remain at any transi-
tion where a puck has ever been sighted (this could be
remedied by the use of an average over the last few
sightings).

Figure 11 Sample learned (a) and random (b) routes
home in the first arena.

Figure 12 Preferred transitions maps for the puck (a)
and homing (b) reinforcement complexes taken from a
sample asynchronous robot at the end of ten cycles in
the first arena.

Figure 13 Average puck (a) and home (b) reward over time for the second arena.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

24 Adaptive Behavior 13(1)

Figure 14 shows the puck finding behavior dis-
played by the reinforcement learning robots. The fig-
ure on the left shows an example of the puck finding
path initially learned by both reinforcement models,
and the figure in the middle displays the behavior
exhibited initially by both robot types after that puck
has been taken away, where both robots repeatedly
execute the transition that had previously led to a puck
sighting. However, the asynchronous model is later
consistently able to learn to take the alternate puck
finding route, shown in the figure on the right, while
the synchronous one is not.

Figure 15 shows the preferred puck transition
maps after the eighth cycle for the asynchronous and
synchronous robots. The map obtained from the asyn-
chronous model (on the left) has adjusted well to the
removal of the top puck and now directs movement to
the lower puck from everywhere in the graph (note that
two pairs of walls in the left map appear to be on the
wrong side of each other due to dead reckoning error).

The map obtained from the synchronous model, how-
ever, has not adjusted as well and still contains regions
where movement would be directed toward the transi-
tion where the puck has been removed.

6.3 The Third Arena

The third arena was the most difficult arena faced by
the robot, with the longest path to the puck and the most
complex map. Because it had already been shown to
perform poorly, no runs were performed with the ran-
dom robots. In addition, data from only five reinforce-
ment learning runs were used rather than seven.

Figure 16a shows the average puck reward over
time for the third arena. It demonstrates decisively that
the asynchronous algorithm outperforms the synchro-
nous one when a long path to the goal must be con-
structed. The asynchronous algorithm consistently found
and learned a short path to the puck by the sixth cycle,
whereas the synchronous algorithm did not manage to
consistently find a good path at all.

The difference between the two learning models
is less pronounced in Figure 16b, which shows the
average home reward obtained by the two robot types
over time. The asynchronous model again consistently
finds a good solution quickly, at around the fourth
cycle, while the synchronous model takes longer,
reaching the same conditions at around the seventh
cycle, but still performs well.

A potential explanation for the difference in per-
formance between the two rewards could be that since
both models explore, and both must initially start all
runs in the home area, the synchronous robot would
experience many transitions near the home area and

Figure 14 Learned puck finding behavior in the second arena: (a) The initial puck finding path, (b) the behavior exhib-
ited by both reinforcement learning models when that puck is taken away, and (c) the alternate route later learned by the
asynchronous model.

Figure 15 Preferred puck transitions maps for the sec-
ond arena, from sample asynchronous (a) and synchro-
nous (b) reinforcement learning robots after the eighth
cycle.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 25

thus be able to build a path earlier than in the case of
the puck, where it would be much less likely to experi-
ence a puck sighting repeatedly without having built a
path to it first. The synchronous model is also likely to
have explored the arena less thoroughly than the asyn-
chronous model, and thus in many cases did not have
had to find its way back from as far away.

The path commonly learned by the asynchronous
robots is shown on the left side of Figure 17. Even
though this is a fairly complex arena, the robot man-
ages to learn a direct path to the puck. A representa-
tive path for the synchronous model is shown on the
right, and is clearly not as direct as the path learned by
the asynchronous robots.

Figure 18 shows the preferred puck transitions for
asynchronous and synchronous robots. The map
obtained from the asynchronous model (on the left)
shows that the path to the puck has been propagated
throughout the map, whereas it is clear from the map
obtained from the synchronous model that the path to

the puck has propagated slowly, with only the transi-
tions very close to the puck transition having high val-
ues (indicated by dark arrows).

One revealing aspect of the robot type’s behavior
was the apparent repetition of transitions by the syn-
chronous robots, where several transition experiences
were required to drive the optimistic initial transition
values down. The asynchronous robots repeated tran-
sitions only when it took multiple transition attempts
to determine that an unexplored transition was illegal.
This gave it more time to explore and allowed for
wider coverage of the map, and may have contributed
towards its superior performance.

6.4 Convergence

The final issue to be considered is that of convergence.
Previously, we suggested that the amount of time a sit-
uated agent takes to make a transition may be suffi-
cient to allow an asynchronous reinforcement learning

Figure 16 Average puck (a) and home (b) reward over time for the third arena.

Figure 17 Typical learned puck Routes in the third are-
na for the asynchronous (a) and synchronous (b) rein-
forcement learning robots.

Figure 18 Sample preferred puck transitions maps for
asynchronous (a) and synchronous (b) reinforcement
learning robots in the third arena.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

26 Adaptive Behavior 13(1)

algorithm over a topological map to converge between
transitions.

Figure 19 contains three samples (one from each
arena, of 80, 50 and 80 seconds length, respectively)
showing the average change in action value over time,
where the dotted vertical lines mark transition occur-
rences. Transitions function as event points, where a
decision as to what to do next is required and where
the reinforcement learning complex receives new data.
The third graph is from a run in the third arena where
the puck was discovered after 17 minutes, and the
robot had built a nearly complete map of the arena. In
all three graphs, the action values are disturbed by
each event point but converge comfortably before the
next one occurs.

Although the remainder of the data shows a simi-
lar pattern, convergence cannot be conclusively dem-
onstrated here because data could not be collected
sufficiently rapidly to rule out the possibility of very
small changes being made before some event points.
For example, in the second graph in Figure 19, although
it appears that some of the spikes begin before an event
point, this is an artifact of the sampling rate of the event
point data and the line interpolation graphing method
used. Nevertheless it seems clear that reinforcement
learning complex converges between decisions, and
therefore no reinforcement learning method (not even
TD(λ)) could usefully speed up learning any further.

6.5 Conclusion

It is clear from the results presented above that both
reinforcement learning models perform better than the
random movement strategy for this task, and that both
are capable of learning to find the puck and return
home again quickly. Although the synchronous method

(Q-learning) performs roughly as well as the asynchro-
nous method (ATD) when finding fairly short paths,
the asynchronous model performs better when a long
path must be learned, and recovers more quickly than
the synchronous model when the environment
changes. The results also suggest that the interplay of
the exploration drive, the distributed map and the other
drives may have subtle but important effects on the
robot’s overall performance. Finally, the data obtained
from all of the runs suggests that the asynchronous
model is able to converge between transitions, so that
the choices made by the agent are optimal given the
knowledge that it has. The reinforcement learning
architecture presented in this paper is therefore feasi-
ble and capable of providing definite behavioral bene-
fits for the puck foraging task.

7 Discussion

In the following sections, we discuss the issues raised
by the model, experiment and results presented in this
paper. We first examine the significance of the model,
followed by the limitations of the work presented here.
Finally, we consider the implications of this research
for reinforcement learning and situated learning in
general.

7.1 Significance

This paper has shown that the behavior-based style of
robot control and reinforcement learning methods can
be fully integrated to produce an autonomous robot
that is capable of rapid learning in a real environment.
Further application of the architecture presented here
has the potential to widen the scope of behavior-based

Figure 19 Samples of the average action value change over time from representative asynchronous reinforcement
learning robots.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 27

systems by facilitating the synthesis of other robots
that, like Dangerous Beans, display reinforcement
learning behavior.

Furthermore, this research may form a basis for
future work since reinforcement learning provides a
principled way to build value-driven learning agents and
the reinforcement learning complex provides a structure
that allows for the layering and integration of further
learning methods into behavior-based control systems.

Finally, this research has indicated that learning in
situated agents requires a change in emphasis from the
design criteria employed by standard machine learning,
and that the integration of further learning methods
into behavior-based robotics through layered learning
is a promising future research direction.

7.2 Limitations

The work presented here suffers from two types of
limitations: Those inherent in the reinforcement learn-
ing model, and those relating to the experiment and
implementation used to test it.

A major limitation of the architecture is the fact
that it relies upon a learned topological map. In some
situations, it may not be possible to feasibly build or
maintain such a map, and in others, the map may
become prohibitively large. In cases where the map
becomes large, the reinforcement learning layer on top
of it is unlikely to be able to learn quickly enough to be
useful in real time. Such situations may require the
addition of other learning methods, or one or more fur-
ther topological mapping layers in order obtain a map
that is small enough to be useful5.

The other primary difficulty inherent in the model
is that it inherits all of the limitations of reinforcement
learning. Reinforcement learning is not appropriate
for all types of problems, and imposes significant state
property requirements. States must have the Markov
property, which may be difficult to obtain in situated
environments due to perceptual aliasing, where differ-
ent states are perceptually indistinguishable. In such
cases, the use of further internal state or active percep-
tion may be required in order to disambiguate states
(Crook & Hayes, 2003).

The experimental design and implementation pre-
sented above are not perfect. One of the major draw-
backs of the experimental implementation was the
level of engineering required to get everything to work
in terms of both the environment and the robot control

system. The environment had to be engineered to a
certain extent because of the sensory limitations of our
robot, and a great deal of effort was required to get the
distributed map building system (in particular the
dead-reckoning correction) performing as required.
Most of these problems could have been solved with
the addition of more sensory capabilities to Dangerous
Beans—for example, the dead-reckoning system would
have been much more accurate with the addition of a
direction sense, and could even have been dropped
completely from the control system had the robot had
sufficient sensing to unambiguously differentiate walls.
However, none of these limitations significantly
detract from the point that system was built to prove.

Finally, the experimental results given here are
the results of the use of the architecture in a single
application area only. Although these results strongly
suggest that it is promising and may work in other
domains, further experiments will be required in order
to confirm this.

7.3 Implications

This section considers some of the implications of the
research presented here for situated reinforcement
learning and robot learning in general. The following
sections consider the implications for situated rein-
forcement learning, planning behavior, layered learn-
ing and emergent representations in turn, with the last
section providing a highly speculative discussion of
the role of learning models in the study of situated
representation.

7.3.1 Situated Reinforcement Learning A situated
agent is required to learn in real time, using a reasona-
ble amount of computation, in a manner that provides
behavioral benefits within its lifetime. The evolution
of complex methods to make already present learning
strategies feasible is difficult to justify, especially
when the naive implementations of such methods can
provide no behavioral benefit to an agent in its life-
time. Thus, although a great deal of work has gone into
making reinforcement learning using a single control
process feasible over very large state spaces, a similar
effort should be directed towards the development of
methods (such as layering reinforcement learning over
a topological map) that create conditions under which
it is feasible in the first place. Two promising approaches

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

28 Adaptive Behavior 13(1)

to this are the use of a priori knowledge and learning
bias (Bryson, 2002) and layered learning (Stone &
Veloso, 2000).

The results presented here suggest that a learning
method developed specifically for the situated case
can generate real time adaptive behavior, and that situ-
ated learning requires a different design methodology
than standard machine learning, thus meriting further
study in its own right.

7.3.2 Planning Behavior One of the original criti-
cisms of behavior-based robotics was that systems
built using it would never be able to plan, because its
emphasis on distributed control, reactive behavior
and a lack of syntactic representations preclude the
use of traditional planning algorithms (Brooks, 1987).
Although the situated view of intelligent agents does
not consider the construction and execution of plans to
be the primary activity performed by an intelligent
agent in the same way that classical artificial intelli-
gence does (Agre & Chapman, 1990; Brooks, 1987),
the generation of some form of planning behavior is
still an important aspect of intelligence.

As argued by Sutton (1991) and Barto, Bradtke,
and Singh (1995), model-based reinforcement learning
methods incrementally converge to a compiled reactive
plan, resulting in a simple, local policy that optimally
maximizes total future reward. Therefore, given a par-
ticular model of the problem space, once a model-based
reinforcement learning method (such as the one used
in this paper) has converged, any decision made using
the resulting policy is optimal and implicitly takes into
account the value of all future actions. Reinforcement
learning using a model is therefore a kind of stochas-
tic, real time planning algorithm (Barto et al., 1995).

The results presented here show that Dangerous
Beans can be said to be displaying planning behavior,
because its reinforcement learning complex appears to
converge between decisions. Therefore, the decisions
it makes are globally optimal given its drives and the
knowledge it has, even though they are in a sense
reactive decisions. Dangerous Beans is thus a behav-
ior-based robot capable of planning without the use of
a planner in the classical sense, because although it
makes reactive decisions, the values it uses to make
them implicitly reflect global expected return, and are
thus not prone to the myopia usually exhibited by
reactive systems.

7.3.3 Layered Learning Layering reinforcement learn-
ing on top of a topological map is just one instance of
the layered learning approach introduced by Stone and
Veloso (2000), which is a powerful and general idea
that has not yet been fully explored.

In the original layered learning methodology, one
layer was required to complete its learning task before
the next could begin (Stone & Veloso, 2000). One of
the interesting implications of this research is that
when two layers are learning at the same time, a kind
of feedback between layered learning systems is pos-
sible, where the performance of each algorithm biases
the other’s learning opportunities. Since most machine
learning research has concentrated on only one learn-
ing method in isolation from all the others, there may
be significant scope for future research into the kinds
of biases that two interacting learning algorithms can
impose on each other.

Another interesting aspect of using one type of
learning to make another feasible is that it suggests an
information requirement ordering for learning models.
There may be a hierarchical relationship between all
learning methods governing at which level of behavior
in a situated agent’s control system they can appear.
Perhaps a similar evolutionary ordering exists where
species must evolve some types of learning methods
before others in order to obtain the behavioral benefits
that could give them a fitness advantage. For example,
once Dangerous Beans was capable of distributed map
learning, the addition of a reinforcement learning layer
provided it with significant behavioral benefits but
required far less engineering effort than that required
to develop the map learning layer in the first place.
There may be scope for the investigation of these kinds
of relationships between learning models through arti-
ficial evolution (Harvey, 1995).

Layered learning may also have interesting impli-
cations in terms of emergent behavior. Since the inter-
action of multiple control processes and a complex
environment results in complex behavior, it is reasona-
ble to expect that the interaction of multiple learning
models, multiple control processes, and a complex
environment will likewise result in complex learning
behavior.

7.3.4 Emergent Representations The behavior-based
approach to artificial intelligence has resulted in a
change in the way that many artificial intelligence

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 29

researchers view behavior. Behavior is now consid-
ered to be the emergent result of the complex interac-
tion between an agent’s multiple control processes,
morphology, and environment. However, there has
been no corresponding change in the way that
researchers view representation. Some behavior-based
roboticists simply ignore it, while others maintain the
classical view that representation is the result of an
internal syntactic symbol system.

Simply ignoring the role of representation in intel-
ligent behavior is not a tenable position. The real ques-
tion is not whether or not representation must exist in
an intelligent agent, but rather in what form and in
what manner it exists. Although Brooks (1991a) is
often considered an argument against any form of rep-
resentation whatsoever6, it is actually an argument
against the use of centralized syntactic representational
systems for control. In fact, Brooks (1991a) claims
that useful representations should be distributed and
emergent, and that such things would be sufficiently
different from what are traditionally considered repre-
sentations that they should be called something else.

One powerful way to study representations in situ-
ated agents is through learning. Representations them-
selves do not offer an agent a behavioral advantage—
rather, the simple fact that anything new an agent wishes
to represent must first be learned implies that the types
of learning methods used by the agent dictate its repre-
sentations and the behavioral advantages it receives.

This imposes a dual constraint on the types of rep-
resentations an agent will find beneficial: the relevant
learning model must be feasible in that it must be able
to learn in real time, and the behavior it generates must
be useful, in that it provides behavioral advantages
appropriate to the agent’s level of competence. Since
situated learning is only feasible when it is task-spe-
cific, it follows that such representations are also likely
to be task specific. In the same way that there is never
likely to be a single general purpose tractable learning
algorithm, there is no known representational system
that is capable of handling a wide spectrum of knowl-
edge at different levels of detail without becoming
computationally intractable. Situated intelligence should
be expected to develop in such a way as to facilitate cheap
computation and rapid learning, whenever possible.

If we assume that representation arises through the
presence of learning methods, it follows that represen-
tations must form from the structures generated by
those methods and their interaction with each other.

These representations would be emergent in the sense
that they would not be composed of atomic, syntactic
symbols, but would instead be complex entities formed
by the association of several task-specific structures at
different levels of detail, organized into a loosely hier-
archical distributed structure. Such complexes may
only be identifiable as symbols given a particular link-
ing context.

For example, when observing the behavior of
Dangerous Beans, an outside observer would say that
the robot has a representation of a map, and a represen-
tation of the path to the puck. However, Dangerous
Beans has a distributed map, which is an emergent
structure—it exists because of the behavior and inter-
action of its behavioral modules with the environment
and each other. Similarly, nowhere in Dangerous
Beans’ control structure is there a path representation.
Rather, there is a reinforcement learning complex,
another emergent structure, that consists of a set of val-
ues that cause the agent to make certain choices when
it is at certain places. The path is an emergent property
of these choices, and it results from the interaction of
the robot’s internal drives, the distributed map, the
reinforcement learning complex embedded in it, and
the environment itself—the path to the puck does not
exist outside of the interaction of these elements.

8 Conclusion

The contribution of this paper is threefold. First, it has
introduced an architecture that integrates the behavior-
based style of robot architecture and reinforcement
learning. Second, it has detailed the development of a
mobile robot that uses this model to learn to solve a
difficult problem, resulting in data that supports the
claim that the architecture is capable of learning in real
time. Finally, through the development of a fully behav-
ior-based layered learning system, some progress has
been made towards bringing these two powerful and
important ideas together.

If behavior-based systems are to have any hope of
moving beyond insect-level intelligence, they must
begin to incorporate learning mechanisms at all levels
of behavior. This is more than just a matter of inserting
learning models into behavior-based systems—it is a
matter of understanding what is required to make learn-
ing feasible in the real world, how to layer learning
methods so that their interaction facilitates the genera-

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

30 Adaptive Behavior 13(1)

tion of complex behavior, and how to truly integrate
learning into behavior-based systems. The research pre-
sented here represents one small step in that direction.

Acknowledgments

We would like to thank Joanna Bryson and the anony-
mous reviewers for for their invaluable comments, and
the University of Edinburgh for the use of its resources.
George Konidaris was supported by a Commonwealth
Scholarship (ref. ZACS-2002-344) during this research.

Notes

1 Note that a simulated agent may be considered situated
provided the simulation is sufficiently detailed and the
action-environment-perception loop is closed, but not if it
must take an unrealistic amount of time to learn to per-
form its task—such an agent would not be able to display
useful behavior in the real world. Our conception of situ-
ated learning therefore includes some hybrid methods
(e.g., anytime learning: Grefenstette and Ramsey, 1992)
where the agent runs its own internal simulation.

2 Although the use of training examples is not appropriate
in situated learning, one learning algorithm in a situated
agent could for example bias the kinds of learning oppor-
tunities another receives.

3 This is the most common value used in Sutton and Barto
(1998). Due to time constraints, no systematic evaluation
of its effect was performed.

4 These figures and the similar ones that follow were
obtained by the superimposition of dead reckoning posi-
tion estimation on a scale drawing of each map.

5 Layering further topological mapping layers can be con-
sidered in some sense equivalent to hierarchical reinforce-
ment learning methods (e.g., Digney, 1998).

6 It is, after all, entitled “Intelligence without Representation.”

References

Agre, P., & Chapman, D. (1990). What are plans for? In P. Maes
(Ed.), New architectures for autonomous agents: Task-
level decomposition and emergent functionality. Cam-
bridge, MA: MIT Press.

Balch, T. (1997a). Clay: Integrating motor schemas and rein-
forcement learning (Technical Report GIT-CC-97-11).
College of Computing, Georgia Institute of Technology.

Balch, T. (1997b). Integrating RL and behavior-based control for
soccer. RoboCup-97: Proceedings of the First Robot World
Cup Soccer Games and Conferences. Berlin: Springer-Verlag.

Balch, T. (1999). Reward and diversity in multirobot foraging. In
S. Sen and J. M. Vidal (Eds.), Proceedings of the IJCAI Work-
shop on Agents Learning About, From and With Other Agents.

Barto, A., Bradtke, S., & Singh, S. (1995). Learning to act
using real-time dynamic programming. Artificial Intelli-
gence, 72, 81–138.

Bertsekas, D., & Tsitsiklis, J. (1989). Parallel and distributed
computation: Numerical methods. Englewood Cliffs, NJ:
Prentice Hall.

Brooks, R. (1987). Planning is just a way of avoiding figuring
out what to do next. In R. Brooks (Ed.), Cambrian intelli-
gence: The early history of the new AI (pp. 103–110).
Cambridge, MA: MIT Press.

Brooks, R. (1991a). Intelligence without representation. In J.
Haugeland (Ed.), Mind design II (pp. 395–420). Cam-
bridge, MA: MIT Press.

Brooks, R. (1991b). The role of learning in autonomous robots. In
M. K. Warmuth and L. G. Valiant (Eds.), Proceedings of the
Fourth Annual Workshop on Computational Learning Theory
(COLT ’91) (pp. 5–10). San Francisco, CA: Morgan Kauffman.

Bryson, J. (2002). Modularity and specialized learning: Reex-
amining behavior-based artificial intelligence. In M. Butz,
P. Gérard, & O. Sigaud (Eds.), Proceedings of the Work-
shop on Adaptive Behavior in Anticipatory Learning Sys-
tems. Berlin: Springer.

Choset, H., & Nagatani, K. (2001). Topological simultaneous
localization and mapping (SLAM): Towards exact locali-
zation without explicit localization. IEEE Transactions on
Robotics and Automation, 17(2), 125–137.

Crook, P., & Hayes, G. (2003). Learning in a state of confusion:
Perceptual aliasing in grid world navigation. In U. Nehm-
zow and C. Melhush (Eds.), Proceedings of the 4th British
Conference on (Mobile) Robotics: Towards Intelligent
Mobile Robots (TIMR 2003). London, UK: IEE.

Digney, B. (1998). Learning hierarchical control structures for
multiple tasks and changing environments. In R. Pfeifer,
B. Blumberg, J. Meyer, & S. Wilson (Eds.), From Animals
to Animats 5: Proceedings of the Fifth International Con-
ference on Simulation of Adaptive Behavior (pp. 321–
330). Cambridge, MA: MIT Press.

Dudek, G., Freedman, P., & Hadjres, S. (1993). Using local
information in a non-local way for mapping graph-like
worlds. In R. Bajcsy (Ed.) Proceedings of the Interna-
tional Joint Conference of Artificial Intelligence (pp.
1639–1647). San Francisco, CA: Morgan Kaufmann.

Grefenstette, J., & Ramsey, C. (1992). An approach to anytime
learning. In D. H. Sleeman and P. Edwards (Eds.), Proceed-
ings of the Ninth International Conference on Machine Learn-
ing (pp. 189–195). San Francisco, CA: Morgan Kaufmann.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

Konidaris & Hayes Behavior-Based Reinforcement Learning 31

Harvey, I. (1995). The artificial evolution of adaptive behav-
iour. D. Phil. thesis, School of Cognitive and Computing
Sciences, University of Sussex.

Humphrys, M. (1996). Action selection methods using rein-
forcement learning. In P. Maes, M. Mataric, J.-A. Meyer, J.
Pollack, & S. Wilson (Eds.), From Animals to Animats 4:
The Fourth International Conference on the Simulation of
Adaptive Behaviour (SAB-96) (pp. 135–144). Cambridge,
MA: MIT Press.

K-Team SA (1999a). Khepera K213 vision turret user manual.
Lausanne, Switzerland.

K-Team SA (1999b). Khepera user manual. Lausanne, Swit-
zerland.

Kohonen, T. (1989). Self-organization and associative memory
(3rd ed.). Berlin: Springer-Verlag.

Konidaris, G. (2003). Behaviour-based reinforcement learning.
Master’s thesis, School of Informatics, University of Edin-
burgh.

Maes, P., & Brooks, R. (1990). Learning to coordinate behav-
iors. In T. Dietterich and W. Swartout (Eds.), Proceedings
of the Eighth National Conference on Artificial Intelli-
gence (pp. 796–802). Cambridge, MA.

Mahadevan, S., & Connell, J. (1992). Automatic programming
of behavior-based robots using reinforcement learning.
Artificial Intelligence, 55(2–3), 311–365.

Marsland, S., Shapiro, J., & Nehmzow, U. (2002). A self-
organising network that grows when required. Neural Net-
works, 15(8–9), 1041–1058.

Mataric, M. (1994). Reward functions for accelerated learn-
ing. In W. W. Cohen and H. Hirsh (Eds.), Proceedings of
the Eleventh International Conference on Machine
Learning (pp. 181–189). San Francisco, CA: Morgan
Kaufmann.

Mataric, M. (1997). Reinforcement learning in the multi-robot
domain. Autonomous Robots, 4(1), 73–83.

Mataric, M., & Brooks, R. (1990). Learning a distributed map
representation based on navigation behaviors. In R.
Brooks (Ed.), Cambrian intelligence : The early history of
the new AI. Cambridge, Massachusetts: The MIT Press.

Mitchell, T. (1997). Machine learning. London, UK: McGraw-
Hill. 42

Moriarty, D., Schultz, A., & Grefenstette, J. (1999). Evolution-
ary algorithms for reinforcement learning. Journal of Arti-
ficial Intelligence Research, 11.

Schmolke, A., & Mallot, H. (2002). Polarization compass for
robot navigation. In D. Polani, J. Kim, & T. Martinetz
(Eds.), The Fifth German Workshop on Artificial Life (pp.
163–167). Berlin: Akademische Verlagsgesellschaft Aka.

Smart, W., & Kaelbling, L. (2000). Practical reinforcement
learning in continuous spaces. In P. Langley (Ed.), Pro-
ceedings of the Seventeenth International Conference on
Machine Learning (pp. 903–910). San Francisco, CA:
Morgan Kaufmann.

Smith, A. J. (2002). Applications of the self-organising map to
reinforcement learning. Neural Networks, 15, 1107–1124.

Stone, P., & Veloso, M. (2000). Layered learning. In R. Lopez
de Mantarasand E. Plaza (Eds.), Proceedings of the 11th
European Conference on Machine Learning (pp. 369–
381). Berlin: Springer.

Sutton, R. (1990). Reinforcement learning architectures for ani-
mats. In J. Meyer, & S. Wilson (Eds.), From animals to
animats: Proceedings of the International Conference on
Simulation of Adaptive Behavior (pp. 288–296). Cam-
bridge, MA: MIT Press.

Sutton, R. (1991). Planning by incremental dynamic program-
ming. In L. Birnbaum and G. Collins (Eds.), Proceedings
of the Ninth Conference on Machine Learning (pp. 353–
357). San Francisco, CA: Morgan Kaufmann.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An
introduction. Cambridge, MA: MIT Press.

Toombs, S., Phillips, W., & Smith, L. (1998). Reinforcement
landmark learning. In R. Pfeifer, B. Blumberg, J. Meyer,
& S. Wilson (Eds.), From animals to animats 5: Proceedings
of the Fifth International Conference on Simulation of Adap-
tive Behavior (pp. 205–212). Cambridge, MA: MIT Press.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learn-
ing, 8, 279–292.

Whiteson, S., & Stone, P. (2003). Concurrent layered learning.
In J. S. Rosenschein, M. Woolbridge, T. Sandholm and M.
Yokoo (Eds.), Proceedings of the Second International
Joint Conference on Autonomous Agents and Multi-Agent
Systems (pp. 193–200). New York, NY: ACM Press.

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

32 Adaptive Behavior 13(1)

About the Authors

George Konidaris is a Research Associate at the Institute of Perception, Action and
Behavior at the University of Edinburgh. He has a B.Sc. in computer science from the
University of the Witwatersrand and an M.Sc. in artificial intelligence from the University
of Edinburgh. His primary research interests are situated learning and learning hierar-
chies, and their implications for representation in embodied agents.

Gillian M. Hayes received a B.A. degree in physics from the University of Oxford in 1977,
after which she joined British Aerospace as an engineer working on infra-red systems
and image processing. She received a Ph.D. in laser spectroscopy from the University of
Birmingham in 1986. She joined the Department of Artificial Intelligence, latterly the
School of Informatics, of the University of Edinburgh in 1988 and is currently senior lec-
turer. Her research interests include robot learning, particularly reinforcement learning
and the many flavors of imitative and social learning, socially interacting robots, attention,
emotion and reward, and motion analysis. Address: Institute for Perception, Action and
Behaviour, School of Informatics, University of Edinburgh, James Clerk Maxwell Building,
Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK. Email: gmh@inf.ed.ac.uk

 at Brestskij gosudarstvennyj on March 31, 2009 http://adb.sagepub.comDownloaded from

http://adb.sagepub.com

