
Reinforcement-Based Learning with Automatic
Categorization

Josep M Porta

Institut de Robòtica i Informàtica Industrial (CSIC  UPC), Gran Capità 2-4, 08034, Barcelona (SPAIN),
jporta@iri.upc.es

Abstract. In this work, we present a reinforcement-based learning algorithm that includes the
automatic categorization of both sensors and actions. The categorization process is prior to any
application of reinforcement learning. If categories are not at the adequate abstraction level, the
problem could be not learnable. The categorization process is usually done by the programmer and is
not considered as part of the learning process. However, in complex tasks, environments, or agents,
this manual process could become extremely difficult. To solve this inconvenience, we propose to
include the categorization into the learning process. We sketch an algorithm to automatically learn to
achieve a task through reinforcement learning that works without needing a previous categorization
process. First results of the application of this algorithm are shown.

1 Introduction

Continuos improvements in areas such as mechanical
engineering and micro-electronics have given us the
possibility of building autonomous robots with
increasingly sophisticated sensorial and motor
systems. The control of this kind of robots to
accomplish complex tasks in dynamic environments is
one of the challenges of Artificial Intelligence but we
are far from achieving it.
In the last years, some authors (Brooks, 1991) have
argued that traditional approaches of artificial
intelligence based on high level reasoning and
planning are not adequate for the type of problems that
arise when controlling a real robot in real time, and
new architectures have been proposed. The use of
these new architectures allowed to achieve complex
tasks with controllers based on simple principles
(Brooks, 1986), (Connell, 1989). But the programming
of these controllers is not free of problems. Behind
each success of these approaches there is usually a
programmer that has spent lots of hours designing the
controller, developing each one of its modules and
adjusting their parameters and interactions until the
desired behavior is obtained. If we want to address
more complex tasks and environments, this

programming process must be alleviated, and the
application of machine learning techniques is a
promising way to explore. The idea of automatic
learning of robot controllers has been present in the
new paradigms of robot control architectures from the
very beginning (Dorigo and Colombetti, 1994), (Maes
and Brooks, 1990), (Mahadevan and Connell, 1992),
(Mataric, 1990).
A learning paradigm can be classified according to the
amount of information that the designer directly
provides to the learning agent1. At one end of this
continuos spectrum (closer to the manual
programming) we find the supervised learning
approaches in which the designer informs the agent
about which are the adequate actions (with respect to
the current task) to be executed in some specific
situations and the objective of the learning algorithm
consists in generalizing the given information to find
out the correct actions in all the possible situations. At
the other end of the learning paradigms, there are the
reinforcement learning systems (Kaebling et al.,
1995). In these systems, the designer only informs the
agent when the task has been successfully completed.
Between the two extremes of the classification, there is

                                                          
1 There exits also unsupervised learning approaches in which
no information is given to the learning agent but they are not
task-purposive.



2

a variety of learning systems that the programmer can
use depending on her knowledge of the task and on
how easy is it to transfer this knowledge from the
designer's point of view to the robot's point of view. In
many problems concerning autonomous robots the
reinforcement learning paradigm is the only adequate
one.
Reinforcement learning has been extensively studied
since the origins of artificial intell igence and even
before. However, as it happened with the traditional
artificial intelligence architectures, learning paradigms
must be adapted to be successfully applied to
autonomous robots. Since now, existent reinforcement
learning algorithms have been mainly focused on how
to find the correct links between perception and action
without paying much attention on how perception and
action must be pre-processed, so that relevant
mappings between them can be established. In general,
current reinforcement learning algorithms depart from
the basis that there exists meaningful states for the
solution of the task and adequate actions to go from
one state to another (see (Sutton and Barto, 1998) page
61 for a good explanation on this assumption). The
process of definition of these states and actions is
called categorization. This process is in charge of the
programmer and is often implicit in the application of
the reinforcement learning algorithms. The
categorization process can be the most difficult stage
of the solution of a task (the proper interpretation of
the sensor readings can transform an apparently
complex task in a simple one) so, if it is done by the
programmer, we could be systematically confronting
our reinforcement learning algorithms with the easiest
part of the problem.
In this work, we present a reinforcement based
learning approach that derives adequate sensor and
action categories for solving a task only from the
interaction of the robot with the environment and the
information given by the reinforcement signal. Our
approach uses the so obtained categories to construct a
controller that achieves the task.
In the next section we analyze in more detail the
generalities of the existent reinforcement learning
algorithms, and we show the necessity of a
categorization process in both sensors and actions
when these algorithms are applied to complex agents
such as autonomous robots. In section 3, our
reinforcement based learning approach is sketched,
and in section 4 we describe the implementation of a
reduced version of this system and shows some
preliminary results. Finally, in section 5 we extract
some conclusions of our work and outlines future
ways in which our system should be extended to cope
with more complex learning problems.

2 Reinforcement Learning and
Categorization

The reinforcement learning paradigm has been
extensively studied in areas such as animal ethology,
automatic control, and more recently artificial
intell igence. A general description of a reinforcement
learning situation includes the following elements:

•�  A definition of the task: The only strictly needed
information about the task is a signal, called the
reinforcement signal, that becomes active when the
task is achieved. This signal is. If more information
about the task is available (as for instance, correct
or incorrect actions in some situations, or necessary
preconditions for achieving the task), it can be
added to the reinforcement signal to help the
learner.

•�  An environment in which to accomplish the task.
Depending on the kind of environment (static,
dynamic,...) the resolution of the task can be less or
more difficult.

•�  An agent that must complete the task. This agent
can execute actions. The solution of a task consists
in determining adequate actions to activate the
reinforcement signal as frequently as possible.

The first attempts to formalize the framework of
reinforcement learning were at a high level of
abstraction, and the resulting formalization was not as
general as the previous description. The main
assumption of this formalization is to consider the
environment as a state machine controlled by the
agent, so that the interaction between the environment
and the agent is arranged in a two step loop: In the first
step, the agent perceives the state of the environment
and, in the second one, it performs an action that
produces a change in this state. In this formalization
we have:

•�  States: Representing relevant situations for the
achieving of a task to which the agent should
respond with the correct decision. The agent can
directly perceive the state of the system, or at least
obtain sensor readings that depend probabilistically
(in a constant way) on the state.

•�  Actions: Devised as a list of options from which
the agent picks the most appropriate for each state.
At each moment the agent only performs one
action from the list.

•�  Reinforcement function: It is a function that maps
transition between states to a real numbers. In
general this function is zero except for some
transitions that are considered the goals of the
current task (for instance, reaching a specific
position, grasping an object,...). The reinforcement



3

function is defined from the point of view of the
programmer, and it is the only way in which she
transfers her knowledge about the task to the agent.
The task is more easily learned if the agent has a
set of states and actions equivalent to that of the
programmer. In general it is assumed that the
programmer uses the same set of states and actions
that the agent but as we show in the next sections,
in complex tasks this is not always true.

•�  Policy: A mapping from states to actions. Each
policy is evaluated according to a criterion that
depends on the reinforcement function.
Reinforcement learning algorithms aim to find the
optimal policy for the task at hand.

•�  Model of the agent-environment interaction:
Including the transition probabiliti es from one state
to another under the execution of each action.

This formalization was quickly accepted by the
artificial intelligence researchers coming from areas
such as automated reasoning or planning, because they
also used to tackle problems at a high abstraction level,
in which states and actions to move from one state to
another were easy to define. So, the reinforcement
learning algorithms used in artificial intell igence
heavil y rely on the assumption of the availabili ty of
high level states and corresponding actions that cause
transitions between these states according to well
defined probabilit y distributions. As far as this
assumption is not fulfill ed, the algorithms do not work
properly. In practice, the definition of states is often
done taking the current sensor readings as the present
state and the set of actions is usually defined as the
whole set of the elementary actions executable by the
robot. Unfortunately, this simple solution does not
work properly in most autonomous robots
applications. The reason is that sensor readings and
elementary actions conform a too large search space
(Utgoff and Cohen, 1998), and that, in a complex
autonomous robot, it is almost impossible to
consistently predict the next sensor readings after the
execution of an elementary action. This is in contrast
with the assumptions underlying the reinforcement
learning algorithms explained above, so with this
definition of states and actions, they can hardly
accomplish even the simplest tasks when applied to
autonomous robots.
A first attempt to solve these problems, consists in
making clusters of sensor readings to define and
picking only special combinations of actions as the set
of actions. This reduces the spaces manipulated by the
learning algorithm. Additionally, if the clusters are
properly defined, the relation between the inputs and
the actions manipulated by the learning algorithm
becomes more predictable. For instance, in
(Mahadevan and Connell , 1992) sensor readings are

conveniently grouped prior to the definition of states
both manually and through an automatic process (thus,
infrared sensor readings are clustered in two classes
using programmer defined criteria, so that only two
situations for detected objects can be distinguished:
near and far). In the same work, only five actions
(forward, small turn left/right, and large turn left/right)
are considered despite the fact that the robot could
perform many other movements.
The process of selecting appropriate aggregations of
sensor readings and choosing adequate combinations
of elementary actions so that they can be used as a
basis to understand and accomplish a task is called
categorization (of sensors and actions) and its result
are the sensor and action categories. The
categorization of sensors and actions increases the
level of abstraction up to a point in which the task at
hand is achievable: if appropriate categories are
determined by the programmer, the task of the learning
algorithm will be considerably alleviated. However,
for complex tasks and environments, the manual
process of categorization could become extremely
complex, and an automatic categorization process will
become necessary. Additionally, even if a human
programmer can do the categorization, an automatic
mechanism may be helpful since it could discover
sensor relations or action combinations not foreseen by
the programmer (the so called frame of reference
problem (Pfeifer, 1995)).
Sensor categorization can be seen as a process of
interpretation of sensor readings so that objects and
situations relevant for solving the problem are
identified. By its side, action categorization involves
identifying the dynamics of those objects and
situations and  specially their interaction with the
robot. For instance, if we want a robot to fetch a soda
can that is at the end of a corridor, then it is helpful i f
the robot can identify things such as 'corridor' or 'soda
can' and it knows how to 'go along a corridor' or how
to 'pick a can'. If these objects and actions  are not
available to the robot, then the task could be not
learnable.
Usuall y, designers define a task at a high level of
abstraction using its own concepts and actions.
However, those high level concepts and actions can be
recursively decomposed in lower level concepts and
action into elementary ones (directly coupled to sensor
readings or constructed from elementary actions). So
categories are not monolithic entities but there is a
hierarchy from low abstract categories to more
elaborate ones. This characteristic suggests that it is
sensible to aff ront the category formation process
departing from simple problems in which simple
categories are already needed and use these categories
as a basis to confront more complex learning tasks.
This incremental teaching process is already used in



4

reinforcement learning and is known as shaping
(Dorigo and Colombetti, 1994).
As noted before, sensor categories must identify
interesting objects or situations for the current task. In
the absence of reinforcement, however, it is not
possible to know whether or not a sensor category is
interesting for the current task. What seems sensible to
do is to identify objects and situations characteristic of
the environment so that, when the reward becomes
active, it can be accounted for in terms of these already
identified objects which provide information at a
higher level than the basic sensor readings. This
process of discovering environment related categories
can be based on the analysis of the environment
regularities according to the activation frequency of
different sensor combinations.
It is important to remark that typical reinforcement
learning algorithms (such as Q-learning (Watkins and
Dayan, 1992)) do not take advantage of possible
environment regularities: they are designed to learn
policies for any arbitrary problem as efficiently as
possible. In our case, we prefer to favor the
discovering of environment regularities since, in our
opinion, this can help the learning process in cases in
which the  reinforcement signal is activated with low
frequency.
Once environment related sensor categories are found,
we can begin to identify interesting action categories.
The idea is that those action categories that makes
sense to execute are those that have a predictable
effect on the available set of sensor categories. So
examining the correlation between the execution of an
action category and the activation or deactivation of
sensor categories, relevant action categories to interact
with the environment can be determined.
The advantage of finding task independent sensor and
action categories is that they can be useful for many
similar tasks and environments.
The problem of the task independent categories is that
there are too many of them since there exists lots of
possibly interesting objects in the environment to be
identified and manipulated. So the information
provided by the reinforcement signal must be used to
filter them. What we have to do is to discover which
sensor and action categories are correlated in any way
with the reinforcement signal. Those reinforcement
related categories can be used to synthesize an
adequate controller for achieving the task at hand.

3 An Automatic Categorization
Algorithm

In the previous section we have analyzed the role of
categorization in reinforcement learning and we have

outlined a way by which adequate categories can be
obtained by observing the environment, from
interacting with it, and using the information given by
the reinforcement signal.
In this section we adopt a more practical point of view
and we introduce specific structures to combine sensor
readings into sensor categories and elementary actions
into action categories. We also explain how the
processes for category selection can be applied on
these structures. Additionally we indicate how the
resulting sensor and action categories can be combined
in behaviors that conform a controller for
accomplishing the task at hand.

3.1 Sensor Categorization

A simple sensor category can be devised as a
combination of sensor readings. From the different
possible ways to define groups of sensor readings
(clustering is one of the most typical) we choose a
general method that consists in defining logical
predicates over the sensors. The idea is to define
functions over readings coming from different sensors
to produce a binary output. For instance, the category
"corridor" can be defined based on the readings of the
distance sensors of the robot as:

� ��� ���
	�� 
������������������������! �"
#�$ %'&'(
) *�+ ,�-�.0/�+ 1�.�2�3�4�5�687�9�:�;�<�9!=�>
?�@

In this example, the sensor category uses two sensors
(left and right distance sensors), and the '<' and 'AND'
operations are used to produce the desired binary
output.
This sensor aggregation mechanism is very general
since almost all kinds of categorization performed up
to this moment, either by the programmer or
automatically, fit in this framework (the differences
between the existent approaches are the functions used
to combine the sensors). If some knowledge is
available about the environment or the task, the user
can reduce the generality of the system by selecting
those sensors that can be combined or restricting the
set of applicable operations. This will alleviate the
work of the automatic categorization.
It is interesting to note that, in general, sensor
categories are not equivalent to state identifiers. A
classical reinforcement learning state (as described in
section 2) encompasses all the information available at
any given time, and a unique action to be performed
by the robot is determined from it. In contrast, sensor
categories are intended to identify objects or situations
in the environment, and can be composed in many
ways to determine part of the actions of the robot. Lots
of sensor categories can be active simultaneously
denoting interpretations of different subsets of the



5

perception of the robot, or even of the same subset of
the perception but with alternative criteria or goals. It
is part of the task of an automatic categorization
mechanism to determine which active categories are
more relevant.
Each syntactically correct binary function over the set
of sensors is a candidate to a sensor category
potentially useful for the current task. We set up a
genetic algorithm (Goldberg, 1989) to search in the
space of sensor categories applying the usual genetic
operators (crossover and mutation). The fitness
function is defined using the three criteria for
identifying adequate categories explained in the
previous section:

•A  Correlation with regularities of the environment:
This basically consists in observing the activation
frequency of each function. Those with too low or
too high activation frequency are rejected.

•A  Correlation with the robot-environment interaction:
Those functions that respond in a predictable way
to the execution of an action category are preferred
because they are capturing part of the dynamics of
the interaction of the robot with the environment.

•A  Correlation with the reinforcement signal: The
functions whose activation or deactivation is
strongly correlated with the activation of the
reinforcement signal are prioritized.

3.2 Action Categorization

We devise an action category as a special combination
of commands sent to motors. For instance, in a
wheeled robot with two independent motors (for left
and right wheels), one could define action categories
such as: B�C�D�E�F�G�HJI

K L�M N�O
PRQJO�Q�S�N�Q�SUTWV�SYXZV�O[N]\JL L
^�_�M�M`X�a
bdcdegf�hjilk0mdnJbdcWoqprk�f`mqs

t u�v w�x�y0zR{Jy|{�u�}�{�u�~���uU�!��y`}��J� �
�����������
n ��uY�Z��� }�y��

t ��� }�y
zR{Jy�{�u�}�{�uU~W��uY�Z��y0x���� }R�|�����`���
bdcdegf�hjilk0mdnJbdcWoqprk�f`mqs

t u�v w�x�y0zR{Jy|{�u�}�{�u�~���uU�!��y`}��J� �
�����������

The range of definable action categories depends on
the kind of orders allowed to be sent to motors
(constant values, values parameterized as functions of
the sensor readings or previous motor orders,...) and
on the available combinations of elementary motor
commands (SIMULTANEOUSLY, SEQUENCE,...).
The range of these two degrees of freedom of the
action categorization system must be set by the
programmer: if she sets them in a too general way then
the automatic categorization mechanism will work

slowly and if she sets them in a too limited way then
the automatic categorization would fail.
As in the case of sensor categories, an action category
has not to be seen as an action in the traditional sense
of the reinforcement learning algorithms, in which
only one action is executed at a time. In our approach
many action categories can be executed at the same
time. This is a characteristic that is already present in
the classifier systems paradigm (Goldberg, 1989).
Even more, a single series of low level actions can be
interpreted as the execution of different action
categories. For instance, moving along a corridor can
be interpreted as "going to an intersection", "going to
the door", "escaping from a maze",... The correct
interpretation will depend on the task to be performed
or on the level of abstraction at which the task is
interpreted.
The space of syntactically possible action categories
can also be searched using genetic algorithms. In this
case, the fitness function is similar to that of sensor
categories but is based on only two criteria (correlation
with the robot-environment interaction and correlation
with the reinforcement signal) since it would make
little sense to base it on the regularities of the actions
of the robot.

3.3 Behaviors

In order to accomplish the task at hand, sensor and
action categories must be related. A classical
reinforcement learning algorithm can not be used since
the set of categories changes with time (and those
algorithms assume predefined state and action sets)
and because, as explained before, sensor and action
categories are not equivalent to classical reinforcement
learning states and actions.
In our schema, the relation between sensor and action
categories is achieved through the creation of
behaviors2. These structures define acting rules with
the following elements:

1. A combination of sensor categories acting as the
condition part of the rule.

2. An action category to be executed when the
condition holds.

3. The expected effect of the execution of the action
category on the sensor categories. This effect can
be the activation, deactivation or no alteration of a
sensor category. This is used to check the correct
execution of the behavior when it is actually
performed.

                                                          
2 We call them behaviors because of their similarity with
those used in the behavior based architectures (Brooks,
1991).



6

A behavior produces a pattern of interaction of the
robot with the environment that is more in this
environment than random actions. Behaviors are
created from the most correlated sensor and action
categories resulting from the genetic searches
described in previous sections. In exploration mode,
the robot is allowed to execute random elementary
actions, and the sequences of sensor readings and
actions actually executed are interpreted using the
sensor and action categories and their correlation is
computed. This kind of analysis permits a high degree
of parallelism since the same sequence of sensor
readings and actions can be interpreted in different
ways giving rise to a parallel statistic actualization.
Once enough evidence is collected about the effects of
one action category over a sensor category in a
specific context, the corresponding behavior is
generated. From this moment, the robot includes this
behavior in its action repertory and executes it when
appropriate. In this way, the robot progressively drifts
its actuation from a random walk to more adequate
ways to interact with the environment. Behaviors
using reinforcement related categories are prioritized,
resulting in the eventual learning of the task.
A behavior can be evaluated according to its relation
with the reinforcement signal. Our simple credit
assignment mechanism works as follows. The utility
of each behavior is adjusted according to the
magnitude of the obtained reinforcement signal and
the time difference between the execution of each
behavior and the moment of the reward activation. The
behavior utilities are used for two purposes. First, they
are used to select which behavior to when sensor
readings allow incompatible behaviors to become
active. In second place, the behavior utility is used to
eliminate useless behaviors.
Once an interesting behavior is found, two things are
done:

•�  The firing conditions of the behavior are taken as a
subgoals to be achieved through other behaviors.
This reward transmission system allows the
construction of chains of behaviors including
elements not directly correlated with the
reinforcement but useful to reach it.

•�  The sensor and action categories used in a
interesting behavior can be considered categories
with a special meaning in the current environment.
Those categories are adequate candidates to be
used as inputs to construct more abstract
categories.

In figure 1, you can see a schematic representation of
the complete automatic categorization system
described in this section.

Sensor
Categories

Action
Categories

Sensor
Categories

Pool
Behavior

Management

Action
Categories

Pool

Sensor Readings Elementary ActionsBehaviors

Categorization
(GA)

Reinforcement
Signal

Categorization
(GA)

Figure 1: Schematic representation of the automatic
categorization system. Boxes represent structures

while circled texts stand for processes to be performed
on these structures.

4 Implementation and Examples

We have implemented an almost complete version of
the automatic categorization mechanism described in
the previous section (the automatic creation of high
level categories departing form those used in behaviors
is not implemented yet).

Figure 2: Simulation environment. The '∧� ' is the agent
that moves in this world (advancing, turning right or

turning left.

We have performed the first tests of our categorization
system in grid world environments (a classical type of
environments in reinforcement learning). This kind of
environments are not the most appropriate to test our
system since it has been designed for real robots tasks,
but we have chosen them because they are easy to be
simulated and because it simplicity allow us to
concentrate on aspects such as category and behavior
generation or reward transmission without being
overwhelmed by aspects derived from the environment
complexity. In figure 2, we show the aspect of our
simulation environment.



7

Every one of the eight sensors of our simulated robot
(denoted as Si) returns a binary value indicating
whether or not there is an obstacle in one of the
positions that surround the robot. These positions are
enumerated with respect to the robot position and
orientation as follows:

7 0 1
6 ∧� 2
5 4 3

The sensor categories are defined as two-level tree
expressions with operations over the sensors. The
functions used to construct these boolean expressions
are AND, OR, NOT and IDENTITY. With these
restrictions, we can form sensor categories such as

Obstacle
Right

Obstacle
Left

Obstacle
Front

AND NOT

AND

Sensors

1st Level

2on Level

that indicates the situations in which the robot is in a
corridor and nothing blocks its way.
As far as the motor apparatus is concerned, we are
working with a robot with only one motor that can
execute three different actions: move forward, turn
left, and turn right. These are the elementary actions
used to construct action categories. Since it is not
possible to execute elementary actions in parallel, the
action categories we form consist in sequences of
elementary actions.
The behaviors generated by this reduced version of our
categorization algorithm use only one sensor category
as a triggering condition and we only create two types
of behaviors (IF and WHILE behaviors, with the usual
meaning of these constructions).

4.1 Categorization

Sensor categories may arise either from the analysis of
environment regularities or from the information given
by the reinforcement signal. From the point of view of
the designer, a grid world can be decomposed in some
basic elements such as walls, intersections, corridors,...
The agent executing our algorithm also detects basic
objects that can be used to interpret the environment
but it must be realized that the agent always perceives
the world from its own point of view so, sometimes,
the objects it identifies or the ways in which it
identifies them can be very different from what an
external observer could expect. For instance, in an
empty world in which the only observable objects are
the walls that surround the working area of the agent,

the designer could define simple wall detectors as for
instance:

Wall position with
respect to the robot

Function that represents
the sensor category

FRONT S0
RIGHT S2
BACK S4
LEFT S6

Our agent, a part from these definitions, can find other
equivalent ways to identify walls that are not as
evident as these ones. For instance, a wall in front of
the robot can be represented by a functions as:

S1 AND S7

In other cases, the agent constructs sensor categories
as

S0 OR S1

that detects wall either in front and at the right of the
robot. This category, that is not naturally identified by
the designer, could be useful for some task. Its
potential utility for the task at hand will be assessed
from the information given by the reinforcement
signal.
This disagreement between the categories that the
designer would generate and the ones actually
generated by our systems is more evident in
complicated environments.
In what concerns action categories, we construct them
as sequences of elementary actions. For instance, our
system could generate an action category like

SEQUENCE
Turn Left
Advance

that could be useful, for instance, for entering in a
corridor at left of the robot.

4.2 Behavior Creation

Behaviors are created according to the correlation
between sensor and actions categories making special
attention to those categories related with the
reinforcement signal. In the empty of the previous
section, our system generates behaviors like:

WHILE S3 DO Advance

that can be used in many cases to follow a wall or

WHILE NOT(S1) DO Advance

that takes the robot to the wall in front of it.



8

Many other behaviors not so evidently (from the point
of view of the programmer) useful for any task are also
created.
The role of those behaviors created as a result of the
environment regularities is more evident in tasks with
sparsely activated reinforcement signals. This is the
case of the environment of figure 1 when the task of
the robot is to reach a feeding point (that we put at the
blocked end of each corridor) as fast as possible. This
task can be accomplished combining two types of
behaviors. The first type of behaviors should take the
robot to the end of a corridor and include elements as
for instance:

WHILE NOT(S0) DO Advance

and the second type of behaviors should produce
turnings at intersections:

IF NOT(S2) DO Turn Right

(in this environment turning right is more relevant than
turning left because the main part of the corridors form
right oriented spirals).
These two kinds of behaviors are discovered attending
only to the environment regularities (that are quite
evident). The information of the reinforcement signal
(that is difficult to activate when performing a random
walk) is only used to adjust the utility value of these
behaviors.
Our algorithm, after visiting 100 reward situations,
produces a controller that, in average, takes the robot
to the blocked end of a corridor in less than 350 steps,
while a random walk takes in average more than 800
steps in finding a feeding position. In many cases, the
resulting controller is far more efficient than average
and needs only around 30 steps to reach a goal
situation.
Despite the controller can contain only behaviors
based on environment regularities, in general,
reinforcement based behaviors are more useful.

Figure 2: A room with eight exits.

Consider for instance, the environment of figure 2 than
can be seen as representing a room with eight exits.
The goal of the robot is to reach an exit to go out of the

room. The final controller for this task can include
(among others) the following behaviors3:

1.- IF S1 AND S7 AND NOT(S0) DO
Advance

2.- IF S1 AND S3 AND NOT(S2) DO
Turn Right

3.- WHILE S2 AND NOT(S7) DO
Advance

4.- WHILE (SO AND S7) OR (S1 AND S3) DO
IN SEQUENCE

Turn Left, Advance

Behavior 1 is directly related to the reinforcement
signal. Observe that behavior number 4 includes two
actions that must be executed in sequence. This two
consecutive actions constitute an action category that
has been found to be useful for the current task. Using
these four behaviors and departing for a situation like:

>

the controller executes the following sequence of
behaviors:

Initial situation
Behavior 4:

Left & Advance

∧
>

Behavior 4:
Left & Advance

Behavior 3:
Advance

< <

Behavior 2:
Right

Behavior 1:
Advance
∧

∧

so the exit of the room is found. Observe that the
behaviors conform an adequate sequence in the sense
that one produces the activation of the following until
the goal is achieved. This is a result of the automatic
subgoal generation performed by the algorithm: the
firing conditions of behaviors that carry to a reward
situation (behavior 1 in this case) are considered as a
subgoal situation to be achieved and new behaviors for
reaching it are generated (behavior 2 in the example).
The iteration of this process produces a chain of
                                                          
3 These behaviors are extracted from a controller produced
by our algorithm. For clarity of the presentation only the
most interesting behaviors are shown.



9

consecutive behaviors as that shown in the example. It
is interesting to note that, when behavior 2 is executed,
behavior 4 could also be executed but our action
selection mechanism (based in the utility of each
behavior) decides to execute behavior 2 since it is
directly correlated with behavior 1 (that moves the
robot to a reward situation in only one step) while
behavior 4 is not.

5 Conclusions and Future Work

In this work we have analyzed a process called
categorization that is previous to any application of
existent reinforcement learning algorithms. This
process is usually responsibility of the programmer
and not considered as part of the learning process. The
categorization increases the abstraction level of the
inputs and outputs manipulated by the learning
algorithm up to a point at which the task is learnable.
The manual identification of sensor and action
categories is possible only in simple environments,
tasks and robots, but if we want to solve complex
problems in dynamic environments using agents with
complicated sensor and motor systems (as is the case
of autonomous robots applications) we have to devise
automatic forms to create sensor and action categories.
With this objective in mind, we have analyzed the role
of categorization in reinforcement learning and we
have proposed a method to accomplish a task through
reinforcement learning without assuming a previous
manual categorization process. This algorithm
generates sensor categories, action categories and
behaviors that relate the previous elements. After a
period of exploration of the environment, a set of
behaviors is generated forming the controller of the
robot and containing what is traditionally called a
policy in reinforcement learning (a mapping from
sensors to actions that accomplishes the task). Our
system is related with many other disciplines:

•�  Classifier systems: These systems (Goldberg,
1989), (Dorigo and Colombetti, 1994) also find a
set of rules to achieve a task using a reinforcement
signal. The main differences of our work with
respect to classifier systems are that we build
sensor and action categories that are correlated to
form behaviors while classifier systems
concentrate on the behavior construction without
taking into account the category formation.
Additionally, classifier systems select behaviors
using only the information given by the
reinforcement signal and do not create behaviors
attending only to environment regularities. Other
differences between the two approaches are that we
allow a more general set of operations to be

applied over the inputs (classifier systems only use
the AND operation) and that we define action
categories, while classifier systems only use simple
actions.

•�  Behavior based controllers: The controller learned
by our algorithm is composed of behaviors as
proposed in many robot control architectures
(Brooks, 1991). Our action selection mechanism (a
basic piece of the behavior-based approaches to
robot control) is based on the utility of each
behavior calculated from the reinforcement signal.
Note that the resulting controller will be reactive
only if the operations over the sensor inputs are
reactive.

•�  Genetic programming: We learn a controller for a
task using genetic algorithms. Other authors have
used genetic algorithms to evolve programs that
perform a task (Koza, 1992).

•�  Multitask learning: The algorithm can generate
categories derived from environment regularities
and not directly related with the task to be
accomplished. This categories are potentially
useful for many tasks in similar environments. This
reuse of the experience is also present in an
approach to machine learning called multitask
learning (Caruana, 1993).

Taking into account the history of the reinforcement
learning algorithms we can say that our system goes a
step further than the usual reinforcement learning
algorithms. The first algorithms to learn through
reinforcement were developed in the process
optimization area and assumed the knowledge of the
complete model (states, actions and probability
transitions between them) of the system to optimize.
The next generation of reinforcement learning
algorithms relaxed this hypothesis in the sense that
they do not require the knowledge of the model of the
process but as we have noted in this work, they heavily
rely in the correct definition of states and actions. In
some cases (as for instance in the classifier system
paradigm), this hypothesis has been somehow relaxed:
states are defined automatically but relevant categories
to do that must be predefined. The algorithm we have
proposed completely relaxes this assumption and can
work in cases in which the definition of states and
actions is not available at the beginning of the learning
process so we will be able to solve problems not
solvable up to now. This set of new attainable
problems includes interesting cases such as those
posed when trying to learn a complex task with an
autonomous robot. The drawback of relaxing the
hypotheses is that the learning process is in charge of
solving more things than a usual reinforcement
learning algorithm and so it is less efficient as far as
convergence time is concerned (so using our approach



10

makes sense when in those situations in which no
other algorithm is applicable). However, what is
remarkable of our approach is what we are trying to
learn more than how efficiently we learn it.
Results obtained with our algorithm are very
preliminary but promising. We are working in
simulated, simple worlds but adequate concepts and
actions to interact with these environments are
discovered helping to achieve the proposed tasks. Next
steps in the development of our systems passes
through including the capacity of generating high level
sensor and action categories. Another important aspect
to analyze in more detail is the case of robots with
more than one motor and with motors able to execute a
wider range of elementary actions than the ones used
in our examples. Another interesting capability to add
to our system is that of the reutilization of the
structures of category definitions so we can apply the
structure of an adequate category on different but
related sensors and actuators (this is the macro
capacity that (Brooks, 1992) demands to learning
algorithms when applied to the control of autonomous
robots).
With these additions, our system will be almost
complete and ready to be applied to an autonomous
robot. Our final objective is that of learning an
autonomous robot controller to accomplish a complex
task in a real environment without any previous pre-
process of neither sensors nor actions. This, as
(Brooks, 1991b) said, is the most complex thing one
can attack in the area of learning within the field of
autonomous robots and probably we are still far from
solving it. However, it is an objective that must faced
if we want to accomplish increasingly difficult tasks
using increasingly sophisticated robots. To confront
this challenge, automatic categorization algorithms
like the one proposed in this work will be
indispensable.

References

Brooks R. A. (1986) A robust layered control system
for a mobile robot, IEEE Journal of Robotics and
Automation, RA-2(1), pag. 14-26.

Brooks R. A. (1991) Intelligence without
representation. Artificial Intelligence 47:139-159.

Brooks R. A. (1991b) Intelligence without reason. MIT
AI Memo 1293.

Brooks R. A. (1992) Artificial Life and Real Robots.
Applied AI.

Caruana R. (1993) Multitask Learning: A Knowledge-
Based Source of Inductive Bias. In Proceedings
of the Tenth Int. Conf. on Machine Learning.

Connell J. H. (1989) A behavior based arm controller.
IEEE Transaction on Robotics and Autonomous.
Vol 5, N. 6.

Dorigo, M., and Colombetti M. (1994) Robot Shaping:
developing autonomous agents through learning.
Artificial Intelligence 71:321-370.

Goldberg D. E. (1989) Genetic Algorithms in search,
optimization and machine learning. Addison
Wesley.

Kaelbling L. P., Littman M. L. and Moore A. W.
(1995) An Introduction to Reinforcement
Learning. In "The Biology and Technology of
Intelligent Autonomous Agents", Springer-
Verlag.

Koza J. R. (1992) Genetic programming: On the
programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Maes P. and Brooks R. A. (1990) Learning to
Coordinate Behaviors. Proceedings of the AAAI.

Mahadevan, S. and Connell, J. (1992) Automatic
programming of behavior-based robots using
reinforcement learning. Artificial Intelligence
55:311-365.

Mataric M. J. (1990) Navigation with a rat brain: A
neurobiologically-inspired model for robot
spatial representation. Proceedings of the First
Int. Conf. on Simulation and Adaptive Behavior.
MIT Press.

Pfeifer R. (1995) Cognition - Perspectives from
Autonomous Agents. In "The Biology and
Technology of Intelligent Autonomous Agents".
Springer-Verlag.

Sutton, R. S. and Barto, A. G. (1998) Reinforcement
Learning: An Introduction. A Bradford Book. The
MIT Press.

Utgoff,  P. E. and Cohen, P. R. (1998) Applicability of
Reinforcement Learning. In The Methodology of
Applying Machine Learning: Problem Definition,
Task Decomposition and Technique Selection
Workshop, ICML-98. pag. 37-43.

Watkins C. J. C. H., Dayan P. (1992) Q-Learning.
Machine Learning, 8:279-292.


