LECTURE 5
Spike timing—dependent plasticity (STDP)

In the neuron models discussed so far each synapse is characterized by a single
fixed real parameter w that determines the amplitude of the postsynaptic response
to an incoming spike. However, a great deal of experimental evidence has accumu-
lated that these synaptic weights can undergo persistent changes over time. Such
changes are thought to be the neural correlates of learning and memory. Most
experimental studies of synaptic plasticity have focused on refining the original
theoretical postulate due to Hebb [107]: When an azon of cell A is near enough
to excite cell B or repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such that A’s efficiency,
as one of the cells firing B, is increased. A more modern interpretation of this pos-
tulate is that synaptic modification is driven by correlations in the firing activity
of presynaptic and postsynaptic neurons.

In many regions of the brain, neurons are found to exhibit bidirectional plas-
ticity in which the strength of a synapse can increase or decrease depending on the
stimulus protocol [109, 110, 111, 112, 113]. Long term potentiation (LTP) is
a persistent increase in synaptic efficacy produced by high-frequency stimulation
of presynaptic afferents or by the pairing of low frequency presynaptic stimulation
with robust postsynaptic depolarization. Long-term synaptic depression (LTD)
is a long-lasting decrease in synaptic strength induced by low-frequency stimula-
tion of presynaptic afferents. More recent experimental studies suggest that both
the sign and degree of synaptic modification arising from repeated pairing of pre-
and postsynaptic action potentials depend on their relative timing [114, 115, 116].
Long-term strengthening of synapses occurs if presynaptic action potentials precede
postsynaptic firing by no more than about 50 ms. Presynaptic action potentials that
follow postsynaptic spikes produce long-term weakening of synapses. The largest
changes in synaptic efficacy occur when the time difference between pre- and postsy-
naptic action potentials is small, and there is a sharp transition from strengthening
to weakening. This phenomenon of spike timing-dependent plasticity (STDP) is
illustrated in figure 1.

One of the problems with standard formulations of Hebbian learning is that
without additional constraints, the level of activity in a network can grow or shrink
in an uncontrolled manner. The observation that LTP and LTD can occur at
the same synapse depending on the pre-post correlations suggests that STDP can
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Figure 1. Spike-timing-dependent synaptic plasticity observed in hippocam-
pal neurons. Each data point represents the relative change in the amplitude
of evoked postsynaptic current after repetitive application of pre- and postsy-
naptic spiking pairs (1 Hz for 60 s) with xed spike timing A¢, which is dened
as the time interval between pre- and postsynaptic spiking within each pair.
Long-term potentiation (LTP) and depression (LTD) windows are each tted
with an exponential function. Adapted from Bi and Poo [108]

provide a mechanism for self-stabilization of weights and rates in a network. A
second important requirement of any learning scheme is that networks need to
operate competitively. Thus, normally it does not make sense to drive all synapses
into similar states through learning, because the network will then no longer contain
inner structure. Instead, most real networks in the brain are highly structured,
forming maps or other subdivisions. In this lecture we investigate the possible role
of STDP in stability and competition by considering a simple phenomenological
model of a stochastically driven neuron with adapting synapses. We then discuss
a more detailed biophysical model of bidirectional synaptic plasticity that contains
two essential components: a description of intracellular calcium dynamics with
calcium influx mediated by NMDA receptors, and a mechanism for how calcium
concentration can induce a change of synaptic efficacy.

5.1. Hebbian learning in a spiking neuron model

Consider a stochastically spiking neuron having N adapting synapses with weights
wj, j=1,...N. Let S;(t) = >_, 6(t=TJ") and S(t) = }_,, 6(t=T"™) be the presy-
naptic and postsynaptic spike trains respectively. We assume that an instantaneous
jump in the strength of a synaptic weight occurs whenever there is a presynaptic or
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postsynaptic spike. The amplitude of each jump depends on the relative timing of
previous spikes along the lines of figure 1 The rate of change of the synaptic weight
w; is then taken to be of the form [117, 118, 2]

dw.: oo oo
(5.1)% = c0+sj(t)/ W(—s)S(t—s)ds+S(t)/ W (s)S,(t — 5)ds

0 0

where ¢y represents an activity—independent growth or decay and the kernel W (s)
for s > 0 (s < 0) gives the weight change if a postsynaptic spike is preceeded
(followed) by a presynaptic spike with delay |s|. Experimental results such as those
shown in figure 1 suggest that the kernel W defines a learning window for LTP or
LTD. A simple choice for W is

—3/7'2
(5.2) W(s) = { Aye for s >0

—A_e¥’™ fors<0

with AL > 0. If the coefficients Ay are constants then equation (5.1) is said to
be an additive learning or update rule. Since excitatory synapses are positive and
should not exceed some maximum value of, say, w; = 1, it is necessary to impose
additional constraints. One way to implement this is to consider a multiplicative
rather than additive update rule with weight—dependent coefficients

(5.3) A_=wja_, A =(1-wjas

Note that w; is a step function of time with discontinuities whenever a spike occurs.
In order to obtain a well-defined differential equation (5.1), we require that the
amplitude of a step depends on the value of w; immediately prior to a spike. The
solution wj;(t) is thus a left—continuous function of time ¢.

We assume that the input spike trains have stationary statistics with known
mean and correlations. More specifically, input spikes at a given synapse j are
generated by a doubly stochastic point process. First, spikes are generated by an
inhomogeneous Poisson process with instantaneous rate v;(¢). Thus,

(S;(1) e = v;(t)
where (...)r denotes expectation with respect to the Poisson process. Second, the
rate itself is drawn from a distribution with constant expectation and homogeneous
correlations,
i) =v"", (vt (t))r = Cir(t —t')

where (...)r denotes expectation with respect to the rate distribution. Finally, it is
assumed that each presynaptic spike train has identical statistical properties in the
sense that the mean input spike rate is j-independent and ), Cjx(t) = C(t) for all
j. As we have seen in §3, determining the output response of a neuron to stochastic

inputs is a non-trivial problem. Here we will assume that the output firing rate
v(t) = (S(t)) g is linearly related to the input rates according to [119, 117]

(5.4) v(t) = ij /O h e(s)v;(t — s)ds

where ¢(s) represents the time course of a postsynaptic potential. (Note the implicit
assumption that the sum on the right—hand side remains positive). It then follows
that

VPOt = (y(t))p = vPe ij.
J
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The next major step is to assume that weight changes are small during the time
that it is necessary to approximately sample the input statistics. In this case we can
separate the time-scale of learning from that of neuronal dynamics. The right—hand
side of equation is then self-averaging [119, 117] so that it can be approximated
by

(5.5) d“’f 0+/ W (s) ((S(£)S; (t — )))ds

where double angular brackets mean averaging with respect to the double stochastic
process. In order to combine both integrals in equation (5.1), we have assumed that
((S(t)S;(t — s))) is approximately unchanged if t — s — ¢ with s varying over the
length of the learning window represented by W (s). This is valid for the above
linear model, for which it can be shown that [119]

(5.6) (S(8)S(t —8)m = v(t)v;(t — s) + wje(s)v;(t — s)

The first term on the right-hand side is the “chance level” of finding two spikes
at t,t — s respectively if the neurons were firing independently at rates v(t) and
vj(t—s). The second term describes the correlation arising from synaptic coupling;
if the presynaptic neuron fires at time ¢ — s then the chance that the postsynaptic

neuron fires at time ¢ is increased by wje(t — s) provided that s > 0 (causality). It
then follows that

(S8t —s))) = (Wit —s)r +wije(s){v;(t — s))r

(5.7) zk: wi(t) /0°° e(s")Cjk(s" — 5) + w; (t)e(s)vP™

with wg(t) a slowly varying function of ¢. Substituting equation (5.7) into (5.5)
then gives (after some rearrangement)

(5.8) % = co + WovPostyPre 4 Z wi () [Qjk + 0 W4 vP*e]
where )

(5.9) W [ Wds W= [T dows)s
and - i

(5.10) Q= [ dswis) [ ase(s)Chis - )
with C;)k (s) the input covariance function

(5.11) Cli(s) = (v (t) = v [va(t = 5) = " )r

In order to gain further insight into the nature of the above Hebbian-like learn-
ing rule, it is useful to rewrite equation (5.8) in the equivalent form

duw;
dt

(5.12) + Zwk [Qix — Q] + Wi |w;(t)vP™ —

= ¢ + ,yypost
Vpost

N

where
(5.13) v = WorP™ + N7'W, + Q/vPest
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and Q = N1, Qjx with Qi given by equation (5.10). Suppose that the update
rule is additive, that is, W(s) is independent of the weights w;. Multiplying both
sides of equation (5.12) by vP* and summing over j, we find that the terms on the
second line of the right-hand side of equation (5.12) vanish and

d post
(5.14) th = (WPt — )
with v* = —¢g/v. It follows that the mean output activity converges to the fixed

point * provided that v < 0 and, hence, ilustrates how STDP can stabilize network
activity. Since firing rates can only be positive, we also require ¢y > 0. Once it
has converged to v*, the total sum of weights > w;(t) remains constant (a form of
subtractive normalization [120]), and the terms on the first line of the right—-hand
side of equation (5.12) cancel. The remaining terms then determine the evolution
of the weight vector w according to

(5.15) dd_v;/ =[Q - Qw + W, [vP*w — N~ 'v*n]

where Q is the matrix with all its elements equal to @, and n = (1,1,...,1).
Dropping the term N ~'v*n for large N, we see that the dynamics of w is dominated
by the eigenvector of the matrix Q — Q1 with the largest eigenvalue. In other words,
the neuron is carrying out a form of statistical feature extraction along the lines
of singular value decomposition. This form of correlation—based learning, when
combined with spatially distributed synaptic interactions, has been used to model
the development of feature maps in cortex.

Development of ocular dominance columns in V1

The primary visual cortex (V1) is characterized by a number of spatially distributed
feature maps, in which local populations of neurons respond preferentially to stim-
uli with particular properties such as orientation and spatial frequency. Neurons
also tend to respond more strongly to stimuli presented in one eye rather than
the other, that is, they exhibit ocular dominance. Neurons sharing the same oc-
ular dominance are grouped together into non-overlapping regions that form an
alternating pattern of right and left eye preference across V1. Such regions have a
characteristic periodicity and morphology that is species—dependent. For example,
in the adult macaque monkey ocular dominance regions consist of branching stripes
that have an approximately uniform width of 0.4mm whereas in cat they are more
patchy. An example of the ocular dominance pattern in macaque is shown in figure
2.

Let ng(r) and nr(r) denote the synaptic densities of feedforward afferents from
the left and right eyes to a point r € R? in cortex. (For simplicity, we treat cor-
tex as an unbounded two—dimensional sheet). Suppose that these densities evolve
according to a spatially extended version of Hebbian learning with subtractive nor-
malization:

(5.16) M:/R? w(|r —1']) Z Qijnj(r',t)—uz:nj(r') dr’

ot Py
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Figure 2. Reconstruction of ocular dominance columns in primary vi-
sual cortex (V1) of macaque monkey shown in tangential section. Re-
gions receiving input from one eye are shaded black and regions receiving
input from the other eye are unshaded.

where u = [@Qs + Qp]/2. Equation (5.16) is supplemented by the saturation con-
straints 0 < nr(r),nr(r) < N. The term in square brackets represents the ba-
sic Hebbian learning rule (after averaging with respect to left and right eye in-
puts). The matrix Q specifies same—eye (Qr. = Qrr = Qs ) and opposite—eye
(QLr = Qrr = Qp) input correlations with Qg > @p > 0. The subtractive nor-
malization term involving the constant factor p ensures that there is competition
between left and right eye afferents at each point in cortex. Finally, the function w
represents the effects of synaptic interactions in cortex, which are assumed to be in
the form of a mexican hat function (short-range excitation, long-range inhibition).
These interactions generate a pattern forming instability that produces a spatial
ordering of left/right eye competition, resulting in ocular dominance columns. In
the following, we will explore the pattern formation of ocular dominace columns in
more detail.

EXERCISE

Calculate the eigenmodes of the linear system of equations (5.16). Show that
nr(r) + ng(r) is conserved pointwise in cortex. Determine the fastest growing
eigenmodes and show that the resulting patterns are consistent with the formation
of two—dimensional ocular dominance columns. What does linear theory predict
for the width of an ocular dominance column?

Distribution of synaptic weights

In the above analysis it was assumed that the weights evolve much more slowly
than typical presynaptic and postsynaptic interspike intervals, so that statistical
fluctuations in the weight dynamics can be ignored. However, if the synaptic weights
can be changed significantly by only a few spikes then such fluctuations have to
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be taken into account. One approach is to determine the steady state distribution
of synaptic weights within the framework of a Fokker—Planck equation [121, 118,
122]. For the sake of simplicity, we consider a learning window with two rectangular
regions so that the kernerl W(s) is

Ay for0<s<d
(5.17) W(s)=¢ —A_ for —d<s<0
0 otherwise

The weights w; are restricted to lie in the interval [0, 1] by imposing either hard or
soft bounds. Hard bounds means that the weights are simply nolonger increased
(decreased) if the upper (lower) bound is reached. Soft bounds, on the other hand,
gradually slow down the dynamics if a weight approaches one of its bounds. The
latter can be implemented using the multiplicative rule (5.3).

Let P(w,t) be the probability density for the population of synapses (assumed
large) with normalization fol P(w,t)dw = 1. Each presynaptic neuron fires inde-
pendently at a constant rate vP™ (we are now considering homogeneous Poisson
processes). The evolution of P(w,t) is then given by the master equation

O Plwt) = e, )P(w,1) — p- ()Pl 1)
+ /0 5w — ' — Ay (W ))po (!, )P £)du
(5.18) +/0 S(w—w + A_(w'))p— (v, t)P(w', t)dw

Here pi(w,t) (p—(w,t)) is the probability per unit time that the neuron fired at
time t and a synapse with weight w(t) = w received a presynaptic spike falling in
the positive (negative) part of the learning window centered about ¢. Thus

d
pe(wt) = / (S(1)S;(t - 5)) pds

0
(5.19) pewt) = [ (SWS(t - 9)pds

—d
It can be shown that [118, 123]
(5.20) (S(t)S;(t — s)) g = VPP (1 + G(s)w(t))
for some model-dependent G(s) with G(s) = 0 for s < 0.
The master equation can be reduced to a Fokker—Planck equation by Taylor
expanding to second order in the jump transitions Ay along similar lines to §3
(assuming jumps are sufficiently small). This gives

(5.21) D pwt) =~ [A(w)Plw,0) + %

[B(w)P(w,1)]
with

A(w,t) = py (w, ) A (w) = p_ (1w, ) A_ (w)
(5.22) Blw, 1) = pa(w, 1) A2 () — p_(w, 1) A2 (w)

The Fokker—Planck equation can be solved numerically to find stationary solutions.
One finds that the qualitative form of the distribution depends critically on how
the bounds for the weights are implemented [118, 122]. With soft bounds the
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Figure 3. Stationary distribution of synaptic weights with (a) hard bounds
and (b) soft bounds

distribution is unimodal whereas with hard bounds it is bimodal with peaks at the
boundaries of the weight interval, see figure 3. We see that the use of hard bounds
introduces competition between weights but is less stable, since weights tend to
saturate at either boundary.

5.2. Biophysical model of calcium controlled bidirectional plastic-
ity

Calcium has long been suggested as a major signaling agent for LTP and LTD
[124, 125, 110, 126], and more recently for STDP [116]. As illustrated in fig-
ure 4, calcium can enter the cell through channels controlled by NMDA receptors.
Two conditions are necessary for the opening of such channels: (i) arrival of an
action potential at the presynaptic terminal releases the excitatory neurotransmit-
ter glutamate which then binds to NMDA receptors and (ii) the postsynaptic cell
is sufficiently depolarized so that magnesium ions are unblocked from the NMDA
channels allowing the influx of calcium. One source of strong depolarization is the
back propagation of an action potential into the dendritic tree, which is a signa-
ture that the postsynaptic neuron has fired a spike. Given that calcium ions can
enter the cell only if glutamate has been released by presynaptic activity and if the
postsynaptic membrane is sufficiently depolarized, it follows that the NMDA re-
ceptor is a natural candidate for the biophysical implementation of a Hebbian-like
mechanism for detecting correlations between presynaptic and postsynaptic activ-
ity. In this section we describe a biophysical model that consists of two essential
components: a model of calcium entry through NMDA synapses and a model of
how intracellular calcium concentration modifies synaptic efficacy [127].

NMDA receptors and calcium influx

Suppose that a presynaptic spike arrives at an NMDA synapse at time 7' and the
postsynaptic membrane potential is u(¢). A simple model for the calcium current
through an NMDA receptor—controlled channel is

(5.23) Tca(t) = goac(t — T)[u(t) — uca) B(u(t))
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Figure 4. Different states of an NMDA synapse. A) Inactive state. B). Ar-
rival of an action potential (AP) at the presynaptic terminal induces vesicles
containing glutamate to merge with the cell membrane and releasethe neuro-
transmitter into the synaptic cleft. This binds to NMDA and AMPA receptors
on the postsynaptic cell membrane. The AMPA associated channel opens but
the NMDA channel is blocked by magnesium. C) Depolarization of the post-
synaptic membrane unblocks magnesium allowing the influx of calcium. D)
Depolarization may be caused by a back propagating action potential (BAP)
that travels up the dendrites. [Taken from Gerstner and Kistler [2]]

where gg, is the maximal conductance of the channel and uc, is the reversal po-
tential of calcium. The function «(t — T') describes the time course of binding to
NMDA receptors and is typically taken to be the sum of a fast (7y = 50ms) and a
slow (7, = 200ms) exponential:

(5.24) a(t) =Ipe /™ 4 [e /™ >0
The function
1

(5.25) B) = 1o e

describes the unblocking of the channel at depolarized levels of membrane poten-
tial [128]. If there are several presynaptic spikes within 100ms then calcium ac-
cumulates inside the cell. The change in the calcium concentration [Ca?T] can be
described by the simple first order kinetic equation

d[Ca2+] B [Ca2+]
dt = lealt) - TCa

(5.26)
with 7q, = 125ms.

Calcium control hypothesis

Although the dynamics of NMDA synapses is reasonably well understood, much less
is known about the biochemical signaling pathways that are triggered by calcium
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influx and lead to persistent changes in synaptic efficacy. (Recent experimental
evidence suggests that and important component of LTP and LTD is a change in
the number of AMPA receptors in the postsynaptic membrane through receptor
trafficking [129], see below). Instead of developing a detailed model of such pro-
cesses, Shouval et al [127] adopted a phenomenological approach and assumed that
the change in synaptic weight is fully determined by the intracellular calcium con-
centration. Under this so—called “calcium control hypothesis”, the synaptic weight
is taken to vary according to the simple first order scheme

dw
(5.27) — = 1((Ca)) [2([Cal) — w]
For constant calcium concentration, the weight w converges to the asymptotic value
Q([Ca]) at the rate n([Ca]). Shouval et al [127] assume a particular form for the

4 %% I
0 0.5 1 0 05
ca2* (uM) Ca2* (uM)

Figure 5. Calcium control hypothesis. The asymptotic weight value Q([Ca])
and rate constant n([Ca]) are shown as a function of calcium concentration
[Ca]. Adapted from Shouval et al [127]

functions Q([Cal]) and n([Ca]), as shown in figure 5. For calcium concentrations
below a lower threshold 6,4, the fixed point {2 assumes a resting value of Q2 = 0.5
(in appropriate units). For calcium concentrations in the range 64 < [Ca] < 6,
the fixed point tends to decrease, whereas for calcium concentrations above the
upper threshold ), it increases. The rate constant 7 is taken to be a monotonically
increasing function of calcium concentration.

Regulation of AMPA receptors and the calcium hypothesis

In figure 6(a) is shown an idealized model for the cycle of phosphorylation — dephos-
phorylation at two sites on the GluR1 subunit of an AMPA receptor. The model
assumes two specific kinases (EK1, EK2) and two opposing specific phosphatases
(EP1, EP2). It is assumed that high—frequency stimulation preferentially stimulates
the activity of protein kinases, resulting in GluR1 phosphorylation, whereas low-
frequency stimulation preferentially stimulates the activity of protein phosphatases,
resulting in GluR1 dephosphorylation. The concentration of AMPA receptors con-
taining GluR1 phosphorylated at sites S831 and S845 are denoted by A,; and AP?
respectively. The corresponding concentration of receptors with phosphorylation
at neither or both sites are denoted by A and Ag?. EP1 and EP2 denote the
rates of dephosphorylation at the two sites and FK1, FEK2 denote the rates of
phosphorylation. These rates are taken to be calcium—dependent. Finally, the ef-
fective weight of a synapse is assumed to be proportional to the linear combination
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W ~ A+ 2[A, + AP?] + 4Aﬁ. The synaptic plasticity equation can then be ob-
tained from the kinetic rate equations associated with figure 6(a). However, There
is growing evidence that AMPA receptor trafficking rather than phosphorylation
underlies calcium mediated changes in synaptic strength. A simple model for the
former is to assume two population of AMPA receptors, one (A4,,) is inserted in the
postsynaptic membrane and the other (Ay) is internal to the postsynaptic compart-
ment, see figure 6(b). Denoting the calcium-dependent rate constants for insertion
and removal by K; and Kg respectively, we have the first order kinetics

(5.28) Amz —KRrA,, + K;Aj, AIZKRAm—K]A[

Assuming conservation of the total number of receptors, Ar = A,,(t) + A;(t), and
identifying synaptic strength as W = (3A,,, where [ is a proportionality constant, it
is straightforward to derive the synaptic plasticity equation (5.27) assumed in the
calcium hypothesis.

HFS

LFS
o

A
AV

(831) NMDAR

Figure 6. (a) Phosphorylation—dephosphorylation cycle for GluR1 sub-
unit of an AMPA receptor with HFS (LFS) denoting bias under high
(low) frequency stimulation (b) AMPA receptor trafficking

EXERCISE

Using the law of mass action, write down the set of first—order ODEs describing the
evolution of the four receptor concentrations in figure 6(a). Assuming conservation
of total amount of AMPA receptors, Ay = A(t)+ Ap1 (t)+ AP? (t)—i—AZ? (t), determine
the equilibrium solutions for the concentrations as fractions of Ap. This then
generates the fixed point Q of the synaptic plasticity equation 5.27). How would
one determine the rate of convergence 1?7 Show how the pair of kinetic equations
(5.28) in the recptor trafficking model generate equation (5.27).

Back propagating action potentials (BAPs) and STDP

In order to completely specify the model, it is necessary to determine the dynam-
ics of the postsynaptic membrane potential u(t). In the case of STDP, the main
source of depolarization is thought to arise from a back propagating action poten-
tial (although this might not be the whole story [130]) . This can be modeled by
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taking

-~

(5.29) u(t) =n(t=T), nt)=U (fse*t/*s + ffe*t/ff)

where 7 is the last firing time of the postsynaptic cell and 7(t) is the profile of the
BAP, which is taken to be the sum of a fast and a slow exponential. The various
components of the model given by equations (5.23), (5.26), (5.27) and (5.29) can
now be combined to show how calcium influx leads to STDP [127]. The basic idea is
that the relative timing of presynaptic and postsynaptic spikes alters the maximum
level of calcium influx, which is proportional to the product of the NMDA glutamate
binding factor « and the magnesium unblocking factor B(u), see equation (5.23).
The details are explained in figure 7. One potential problem with the model is that
it predicts that LTD can also be induced by a sequence of pre—post spikes if the
separation between spikes is larger than about At = 40ms. The reason is that in
this case the removal of the magnesium block (induced by the BAP) occurs at a
time when the probability of glutamate binding is reduced. As a consequence less
calcium enters the cell so that only the LTD threshold is reached. There is not
convincing experimental evidence for such a form of LTD. This has motivated a
more detailed biophysical model in which the time course of the calcium current
rather than just its level acts as signal for STDP [131].

Only pre At=-10 At=+10
S 1 1 3 5 e
c
c 3 0
(e =]
Fx05 mV
£z 35
=
= 0 -70
: 2

ca2* (uM)

200 0 200 0
time (ms) time (ms) time (ms)

Figure 7. (1,2) Presynaptic stimulation alone results in the binding of gluta-
mate to NMDA receptors but only a small depolarization so that there is only
moderate calcium influx. (3,4) Post—pre stimulation (At = —10ms) results
in a large brief depolarization due to a BAP, which partially overlaps with
the onset of glutamate binding to NMDA receptors. The calcium influx is
increased so that it crosses the threshold 6,4 for LTD and there is a negative
weight change. (5,6) Pre—post stimuluation (At = +10ms) results in a large
brief depolarization that completely overlaps with the period of significant
glutamate binding to NMDA receptors. The resulting calcium influx is well
above the threshold 6, for LTP and there is a positive weight change. Since the
rate constant v([Ca2%]) is larger in the regime of LTP induction, the positive
weight change is dominant even though the calcium concentration must pass
through the LTD regime in order to reach the threshold 6,. [Adapted from
Shouval et al [127]]
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5.3. Computational role of STDP

In this final section we briefly describe one potential computational application of
STDP to prediction and reward learning [132]. Animals in the environment of-
ten have to react quickly to the earliest signs of harmful stimuli or potential prey.
That is, they have to predict or anticipate future events. STDP provides a hint
at how a simple form of predictive coding could be implemented at the cellular
level. Consider as an example a single neuron receiving inputs from a set of IV

20 time t

Figure 8. A) A sequence of presynaptic spikes is presented to a single neuron.
Such a sequence could be generated by a moving stimulus. B) After many trials
the synapses in the early part of the sequence have been strengthened so that
the neuron fires earlier by an amount At. Initial response is shown by thin
lines and adapted response by thick lines

presynaptic cells that fire sequentially (see figure 8). This could be the result of
a moving stimulus. Initially all synapses have the same weight w; = wq for all
j=1,...N. Suppose that the postsynaptic neuron initially fires at time 7" during
the presentation of the sequence. All synapses that have been activated prior to
the postsynaptic spike are strengthened while synapses that have been activated
immediately afterwards are depressed. After many trials, the firing time of the
postsynaptic neuron within the sequence has shifted by an amount —At. Inter-
estingly, this effective shift in the distribution of synaptic connections is consistent
with experimental observations of a shift in the place fields of hippocampal neurons
[133].

The shift of responses towards earlier predictors plays a central role in classical
conditioning as exemplified by Pavlov’s dog. An unconditioned simulus (US) — food
— is preceded by a conditioned stimulus (CS) — a bell — at a fixed time interval AT.
Before learning the US evokes an immediate response — salivation — wheres the CS
evokes no response. After learning, the dog starts to salivate in response to the CS.
Thus the reaction has moved from the US to the CS, which reliably predicts the
US. STDP can replicate this result if the time difference AT between two stimuli
is less than the width of the learning window. The mechanism is identical to the
previous example illustrated in figure 8, except that the inputs are clustered into
two groups corresponding to US and CS. A shift to early predictors is also observed
experimentally in recordings from dopamine neurons in the basal ganglia concerned
with reward processing [135], see figure 9. Before learning some dopamine neurons
respond to an unpredicted reward. During learning this response decreases and
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Novelty Response: A After learning: B After leaming:
no prediction, predicted reward occurs predicted reward does not
reward occurs

occur | J

cs r ' cs o

Reward Reward Expectation
Expectation (Population Response)

- l Tr r
Tr

Figure 9. Neuronal response in the basal ganglia concerened with reward
processing. A) Response of a dopamine neuron to the presentation of a reward
(r) without a preceding CS. B) Response of same neuron after learning that the
CS will predict the reward. C) If the expected reward fails to be delivered, the
neuron is inhibited. D) Response of putamen neuron, which gradually increases
and maintains its firing after a trigger (TR) until the reward is delivered.
E) Population response of striatal neurons further illustrating expectation of
reward response. [Adapted from [134]]

the neurons now increase their firing to a reward-predicting stimulus. The more
predictable the reward becomes, the less strongly the neurons fire when it appears,
and if it does not appear the neurons are inhibited. There are in fact a number
of different types of reward—predicting dopamine neurons with distinct responses.
For example, some neurons fire a prolonged discharge following a trigger stimulus
until a reward is delivered. Dopamine neurons have a central role in guiding our
behaviour and thoughts [136]. Their performance is impaired by every addictive
drug and in mental illness. They are also lost in dramatically impairing illnesses
such as Parkinsons disease. If dopamine systems are overstimulated, we may hear
voices, experience elaborate bizarre cognitive distortions, or engage excessively in
dangerous goal-directed behaviour. Dopamine function is also central to the way
that we value our world, including the way that we value money and other human
beings.

Temporal difference learning

It has been suggested that reward—predicting dopamine neurons contribute to some
form of temporal difference (TD) learning [136, 132]. The simplest example of TD—
learning arises in the problem of predicting some scalar quantity z using a single
neuron with synaptic weights w = (wy, ... wy). The presynaptic input is a sequence
of vectors x1,...x,, and the output at discrete time step t is given by P, = w - x;.
The goal is to learn a set of weights such that the prediction P; is as close as possible
to the taget z. The weights are updated according to

(530) Wil = Wi + A(Pt-‘,-l - Pt)Xt

where A is a learning rate and P,,4+1 = z. To motivate this TD-learning rule,
suppose that the weights are initially zero so that P, = 0 for all ¢. However, in the
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final step t = m, there is a non—zero prediction error P,,+1 — P, = z, so that the
weights are changed by an amount equal to Azx;. Thus in the next trial P, will
be closer to z than before, and after several trials will tend to converge to z. A
particularly interesting feature of the learning algorithm is that P; acts as a training
signal for P;_; so that information about the target z is propagated backwards in
time such that the predictions are corrected over many trials and will eventually
converge to z. One way to interpret z is to view it as the reward delivered to an
animal at the end of a trial. This idea can be generalized by assuming that a reward
r¢ can be delivered at each time—step. This leads to the standard model of TD—
learning proposed by Sutton and Barto [137], in which P; now predicts Y., r;.
Ideally

i>t

m m
P = ZH =71+ Z r; = Tip1 + Py
i>t i>t+1
This suggests a prediction error of the form §; = ryy1 + Piy1 — P and a learning
rule in which weights are updated to minimize this error

(5.31) Wit1 = Wi + A(re41 + Py — Po)xy

Finally, note that the response illustrated in figure 9A-C suggests that the dopamine
neuron is encoding a prediction error signal analogous to ;.
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